Properties

Label 234.2.f.c.133.1
Level $234$
Weight $2$
Character 234.133
Analytic conductor $1.868$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,2,Mod(133,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.133");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.f (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.86849940730\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 4 x^{10} - 6 x^{9} + 22 x^{8} - 45 x^{7} + 75 x^{6} - 135 x^{5} + 198 x^{4} + \cdots + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 133.1
Root \(-1.26151 + 1.18685i\) of defining polynomial
Character \(\chi\) \(=\) 234.133
Dual form 234.2.f.c.139.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +(-1.65859 + 0.499074i) q^{3} +1.00000 q^{4} +(-0.102915 - 0.178255i) q^{5} +(1.65859 - 0.499074i) q^{6} +(0.779577 + 1.35027i) q^{7} -1.00000 q^{8} +(2.50185 - 1.65552i) q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +(-1.65859 + 0.499074i) q^{3} +1.00000 q^{4} +(-0.102915 - 0.178255i) q^{5} +(1.65859 - 0.499074i) q^{6} +(0.779577 + 1.35027i) q^{7} -1.00000 q^{8} +(2.50185 - 1.65552i) q^{9} +(0.102915 + 0.178255i) q^{10} -3.88861 q^{11} +(-1.65859 + 0.499074i) q^{12} +(-1.68162 + 3.18938i) q^{13} +(-0.779577 - 1.35027i) q^{14} +(0.259657 + 0.244289i) q^{15} +1.00000 q^{16} +(-1.84139 + 3.18938i) q^{17} +(-2.50185 + 1.65552i) q^{18} +(-3.72573 + 6.45316i) q^{19} +(-0.102915 - 0.178255i) q^{20} +(-1.96688 - 1.85047i) q^{21} +3.88861 q^{22} +(-1.68465 + 2.91790i) q^{23} +(1.65859 - 0.499074i) q^{24} +(2.47882 - 4.29344i) q^{25} +(1.68162 - 3.18938i) q^{26} +(-3.32332 + 3.99444i) q^{27} +(0.779577 + 1.35027i) q^{28} -4.87634 q^{29} +(-0.259657 - 0.244289i) q^{30} +(-1.50185 - 2.60128i) q^{31} -1.00000 q^{32} +(6.44961 - 1.94070i) q^{33} +(1.84139 - 3.18938i) q^{34} +(0.160461 - 0.277926i) q^{35} +(2.50185 - 1.65552i) q^{36} +(4.38086 + 7.58788i) q^{37} +(3.72573 - 6.45316i) q^{38} +(1.19739 - 6.12913i) q^{39} +(0.102915 + 0.178255i) q^{40} +(1.74646 - 3.02496i) q^{41} +(1.96688 + 1.85047i) q^{42} +(0.343259 + 0.594541i) q^{43} -3.88861 q^{44} +(-0.552583 - 0.275588i) q^{45} +(1.68465 - 2.91790i) q^{46} +(-1.48380 + 2.57002i) q^{47} +(-1.65859 + 0.499074i) q^{48} +(2.28452 - 3.95690i) q^{49} +(-2.47882 + 4.29344i) q^{50} +(1.46237 - 6.20887i) q^{51} +(-1.68162 + 3.18938i) q^{52} +9.52297 q^{53} +(3.32332 - 3.99444i) q^{54} +(0.400197 + 0.693162i) q^{55} +(-0.779577 - 1.35027i) q^{56} +(2.95886 - 12.5626i) q^{57} +4.87634 q^{58} +6.60057 q^{59} +(0.259657 + 0.244289i) q^{60} +(-2.67549 - 4.63408i) q^{61} +(1.50185 + 2.60128i) q^{62} +(4.18578 + 2.08756i) q^{63} +1.00000 q^{64} +(0.741586 - 0.0284788i) q^{65} +(-6.44961 + 1.94070i) q^{66} +(1.51690 - 2.62734i) q^{67} +(-1.84139 + 3.18938i) q^{68} +(1.33790 - 5.68036i) q^{69} +(-0.160461 + 0.277926i) q^{70} +(-1.39708 + 2.41982i) q^{71} +(-2.50185 + 1.65552i) q^{72} -15.3364 q^{73} +(-4.38086 - 7.58788i) q^{74} +(-1.96860 + 8.35817i) q^{75} +(-3.72573 + 6.45316i) q^{76} +(-3.03147 - 5.25066i) q^{77} +(-1.19739 + 6.12913i) q^{78} +(0.829455 - 1.43666i) q^{79} +(-0.102915 - 0.178255i) q^{80} +(3.51851 - 8.28373i) q^{81} +(-1.74646 + 3.02496i) q^{82} +(-4.34020 + 7.51744i) q^{83} +(-1.96688 - 1.85047i) q^{84} +0.758029 q^{85} +(-0.343259 - 0.594541i) q^{86} +(8.08785 - 2.43365i) q^{87} +3.88861 q^{88} +(6.25792 + 10.8390i) q^{89} +(0.552583 + 0.275588i) q^{90} +(-5.61747 + 0.215725i) q^{91} +(-1.68465 + 2.91790i) q^{92} +(3.78919 + 3.56493i) q^{93} +(1.48380 - 2.57002i) q^{94} +1.53374 q^{95} +(1.65859 - 0.499074i) q^{96} +(-3.28917 - 5.69701i) q^{97} +(-2.28452 + 3.95690i) q^{98} +(-9.72871 + 6.43767i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{2} + 12 q^{4} - 3 q^{5} + q^{7} - 12 q^{8} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 12 q^{2} + 12 q^{4} - 3 q^{5} + q^{7} - 12 q^{8} + 4 q^{9} + 3 q^{10} - 8 q^{11} - 5 q^{13} - q^{14} + 11 q^{15} + 12 q^{16} - q^{17} - 4 q^{18} + 9 q^{19} - 3 q^{20} + 8 q^{21} + 8 q^{22} + 7 q^{23} - q^{25} + 5 q^{26} - 9 q^{27} + q^{28} - 2 q^{29} - 11 q^{30} + 8 q^{31} - 12 q^{32} - 4 q^{33} + q^{34} - 3 q^{35} + 4 q^{36} + 15 q^{37} - 9 q^{38} + 18 q^{39} + 3 q^{40} - 19 q^{41} - 8 q^{42} - 2 q^{43} - 8 q^{44} - 5 q^{45} - 7 q^{46} - 23 q^{47} - 27 q^{49} + q^{50} + 8 q^{51} - 5 q^{52} - 4 q^{53} + 9 q^{54} + 24 q^{55} - q^{56} - 16 q^{57} + 2 q^{58} + 8 q^{59} + 11 q^{60} - 8 q^{61} - 8 q^{62} + 12 q^{64} + 7 q^{65} + 4 q^{66} + 14 q^{67} - q^{68} - 6 q^{69} + 3 q^{70} - 15 q^{71} - 4 q^{72} - 90 q^{73} - 15 q^{74} - 56 q^{75} + 9 q^{76} + 4 q^{77} - 18 q^{78} - 12 q^{79} - 3 q^{80} + 28 q^{81} + 19 q^{82} + 24 q^{83} + 8 q^{84} - 14 q^{85} + 2 q^{86} + 36 q^{87} + 8 q^{88} + 23 q^{89} + 5 q^{90} + 8 q^{91} + 7 q^{92} + 6 q^{93} + 23 q^{94} + 14 q^{95} - 4 q^{97} + 27 q^{98} + 31 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.65859 + 0.499074i −0.957588 + 0.288141i
\(4\) 1.00000 0.500000
\(5\) −0.102915 0.178255i −0.0460251 0.0797179i 0.842095 0.539329i \(-0.181322\pi\)
−0.888120 + 0.459611i \(0.847989\pi\)
\(6\) 1.65859 0.499074i 0.677117 0.203746i
\(7\) 0.779577 + 1.35027i 0.294652 + 0.510353i 0.974904 0.222626i \(-0.0714628\pi\)
−0.680252 + 0.732979i \(0.738129\pi\)
\(8\) −1.00000 −0.353553
\(9\) 2.50185 1.65552i 0.833950 0.551840i
\(10\) 0.102915 + 0.178255i 0.0325447 + 0.0563691i
\(11\) −3.88861 −1.17246 −0.586230 0.810145i \(-0.699388\pi\)
−0.586230 + 0.810145i \(0.699388\pi\)
\(12\) −1.65859 + 0.499074i −0.478794 + 0.144070i
\(13\) −1.68162 + 3.18938i −0.466399 + 0.884575i
\(14\) −0.779577 1.35027i −0.208351 0.360874i
\(15\) 0.259657 + 0.244289i 0.0670431 + 0.0630752i
\(16\) 1.00000 0.250000
\(17\) −1.84139 + 3.18938i −0.446602 + 0.773538i −0.998162 0.0605972i \(-0.980699\pi\)
0.551560 + 0.834135i \(0.314033\pi\)
\(18\) −2.50185 + 1.65552i −0.589692 + 0.390210i
\(19\) −3.72573 + 6.45316i −0.854741 + 1.48046i 0.0221435 + 0.999755i \(0.492951\pi\)
−0.876885 + 0.480701i \(0.840382\pi\)
\(20\) −0.102915 0.178255i −0.0230126 0.0398589i
\(21\) −1.96688 1.85047i −0.429209 0.403807i
\(22\) 3.88861 0.829054
\(23\) −1.68465 + 2.91790i −0.351273 + 0.608423i −0.986473 0.163925i \(-0.947585\pi\)
0.635200 + 0.772348i \(0.280918\pi\)
\(24\) 1.65859 0.499074i 0.338559 0.101873i
\(25\) 2.47882 4.29344i 0.495763 0.858687i
\(26\) 1.68162 3.18938i 0.329794 0.625489i
\(27\) −3.32332 + 3.99444i −0.639573 + 0.768730i
\(28\) 0.779577 + 1.35027i 0.147326 + 0.255176i
\(29\) −4.87634 −0.905513 −0.452756 0.891634i \(-0.649559\pi\)
−0.452756 + 0.891634i \(0.649559\pi\)
\(30\) −0.259657 0.244289i −0.0474066 0.0446009i
\(31\) −1.50185 2.60128i −0.269740 0.467204i 0.699054 0.715068i \(-0.253604\pi\)
−0.968795 + 0.247865i \(0.920271\pi\)
\(32\) −1.00000 −0.176777
\(33\) 6.44961 1.94070i 1.12273 0.337833i
\(34\) 1.84139 3.18938i 0.315796 0.546974i
\(35\) 0.160461 0.277926i 0.0271228 0.0469781i
\(36\) 2.50185 1.65552i 0.416975 0.275920i
\(37\) 4.38086 + 7.58788i 0.720210 + 1.24744i 0.960916 + 0.276842i \(0.0892877\pi\)
−0.240706 + 0.970598i \(0.577379\pi\)
\(38\) 3.72573 6.45316i 0.604393 1.04684i
\(39\) 1.19739 6.12913i 0.191736 0.981447i
\(40\) 0.102915 + 0.178255i 0.0162723 + 0.0281845i
\(41\) 1.74646 3.02496i 0.272751 0.472419i −0.696814 0.717252i \(-0.745400\pi\)
0.969565 + 0.244833i \(0.0787331\pi\)
\(42\) 1.96688 + 1.85047i 0.303497 + 0.285534i
\(43\) 0.343259 + 0.594541i 0.0523464 + 0.0906667i 0.891011 0.453981i \(-0.149997\pi\)
−0.838665 + 0.544648i \(0.816663\pi\)
\(44\) −3.88861 −0.586230
\(45\) −0.552583 0.275588i −0.0823742 0.0410822i
\(46\) 1.68465 2.91790i 0.248388 0.430220i
\(47\) −1.48380 + 2.57002i −0.216434 + 0.374875i −0.953715 0.300711i \(-0.902776\pi\)
0.737281 + 0.675586i \(0.236109\pi\)
\(48\) −1.65859 + 0.499074i −0.239397 + 0.0720352i
\(49\) 2.28452 3.95690i 0.326360 0.565272i
\(50\) −2.47882 + 4.29344i −0.350558 + 0.607184i
\(51\) 1.46237 6.20887i 0.204773 0.869415i
\(52\) −1.68162 + 3.18938i −0.233199 + 0.442287i
\(53\) 9.52297 1.30808 0.654041 0.756460i \(-0.273073\pi\)
0.654041 + 0.756460i \(0.273073\pi\)
\(54\) 3.32332 3.99444i 0.452246 0.543574i
\(55\) 0.400197 + 0.693162i 0.0539626 + 0.0934660i
\(56\) −0.779577 1.35027i −0.104175 0.180437i
\(57\) 2.95886 12.5626i 0.391911 1.66395i
\(58\) 4.87634 0.640294
\(59\) 6.60057 0.859321 0.429661 0.902990i \(-0.358633\pi\)
0.429661 + 0.902990i \(0.358633\pi\)
\(60\) 0.259657 + 0.244289i 0.0335215 + 0.0315376i
\(61\) −2.67549 4.63408i −0.342561 0.593333i 0.642346 0.766414i \(-0.277961\pi\)
−0.984908 + 0.173081i \(0.944628\pi\)
\(62\) 1.50185 + 2.60128i 0.190735 + 0.330363i
\(63\) 4.18578 + 2.08756i 0.527359 + 0.263008i
\(64\) 1.00000 0.125000
\(65\) 0.741586 0.0284788i 0.0919825 0.00353236i
\(66\) −6.44961 + 1.94070i −0.793892 + 0.238884i
\(67\) 1.51690 2.62734i 0.185318 0.320981i −0.758365 0.651830i \(-0.774002\pi\)
0.943684 + 0.330849i \(0.107335\pi\)
\(68\) −1.84139 + 3.18938i −0.223301 + 0.386769i
\(69\) 1.33790 5.68036i 0.161064 0.683835i
\(70\) −0.160461 + 0.277926i −0.0191787 + 0.0332186i
\(71\) −1.39708 + 2.41982i −0.165803 + 0.287180i −0.936940 0.349489i \(-0.886355\pi\)
0.771137 + 0.636669i \(0.219688\pi\)
\(72\) −2.50185 + 1.65552i −0.294846 + 0.195105i
\(73\) −15.3364 −1.79499 −0.897493 0.441028i \(-0.854614\pi\)
−0.897493 + 0.441028i \(0.854614\pi\)
\(74\) −4.38086 7.58788i −0.509265 0.882073i
\(75\) −1.96860 + 8.35817i −0.227314 + 0.965118i
\(76\) −3.72573 + 6.45316i −0.427371 + 0.740228i
\(77\) −3.03147 5.25066i −0.345468 0.598368i
\(78\) −1.19739 + 6.12913i −0.135578 + 0.693988i
\(79\) 0.829455 1.43666i 0.0933210 0.161637i −0.815586 0.578636i \(-0.803585\pi\)
0.908907 + 0.417000i \(0.136918\pi\)
\(80\) −0.102915 0.178255i −0.0115063 0.0199295i
\(81\) 3.51851 8.28373i 0.390945 0.920414i
\(82\) −1.74646 + 3.02496i −0.192864 + 0.334051i
\(83\) −4.34020 + 7.51744i −0.476398 + 0.825146i −0.999634 0.0270417i \(-0.991391\pi\)
0.523236 + 0.852188i \(0.324725\pi\)
\(84\) −1.96688 1.85047i −0.214605 0.201903i
\(85\) 0.758029 0.0822198
\(86\) −0.343259 0.594541i −0.0370145 0.0641110i
\(87\) 8.08785 2.43365i 0.867108 0.260915i
\(88\) 3.88861 0.414527
\(89\) 6.25792 + 10.8390i 0.663339 + 1.14894i 0.979733 + 0.200308i \(0.0641944\pi\)
−0.316394 + 0.948628i \(0.602472\pi\)
\(90\) 0.552583 + 0.275588i 0.0582473 + 0.0290495i
\(91\) −5.61747 + 0.215725i −0.588871 + 0.0226141i
\(92\) −1.68465 + 2.91790i −0.175637 + 0.304212i
\(93\) 3.78919 + 3.56493i 0.392920 + 0.369666i
\(94\) 1.48380 2.57002i 0.153042 0.265077i
\(95\) 1.53374 0.157358
\(96\) 1.65859 0.499074i 0.169279 0.0509366i
\(97\) −3.28917 5.69701i −0.333965 0.578444i 0.649321 0.760515i \(-0.275053\pi\)
−0.983285 + 0.182071i \(0.941720\pi\)
\(98\) −2.28452 + 3.95690i −0.230771 + 0.399708i
\(99\) −9.72871 + 6.43767i −0.977773 + 0.647010i
\(100\) 2.47882 4.29344i 0.247882 0.429344i
\(101\) 11.3049 1.12488 0.562440 0.826838i \(-0.309863\pi\)
0.562440 + 0.826838i \(0.309863\pi\)
\(102\) −1.46237 + 6.20887i −0.144797 + 0.614769i
\(103\) 9.34320 + 16.1829i 0.920613 + 1.59455i 0.798469 + 0.602036i \(0.205644\pi\)
0.122144 + 0.992512i \(0.461023\pi\)
\(104\) 1.68162 3.18938i 0.164897 0.312744i
\(105\) −0.127433 + 0.541048i −0.0124362 + 0.0528009i
\(106\) −9.52297 −0.924953
\(107\) −5.71380 9.89659i −0.552374 0.956739i −0.998103 0.0615712i \(-0.980389\pi\)
0.445729 0.895168i \(-0.352944\pi\)
\(108\) −3.32332 + 3.99444i −0.319786 + 0.384365i
\(109\) −6.39848 −0.612863 −0.306432 0.951893i \(-0.599135\pi\)
−0.306432 + 0.951893i \(0.599135\pi\)
\(110\) −0.400197 0.693162i −0.0381573 0.0660904i
\(111\) −11.0530 10.3988i −1.04910 0.987012i
\(112\) 0.779577 + 1.35027i 0.0736631 + 0.127588i
\(113\) 12.9768 1.22076 0.610378 0.792110i \(-0.291017\pi\)
0.610378 + 0.792110i \(0.291017\pi\)
\(114\) −2.95886 + 12.5626i −0.277123 + 1.17659i
\(115\) 0.693504 0.0646696
\(116\) −4.87634 −0.452756
\(117\) 1.07291 + 10.7633i 0.0991907 + 0.995068i
\(118\) −6.60057 −0.607632
\(119\) −5.74202 −0.526370
\(120\) −0.259657 0.244289i −0.0237033 0.0223004i
\(121\) 4.12128 0.374662
\(122\) 2.67549 + 4.63408i 0.242227 + 0.419550i
\(123\) −1.38698 + 5.88878i −0.125060 + 0.530973i
\(124\) −1.50185 2.60128i −0.134870 0.233602i
\(125\) −2.04959 −0.183321
\(126\) −4.18578 2.08756i −0.372899 0.185975i
\(127\) −5.60948 9.71591i −0.497761 0.862147i 0.502236 0.864731i \(-0.332511\pi\)
−0.999997 + 0.00258339i \(0.999178\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −0.866046 0.814789i −0.0762511 0.0717382i
\(130\) −0.741586 + 0.0284788i −0.0650414 + 0.00249776i
\(131\) 0.232322 + 0.402393i 0.0202980 + 0.0351572i 0.875996 0.482318i \(-0.160205\pi\)
−0.855698 + 0.517476i \(0.826872\pi\)
\(132\) 6.44961 1.94070i 0.561367 0.168917i
\(133\) −11.6180 −1.00741
\(134\) −1.51690 + 2.62734i −0.131040 + 0.226968i
\(135\) 1.05405 + 0.181308i 0.0907180 + 0.0156045i
\(136\) 1.84139 3.18938i 0.157898 0.273487i
\(137\) 7.69850 + 13.3342i 0.657727 + 1.13922i 0.981203 + 0.192981i \(0.0618154\pi\)
−0.323475 + 0.946237i \(0.604851\pi\)
\(138\) −1.33790 + 5.68036i −0.113889 + 0.483544i
\(139\) 4.81710 0.408581 0.204290 0.978910i \(-0.434511\pi\)
0.204290 + 0.978910i \(0.434511\pi\)
\(140\) 0.160461 0.277926i 0.0135614 0.0234891i
\(141\) 1.17839 5.00313i 0.0992382 0.421340i
\(142\) 1.39708 2.41982i 0.117241 0.203067i
\(143\) 6.53918 12.4022i 0.546834 1.03713i
\(144\) 2.50185 1.65552i 0.208487 0.137960i
\(145\) 0.501850 + 0.869229i 0.0416764 + 0.0721856i
\(146\) 15.3364 1.26925
\(147\) −1.81430 + 7.70303i −0.149641 + 0.635335i
\(148\) 4.38086 + 7.58788i 0.360105 + 0.623720i
\(149\) −16.7978 −1.37613 −0.688064 0.725650i \(-0.741539\pi\)
−0.688064 + 0.725650i \(0.741539\pi\)
\(150\) 1.96860 8.35817i 0.160736 0.682442i
\(151\) −0.315574 + 0.546591i −0.0256811 + 0.0444809i −0.878580 0.477595i \(-0.841509\pi\)
0.852899 + 0.522076i \(0.174842\pi\)
\(152\) 3.72573 6.45316i 0.302197 0.523420i
\(153\) 0.673203 + 11.0278i 0.0544253 + 0.891545i
\(154\) 3.03147 + 5.25066i 0.244283 + 0.423110i
\(155\) −0.309127 + 0.535423i −0.0248297 + 0.0430062i
\(156\) 1.19739 6.12913i 0.0958679 0.490723i
\(157\) −8.62325 14.9359i −0.688210 1.19202i −0.972416 0.233252i \(-0.925063\pi\)
0.284206 0.958763i \(-0.408270\pi\)
\(158\) −0.829455 + 1.43666i −0.0659879 + 0.114294i
\(159\) −15.7947 + 4.75267i −1.25260 + 0.376911i
\(160\) 0.102915 + 0.178255i 0.00813617 + 0.0140923i
\(161\) −5.25325 −0.414014
\(162\) −3.51851 + 8.28373i −0.276440 + 0.650831i
\(163\) 1.67055 2.89347i 0.130847 0.226634i −0.793156 0.609018i \(-0.791564\pi\)
0.924003 + 0.382384i \(0.124897\pi\)
\(164\) 1.74646 3.02496i 0.136376 0.236209i
\(165\) −1.00970 0.949945i −0.0786053 0.0739531i
\(166\) 4.34020 7.51744i 0.336865 0.583466i
\(167\) 10.5805 18.3260i 0.818744 1.41811i −0.0878642 0.996132i \(-0.528004\pi\)
0.906608 0.421974i \(-0.138663\pi\)
\(168\) 1.96688 + 1.85047i 0.151748 + 0.142767i
\(169\) −7.34428 10.7267i −0.564945 0.825129i
\(170\) −0.758029 −0.0581381
\(171\) 1.36211 + 22.3128i 0.104163 + 1.70631i
\(172\) 0.343259 + 0.594541i 0.0261732 + 0.0453333i
\(173\) 11.2917 + 19.5577i 0.858489 + 1.48695i 0.873370 + 0.487057i \(0.161930\pi\)
−0.0148813 + 0.999889i \(0.504737\pi\)
\(174\) −8.08785 + 2.43365i −0.613138 + 0.184495i
\(175\) 7.72971 0.584311
\(176\) −3.88861 −0.293115
\(177\) −10.9476 + 3.29418i −0.822876 + 0.247605i
\(178\) −6.25792 10.8390i −0.469051 0.812421i
\(179\) 5.40388 + 9.35979i 0.403905 + 0.699584i 0.994193 0.107609i \(-0.0343194\pi\)
−0.590289 + 0.807192i \(0.700986\pi\)
\(180\) −0.552583 0.275588i −0.0411871 0.0205411i
\(181\) 13.6295 1.01307 0.506536 0.862219i \(-0.330926\pi\)
0.506536 + 0.862219i \(0.330926\pi\)
\(182\) 5.61747 0.215725i 0.416394 0.0159906i
\(183\) 6.75029 + 6.35078i 0.498996 + 0.469463i
\(184\) 1.68465 2.91790i 0.124194 0.215110i
\(185\) 0.901716 1.56182i 0.0662955 0.114827i
\(186\) −3.78919 3.56493i −0.277837 0.261393i
\(187\) 7.16044 12.4022i 0.523623 0.906942i
\(188\) −1.48380 + 2.57002i −0.108217 + 0.187438i
\(189\) −7.98434 1.37339i −0.580775 0.0998997i
\(190\) −1.53374 −0.111269
\(191\) −5.95622 10.3165i −0.430977 0.746474i 0.565981 0.824418i \(-0.308498\pi\)
−0.996958 + 0.0779446i \(0.975164\pi\)
\(192\) −1.65859 + 0.499074i −0.119699 + 0.0360176i
\(193\) −11.9054 + 20.6208i −0.856973 + 1.48432i 0.0178300 + 0.999841i \(0.494324\pi\)
−0.874803 + 0.484479i \(0.839009\pi\)
\(194\) 3.28917 + 5.69701i 0.236149 + 0.409022i
\(195\) −1.21578 + 0.417341i −0.0870635 + 0.0298864i
\(196\) 2.28452 3.95690i 0.163180 0.282636i
\(197\) −3.84864 6.66603i −0.274204 0.474935i 0.695730 0.718303i \(-0.255081\pi\)
−0.969934 + 0.243368i \(0.921748\pi\)
\(198\) 9.72871 6.43767i 0.691390 0.457505i
\(199\) 3.23845 5.60917i 0.229568 0.397623i −0.728112 0.685458i \(-0.759602\pi\)
0.957680 + 0.287835i \(0.0929354\pi\)
\(200\) −2.47882 + 4.29344i −0.175279 + 0.303592i
\(201\) −1.20467 + 5.11473i −0.0849711 + 0.360765i
\(202\) −11.3049 −0.795411
\(203\) −3.80148 6.58435i −0.266812 0.462131i
\(204\) 1.46237 6.20887i 0.102387 0.434708i
\(205\) −0.718950 −0.0502136
\(206\) −9.34320 16.1829i −0.650972 1.12752i
\(207\) 0.615900 + 10.0891i 0.0428080 + 0.701241i
\(208\) −1.68162 + 3.18938i −0.116600 + 0.221144i
\(209\) 14.4879 25.0938i 1.00215 1.73577i
\(210\) 0.127433 0.541048i 0.00879372 0.0373359i
\(211\) 6.90747 11.9641i 0.475530 0.823642i −0.524077 0.851671i \(-0.675590\pi\)
0.999607 + 0.0280291i \(0.00892309\pi\)
\(212\) 9.52297 0.654041
\(213\) 1.10952 4.71074i 0.0760232 0.322775i
\(214\) 5.71380 + 9.89659i 0.390587 + 0.676517i
\(215\) 0.0706531 0.122375i 0.00481850 0.00834590i
\(216\) 3.32332 3.99444i 0.226123 0.271787i
\(217\) 2.34161 4.05580i 0.158959 0.275325i
\(218\) 6.39848 0.433360
\(219\) 25.4368 7.65399i 1.71886 0.517209i
\(220\) 0.400197 + 0.693162i 0.0269813 + 0.0467330i
\(221\) −7.07562 11.2362i −0.475957 0.755830i
\(222\) 11.0530 + 10.3988i 0.741827 + 0.697923i
\(223\) 11.8684 0.794767 0.397383 0.917653i \(-0.369918\pi\)
0.397383 + 0.917653i \(0.369918\pi\)
\(224\) −0.779577 1.35027i −0.0520877 0.0902185i
\(225\) −0.906244 14.8453i −0.0604163 0.989684i
\(226\) −12.9768 −0.863205
\(227\) −4.91697 8.51644i −0.326351 0.565256i 0.655434 0.755252i \(-0.272486\pi\)
−0.981785 + 0.189996i \(0.939152\pi\)
\(228\) 2.95886 12.5626i 0.195955 0.831976i
\(229\) 8.65591 + 14.9925i 0.571999 + 0.990731i 0.996361 + 0.0852383i \(0.0271652\pi\)
−0.424362 + 0.905493i \(0.639502\pi\)
\(230\) −0.693504 −0.0457283
\(231\) 7.64844 + 7.19577i 0.503230 + 0.473447i
\(232\) 4.87634 0.320147
\(233\) 17.6548 1.15660 0.578301 0.815823i \(-0.303716\pi\)
0.578301 + 0.815823i \(0.303716\pi\)
\(234\) −1.07291 10.7633i −0.0701384 0.703620i
\(235\) 0.610823 0.0398457
\(236\) 6.60057 0.429661
\(237\) −0.658728 + 2.79679i −0.0427890 + 0.181671i
\(238\) 5.74202 0.372200
\(239\) −0.631256 1.09337i −0.0408326 0.0707241i 0.844887 0.534945i \(-0.179668\pi\)
−0.885719 + 0.464221i \(0.846334\pi\)
\(240\) 0.259657 + 0.244289i 0.0167608 + 0.0157688i
\(241\) 5.44455 + 9.43023i 0.350714 + 0.607455i 0.986375 0.164514i \(-0.0526056\pi\)
−0.635661 + 0.771969i \(0.719272\pi\)
\(242\) −4.12128 −0.264926
\(243\) −1.70157 + 15.4953i −0.109156 + 0.994025i
\(244\) −2.67549 4.63408i −0.171281 0.296667i
\(245\) −0.940449 −0.0600831
\(246\) 1.38698 5.88878i 0.0884309 0.375455i
\(247\) −14.3163 22.7346i −0.910923 1.44656i
\(248\) 1.50185 + 2.60128i 0.0953676 + 0.165181i
\(249\) 3.44685 14.6344i 0.218435 0.927420i
\(250\) 2.04959 0.129627
\(251\) −12.3336 + 21.3624i −0.778489 + 1.34838i 0.154323 + 0.988020i \(0.450680\pi\)
−0.932812 + 0.360362i \(0.882653\pi\)
\(252\) 4.18578 + 2.08756i 0.263679 + 0.131504i
\(253\) 6.55094 11.3466i 0.411854 0.713352i
\(254\) 5.60948 + 9.71591i 0.351970 + 0.609630i
\(255\) −1.25726 + 0.378313i −0.0787327 + 0.0236909i
\(256\) 1.00000 0.0625000
\(257\) −12.7687 + 22.1161i −0.796492 + 1.37956i 0.125396 + 0.992107i \(0.459980\pi\)
−0.921888 + 0.387457i \(0.873353\pi\)
\(258\) 0.866046 + 0.814789i 0.0539177 + 0.0507266i
\(259\) −6.83044 + 11.8307i −0.424423 + 0.735122i
\(260\) 0.741586 0.0284788i 0.0459912 0.00176618i
\(261\) −12.1999 + 8.07287i −0.755152 + 0.499698i
\(262\) −0.232322 0.402393i −0.0143529 0.0248599i
\(263\) −12.4022 −0.764751 −0.382376 0.924007i \(-0.624894\pi\)
−0.382376 + 0.924007i \(0.624894\pi\)
\(264\) −6.44961 + 1.94070i −0.396946 + 0.119442i
\(265\) −0.980060 1.69751i −0.0602046 0.104277i
\(266\) 11.6180 0.712344
\(267\) −15.7888 14.8544i −0.966260 0.909073i
\(268\) 1.51690 2.62734i 0.0926592 0.160490i
\(269\) 2.46813 4.27492i 0.150484 0.260646i −0.780921 0.624629i \(-0.785250\pi\)
0.931406 + 0.363983i \(0.118583\pi\)
\(270\) −1.05405 0.181308i −0.0641473 0.0110340i
\(271\) 13.7565 + 23.8269i 0.835647 + 1.44738i 0.893503 + 0.449058i \(0.148240\pi\)
−0.0578557 + 0.998325i \(0.518426\pi\)
\(272\) −1.84139 + 3.18938i −0.111651 + 0.193385i
\(273\) 9.20942 3.16133i 0.557379 0.191333i
\(274\) −7.69850 13.3342i −0.465083 0.805548i
\(275\) −9.63915 + 16.6955i −0.581263 + 1.00678i
\(276\) 1.33790 5.68036i 0.0805318 0.341917i
\(277\) 1.33384 + 2.31027i 0.0801425 + 0.138811i 0.903311 0.428986i \(-0.141129\pi\)
−0.823168 + 0.567797i \(0.807796\pi\)
\(278\) −4.81710 −0.288910
\(279\) −8.06387 4.02167i −0.482772 0.240771i
\(280\) −0.160461 + 0.277926i −0.00958937 + 0.0166093i
\(281\) −5.51262 + 9.54813i −0.328855 + 0.569594i −0.982285 0.187393i \(-0.939996\pi\)
0.653430 + 0.756987i \(0.273329\pi\)
\(282\) −1.17839 + 5.00313i −0.0701720 + 0.297932i
\(283\) −2.43391 + 4.21565i −0.144681 + 0.250595i −0.929254 0.369442i \(-0.879549\pi\)
0.784573 + 0.620036i \(0.212882\pi\)
\(284\) −1.39708 + 2.41982i −0.0829017 + 0.143590i
\(285\) −2.54385 + 0.765450i −0.150684 + 0.0453413i
\(286\) −6.53918 + 12.4022i −0.386670 + 0.733360i
\(287\) 5.44600 0.321467
\(288\) −2.50185 + 1.65552i −0.147423 + 0.0975525i
\(289\) 1.71857 + 2.97666i 0.101093 + 0.175097i
\(290\) −0.501850 0.869229i −0.0294696 0.0510429i
\(291\) 8.29862 + 7.80747i 0.486474 + 0.457682i
\(292\) −15.3364 −0.897493
\(293\) −8.49447 −0.496252 −0.248126 0.968728i \(-0.579815\pi\)
−0.248126 + 0.968728i \(0.579815\pi\)
\(294\) 1.81430 7.70303i 0.105812 0.449250i
\(295\) −0.679300 1.17658i −0.0395504 0.0685033i
\(296\) −4.38086 7.58788i −0.254633 0.441037i
\(297\) 12.9231 15.5328i 0.749873 0.901305i
\(298\) 16.7978 0.973070
\(299\) −6.47333 10.2798i −0.374362 0.594495i
\(300\) −1.96860 + 8.35817i −0.113657 + 0.482559i
\(301\) −0.535193 + 0.926981i −0.0308480 + 0.0534303i
\(302\) 0.315574 0.546591i 0.0181593 0.0314528i
\(303\) −18.7502 + 5.64199i −1.07717 + 0.324124i
\(304\) −3.72573 + 6.45316i −0.213685 + 0.370114i
\(305\) −0.550698 + 0.953836i −0.0315328 + 0.0546165i
\(306\) −0.673203 11.0278i −0.0384845 0.630418i
\(307\) −14.0572 −0.802285 −0.401142 0.916016i \(-0.631387\pi\)
−0.401142 + 0.916016i \(0.631387\pi\)
\(308\) −3.03147 5.25066i −0.172734 0.299184i
\(309\) −23.5730 22.1779i −1.34102 1.26165i
\(310\) 0.309127 0.535423i 0.0175572 0.0304100i
\(311\) −4.74354 8.21605i −0.268981 0.465890i 0.699618 0.714517i \(-0.253354\pi\)
−0.968599 + 0.248628i \(0.920020\pi\)
\(312\) −1.19739 + 6.12913i −0.0677889 + 0.346994i
\(313\) −16.9273 + 29.3190i −0.956790 + 1.65721i −0.226573 + 0.973994i \(0.572752\pi\)
−0.730217 + 0.683215i \(0.760581\pi\)
\(314\) 8.62325 + 14.9359i 0.486638 + 0.842882i
\(315\) −0.0586638 0.960976i −0.00330533 0.0541449i
\(316\) 0.829455 1.43666i 0.0466605 0.0808183i
\(317\) −3.53923 + 6.13013i −0.198783 + 0.344302i −0.948134 0.317871i \(-0.897032\pi\)
0.749351 + 0.662173i \(0.230366\pi\)
\(318\) 15.7947 4.75267i 0.885724 0.266517i
\(319\) 18.9622 1.06168
\(320\) −0.102915 0.178255i −0.00575314 0.00996474i
\(321\) 14.4160 + 13.5628i 0.804622 + 0.757001i
\(322\) 5.25325 0.292752
\(323\) −13.7210 23.7655i −0.763459 1.32235i
\(324\) 3.51851 8.28373i 0.195473 0.460207i
\(325\) 9.52496 + 15.1258i 0.528350 + 0.839030i
\(326\) −1.67055 + 2.89347i −0.0925229 + 0.160254i
\(327\) 10.6125 3.19332i 0.586871 0.176591i
\(328\) −1.74646 + 3.02496i −0.0964321 + 0.167025i
\(329\) −4.62694 −0.255092
\(330\) 1.00970 + 0.949945i 0.0555824 + 0.0522927i
\(331\) 6.47693 + 11.2184i 0.356004 + 0.616618i 0.987289 0.158933i \(-0.0508055\pi\)
−0.631285 + 0.775551i \(0.717472\pi\)
\(332\) −4.34020 + 7.51744i −0.238199 + 0.412573i
\(333\) 23.5222 + 11.7311i 1.28901 + 0.642862i
\(334\) −10.5805 + 18.3260i −0.578939 + 1.00275i
\(335\) −0.624448 −0.0341172
\(336\) −1.96688 1.85047i −0.107302 0.100952i
\(337\) 9.11943 + 15.7953i 0.496767 + 0.860425i 0.999993 0.00372930i \(-0.00118707\pi\)
−0.503226 + 0.864155i \(0.667854\pi\)
\(338\) 7.34428 + 10.7267i 0.399476 + 0.583454i
\(339\) −21.5232 + 6.47640i −1.16898 + 0.351750i
\(340\) 0.758029 0.0411099
\(341\) 5.84011 + 10.1154i 0.316259 + 0.547777i
\(342\) −1.36211 22.3128i −0.0736545 1.20654i
\(343\) 18.0379 0.973956
\(344\) −0.343259 0.594541i −0.0185073 0.0320555i
\(345\) −1.15024 + 0.346110i −0.0619269 + 0.0186339i
\(346\) −11.2917 19.5577i −0.607043 1.05143i
\(347\) −12.4970 −0.670877 −0.335438 0.942062i \(-0.608884\pi\)
−0.335438 + 0.942062i \(0.608884\pi\)
\(348\) 8.08785 2.43365i 0.433554 0.130458i
\(349\) 2.01307 0.107757 0.0538787 0.998547i \(-0.482842\pi\)
0.0538787 + 0.998547i \(0.482842\pi\)
\(350\) −7.72971 −0.413171
\(351\) −7.15121 17.3165i −0.381703 0.924285i
\(352\) 3.88861 0.207264
\(353\) −36.1145 −1.92218 −0.961091 0.276233i \(-0.910914\pi\)
−0.961091 + 0.276233i \(0.910914\pi\)
\(354\) 10.9476 3.29418i 0.581861 0.175083i
\(355\) 0.575126 0.0305245
\(356\) 6.25792 + 10.8390i 0.331669 + 0.574468i
\(357\) 9.52366 2.86569i 0.504046 0.151669i
\(358\) −5.40388 9.35979i −0.285604 0.494680i
\(359\) 34.3296 1.81185 0.905923 0.423442i \(-0.139178\pi\)
0.905923 + 0.423442i \(0.139178\pi\)
\(360\) 0.552583 + 0.275588i 0.0291237 + 0.0145248i
\(361\) −18.2621 31.6310i −0.961165 1.66479i
\(362\) −13.6295 −0.716350
\(363\) −6.83551 + 2.05682i −0.358771 + 0.107955i
\(364\) −5.61747 + 0.215725i −0.294435 + 0.0113071i
\(365\) 1.57835 + 2.73378i 0.0826145 + 0.143093i
\(366\) −6.75029 6.35078i −0.352843 0.331961i
\(367\) −5.05771 −0.264010 −0.132005 0.991249i \(-0.542142\pi\)
−0.132005 + 0.991249i \(0.542142\pi\)
\(368\) −1.68465 + 2.91790i −0.0878183 + 0.152106i
\(369\) −0.638498 10.4593i −0.0332389 0.544489i
\(370\) −0.901716 + 1.56182i −0.0468780 + 0.0811951i
\(371\) 7.42389 + 12.8586i 0.385429 + 0.667583i
\(372\) 3.78919 + 3.56493i 0.196460 + 0.184833i
\(373\) −27.0459 −1.40038 −0.700191 0.713955i \(-0.746902\pi\)
−0.700191 + 0.713955i \(0.746902\pi\)
\(374\) −7.16044 + 12.4022i −0.370258 + 0.641305i
\(375\) 3.39943 1.02290i 0.175546 0.0528221i
\(376\) 1.48380 2.57002i 0.0765211 0.132538i
\(377\) 8.20017 15.5525i 0.422330 0.800994i
\(378\) 7.98434 + 1.37339i 0.410670 + 0.0706397i
\(379\) 3.71240 + 6.43007i 0.190693 + 0.330290i 0.945480 0.325680i \(-0.105593\pi\)
−0.754787 + 0.655970i \(0.772260\pi\)
\(380\) 1.53374 0.0786792
\(381\) 14.1528 + 13.3152i 0.725070 + 0.682157i
\(382\) 5.95622 + 10.3165i 0.304747 + 0.527837i
\(383\) 30.9084 1.57935 0.789673 0.613528i \(-0.210250\pi\)
0.789673 + 0.613528i \(0.210250\pi\)
\(384\) 1.65859 0.499074i 0.0846396 0.0254683i
\(385\) −0.623969 + 1.08075i −0.0318004 + 0.0550800i
\(386\) 11.9054 20.6208i 0.605971 1.04957i
\(387\) 1.84306 + 0.919181i 0.0936878 + 0.0467246i
\(388\) −3.28917 5.69701i −0.166982 0.289222i
\(389\) −4.51699 + 7.82366i −0.229020 + 0.396675i −0.957518 0.288373i \(-0.906886\pi\)
0.728498 + 0.685048i \(0.240219\pi\)
\(390\) 1.21578 0.417341i 0.0615632 0.0211329i
\(391\) −6.20418 10.7460i −0.313759 0.543447i
\(392\) −2.28452 + 3.95690i −0.115386 + 0.199854i
\(393\) −0.586151 0.551460i −0.0295674 0.0278175i
\(394\) 3.84864 + 6.66603i 0.193891 + 0.335830i
\(395\) −0.341455 −0.0171804
\(396\) −9.72871 + 6.43767i −0.488886 + 0.323505i
\(397\) 7.41951 12.8510i 0.372374 0.644971i −0.617556 0.786527i \(-0.711877\pi\)
0.989930 + 0.141556i \(0.0452104\pi\)
\(398\) −3.23845 + 5.60917i −0.162329 + 0.281162i
\(399\) 19.2695 5.79823i 0.964680 0.290275i
\(400\) 2.47882 4.29344i 0.123941 0.214672i
\(401\) −8.08912 + 14.0108i −0.403951 + 0.699664i −0.994199 0.107558i \(-0.965697\pi\)
0.590247 + 0.807222i \(0.299030\pi\)
\(402\) 1.20467 5.11473i 0.0600836 0.255100i
\(403\) 10.8220 0.415593i 0.539083 0.0207022i
\(404\) 11.3049 0.562440
\(405\) −1.83872 + 0.225333i −0.0913668 + 0.0111969i
\(406\) 3.80148 + 6.58435i 0.188664 + 0.326776i
\(407\) −17.0355 29.5063i −0.844417 1.46257i
\(408\) −1.46237 + 6.20887i −0.0723983 + 0.307385i
\(409\) 1.94673 0.0962595 0.0481298 0.998841i \(-0.484674\pi\)
0.0481298 + 0.998841i \(0.484674\pi\)
\(410\) 0.718950 0.0355064
\(411\) −19.4234 18.2739i −0.958087 0.901383i
\(412\) 9.34320 + 16.1829i 0.460306 + 0.797274i
\(413\) 5.14565 + 8.91253i 0.253201 + 0.438557i
\(414\) −0.615900 10.0891i −0.0302698 0.495852i
\(415\) 1.78669 0.0877052
\(416\) 1.68162 3.18938i 0.0824484 0.156372i
\(417\) −7.98960 + 2.40409i −0.391252 + 0.117729i
\(418\) −14.4879 + 25.0938i −0.708627 + 1.22738i
\(419\) −11.7449 + 20.3428i −0.573778 + 0.993812i 0.422396 + 0.906412i \(0.361189\pi\)
−0.996173 + 0.0874004i \(0.972144\pi\)
\(420\) −0.127433 + 0.541048i −0.00621810 + 0.0264004i
\(421\) 1.97408 3.41921i 0.0962108 0.166642i −0.813903 0.581001i \(-0.802661\pi\)
0.910113 + 0.414360i \(0.135994\pi\)
\(422\) −6.90747 + 11.9641i −0.336250 + 0.582403i
\(423\) 0.542470 + 8.88625i 0.0263758 + 0.432064i
\(424\) −9.52297 −0.462476
\(425\) 9.12893 + 15.8118i 0.442818 + 0.766984i
\(426\) −1.10952 + 4.71074i −0.0537565 + 0.228236i
\(427\) 4.17150 7.22525i 0.201873 0.349654i
\(428\) −5.71380 9.89659i −0.276187 0.478370i
\(429\) −4.65618 + 23.8338i −0.224803 + 1.15071i
\(430\) −0.0706531 + 0.122375i −0.00340720 + 0.00590144i
\(431\) −14.3356 24.8300i −0.690522 1.19602i −0.971667 0.236354i \(-0.924047\pi\)
0.281145 0.959665i \(-0.409286\pi\)
\(432\) −3.32332 + 3.99444i −0.159893 + 0.192183i
\(433\) −2.86328 + 4.95934i −0.137600 + 0.238331i −0.926588 0.376079i \(-0.877272\pi\)
0.788988 + 0.614409i \(0.210606\pi\)
\(434\) −2.34161 + 4.05580i −0.112401 + 0.194684i
\(435\) −1.26617 1.19124i −0.0607084 0.0571154i
\(436\) −6.39848 −0.306432
\(437\) −12.5531 21.7426i −0.600496 1.04009i
\(438\) −25.4368 + 7.65399i −1.21542 + 0.365722i
\(439\) 38.9982 1.86128 0.930642 0.365931i \(-0.119249\pi\)
0.930642 + 0.365931i \(0.119249\pi\)
\(440\) −0.400197 0.693162i −0.0190787 0.0330452i
\(441\) −0.835210 13.6816i −0.0397719 0.651507i
\(442\) 7.07562 + 11.2362i 0.336553 + 0.534453i
\(443\) 19.4094 33.6180i 0.922167 1.59724i 0.126112 0.992016i \(-0.459750\pi\)
0.796055 0.605224i \(-0.206917\pi\)
\(444\) −11.0530 10.3988i −0.524551 0.493506i
\(445\) 1.28807 2.23101i 0.0610605 0.105760i
\(446\) −11.8684 −0.561985
\(447\) 27.8607 8.38334i 1.31776 0.396519i
\(448\) 0.779577 + 1.35027i 0.0368315 + 0.0637941i
\(449\) −13.3263 + 23.0818i −0.628907 + 1.08930i 0.358865 + 0.933390i \(0.383164\pi\)
−0.987771 + 0.155909i \(0.950169\pi\)
\(450\) 0.906244 + 14.8453i 0.0427208 + 0.699813i
\(451\) −6.79130 + 11.7629i −0.319790 + 0.553892i
\(452\) 12.9768 0.610378
\(453\) 0.250619 1.06407i 0.0117751 0.0499941i
\(454\) 4.91697 + 8.51644i 0.230765 + 0.399696i
\(455\) 0.616578 + 0.979138i 0.0289056 + 0.0459027i
\(456\) −2.95886 + 12.5626i −0.138561 + 0.588296i
\(457\) 11.2829 0.527790 0.263895 0.964551i \(-0.414993\pi\)
0.263895 + 0.964551i \(0.414993\pi\)
\(458\) −8.65591 14.9925i −0.404464 0.700553i
\(459\) −6.62026 17.9546i −0.309007 0.838051i
\(460\) 0.693504 0.0323348
\(461\) 3.88317 + 6.72585i 0.180857 + 0.313254i 0.942173 0.335128i \(-0.108779\pi\)
−0.761316 + 0.648382i \(0.775446\pi\)
\(462\) −7.64844 7.19577i −0.355838 0.334777i
\(463\) 0.105633 + 0.182962i 0.00490918 + 0.00850295i 0.868470 0.495742i \(-0.165104\pi\)
−0.863560 + 0.504245i \(0.831771\pi\)
\(464\) −4.87634 −0.226378
\(465\) 0.245499 1.04233i 0.0113847 0.0483367i
\(466\) −17.6548 −0.817841
\(467\) −34.8916 −1.61459 −0.807294 0.590149i \(-0.799069\pi\)
−0.807294 + 0.590149i \(0.799069\pi\)
\(468\) 1.07291 + 10.7633i 0.0495953 + 0.497534i
\(469\) 4.73015 0.218418
\(470\) −0.610823 −0.0281752
\(471\) 21.7566 + 20.4689i 1.00249 + 0.943158i
\(472\) −6.60057 −0.303816
\(473\) −1.33480 2.31194i −0.0613741 0.106303i
\(474\) 0.658728 2.79679i 0.0302564 0.128461i
\(475\) 18.4708 + 31.9924i 0.847499 + 1.46791i
\(476\) −5.74202 −0.263185
\(477\) 23.8250 15.7655i 1.09087 0.721852i
\(478\) 0.631256 + 1.09337i 0.0288730 + 0.0500095i
\(479\) −7.45915 −0.340817 −0.170409 0.985373i \(-0.554509\pi\)
−0.170409 + 0.985373i \(0.554509\pi\)
\(480\) −0.259657 0.244289i −0.0118517 0.0111502i
\(481\) −31.5676 + 1.21228i −1.43936 + 0.0552750i
\(482\) −5.44455 9.43023i −0.247992 0.429535i
\(483\) 8.71299 2.62176i 0.396455 0.119294i
\(484\) 4.12128 0.187331
\(485\) −0.677012 + 1.17262i −0.0307415 + 0.0532459i
\(486\) 1.70157 15.4953i 0.0771847 0.702882i
\(487\) 21.2844 36.8657i 0.964489 1.67054i 0.253509 0.967333i \(-0.418415\pi\)
0.710981 0.703211i \(-0.248251\pi\)
\(488\) 2.67549 + 4.63408i 0.121114 + 0.209775i
\(489\) −1.32670 + 5.63281i −0.0599953 + 0.254724i
\(490\) 0.940449 0.0424851
\(491\) 16.7098 28.9423i 0.754103 1.30615i −0.191715 0.981451i \(-0.561405\pi\)
0.945819 0.324695i \(-0.105262\pi\)
\(492\) −1.38698 + 5.88878i −0.0625301 + 0.265487i
\(493\) 8.97923 15.5525i 0.404404 0.700449i
\(494\) 14.3163 + 22.7346i 0.644120 + 1.02288i
\(495\) 2.14878 + 1.07165i 0.0965804 + 0.0481672i
\(496\) −1.50185 2.60128i −0.0674350 0.116801i
\(497\) −4.35654 −0.195418
\(498\) −3.44685 + 14.6344i −0.154457 + 0.655785i
\(499\) 3.44081 + 5.95966i 0.154032 + 0.266791i 0.932706 0.360637i \(-0.117441\pi\)
−0.778674 + 0.627428i \(0.784107\pi\)
\(500\) −2.04959 −0.0916603
\(501\) −8.40271 + 35.6757i −0.375405 + 1.59387i
\(502\) 12.3336 21.3624i 0.550475 0.953450i
\(503\) −13.4441 + 23.2858i −0.599441 + 1.03826i 0.393463 + 0.919340i \(0.371277\pi\)
−0.992904 + 0.118921i \(0.962056\pi\)
\(504\) −4.18578 2.08756i −0.186449 0.0929873i
\(505\) −1.16345 2.01515i −0.0517728 0.0896731i
\(506\) −6.55094 + 11.3466i −0.291225 + 0.504416i
\(507\) 17.5346 + 14.1258i 0.778737 + 0.627350i
\(508\) −5.60948 9.71591i −0.248881 0.431074i
\(509\) 17.0186 29.4770i 0.754335 1.30655i −0.191370 0.981518i \(-0.561293\pi\)
0.945704 0.325028i \(-0.105374\pi\)
\(510\) 1.25726 0.378313i 0.0556724 0.0167520i
\(511\) −11.9559 20.7082i −0.528897 0.916076i
\(512\) −1.00000 −0.0441942
\(513\) −13.3950 36.3281i −0.591402 1.60392i
\(514\) 12.7687 22.1161i 0.563205 0.975499i
\(515\) 1.92312 3.33094i 0.0847427 0.146779i
\(516\) −0.866046 0.814789i −0.0381255 0.0358691i
\(517\) 5.76991 9.99379i 0.253761 0.439526i
\(518\) 6.83044 11.8307i 0.300112 0.519810i
\(519\) −28.4890 26.8029i −1.25053 1.17652i
\(520\) −0.741586 + 0.0284788i −0.0325207 + 0.00124888i
\(521\) 28.8015 1.26182 0.630909 0.775857i \(-0.282682\pi\)
0.630909 + 0.775857i \(0.282682\pi\)
\(522\) 12.1999 8.07287i 0.533973 0.353340i
\(523\) 11.0647 + 19.1647i 0.483827 + 0.838013i 0.999827 0.0185751i \(-0.00591297\pi\)
−0.516000 + 0.856588i \(0.672580\pi\)
\(524\) 0.232322 + 0.402393i 0.0101490 + 0.0175786i
\(525\) −12.8204 + 3.85770i −0.559530 + 0.168364i
\(526\) 12.4022 0.540761
\(527\) 11.0620 0.481866
\(528\) 6.44961 1.94070i 0.280683 0.0844583i
\(529\) 5.82393 + 10.0873i 0.253214 + 0.438580i
\(530\) 0.980060 + 1.69751i 0.0425711 + 0.0737353i
\(531\) 16.5136 10.9274i 0.716631 0.474208i
\(532\) −11.6180 −0.503703
\(533\) 6.71085 + 10.6570i 0.290679 + 0.461604i
\(534\) 15.7888 + 14.8544i 0.683249 + 0.642811i
\(535\) −1.17607 + 2.03702i −0.0508461 + 0.0880681i
\(536\) −1.51690 + 2.62734i −0.0655200 + 0.113484i
\(537\) −13.6341 12.8271i −0.588353 0.553532i
\(538\) −2.46813 + 4.27492i −0.106408 + 0.184305i
\(539\) −8.88360 + 15.3869i −0.382644 + 0.662759i
\(540\) 1.05405 + 0.181308i 0.0453590 + 0.00780224i
\(541\) 20.1937 0.868196 0.434098 0.900866i \(-0.357067\pi\)
0.434098 + 0.900866i \(0.357067\pi\)
\(542\) −13.7565 23.8269i −0.590892 1.02345i
\(543\) −22.6058 + 6.80213i −0.970106 + 0.291907i
\(544\) 1.84139 3.18938i 0.0789489 0.136744i
\(545\) 0.658502 + 1.14056i 0.0282071 + 0.0488562i
\(546\) −9.20942 + 3.16133i −0.394127 + 0.135293i
\(547\) −2.75008 + 4.76328i −0.117585 + 0.203663i −0.918810 0.394700i \(-0.870849\pi\)
0.801225 + 0.598363i \(0.204182\pi\)
\(548\) 7.69850 + 13.3342i 0.328864 + 0.569609i
\(549\) −14.3655 7.16445i −0.613104 0.305771i
\(550\) 9.63915 16.6955i 0.411015 0.711898i
\(551\) 18.1679 31.4678i 0.773979 1.34057i
\(552\) −1.33790 + 5.68036i −0.0569446 + 0.241772i
\(553\) 2.58650 0.109989
\(554\) −1.33384 2.31027i −0.0566693 0.0981542i
\(555\) −0.716115 + 3.04044i −0.0303974 + 0.129060i
\(556\) 4.81710 0.204290
\(557\) −12.6702 21.9455i −0.536856 0.929861i −0.999071 0.0430936i \(-0.986279\pi\)
0.462215 0.886768i \(-0.347055\pi\)
\(558\) 8.06387 + 4.02167i 0.341371 + 0.170251i
\(559\) −2.47345 + 0.0949868i −0.104616 + 0.00401751i
\(560\) 0.160461 0.277926i 0.00678071 0.0117445i
\(561\) −5.68660 + 24.1439i −0.240089 + 1.01935i
\(562\) 5.51262 9.54813i 0.232536 0.402764i
\(563\) 21.5657 0.908884 0.454442 0.890776i \(-0.349839\pi\)
0.454442 + 0.890776i \(0.349839\pi\)
\(564\) 1.17839 5.00313i 0.0496191 0.210670i
\(565\) −1.33551 2.31318i −0.0561855 0.0973161i
\(566\) 2.43391 4.21565i 0.102305 0.177197i
\(567\) 13.9282 1.70688i 0.584929 0.0716823i
\(568\) 1.39708 2.41982i 0.0586204 0.101533i
\(569\) −0.571838 −0.0239727 −0.0119864 0.999928i \(-0.503815\pi\)
−0.0119864 + 0.999928i \(0.503815\pi\)
\(570\) 2.54385 0.765450i 0.106550 0.0320612i
\(571\) −5.02115 8.69689i −0.210129 0.363953i 0.741626 0.670814i \(-0.234055\pi\)
−0.951755 + 0.306860i \(0.900722\pi\)
\(572\) 6.53918 12.4022i 0.273417 0.518564i
\(573\) 15.0276 + 14.1382i 0.627788 + 0.590632i
\(574\) −5.44600 −0.227312
\(575\) 8.35187 + 14.4659i 0.348297 + 0.603268i
\(576\) 2.50185 1.65552i 0.104244 0.0689800i
\(577\) −16.7133 −0.695785 −0.347892 0.937534i \(-0.613103\pi\)
−0.347892 + 0.937534i \(0.613103\pi\)
\(578\) −1.71857 2.97666i −0.0714832 0.123813i
\(579\) 9.45494 40.1432i 0.392934 1.66830i
\(580\) 0.501850 + 0.869229i 0.0208382 + 0.0360928i
\(581\) −13.5341 −0.561488
\(582\) −8.29862 7.80747i −0.343989 0.323630i
\(583\) −37.0311 −1.53367
\(584\) 15.3364 0.634624
\(585\) 1.80819 1.29896i 0.0747595 0.0537054i
\(586\) 8.49447 0.350903
\(587\) 1.93733 0.0799620 0.0399810 0.999200i \(-0.487270\pi\)
0.0399810 + 0.999200i \(0.487270\pi\)
\(588\) −1.81430 + 7.70303i −0.0748203 + 0.317668i
\(589\) 22.3820 0.922232
\(590\) 0.679300 + 1.17658i 0.0279663 + 0.0484391i
\(591\) 9.71016 + 9.13547i 0.399423 + 0.375783i
\(592\) 4.38086 + 7.58788i 0.180052 + 0.311860i
\(593\) 45.4544 1.86659 0.933294 0.359113i \(-0.116921\pi\)
0.933294 + 0.359113i \(0.116921\pi\)
\(594\) −12.9231 + 15.5328i −0.530241 + 0.637319i
\(595\) 0.590942 + 1.02354i 0.0242262 + 0.0419611i
\(596\) −16.7978 −0.688064
\(597\) −2.57188 + 10.9195i −0.105260 + 0.446907i
\(598\) 6.47333 + 10.2798i 0.264714 + 0.420372i
\(599\) 11.8317 + 20.4932i 0.483431 + 0.837327i 0.999819 0.0190274i \(-0.00605698\pi\)
−0.516388 + 0.856355i \(0.672724\pi\)
\(600\) 1.96860 8.35817i 0.0803678 0.341221i
\(601\) −33.3662 −1.36104 −0.680519 0.732731i \(-0.738246\pi\)
−0.680519 + 0.732731i \(0.738246\pi\)
\(602\) 0.535193 0.926981i 0.0218128 0.0377809i
\(603\) −0.554571 9.08447i −0.0225839 0.369948i
\(604\) −0.315574 + 0.546591i −0.0128405 + 0.0222405i
\(605\) −0.424143 0.734637i −0.0172439 0.0298672i
\(606\) 18.7502 5.64199i 0.761676 0.229190i
\(607\) −29.0036 −1.17722 −0.588610 0.808417i \(-0.700324\pi\)
−0.588610 + 0.808417i \(0.700324\pi\)
\(608\) 3.72573 6.45316i 0.151098 0.261710i
\(609\) 9.59118 + 9.02353i 0.388654 + 0.365652i
\(610\) 0.550698 0.953836i 0.0222971 0.0386197i
\(611\) −5.70156 9.05420i −0.230661 0.366294i
\(612\) 0.673203 + 11.0278i 0.0272126 + 0.445773i
\(613\) −2.55168 4.41964i −0.103061 0.178507i 0.809883 0.586591i \(-0.199530\pi\)
−0.912944 + 0.408084i \(0.866197\pi\)
\(614\) 14.0572 0.567301
\(615\) 1.19244 0.358809i 0.0480840 0.0144686i
\(616\) 3.03147 + 5.25066i 0.122141 + 0.211555i
\(617\) 9.12456 0.367341 0.183671 0.982988i \(-0.441202\pi\)
0.183671 + 0.982988i \(0.441202\pi\)
\(618\) 23.5730 + 22.1779i 0.948246 + 0.892124i
\(619\) 4.97487 8.61673i 0.199957 0.346336i −0.748557 0.663070i \(-0.769253\pi\)
0.948514 + 0.316734i \(0.102586\pi\)
\(620\) −0.309127 + 0.535423i −0.0124148 + 0.0215031i
\(621\) −6.05674 16.4263i −0.243048 0.659165i
\(622\) 4.74354 + 8.21605i 0.190199 + 0.329434i
\(623\) −9.75707 + 16.8997i −0.390909 + 0.677073i
\(624\) 1.19739 6.12913i 0.0479340 0.245362i
\(625\) −12.1832 21.1018i −0.487326 0.844073i
\(626\) 16.9273 29.3190i 0.676553 1.17182i
\(627\) −11.5059 + 48.8509i −0.459500 + 1.95092i
\(628\) −8.62325 14.9359i −0.344105 0.596008i
\(629\) −32.2675 −1.28659
\(630\) 0.0586638 + 0.960976i 0.00233722 + 0.0382862i
\(631\) 22.5331 39.0284i 0.897027 1.55370i 0.0657504 0.997836i \(-0.479056\pi\)
0.831276 0.555860i \(-0.187611\pi\)
\(632\) −0.829455 + 1.43666i −0.0329939 + 0.0571472i
\(633\) −5.48570 + 23.2909i −0.218037 + 0.925729i
\(634\) 3.53923 6.13013i 0.140561 0.243458i
\(635\) −1.15460 + 1.99983i −0.0458190 + 0.0793609i
\(636\) −15.7947 + 4.75267i −0.626301 + 0.188456i
\(637\) 8.77836 + 13.9402i 0.347811 + 0.552332i
\(638\) −18.9622 −0.750719
\(639\) 0.510768 + 8.36693i 0.0202057 + 0.330991i
\(640\) 0.102915 + 0.178255i 0.00406809 + 0.00704613i
\(641\) 18.2836 + 31.6682i 0.722160 + 1.25082i 0.960132 + 0.279546i \(0.0901841\pi\)
−0.237972 + 0.971272i \(0.576483\pi\)
\(642\) −14.4160 13.5628i −0.568954 0.535280i
\(643\) −25.2155 −0.994402 −0.497201 0.867635i \(-0.665639\pi\)
−0.497201 + 0.867635i \(0.665639\pi\)
\(644\) −5.25325 −0.207007
\(645\) −0.0561106 + 0.238231i −0.00220935 + 0.00938034i
\(646\) 13.7210 + 23.7655i 0.539847 + 0.935043i
\(647\) 0.159617 + 0.276465i 0.00627519 + 0.0108689i 0.869146 0.494556i \(-0.164669\pi\)
−0.862871 + 0.505425i \(0.831336\pi\)
\(648\) −3.51851 + 8.28373i −0.138220 + 0.325416i
\(649\) −25.6670 −1.00752
\(650\) −9.52496 15.1258i −0.373600 0.593284i
\(651\) −1.85964 + 7.89555i −0.0728850 + 0.309451i
\(652\) 1.67055 2.89347i 0.0654236 0.113317i
\(653\) 19.7365 34.1847i 0.772350 1.33775i −0.163922 0.986473i \(-0.552414\pi\)
0.936272 0.351276i \(-0.114252\pi\)
\(654\) −10.6125 + 3.19332i −0.414980 + 0.124869i
\(655\) 0.0478189 0.0828248i 0.00186844 0.00323623i
\(656\) 1.74646 3.02496i 0.0681878 0.118105i
\(657\) −38.3693 + 25.3897i −1.49693 + 0.990546i
\(658\) 4.62694 0.180377
\(659\) 21.0981 + 36.5430i 0.821866 + 1.42351i 0.904291 + 0.426917i \(0.140400\pi\)
−0.0824246 + 0.996597i \(0.526266\pi\)
\(660\) −1.00970 0.949945i −0.0393027 0.0369766i
\(661\) −14.6644 + 25.3995i −0.570380 + 0.987928i 0.426146 + 0.904654i \(0.359871\pi\)
−0.996527 + 0.0832736i \(0.973462\pi\)
\(662\) −6.47693 11.2184i −0.251733 0.436015i
\(663\) 17.3433 + 15.1050i 0.673557 + 0.586631i
\(664\) 4.34020 7.51744i 0.168432 0.291733i
\(665\) 1.19567 + 2.07096i 0.0463660 + 0.0803083i
\(666\) −23.5222 11.7311i −0.911465 0.454572i
\(667\) 8.21491 14.2286i 0.318083 0.550935i
\(668\) 10.5805 18.3260i 0.409372 0.709053i
\(669\) −19.6848 + 5.92321i −0.761059 + 0.229005i
\(670\) 0.624448 0.0241245
\(671\) 10.4039 + 18.0201i 0.401639 + 0.695659i
\(672\) 1.96688 + 1.85047i 0.0758741 + 0.0713836i
\(673\) −44.3927 −1.71121 −0.855607 0.517627i \(-0.826816\pi\)
−0.855607 + 0.517627i \(0.826816\pi\)
\(674\) −9.11943 15.7953i −0.351267 0.608413i
\(675\) 8.91198 + 24.1699i 0.343022 + 0.930302i
\(676\) −7.34428 10.7267i −0.282472 0.412564i
\(677\) −0.870301 + 1.50741i −0.0334484 + 0.0579343i −0.882265 0.470753i \(-0.843982\pi\)
0.848817 + 0.528687i \(0.177316\pi\)
\(678\) 21.5232 6.47640i 0.826595 0.248725i
\(679\) 5.12832 8.88252i 0.196807 0.340880i
\(680\) −0.758029 −0.0290691
\(681\) 12.4056 + 11.6714i 0.475383 + 0.447248i
\(682\) −5.84011 10.1154i −0.223629 0.387337i
\(683\) 7.31521 12.6703i 0.279909 0.484816i −0.691453 0.722421i \(-0.743029\pi\)
0.971362 + 0.237605i \(0.0763625\pi\)
\(684\) 1.36211 + 22.3128i 0.0520816 + 0.853153i
\(685\) 1.58459 2.74459i 0.0605440 0.104865i
\(686\) −18.0379 −0.688691
\(687\) −21.8390 20.5465i −0.833209 0.783896i
\(688\) 0.343259 + 0.594541i 0.0130866 + 0.0226667i
\(689\) −16.0141 + 30.3724i −0.610087 + 1.15710i
\(690\) 1.15024 0.346110i 0.0437889 0.0131762i
\(691\) −18.0550 −0.686844 −0.343422 0.939181i \(-0.611586\pi\)
−0.343422 + 0.939181i \(0.611586\pi\)
\(692\) 11.2917 + 19.5577i 0.429244 + 0.743473i
\(693\) −16.2769 8.11770i −0.618307 0.308366i
\(694\) 12.4970 0.474381
\(695\) −0.495753 0.858670i −0.0188050 0.0325712i
\(696\) −8.08785 + 2.43365i −0.306569 + 0.0922474i
\(697\) 6.43182 + 11.1402i 0.243623 + 0.421967i
\(698\) −2.01307 −0.0761960
\(699\) −29.2820 + 8.81104i −1.10755 + 0.333264i
\(700\) 7.72971 0.292156
\(701\) −20.6019 −0.778122 −0.389061 0.921212i \(-0.627201\pi\)
−0.389061 + 0.921212i \(0.627201\pi\)
\(702\) 7.15121 + 17.3165i 0.269905 + 0.653568i
\(703\) −65.2877 −2.46237
\(704\) −3.88861 −0.146557
\(705\) −1.01311 + 0.304846i −0.0381558 + 0.0114812i
\(706\) 36.1145 1.35919
\(707\) 8.81305 + 15.2646i 0.331449 + 0.574086i
\(708\) −10.9476 + 3.29418i −0.411438 + 0.123803i
\(709\) 9.83614 + 17.0367i 0.369404 + 0.639826i 0.989472 0.144721i \(-0.0462286\pi\)
−0.620069 + 0.784548i \(0.712895\pi\)
\(710\) −0.575126 −0.0215841
\(711\) −0.303245 4.96748i −0.0113726 0.186295i
\(712\) −6.25792 10.8390i −0.234526 0.406210i
\(713\) 10.1204 0.379010
\(714\) −9.52366 + 2.86569i −0.356414 + 0.107246i
\(715\) −2.88374 + 0.110743i −0.107846 + 0.00414155i
\(716\) 5.40388 + 9.35979i 0.201952 + 0.349792i
\(717\) 1.59267 + 1.49841i 0.0594793 + 0.0559590i
\(718\) −34.3296 −1.28117
\(719\) −15.9912 + 27.6975i −0.596370 + 1.03294i 0.396982 + 0.917827i \(0.370058\pi\)
−0.993352 + 0.115117i \(0.963276\pi\)
\(720\) −0.552583 0.275588i −0.0205935 0.0102706i
\(721\) −14.5675 + 25.2316i −0.542521 + 0.939675i
\(722\) 18.2621 + 31.6310i 0.679647 + 1.17718i
\(723\) −13.7367 12.9237i −0.510872 0.480636i
\(724\) 13.6295 0.506536
\(725\) −12.0875 + 20.9362i −0.448920 + 0.777552i
\(726\) 6.83551 2.05682i 0.253690 0.0763359i
\(727\) −3.26856 + 5.66131i −0.121224 + 0.209966i −0.920251 0.391329i \(-0.872015\pi\)
0.799027 + 0.601296i \(0.205349\pi\)
\(728\) 5.61747 0.215725i 0.208197 0.00799530i
\(729\) −4.91111 26.5496i −0.181893 0.983318i
\(730\) −1.57835 2.73378i −0.0584173 0.101182i
\(731\) −2.52829 −0.0935122
\(732\) 6.75029 + 6.35078i 0.249498 + 0.234732i
\(733\) −2.15768 3.73721i −0.0796956 0.138037i 0.823423 0.567428i \(-0.192062\pi\)
−0.903119 + 0.429391i \(0.858728\pi\)
\(734\) 5.05771 0.186683
\(735\) 1.55982 0.469354i 0.0575348 0.0173124i
\(736\) 1.68465 2.91790i 0.0620969 0.107555i
\(737\) −5.89862 + 10.2167i −0.217278 + 0.376337i
\(738\) 0.638498 + 10.4593i 0.0235034 + 0.385012i
\(739\) −4.64539 8.04606i −0.170884 0.295979i 0.767845 0.640635i \(-0.221329\pi\)
−0.938729 + 0.344656i \(0.887996\pi\)
\(740\) 0.901716 1.56182i 0.0331477 0.0574136i
\(741\) 35.0911 + 30.5624i 1.28910 + 1.12274i
\(742\) −7.42389 12.8586i −0.272540 0.472052i
\(743\) 1.47826 2.56043i 0.0542322 0.0939329i −0.837635 0.546231i \(-0.816062\pi\)
0.891867 + 0.452298i \(0.149396\pi\)
\(744\) −3.78919 3.56493i −0.138918 0.130697i
\(745\) 1.72875 + 2.99428i 0.0633365 + 0.109702i
\(746\) 27.0459 0.990220
\(747\) 1.58676 + 25.9928i 0.0580564 + 0.951026i
\(748\) 7.16044 12.4022i 0.261812 0.453471i
\(749\) 8.90869 15.4303i 0.325516 0.563811i
\(750\) −3.39943 + 1.02290i −0.124129 + 0.0373509i
\(751\) −9.89013 + 17.1302i −0.360896 + 0.625090i −0.988109 0.153758i \(-0.950862\pi\)
0.627213 + 0.778848i \(0.284196\pi\)
\(752\) −1.48380 + 2.57002i −0.0541086 + 0.0937188i
\(753\) 9.79495 41.5869i 0.356948 1.51551i
\(754\) −8.20017 + 15.5525i −0.298632 + 0.566388i
\(755\) 0.129910 0.00472790
\(756\) −7.98434 1.37339i −0.290388 0.0499498i
\(757\) 17.1539 + 29.7115i 0.623470 + 1.07988i 0.988835 + 0.149017i \(0.0476109\pi\)
−0.365365 + 0.930864i \(0.619056\pi\)
\(758\) −3.71240 6.43007i −0.134840 0.233551i
\(759\) −5.20255 + 22.0887i −0.188841 + 0.801769i
\(760\) −1.53374 −0.0556346
\(761\) −6.16063 −0.223323 −0.111661 0.993746i \(-0.535617\pi\)
−0.111661 + 0.993746i \(0.535617\pi\)
\(762\) −14.1528 13.3152i −0.512702 0.482358i
\(763\) −4.98811 8.63965i −0.180582 0.312777i
\(764\) −5.95622 10.3165i −0.215488 0.373237i
\(765\) 1.89647 1.25493i 0.0685672 0.0453722i
\(766\) −30.9084 −1.11677
\(767\) −11.0997 + 21.0517i −0.400786 + 0.760134i
\(768\)