Properties

Label 702.2.bc.a.557.8
Level $702$
Weight $2$
Character 702.557
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [702,2,Mod(305,702)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("702.305"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(702, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([2, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bc (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 557.8
Character \(\chi\) \(=\) 702.557
Dual form 702.2.bc.a.305.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.258819 + 0.965926i) q^{2} +(-0.866025 + 0.500000i) q^{4} +(-0.817032 - 3.04921i) q^{5} +(-2.08075 + 2.08075i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(2.73384 - 1.57838i) q^{10} +(0.842637 - 0.225784i) q^{11} +(-0.0715101 + 3.60484i) q^{13} +(-2.54838 - 1.47131i) q^{14} +(0.500000 - 0.866025i) q^{16} +(-1.80087 + 3.11920i) q^{17} +(-4.90132 + 1.31331i) q^{19} +(2.23217 + 2.23217i) q^{20} +(0.436181 + 0.755487i) q^{22} -3.73515 q^{23} +(-4.29998 + 2.48260i) q^{25} +(-3.50052 + 0.863928i) q^{26} +(0.761606 - 2.84235i) q^{28} +(-7.44735 - 4.29973i) q^{29} +(-4.96612 + 1.33067i) q^{31} +(0.965926 + 0.258819i) q^{32} +(-3.47902 - 0.932200i) q^{34} +(8.04466 + 4.64459i) q^{35} +(-5.77159 - 1.54649i) q^{37} +(-2.53711 - 4.39440i) q^{38} +(-1.57838 + 2.73384i) q^{40} +(7.72453 - 7.72453i) q^{41} +6.33580i q^{43} +(-0.616853 + 0.616853i) q^{44} +(-0.966728 - 3.60788i) q^{46} +(-1.63674 + 6.10838i) q^{47} -1.65902i q^{49} +(-3.51092 - 3.51092i) q^{50} +(-1.74049 - 3.15764i) q^{52} +6.73100i q^{53} +(-1.37692 - 2.38490i) q^{55} +2.94262 q^{56} +(2.22570 - 8.30644i) q^{58} +(-1.42714 + 5.32616i) q^{59} +6.36898 q^{61} +(-2.57066 - 4.45251i) q^{62} +1.00000i q^{64} +(11.0503 - 2.72722i) q^{65} +(5.85124 + 5.85124i) q^{67} -3.60175i q^{68} +(-2.40422 + 8.97266i) q^{70} +(-1.65986 - 6.19468i) q^{71} +(10.6419 - 10.6419i) q^{73} -5.97519i q^{74} +(3.58802 - 3.58802i) q^{76} +(-1.28351 + 2.22311i) q^{77} +(-1.30671 - 2.26329i) q^{79} +(-3.04921 - 0.817032i) q^{80} +(9.46058 + 5.46207i) q^{82} +(-11.0800 - 2.96889i) q^{83} +(10.9825 + 2.94274i) q^{85} +(-6.11991 + 1.63983i) q^{86} +(-0.755487 - 0.436181i) q^{88} +(2.10194 - 7.84455i) q^{89} +(-7.35197 - 7.64956i) q^{91} +(3.23474 - 1.86758i) q^{92} -6.32386 q^{94} +(8.00907 + 13.8721i) q^{95} +(-11.9612 - 11.9612i) q^{97} +(1.60249 - 0.429386i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 8 q^{7} + 24 q^{11} + 28 q^{16} - 8 q^{19} - 4 q^{28} - 4 q^{31} + 24 q^{35} - 4 q^{37} - 36 q^{38} + 48 q^{41} + 36 q^{47} + 24 q^{50} + 8 q^{52} + 36 q^{65} + 28 q^{67} + 24 q^{71} + 28 q^{73}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.258819 + 0.965926i 0.183013 + 0.683013i
\(3\) 0 0
\(4\) −0.866025 + 0.500000i −0.433013 + 0.250000i
\(5\) −0.817032 3.04921i −0.365388 1.36365i −0.866894 0.498492i \(-0.833887\pi\)
0.501506 0.865154i \(-0.332779\pi\)
\(6\) 0 0
\(7\) −2.08075 + 2.08075i −0.786449 + 0.786449i −0.980910 0.194462i \(-0.937704\pi\)
0.194462 + 0.980910i \(0.437704\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 0 0
\(10\) 2.73384 1.57838i 0.864517 0.499129i
\(11\) 0.842637 0.225784i 0.254064 0.0680764i −0.129539 0.991574i \(-0.541350\pi\)
0.383603 + 0.923498i \(0.374683\pi\)
\(12\) 0 0
\(13\) −0.0715101 + 3.60484i −0.0198333 + 0.999803i
\(14\) −2.54838 1.47131i −0.681084 0.393224i
\(15\) 0 0
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) −1.80087 + 3.11920i −0.436776 + 0.756518i −0.997439 0.0715262i \(-0.977213\pi\)
0.560663 + 0.828044i \(0.310546\pi\)
\(18\) 0 0
\(19\) −4.90132 + 1.31331i −1.12444 + 0.301293i −0.772679 0.634797i \(-0.781084\pi\)
−0.351761 + 0.936090i \(0.614417\pi\)
\(20\) 2.23217 + 2.23217i 0.499129 + 0.499129i
\(21\) 0 0
\(22\) 0.436181 + 0.755487i 0.0929941 + 0.161070i
\(23\) −3.73515 −0.778833 −0.389416 0.921062i \(-0.627323\pi\)
−0.389416 + 0.921062i \(0.627323\pi\)
\(24\) 0 0
\(25\) −4.29998 + 2.48260i −0.859997 + 0.496519i
\(26\) −3.50052 + 0.863928i −0.686508 + 0.169430i
\(27\) 0 0
\(28\) 0.761606 2.84235i 0.143930 0.537154i
\(29\) −7.44735 4.29973i −1.38294 0.798439i −0.390431 0.920632i \(-0.627674\pi\)
−0.992506 + 0.122193i \(0.961007\pi\)
\(30\) 0 0
\(31\) −4.96612 + 1.33067i −0.891942 + 0.238995i −0.675553 0.737312i \(-0.736095\pi\)
−0.216390 + 0.976307i \(0.569428\pi\)
\(32\) 0.965926 + 0.258819i 0.170753 + 0.0457532i
\(33\) 0 0
\(34\) −3.47902 0.932200i −0.596647 0.159871i
\(35\) 8.04466 + 4.64459i 1.35980 + 0.785079i
\(36\) 0 0
\(37\) −5.77159 1.54649i −0.948844 0.254242i −0.248972 0.968511i \(-0.580093\pi\)
−0.699872 + 0.714269i \(0.746760\pi\)
\(38\) −2.53711 4.39440i −0.411574 0.712867i
\(39\) 0 0
\(40\) −1.57838 + 2.73384i −0.249565 + 0.432258i
\(41\) 7.72453 7.72453i 1.20637 1.20637i 0.234175 0.972194i \(-0.424761\pi\)
0.972194 0.234175i \(-0.0752389\pi\)
\(42\) 0 0
\(43\) 6.33580i 0.966200i 0.875565 + 0.483100i \(0.160489\pi\)
−0.875565 + 0.483100i \(0.839511\pi\)
\(44\) −0.616853 + 0.616853i −0.0929941 + 0.0929941i
\(45\) 0 0
\(46\) −0.966728 3.60788i −0.142536 0.531953i
\(47\) −1.63674 + 6.10838i −0.238742 + 0.890999i 0.737684 + 0.675146i \(0.235920\pi\)
−0.976426 + 0.215852i \(0.930747\pi\)
\(48\) 0 0
\(49\) 1.65902i 0.237003i
\(50\) −3.51092 3.51092i −0.496519 0.496519i
\(51\) 0 0
\(52\) −1.74049 3.15764i −0.241363 0.437886i
\(53\) 6.73100i 0.924574i 0.886730 + 0.462287i \(0.152971\pi\)
−0.886730 + 0.462287i \(0.847029\pi\)
\(54\) 0 0
\(55\) −1.37692 2.38490i −0.185664 0.321580i
\(56\) 2.94262 0.393224
\(57\) 0 0
\(58\) 2.22570 8.30644i 0.292249 1.09069i
\(59\) −1.42714 + 5.32616i −0.185798 + 0.693407i 0.808660 + 0.588276i \(0.200193\pi\)
−0.994458 + 0.105131i \(0.966474\pi\)
\(60\) 0 0
\(61\) 6.36898 0.815464 0.407732 0.913102i \(-0.366320\pi\)
0.407732 + 0.913102i \(0.366320\pi\)
\(62\) −2.57066 4.45251i −0.326474 0.565469i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 11.0503 2.72722i 1.37062 0.338270i
\(66\) 0 0
\(67\) 5.85124 + 5.85124i 0.714842 + 0.714842i 0.967544 0.252702i \(-0.0813192\pi\)
−0.252702 + 0.967544i \(0.581319\pi\)
\(68\) 3.60175i 0.436776i
\(69\) 0 0
\(70\) −2.40422 + 8.97266i −0.287359 + 1.07244i
\(71\) −1.65986 6.19468i −0.196989 0.735174i −0.991743 0.128242i \(-0.959067\pi\)
0.794754 0.606932i \(-0.207600\pi\)
\(72\) 0 0
\(73\) 10.6419 10.6419i 1.24555 1.24555i 0.287878 0.957667i \(-0.407050\pi\)
0.957667 0.287878i \(-0.0929498\pi\)
\(74\) 5.97519i 0.694602i
\(75\) 0 0
\(76\) 3.58802 3.58802i 0.411574 0.411574i
\(77\) −1.28351 + 2.22311i −0.146270 + 0.253347i
\(78\) 0 0
\(79\) −1.30671 2.26329i −0.147016 0.254640i 0.783107 0.621887i \(-0.213634\pi\)
−0.930123 + 0.367247i \(0.880300\pi\)
\(80\) −3.04921 0.817032i −0.340912 0.0913470i
\(81\) 0 0
\(82\) 9.46058 + 5.46207i 1.04475 + 0.603185i
\(83\) −11.0800 2.96889i −1.21619 0.325878i −0.407004 0.913426i \(-0.633427\pi\)
−0.809189 + 0.587548i \(0.800093\pi\)
\(84\) 0 0
\(85\) 10.9825 + 2.94274i 1.19122 + 0.319185i
\(86\) −6.11991 + 1.63983i −0.659927 + 0.176827i
\(87\) 0 0
\(88\) −0.755487 0.436181i −0.0805352 0.0464970i
\(89\) 2.10194 7.84455i 0.222805 0.831521i −0.760467 0.649377i \(-0.775030\pi\)
0.983272 0.182144i \(-0.0583036\pi\)
\(90\) 0 0
\(91\) −7.35197 7.64956i −0.770696 0.801892i
\(92\) 3.23474 1.86758i 0.337244 0.194708i
\(93\) 0 0
\(94\) −6.32386 −0.652256
\(95\) 8.00907 + 13.8721i 0.821714 + 1.42325i
\(96\) 0 0
\(97\) −11.9612 11.9612i −1.21448 1.21448i −0.969538 0.244941i \(-0.921231\pi\)
−0.244941 0.969538i \(-0.578769\pi\)
\(98\) 1.60249 0.429386i 0.161876 0.0433745i
\(99\) 0 0
\(100\) 2.48260 4.29998i 0.248260 0.429998i
\(101\) −2.58133 + 4.47099i −0.256851 + 0.444880i −0.965397 0.260786i \(-0.916018\pi\)
0.708545 + 0.705665i \(0.249352\pi\)
\(102\) 0 0
\(103\) 7.99184 + 4.61409i 0.787459 + 0.454640i 0.839067 0.544028i \(-0.183101\pi\)
−0.0516081 + 0.998667i \(0.516435\pi\)
\(104\) 2.59957 2.49844i 0.254909 0.244992i
\(105\) 0 0
\(106\) −6.50165 + 1.74211i −0.631496 + 0.169209i
\(107\) 0.210437 0.121496i 0.0203437 0.0117454i −0.489794 0.871838i \(-0.662928\pi\)
0.510137 + 0.860093i \(0.329595\pi\)
\(108\) 0 0
\(109\) 2.87971 + 2.87971i 0.275827 + 0.275827i 0.831440 0.555614i \(-0.187517\pi\)
−0.555614 + 0.831440i \(0.687517\pi\)
\(110\) 1.94726 1.94726i 0.185664 0.185664i
\(111\) 0 0
\(112\) 0.761606 + 2.84235i 0.0719650 + 0.268577i
\(113\) −2.64736 + 1.52846i −0.249043 + 0.143785i −0.619326 0.785134i \(-0.712594\pi\)
0.370283 + 0.928919i \(0.379261\pi\)
\(114\) 0 0
\(115\) 3.05174 + 11.3892i 0.284576 + 1.06205i
\(116\) 8.59946 0.798439
\(117\) 0 0
\(118\) −5.51405 −0.507609
\(119\) −2.74311 10.2374i −0.251461 0.938464i
\(120\) 0 0
\(121\) −8.86722 + 5.11949i −0.806111 + 0.465408i
\(122\) 1.64841 + 6.15196i 0.149240 + 0.556972i
\(123\) 0 0
\(124\) 3.63546 3.63546i 0.326474 0.326474i
\(125\) −0.0776933 0.0776933i −0.00694910 0.00694910i
\(126\) 0 0
\(127\) 16.5577 9.55958i 1.46926 0.848276i 0.469851 0.882746i \(-0.344308\pi\)
0.999406 + 0.0344705i \(0.0109745\pi\)
\(128\) −0.965926 + 0.258819i −0.0853766 + 0.0228766i
\(129\) 0 0
\(130\) 5.49433 + 9.96794i 0.481885 + 0.874246i
\(131\) 10.6970 + 6.17593i 0.934603 + 0.539593i 0.888264 0.459332i \(-0.151911\pi\)
0.0463386 + 0.998926i \(0.485245\pi\)
\(132\) 0 0
\(133\) 7.46576 12.9311i 0.647363 1.12127i
\(134\) −4.13745 + 7.16627i −0.357421 + 0.619072i
\(135\) 0 0
\(136\) 3.47902 0.932200i 0.298323 0.0799355i
\(137\) 4.91649 + 4.91649i 0.420044 + 0.420044i 0.885219 0.465175i \(-0.154009\pi\)
−0.465175 + 0.885219i \(0.654009\pi\)
\(138\) 0 0
\(139\) 2.84060 + 4.92006i 0.240937 + 0.417314i 0.960981 0.276613i \(-0.0892121\pi\)
−0.720045 + 0.693928i \(0.755879\pi\)
\(140\) −9.28918 −0.785079
\(141\) 0 0
\(142\) 5.55400 3.20660i 0.466081 0.269092i
\(143\) 0.753658 + 3.05372i 0.0630240 + 0.255365i
\(144\) 0 0
\(145\) −7.02603 + 26.2215i −0.583480 + 2.17758i
\(146\) 13.0337 + 7.52499i 1.07867 + 0.622773i
\(147\) 0 0
\(148\) 5.77159 1.54649i 0.474422 0.127121i
\(149\) −20.0748 5.37903i −1.64459 0.440668i −0.686502 0.727128i \(-0.740855\pi\)
−0.958092 + 0.286461i \(0.907521\pi\)
\(150\) 0 0
\(151\) 7.11970 + 1.90772i 0.579393 + 0.155248i 0.536601 0.843836i \(-0.319708\pi\)
0.0427921 + 0.999084i \(0.486375\pi\)
\(152\) 4.39440 + 2.53711i 0.356433 + 0.205787i
\(153\) 0 0
\(154\) −2.47956 0.664396i −0.199809 0.0535386i
\(155\) 8.11497 + 14.0555i 0.651810 + 1.12897i
\(156\) 0 0
\(157\) −5.21020 + 9.02434i −0.415819 + 0.720220i −0.995514 0.0946134i \(-0.969838\pi\)
0.579695 + 0.814834i \(0.303172\pi\)
\(158\) 1.84797 1.84797i 0.147016 0.147016i
\(159\) 0 0
\(160\) 3.15677i 0.249565i
\(161\) 7.77191 7.77191i 0.612512 0.612512i
\(162\) 0 0
\(163\) 1.76529 + 6.58816i 0.138268 + 0.516025i 0.999963 + 0.00859756i \(0.00273672\pi\)
−0.861695 + 0.507427i \(0.830597\pi\)
\(164\) −2.82738 + 10.5519i −0.220781 + 0.823966i
\(165\) 0 0
\(166\) 11.4709i 0.890315i
\(167\) 9.73117 + 9.73117i 0.753021 + 0.753021i 0.975042 0.222021i \(-0.0712654\pi\)
−0.222021 + 0.975042i \(0.571265\pi\)
\(168\) 0 0
\(169\) −12.9898 0.515565i −0.999213 0.0396588i
\(170\) 11.3699i 0.872030i
\(171\) 0 0
\(172\) −3.16790 5.48696i −0.241550 0.418377i
\(173\) −4.06007 −0.308682 −0.154341 0.988018i \(-0.549325\pi\)
−0.154341 + 0.988018i \(0.549325\pi\)
\(174\) 0 0
\(175\) 3.78152 14.1128i 0.285856 1.06683i
\(176\) 0.225784 0.842637i 0.0170191 0.0635161i
\(177\) 0 0
\(178\) 8.12128 0.608715
\(179\) −9.70640 16.8120i −0.725490 1.25659i −0.958772 0.284177i \(-0.908280\pi\)
0.233282 0.972409i \(-0.425054\pi\)
\(180\) 0 0
\(181\) 0.0982851i 0.00730547i −0.999993 0.00365274i \(-0.998837\pi\)
0.999993 0.00365274i \(-0.00116270\pi\)
\(182\) 5.48608 9.08131i 0.406655 0.673152i
\(183\) 0 0
\(184\) 2.64115 + 2.64115i 0.194708 + 0.194708i
\(185\) 18.8623i 1.38678i
\(186\) 0 0
\(187\) −0.813216 + 3.03496i −0.0594682 + 0.221938i
\(188\) −1.63674 6.10838i −0.119371 0.445499i
\(189\) 0 0
\(190\) −11.3265 + 11.3265i −0.821714 + 0.821714i
\(191\) 12.6972i 0.918735i 0.888246 + 0.459367i \(0.151924\pi\)
−0.888246 + 0.459367i \(0.848076\pi\)
\(192\) 0 0
\(193\) 16.7784 16.7784i 1.20774 1.20774i 0.235981 0.971758i \(-0.424170\pi\)
0.971758 0.235981i \(-0.0758303\pi\)
\(194\) 8.45787 14.6495i 0.607240 1.05177i
\(195\) 0 0
\(196\) 0.829510 + 1.43675i 0.0592507 + 0.102625i
\(197\) −5.16169 1.38307i −0.367755 0.0985397i 0.0702085 0.997532i \(-0.477634\pi\)
−0.437964 + 0.898993i \(0.644300\pi\)
\(198\) 0 0
\(199\) −7.44445 4.29806i −0.527723 0.304681i 0.212366 0.977190i \(-0.431883\pi\)
−0.740089 + 0.672509i \(0.765217\pi\)
\(200\) 4.79601 + 1.28509i 0.339129 + 0.0908694i
\(201\) 0 0
\(202\) −4.98674 1.33619i −0.350866 0.0940142i
\(203\) 24.4427 6.54940i 1.71554 0.459678i
\(204\) 0 0
\(205\) −29.8649 17.2425i −2.08585 1.20427i
\(206\) −2.38843 + 8.91374i −0.166410 + 0.621050i
\(207\) 0 0
\(208\) 3.08613 + 1.86435i 0.213985 + 0.129269i
\(209\) −3.83351 + 2.21328i −0.265169 + 0.153096i
\(210\) 0 0
\(211\) −9.74147 −0.670630 −0.335315 0.942106i \(-0.608843\pi\)
−0.335315 + 0.942106i \(0.608843\pi\)
\(212\) −3.36550 5.82922i −0.231144 0.400352i
\(213\) 0 0
\(214\) 0.171821 + 0.171821i 0.0117454 + 0.0117454i
\(215\) 19.3191 5.17655i 1.31755 0.353038i
\(216\) 0 0
\(217\) 7.56446 13.1020i 0.513509 0.889424i
\(218\) −2.03627 + 3.52692i −0.137913 + 0.238873i
\(219\) 0 0
\(220\) 2.38490 + 1.37692i 0.160790 + 0.0928321i
\(221\) −11.1155 6.71492i −0.747706 0.451694i
\(222\) 0 0
\(223\) −18.3352 + 4.91290i −1.22782 + 0.328992i −0.813729 0.581245i \(-0.802566\pi\)
−0.414087 + 0.910237i \(0.635899\pi\)
\(224\) −2.54838 + 1.47131i −0.170271 + 0.0983061i
\(225\) 0 0
\(226\) −2.16156 2.16156i −0.143785 0.143785i
\(227\) 10.9382 10.9382i 0.725991 0.725991i −0.243827 0.969819i \(-0.578403\pi\)
0.969819 + 0.243827i \(0.0784030\pi\)
\(228\) 0 0
\(229\) 3.92348 + 14.6426i 0.259271 + 0.967612i 0.965664 + 0.259792i \(0.0836542\pi\)
−0.706394 + 0.707819i \(0.749679\pi\)
\(230\) −10.2113 + 5.89551i −0.673314 + 0.388738i
\(231\) 0 0
\(232\) 2.22570 + 8.30644i 0.146125 + 0.545344i
\(233\) −11.5129 −0.754237 −0.377118 0.926165i \(-0.623085\pi\)
−0.377118 + 0.926165i \(0.623085\pi\)
\(234\) 0 0
\(235\) 19.9630 1.30224
\(236\) −1.42714 5.32616i −0.0928989 0.346704i
\(237\) 0 0
\(238\) 9.17863 5.29929i 0.594963 0.343502i
\(239\) −1.04280 3.89177i −0.0674528 0.251737i 0.923963 0.382481i \(-0.124930\pi\)
−0.991416 + 0.130743i \(0.958264\pi\)
\(240\) 0 0
\(241\) 10.4725 10.4725i 0.674591 0.674591i −0.284180 0.958771i \(-0.591721\pi\)
0.958771 + 0.284180i \(0.0917212\pi\)
\(242\) −7.24006 7.24006i −0.465408 0.465408i
\(243\) 0 0
\(244\) −5.51569 + 3.18449i −0.353106 + 0.203866i
\(245\) −5.05869 + 1.35547i −0.323188 + 0.0865980i
\(246\) 0 0
\(247\) −4.38376 17.7624i −0.278932 1.13019i
\(248\) 4.45251 + 2.57066i 0.282734 + 0.163237i
\(249\) 0 0
\(250\) 0.0549375 0.0951545i 0.00347455 0.00601810i
\(251\) 1.98281 3.43432i 0.125154 0.216772i −0.796639 0.604455i \(-0.793391\pi\)
0.921793 + 0.387682i \(0.126724\pi\)
\(252\) 0 0
\(253\) −3.14737 + 0.843337i −0.197874 + 0.0530201i
\(254\) 13.5193 + 13.5193i 0.848276 + 0.848276i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 13.8559 0.864307 0.432153 0.901800i \(-0.357754\pi\)
0.432153 + 0.901800i \(0.357754\pi\)
\(258\) 0 0
\(259\) 15.2271 8.79137i 0.946165 0.546269i
\(260\) −8.20625 + 7.88701i −0.508930 + 0.489132i
\(261\) 0 0
\(262\) −3.19690 + 11.9310i −0.197505 + 0.737098i
\(263\) −13.8744 8.01036i −0.855529 0.493940i 0.00698346 0.999976i \(-0.497777\pi\)
−0.862513 + 0.506036i \(0.831110\pi\)
\(264\) 0 0
\(265\) 20.5242 5.49945i 1.26079 0.337828i
\(266\) 14.4227 + 3.86456i 0.884314 + 0.236951i
\(267\) 0 0
\(268\) −7.99294 2.14170i −0.488246 0.130825i
\(269\) 1.90561 + 1.10021i 0.116187 + 0.0670808i 0.556967 0.830534i \(-0.311965\pi\)
−0.440780 + 0.897615i \(0.645298\pi\)
\(270\) 0 0
\(271\) −5.96826 1.59919i −0.362546 0.0971439i 0.0729474 0.997336i \(-0.476759\pi\)
−0.435494 + 0.900192i \(0.643426\pi\)
\(272\) 1.80087 + 3.11920i 0.109194 + 0.189129i
\(273\) 0 0
\(274\) −3.47648 + 6.02145i −0.210022 + 0.363769i
\(275\) −3.06279 + 3.06279i −0.184693 + 0.184693i
\(276\) 0 0
\(277\) 20.4207i 1.22696i 0.789711 + 0.613479i \(0.210231\pi\)
−0.789711 + 0.613479i \(0.789769\pi\)
\(278\) −4.01721 + 4.01721i −0.240937 + 0.240937i
\(279\) 0 0
\(280\) −2.40422 8.97266i −0.143679 0.536219i
\(281\) −5.37665 + 20.0659i −0.320744 + 1.19703i 0.597777 + 0.801662i \(0.296051\pi\)
−0.918521 + 0.395372i \(0.870616\pi\)
\(282\) 0 0
\(283\) 24.1047i 1.43287i 0.697652 + 0.716436i \(0.254228\pi\)
−0.697652 + 0.716436i \(0.745772\pi\)
\(284\) 4.53482 + 4.53482i 0.269092 + 0.269092i
\(285\) 0 0
\(286\) −2.75460 + 1.51834i −0.162883 + 0.0897812i
\(287\) 32.1456i 1.89750i
\(288\) 0 0
\(289\) 2.01371 + 3.48785i 0.118454 + 0.205168i
\(290\) −27.1465 −1.59410
\(291\) 0 0
\(292\) −3.89522 + 14.5372i −0.227951 + 0.850723i
\(293\) 0.671035 2.50434i 0.0392023 0.146305i −0.943551 0.331228i \(-0.892537\pi\)
0.982753 + 0.184923i \(0.0592037\pi\)
\(294\) 0 0
\(295\) 17.4066 1.01345
\(296\) 2.98760 + 5.17467i 0.173651 + 0.300772i
\(297\) 0 0
\(298\) 20.7830i 1.20393i
\(299\) 0.267101 13.4646i 0.0154468 0.778680i
\(300\) 0 0
\(301\) −13.1832 13.1832i −0.759867 0.759867i
\(302\) 7.37086i 0.424145i
\(303\) 0 0
\(304\) −1.31331 + 4.90132i −0.0753232 + 0.281110i
\(305\) −5.20366 19.4203i −0.297961 1.11200i
\(306\) 0 0
\(307\) 0.409589 0.409589i 0.0233765 0.0233765i −0.695322 0.718698i \(-0.744738\pi\)
0.718698 + 0.695322i \(0.244738\pi\)
\(308\) 2.56703i 0.146270i
\(309\) 0 0
\(310\) −11.4763 + 11.4763i −0.651810 + 0.651810i
\(311\) 8.67641 15.0280i 0.491994 0.852159i −0.507963 0.861379i \(-0.669602\pi\)
0.999957 + 0.00921998i \(0.00293485\pi\)
\(312\) 0 0
\(313\) 12.3328 + 21.3610i 0.697089 + 1.20739i 0.969471 + 0.245205i \(0.0788552\pi\)
−0.272382 + 0.962189i \(0.587812\pi\)
\(314\) −10.0653 2.69700i −0.568020 0.152200i
\(315\) 0 0
\(316\) 2.26329 + 1.30671i 0.127320 + 0.0735082i
\(317\) −24.1300 6.46561i −1.35528 0.363145i −0.493196 0.869918i \(-0.664172\pi\)
−0.862080 + 0.506773i \(0.830838\pi\)
\(318\) 0 0
\(319\) −7.24622 1.94162i −0.405710 0.108710i
\(320\) 3.04921 0.817032i 0.170456 0.0456735i
\(321\) 0 0
\(322\) 9.51860 + 5.49557i 0.530451 + 0.306256i
\(323\) 4.73019 17.6533i 0.263195 0.982257i
\(324\) 0 0
\(325\) −8.64188 15.6783i −0.479365 0.869675i
\(326\) −5.90679 + 3.41028i −0.327147 + 0.188878i
\(327\) 0 0
\(328\) −10.9241 −0.603185
\(329\) −9.30436 16.1156i −0.512966 0.888483i
\(330\) 0 0
\(331\) 22.7569 + 22.7569i 1.25083 + 1.25083i 0.955347 + 0.295486i \(0.0954817\pi\)
0.295486 + 0.955347i \(0.404518\pi\)
\(332\) 11.0800 2.96889i 0.608097 0.162939i
\(333\) 0 0
\(334\) −6.88098 + 11.9182i −0.376510 + 0.652135i
\(335\) 13.0610 22.6223i 0.713597 1.23599i
\(336\) 0 0
\(337\) −25.7601 14.8726i −1.40324 0.810161i −0.408516 0.912751i \(-0.633954\pi\)
−0.994724 + 0.102590i \(0.967287\pi\)
\(338\) −2.86400 12.6806i −0.155781 0.689733i
\(339\) 0 0
\(340\) −10.9825 + 2.94274i −0.595608 + 0.159593i
\(341\) −3.88419 + 2.24254i −0.210341 + 0.121440i
\(342\) 0 0
\(343\) −11.1132 11.1132i −0.600058 0.600058i
\(344\) 4.48009 4.48009i 0.241550 0.241550i
\(345\) 0 0
\(346\) −1.05082 3.92173i −0.0564927 0.210833i
\(347\) −29.4281 + 16.9903i −1.57978 + 0.912088i −0.584894 + 0.811110i \(0.698864\pi\)
−0.994889 + 0.100978i \(0.967803\pi\)
\(348\) 0 0
\(349\) −2.12443 7.92850i −0.113718 0.424403i 0.885469 0.464698i \(-0.153837\pi\)
−0.999188 + 0.0402949i \(0.987170\pi\)
\(350\) 14.6107 0.780974
\(351\) 0 0
\(352\) 0.872362 0.0464970
\(353\) −4.06187 15.1591i −0.216192 0.806838i −0.985744 0.168254i \(-0.946187\pi\)
0.769552 0.638584i \(-0.220479\pi\)
\(354\) 0 0
\(355\) −17.5327 + 10.1225i −0.930539 + 0.537247i
\(356\) 2.10194 + 7.84455i 0.111403 + 0.415760i
\(357\) 0 0
\(358\) 13.7269 13.7269i 0.725490 0.725490i
\(359\) −12.5155 12.5155i −0.660544 0.660544i 0.294964 0.955508i \(-0.404692\pi\)
−0.955508 + 0.294964i \(0.904692\pi\)
\(360\) 0 0
\(361\) 5.84370 3.37386i 0.307563 0.177572i
\(362\) 0.0949361 0.0254381i 0.00498973 0.00133699i
\(363\) 0 0
\(364\) 10.1918 + 2.94873i 0.534194 + 0.154555i
\(365\) −41.1443 23.7547i −2.15359 1.24338i
\(366\) 0 0
\(367\) −13.2121 + 22.8840i −0.689666 + 1.19454i 0.282280 + 0.959332i \(0.408909\pi\)
−0.971946 + 0.235204i \(0.924424\pi\)
\(368\) −1.86758 + 3.23474i −0.0973541 + 0.168622i
\(369\) 0 0
\(370\) −18.2196 + 4.88192i −0.947191 + 0.253799i
\(371\) −14.0055 14.0055i −0.727130 0.727130i
\(372\) 0 0
\(373\) −11.3495 19.6580i −0.587656 1.01785i −0.994539 0.104370i \(-0.966718\pi\)
0.406883 0.913480i \(-0.366616\pi\)
\(374\) −3.14202 −0.162470
\(375\) 0 0
\(376\) 5.47662 3.16193i 0.282435 0.163064i
\(377\) 16.0324 26.5390i 0.825711 1.36683i
\(378\) 0 0
\(379\) −2.62959 + 9.81377i −0.135073 + 0.504100i 0.864924 + 0.501902i \(0.167366\pi\)
−0.999998 + 0.00219770i \(0.999300\pi\)
\(380\) −13.8721 8.00907i −0.711625 0.410857i
\(381\) 0 0
\(382\) −12.2645 + 3.28627i −0.627508 + 0.168140i
\(383\) 18.0806 + 4.84467i 0.923874 + 0.247551i 0.689240 0.724533i \(-0.257944\pi\)
0.234633 + 0.972084i \(0.424611\pi\)
\(384\) 0 0
\(385\) 7.82740 + 2.09735i 0.398921 + 0.106891i
\(386\) 20.5493 + 11.8641i 1.04593 + 0.603869i
\(387\) 0 0
\(388\) 16.3393 + 4.37811i 0.829505 + 0.222265i
\(389\) 10.9802 + 19.0182i 0.556716 + 0.964261i 0.997768 + 0.0667792i \(0.0212723\pi\)
−0.441051 + 0.897482i \(0.645394\pi\)
\(390\) 0 0
\(391\) 6.72653 11.6507i 0.340175 0.589201i
\(392\) −1.17310 + 1.17310i −0.0592507 + 0.0592507i
\(393\) 0 0
\(394\) 5.34378i 0.269216i
\(395\) −5.83361 + 5.83361i −0.293521 + 0.293521i
\(396\) 0 0
\(397\) 0.908301 + 3.38983i 0.0455863 + 0.170130i 0.984966 0.172748i \(-0.0552647\pi\)
−0.939380 + 0.342879i \(0.888598\pi\)
\(398\) 2.22484 8.30321i 0.111521 0.416202i
\(399\) 0 0
\(400\) 4.96519i 0.248260i
\(401\) 1.78155 + 1.78155i 0.0889663 + 0.0889663i 0.750189 0.661223i \(-0.229962\pi\)
−0.661223 + 0.750189i \(0.729962\pi\)
\(402\) 0 0
\(403\) −4.44172 17.9972i −0.221258 0.896507i
\(404\) 5.16265i 0.256851i
\(405\) 0 0
\(406\) 12.6525 + 21.9147i 0.627932 + 1.08761i
\(407\) −5.21253 −0.258375
\(408\) 0 0
\(409\) 4.46385 16.6593i 0.220723 0.823751i −0.763350 0.645986i \(-0.776447\pi\)
0.984073 0.177765i \(-0.0568867\pi\)
\(410\) 8.92537 33.3099i 0.440793 1.64506i
\(411\) 0 0
\(412\) −9.22818 −0.454640
\(413\) −8.11288 14.0519i −0.399209 0.691450i
\(414\) 0 0
\(415\) 36.2110i 1.77753i
\(416\) −1.00208 + 3.46350i −0.0491308 + 0.169812i
\(417\) 0 0
\(418\) −3.13005 3.13005i −0.153096 0.153096i
\(419\) 18.7654i 0.916750i 0.888759 + 0.458375i \(0.151568\pi\)
−0.888759 + 0.458375i \(0.848432\pi\)
\(420\) 0 0
\(421\) 6.19861 23.1335i 0.302102 1.12746i −0.633310 0.773898i \(-0.718304\pi\)
0.935412 0.353560i \(-0.115029\pi\)
\(422\) −2.52128 9.40954i −0.122734 0.458049i
\(423\) 0 0
\(424\) 4.75954 4.75954i 0.231144 0.231144i
\(425\) 17.8834i 0.867471i
\(426\) 0 0
\(427\) −13.2522 + 13.2522i −0.641320 + 0.641320i
\(428\) −0.121496 + 0.210437i −0.00587271 + 0.0101718i
\(429\) 0 0
\(430\) 10.0003 + 17.3211i 0.482259 + 0.835296i
\(431\) −0.739992 0.198280i −0.0356441 0.00955082i 0.240953 0.970537i \(-0.422540\pi\)
−0.276597 + 0.960986i \(0.589207\pi\)
\(432\) 0 0
\(433\) 12.3652 + 7.13904i 0.594233 + 0.343080i 0.766769 0.641923i \(-0.221863\pi\)
−0.172537 + 0.985003i \(0.555196\pi\)
\(434\) 14.6134 + 3.91565i 0.701467 + 0.187957i
\(435\) 0 0
\(436\) −3.93376 1.05405i −0.188393 0.0504798i
\(437\) 18.3072 4.90539i 0.875751 0.234657i
\(438\) 0 0
\(439\) −10.9885 6.34419i −0.524451 0.302792i 0.214303 0.976767i \(-0.431252\pi\)
−0.738754 + 0.673975i \(0.764585\pi\)
\(440\) −0.712747 + 2.66001i −0.0339789 + 0.126811i
\(441\) 0 0
\(442\) 3.60922 12.4747i 0.171673 0.593359i
\(443\) −9.00475 + 5.19889i −0.427828 + 0.247007i −0.698421 0.715687i \(-0.746114\pi\)
0.270593 + 0.962694i \(0.412780\pi\)
\(444\) 0 0
\(445\) −25.6370 −1.21531
\(446\) −9.49100 16.4389i −0.449412 0.778404i
\(447\) 0 0
\(448\) −2.08075 2.08075i −0.0983061 0.0983061i
\(449\) −8.91529 + 2.38885i −0.420739 + 0.112737i −0.462976 0.886371i \(-0.653218\pi\)
0.0422369 + 0.999108i \(0.486552\pi\)
\(450\) 0 0
\(451\) 4.76490 8.25305i 0.224370 0.388621i
\(452\) 1.52846 2.64736i 0.0718925 0.124521i
\(453\) 0 0
\(454\) 13.3965 + 7.73445i 0.628727 + 0.362996i
\(455\) −17.3183 + 28.6676i −0.811894 + 1.34396i
\(456\) 0 0
\(457\) 8.40882 2.25314i 0.393348 0.105397i −0.0567231 0.998390i \(-0.518065\pi\)
0.450071 + 0.892993i \(0.351399\pi\)
\(458\) −13.1282 + 7.57958i −0.613441 + 0.354170i
\(459\) 0 0
\(460\) −8.33750 8.33750i −0.388738 0.388738i
\(461\) −7.38995 + 7.38995i −0.344184 + 0.344184i −0.857938 0.513753i \(-0.828255\pi\)
0.513753 + 0.857938i \(0.328255\pi\)
\(462\) 0 0
\(463\) −1.45201 5.41897i −0.0674806 0.251841i 0.923943 0.382531i \(-0.124947\pi\)
−0.991423 + 0.130690i \(0.958281\pi\)
\(464\) −7.44735 + 4.29973i −0.345734 + 0.199610i
\(465\) 0 0
\(466\) −2.97976 11.1206i −0.138035 0.515153i
\(467\) 11.8737 0.549447 0.274724 0.961523i \(-0.411414\pi\)
0.274724 + 0.961523i \(0.411414\pi\)
\(468\) 0 0
\(469\) −24.3499 −1.12437
\(470\) 5.16680 + 19.2827i 0.238327 + 0.889447i
\(471\) 0 0
\(472\) 4.77531 2.75702i 0.219801 0.126902i
\(473\) 1.43052 + 5.33877i 0.0657754 + 0.245477i
\(474\) 0 0
\(475\) 17.8152 17.8152i 0.817417 0.817417i
\(476\) 7.49432 + 7.49432i 0.343502 + 0.343502i
\(477\) 0 0
\(478\) 3.48926 2.01453i 0.159595 0.0921423i
\(479\) −30.3482 + 8.13177i −1.38664 + 0.371550i −0.873530 0.486771i \(-0.838175\pi\)
−0.513113 + 0.858321i \(0.671508\pi\)
\(480\) 0 0
\(481\) 5.98759 20.6951i 0.273011 0.943615i
\(482\) 12.8261 + 7.40516i 0.584213 + 0.337296i
\(483\) 0 0
\(484\) 5.11949 8.86722i 0.232704 0.403056i
\(485\) −26.6995 + 46.2450i −1.21236 + 2.09988i
\(486\) 0 0
\(487\) −25.9413 + 6.95096i −1.17551 + 0.314978i −0.793145 0.609032i \(-0.791558\pi\)
−0.382368 + 0.924010i \(0.624891\pi\)
\(488\) −4.50355 4.50355i −0.203866 0.203866i
\(489\) 0 0
\(490\) −2.61857 4.53550i −0.118295 0.204893i
\(491\) −2.67459 −0.120702 −0.0603512 0.998177i \(-0.519222\pi\)
−0.0603512 + 0.998177i \(0.519222\pi\)
\(492\) 0 0
\(493\) 26.8235 15.4865i 1.20807 0.697478i
\(494\) 16.0226 8.83164i 0.720889 0.397354i
\(495\) 0 0
\(496\) −1.33067 + 4.96612i −0.0597488 + 0.222986i
\(497\) 16.3433 + 9.43582i 0.733098 + 0.423254i
\(498\) 0 0
\(499\) 4.32098 1.15780i 0.193434 0.0518304i −0.160802 0.986987i \(-0.551408\pi\)
0.354235 + 0.935156i \(0.384741\pi\)
\(500\) 0.106131 + 0.0284377i 0.00474633 + 0.00127177i
\(501\) 0 0
\(502\) 3.83049 + 1.02638i 0.170963 + 0.0458094i
\(503\) 35.5709 + 20.5369i 1.58603 + 0.915694i 0.993952 + 0.109812i \(0.0350249\pi\)
0.592076 + 0.805882i \(0.298308\pi\)
\(504\) 0 0
\(505\) 15.7420 + 4.21805i 0.700509 + 0.187701i
\(506\) −1.62920 2.82186i −0.0724268 0.125447i
\(507\) 0 0
\(508\) −9.55958 + 16.5577i −0.424138 + 0.734628i
\(509\) −6.73502 + 6.73502i −0.298525 + 0.298525i −0.840436 0.541911i \(-0.817701\pi\)
0.541911 + 0.840436i \(0.317701\pi\)
\(510\) 0 0
\(511\) 44.2864i 1.95911i
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) 3.58617 + 13.3838i 0.158179 + 0.590333i
\(515\) 7.53972 28.1386i 0.332240 1.23994i
\(516\) 0 0
\(517\) 5.51669i 0.242624i
\(518\) 12.4329 + 12.4329i 0.546269 + 0.546269i
\(519\) 0 0
\(520\) −9.74220 5.88533i −0.427224 0.258089i
\(521\) 8.13120i 0.356234i 0.984009 + 0.178117i \(0.0570006\pi\)
−0.984009 + 0.178117i \(0.942999\pi\)
\(522\) 0 0
\(523\) 18.9364 + 32.7988i 0.828031 + 1.43419i 0.899580 + 0.436755i \(0.143872\pi\)
−0.0715491 + 0.997437i \(0.522794\pi\)
\(524\) −12.3519 −0.539593
\(525\) 0 0
\(526\) 4.14647 15.4748i 0.180795 0.674735i
\(527\) 4.79273 17.8867i 0.208775 0.779158i
\(528\) 0 0
\(529\) −9.04865 −0.393419
\(530\) 10.6241 + 18.4015i 0.461482 + 0.799310i
\(531\) 0 0
\(532\) 14.9315i 0.647363i
\(533\) 27.2933 + 28.3981i 1.18221 + 1.23006i
\(534\) 0 0
\(535\) −0.542398 0.542398i −0.0234499 0.0234499i
\(536\) 8.27490i 0.357421i
\(537\) 0 0
\(538\) −0.569509 + 2.12544i −0.0245533 + 0.0916341i
\(539\) −0.374580 1.39795i −0.0161343 0.0602140i
\(540\) 0 0
\(541\) −9.80824 + 9.80824i −0.421689 + 0.421689i −0.885785 0.464096i \(-0.846379\pi\)
0.464096 + 0.885785i \(0.346379\pi\)
\(542\) 6.17880i 0.265402i
\(543\) 0 0
\(544\) −2.54682 + 2.54682i −0.109194 + 0.109194i
\(545\) 6.42802 11.1337i 0.275346 0.476914i
\(546\) 0 0
\(547\) −18.8226 32.6018i −0.804798 1.39395i −0.916427 0.400201i \(-0.868940\pi\)
0.111629 0.993750i \(-0.464393\pi\)
\(548\) −6.71605 1.79956i −0.286895 0.0768734i
\(549\) 0 0
\(550\) −3.75114 2.16572i −0.159949 0.0923467i
\(551\) 42.1487 + 11.2937i 1.79559 + 0.481128i
\(552\) 0 0
\(553\) 7.42827 + 1.99040i 0.315882 + 0.0846404i
\(554\) −19.7248 + 5.28525i −0.838028 + 0.224549i
\(555\) 0 0
\(556\) −4.92006 2.84060i −0.208657 0.120468i
\(557\) −8.83844 + 32.9855i −0.374497 + 1.39764i 0.479582 + 0.877497i \(0.340788\pi\)
−0.854079 + 0.520143i \(0.825878\pi\)
\(558\) 0 0
\(559\) −22.8396 0.453073i −0.966010 0.0191630i
\(560\) 8.04466 4.64459i 0.339949 0.196270i
\(561\) 0 0
\(562\) −20.7738 −0.876290
\(563\) 14.7518 + 25.5508i 0.621713 + 1.07684i 0.989167 + 0.146796i \(0.0468962\pi\)
−0.367454 + 0.930042i \(0.619770\pi\)
\(564\) 0 0
\(565\) 6.82355 + 6.82355i 0.287069 + 0.287069i
\(566\) −23.2833 + 6.23874i −0.978670 + 0.262234i
\(567\) 0 0
\(568\) −3.20660 + 5.55400i −0.134546 + 0.233041i
\(569\) −7.35978 + 12.7475i −0.308538 + 0.534404i −0.978043 0.208404i \(-0.933173\pi\)
0.669505 + 0.742808i \(0.266506\pi\)
\(570\) 0 0
\(571\) −16.5923 9.57956i −0.694365 0.400892i 0.110880 0.993834i \(-0.464633\pi\)
−0.805245 + 0.592942i \(0.797966\pi\)
\(572\) −2.17955 2.26777i −0.0911314 0.0948201i
\(573\) 0 0
\(574\) −31.0503 + 8.31990i −1.29601 + 0.347266i
\(575\) 16.0611 9.27287i 0.669794 0.386706i
\(576\) 0 0
\(577\) 0.887796 + 0.887796i 0.0369594 + 0.0369594i 0.725345 0.688386i \(-0.241680\pi\)
−0.688386 + 0.725345i \(0.741680\pi\)
\(578\) −2.84782 + 2.84782i −0.118454 + 0.118454i
\(579\) 0 0
\(580\) −7.02603 26.2215i −0.291740 1.08879i
\(581\) 29.2323 16.8773i 1.21276 0.700187i
\(582\) 0 0
\(583\) 1.51975 + 5.67179i 0.0629417 + 0.234902i
\(584\) −15.0500 −0.622773
\(585\) 0 0
\(586\) 2.59268 0.107103
\(587\) −2.59294 9.67698i −0.107022 0.399412i 0.891545 0.452933i \(-0.149622\pi\)
−0.998567 + 0.0535210i \(0.982956\pi\)
\(588\) 0 0
\(589\) 22.5930 13.0441i 0.930928 0.537472i
\(590\) 4.50515 + 16.8135i 0.185474 + 0.692199i
\(591\) 0 0
\(592\) −4.22510 + 4.22510i −0.173651 + 0.173651i
\(593\) 26.1095 + 26.1095i 1.07219 + 1.07219i 0.997183 + 0.0750069i \(0.0238979\pi\)
0.0750069 + 0.997183i \(0.476102\pi\)
\(594\) 0 0
\(595\) −28.9748 + 16.7286i −1.18785 + 0.685807i
\(596\) 20.0748 5.37903i 0.822297 0.220334i
\(597\) 0 0
\(598\) 13.0750 3.22690i 0.534675 0.131958i
\(599\) −6.17074 3.56268i −0.252130 0.145567i 0.368609 0.929584i \(-0.379834\pi\)
−0.620739 + 0.784017i \(0.713167\pi\)
\(600\) 0 0
\(601\) 1.60598 2.78164i 0.0655092 0.113465i −0.831411 0.555659i \(-0.812466\pi\)
0.896920 + 0.442193i \(0.145799\pi\)
\(602\) 9.32193 16.1461i 0.379933 0.658064i
\(603\) 0 0
\(604\) −7.11970 + 1.90772i −0.289697 + 0.0776240i
\(605\) 22.8552 + 22.8552i 0.929196 + 0.929196i
\(606\) 0 0
\(607\) 20.6661 + 35.7948i 0.838812 + 1.45286i 0.890889 + 0.454222i \(0.150083\pi\)
−0.0520768 + 0.998643i \(0.516584\pi\)
\(608\) −5.07422 −0.205787
\(609\) 0 0
\(610\) 17.4118 10.0527i 0.704982 0.407022i
\(611\) −21.9027 6.33698i −0.886088 0.256367i
\(612\) 0 0
\(613\) 5.73651 21.4090i 0.231695 0.864699i −0.747915 0.663794i \(-0.768945\pi\)
0.979611 0.200905i \(-0.0643883\pi\)
\(614\) 0.501642 + 0.289623i 0.0202446 + 0.0116882i
\(615\) 0 0
\(616\) 2.47956 0.664396i 0.0999043 0.0267693i
\(617\) 21.5609 + 5.77723i 0.868010 + 0.232583i 0.665227 0.746641i \(-0.268335\pi\)
0.202783 + 0.979224i \(0.435001\pi\)
\(618\) 0 0
\(619\) 16.0700 + 4.30594i 0.645907 + 0.173070i 0.566878 0.823802i \(-0.308151\pi\)
0.0790293 + 0.996872i \(0.474818\pi\)
\(620\) −14.0555 8.11497i −0.564484 0.325905i
\(621\) 0 0
\(622\) 16.7615 + 4.49124i 0.672076 + 0.180082i
\(623\) 11.9489 + 20.6961i 0.478723 + 0.829173i
\(624\) 0 0
\(625\) −12.5864 + 21.8003i −0.503456 + 0.872012i
\(626\) −17.4412 + 17.4412i −0.697089 + 0.697089i
\(627\) 0 0
\(628\) 10.4204i 0.415819i
\(629\) 15.2177 15.2177i 0.606771 0.606771i
\(630\) 0 0
\(631\) −3.53536 13.1942i −0.140741 0.525251i −0.999908 0.0135565i \(-0.995685\pi\)
0.859168 0.511694i \(-0.170982\pi\)
\(632\) −0.676403 + 2.52437i −0.0269059 + 0.100414i
\(633\) 0 0
\(634\) 24.9812i 0.992131i
\(635\) −42.6773 42.6773i −1.69360 1.69360i
\(636\) 0 0
\(637\) 5.98051 + 0.118637i 0.236956 + 0.00470055i
\(638\) 7.50184i 0.297000i
\(639\) 0 0
\(640\) 1.57838 + 2.73384i 0.0623911 + 0.108065i
\(641\) 22.1785 0.876000 0.438000 0.898975i \(-0.355687\pi\)
0.438000 + 0.898975i \(0.355687\pi\)
\(642\) 0 0
\(643\) 2.39351 8.93270i 0.0943908 0.352271i −0.902536 0.430615i \(-0.858297\pi\)
0.996926 + 0.0783440i \(0.0249632\pi\)
\(644\) −2.84471 + 10.6166i −0.112097 + 0.418353i
\(645\) 0 0
\(646\) 18.2761 0.719062
\(647\) −8.23841 14.2694i −0.323886 0.560986i 0.657401 0.753541i \(-0.271656\pi\)
−0.981286 + 0.192555i \(0.938323\pi\)
\(648\) 0 0
\(649\) 4.81024i 0.188819i
\(650\) 12.9074 12.4053i 0.506269 0.486574i
\(651\) 0 0
\(652\) −4.82287 4.82287i −0.188878 0.188878i
\(653\) 33.8732i 1.32556i −0.748813 0.662781i \(-0.769376\pi\)
0.748813 0.662781i \(-0.230624\pi\)
\(654\) 0 0
\(655\) 10.0919 37.6633i 0.394322 1.47163i
\(656\) −2.82738 10.5519i −0.110390 0.411983i
\(657\) 0 0
\(658\) 13.1584 13.1584i 0.512966 0.512966i
\(659\) 9.62356i 0.374881i 0.982276 + 0.187440i \(0.0600191\pi\)
−0.982276 + 0.187440i \(0.939981\pi\)
\(660\) 0 0
\(661\) 18.6266 18.6266i 0.724492 0.724492i −0.245025 0.969517i \(-0.578796\pi\)
0.969517 + 0.245025i \(0.0787961\pi\)
\(662\) −16.0916 + 27.8714i −0.625417 + 1.08325i
\(663\) 0 0
\(664\) 5.73546 + 9.93410i 0.222579 + 0.385518i
\(665\) −45.5292 12.1995i −1.76555 0.473077i
\(666\) 0 0
\(667\) 27.8170 + 16.0601i 1.07708 + 0.621851i
\(668\) −13.2930 3.56186i −0.514323 0.137812i
\(669\) 0 0
\(670\) 25.2319 + 6.76086i 0.974792 + 0.261195i
\(671\) 5.36673 1.43801i 0.207180 0.0555138i
\(672\) 0 0
\(673\) 4.64587 + 2.68230i 0.179085 + 0.103395i 0.586863 0.809686i \(-0.300363\pi\)
−0.407778 + 0.913081i \(0.633696\pi\)
\(674\) 7.69861 28.7316i 0.296539 1.10670i
\(675\) 0 0
\(676\) 11.5073 6.04839i 0.442587 0.232631i
\(677\) 6.42329 3.70849i 0.246867 0.142529i −0.371462 0.928448i \(-0.621143\pi\)
0.618329 + 0.785919i \(0.287810\pi\)
\(678\) 0 0
\(679\) 49.7766 1.91025
\(680\) −5.68494 9.84661i −0.218008 0.377600i
\(681\) 0 0
\(682\) −3.17143 3.17143i −0.121440 0.121440i
\(683\) 17.3967 4.66144i 0.665668 0.178365i 0.0898653 0.995954i \(-0.471356\pi\)
0.575803 + 0.817589i \(0.304690\pi\)
\(684\) 0 0
\(685\) 10.9745 19.0083i 0.419312 0.726270i
\(686\) 7.85824 13.6109i 0.300029 0.519665i
\(687\) 0 0
\(688\) 5.48696 + 3.16790i 0.209188 + 0.120775i
\(689\) −24.2642 0.481334i −0.924393 0.0183374i
\(690\) 0 0
\(691\) −15.3897 + 4.12366i −0.585452 + 0.156871i −0.539374 0.842066i \(-0.681339\pi\)
−0.0460781 + 0.998938i \(0.514672\pi\)
\(692\) 3.51613 2.03004i 0.133663 0.0771704i
\(693\) 0 0
\(694\) −24.0279 24.0279i −0.912088 0.912088i
\(695\) 12.6814 12.6814i 0.481034 0.481034i
\(696\) 0 0
\(697\) 10.1835 + 38.0053i 0.385727 + 1.43955i
\(698\) 7.10849 4.10409i 0.269060 0.155342i
\(699\) 0 0
\(700\) 3.78152 + 14.1128i 0.142928 + 0.533415i
\(701\) −10.3675 −0.391576 −0.195788 0.980646i \(-0.562726\pi\)
−0.195788 + 0.980646i \(0.562726\pi\)
\(702\) 0 0
\(703\) 30.3195 1.14352
\(704\) 0.225784 + 0.842637i 0.00850955 + 0.0317581i
\(705\) 0 0
\(706\) 13.5913 7.84693i 0.511515 0.295323i
\(707\) −3.93191 14.6741i −0.147875 0.551876i
\(708\) 0 0
\(709\) −16.2379 + 16.2379i −0.609826 + 0.609826i −0.942901 0.333074i \(-0.891914\pi\)
0.333074 + 0.942901i \(0.391914\pi\)
\(710\) −14.3154 14.3154i −0.537247 0.537247i
\(711\) 0 0
\(712\) −7.03323 + 4.06064i −0.263582 + 0.152179i
\(713\) 18.5492 4.97025i 0.694674 0.186137i
\(714\) 0 0
\(715\) 8.69565 4.79304i 0.325199 0.179250i
\(716\) 16.8120 + 9.70640i 0.628293 + 0.362745i
\(717\) 0 0
\(718\) 8.84981 15.3283i 0.330272 0.572048i
\(719\) −25.3323 + 43.8768i −0.944735 + 1.63633i −0.188454 + 0.982082i \(0.560348\pi\)
−0.756281 + 0.654247i \(0.772986\pi\)
\(720\) 0 0
\(721\) −26.2298 + 7.02824i −0.976847 + 0.261745i
\(722\) 4.77136 + 4.77136i 0.177572 + 0.177572i
\(723\) 0 0
\(724\) 0.0491425 + 0.0851174i 0.00182637 + 0.00316336i
\(725\) 42.6980 1.58576
\(726\) 0 0
\(727\) 26.9809 15.5774i 1.00067 0.577734i 0.0922201 0.995739i \(-0.470604\pi\)
0.908445 + 0.418004i \(0.137270\pi\)
\(728\) −0.210427 + 10.6077i −0.00779894 + 0.393147i
\(729\) 0 0
\(730\) 12.2963 45.8905i 0.455107 1.69848i
\(731\) −19.7626 11.4100i −0.730948 0.422013i
\(732\) 0 0
\(733\) −7.44254 + 1.99422i −0.274896 + 0.0736583i −0.393634 0.919267i \(-0.628782\pi\)
0.118737 + 0.992926i \(0.462115\pi\)
\(734\) −25.5238 6.83908i −0.942101 0.252435i
\(735\) 0 0
\(736\) −3.60788 0.966728i −0.132988 0.0356341i
\(737\) 6.25158 + 3.60935i 0.230280 + 0.132952i
\(738\) 0 0
\(739\) 9.13725 + 2.44832i 0.336119 + 0.0900629i 0.422931 0.906162i \(-0.361001\pi\)
−0.0868119 + 0.996225i \(0.527668\pi\)
\(740\) −9.43115 16.3352i −0.346696 0.600495i
\(741\) 0 0
\(742\) 9.90340 17.1532i 0.363565 0.629713i
\(743\) −3.73934 + 3.73934i −0.137183 + 0.137183i −0.772364 0.635181i \(-0.780926\pi\)
0.635181 + 0.772364i \(0.280926\pi\)
\(744\) 0 0
\(745\) 65.6071i 2.40366i
\(746\) 16.0506 16.0506i 0.587656 0.587656i
\(747\) 0 0
\(748\) −0.813216 3.03496i −0.0297341 0.110969i
\(749\) −0.185064 + 0.690667i −0.00676208 + 0.0252364i
\(750\) 0 0
\(751\) 15.6205i 0.569999i 0.958528 + 0.284999i \(0.0919934\pi\)
−0.958528 + 0.284999i \(0.908007\pi\)
\(752\) 4.47164 + 4.47164i 0.163064 + 0.163064i
\(753\) 0 0
\(754\) 29.7842 + 8.61730i 1.08468 + 0.313824i
\(755\) 23.2681i 0.846813i
\(756\) 0 0
\(757\) −2.81998 4.88435i −0.102494 0.177525i 0.810218 0.586129i \(-0.199349\pi\)
−0.912712 + 0.408604i \(0.866016\pi\)
\(758\) −10.1600 −0.369027
\(759\) 0 0
\(760\) 4.14580 15.4723i 0.150384 0.561241i
\(761\) −4.74969 + 17.7261i −0.172176 + 0.642571i 0.824839 + 0.565367i \(0.191266\pi\)
−0.997015 + 0.0772030i \(0.975401\pi\)
\(762\) 0 0
\(763\) −11.9839 −0.433847
\(764\) −6.34858 10.9961i −0.229684 0.397824i
\(765\) 0 0
\(766\) 18.7184i 0.676323i
\(767\) −19.0979 5.52549i −0.689586 0.199514i
\(768\) 0 0
\(769\) 14.2488 + 14.2488i 0.513824 + 0.513824i 0.915696 0.401872i \(-0.131640\pi\)
−0.401872 + 0.915696i \(0.631640\pi\)
\(770\) 8.10352i 0.292031i
\(771\) 0 0
\(772\) −6.14134 + 22.9198i −0.221031 + 0.824901i
\(773\) 5.89523 + 22.0013i 0.212037 + 0.791331i 0.987189 + 0.159557i \(0.0510065\pi\)
−0.775152 + 0.631774i \(0.782327\pi\)
\(774\) 0 0
\(775\) 18.0507 18.0507i 0.648402 0.648402i
\(776\) 16.9157i 0.607240i
\(777\) 0 0
\(778\) −15.5283 + 15.5283i −0.556716 + 0.556716i
\(779\) −27.7158 + 48.0051i −0.993020 + 1.71996i
\(780\) 0 0
\(781\) −2.79732 4.84510i −0.100096 0.173371i
\(782\) 12.9947 + 3.48191i 0.464688 + 0.124513i
\(783\) 0 0
\(784\) −1.43675 0.829510i −0.0513126 0.0296254i
\(785\) 31.7740 + 8.51380i 1.13406 + 0.303871i
\(786\) 0 0
\(787\) −53.7496 14.4022i −1.91597 0.513382i −0.991106 0.133078i \(-0.957514\pi\)
−0.924862 0.380304i \(-0.875819\pi\)
\(788\) 5.16169 1.38307i 0.183878 0.0492699i
\(789\) 0 0
\(790\) −7.14468 4.12498i −0.254196 0.146760i
\(791\) 2.32816 8.68882i 0.0827799 0.308939i
\(792\) 0 0
\(793\) −0.455446 + 22.9592i −0.0161734 + 0.815303i
\(794\) −3.03923 + 1.75470i −0.107858 + 0.0622721i
\(795\) 0 0
\(796\) 8.59611 0.304681
\(797\) 6.64298 + 11.5060i 0.235306 + 0.407562i 0.959362 0.282179i \(-0.0910573\pi\)
−0.724055 + 0.689742i \(0.757724\pi\)
\(798\) 0 0
\(799\) −16.1057 16.1057i −0.569780 0.569780i
\(800\) −4.79601 + 1.28509i −0.169565 + 0.0454347i
\(801\) 0 0
\(802\) −1.25974 + 2.18194i −0.0444831 + 0.0770470i
\(803\) 6.56451 11.3701i 0.231657 0.401241i
\(804\) 0 0
\(805\) −30.0480 17.3482i −1.05905 0.611445i
\(806\) 16.2344 8.94841i 0.571833 0.315194i
\(807\) 0 0
\(808\) 4.98674 1.33619i 0.175433 0.0470071i
\(809\) 27.6216 15.9473i 0.971122 0.560678i 0.0715440 0.997437i \(-0.477207\pi\)
0.899578 + 0.436760i \(0.143874\pi\)
\(810\) 0 0
\(811\) −3.25912 3.25912i −0.114443 0.114443i 0.647566 0.762009i \(-0.275787\pi\)
−0.762009 + 0.647566i \(0.775787\pi\)
\(812\) −17.8933 + 17.8933i −0.627932 + 0.627932i
\(813\) 0 0
\(814\) −1.34910 5.03492i −0.0472860 0.176474i
\(815\) 18.6464 10.7655i 0.653154 0.377098i
\(816\) 0 0
\(817\) −8.32084 31.0538i −0.291109 1.08643i
\(818\) 17.2470 0.603027
\(819\) 0 0
\(820\) 34.4850 1.20427
\(821\) −11.9877 44.7389i −0.418375 1.56140i −0.777978 0.628292i \(-0.783754\pi\)
0.359603 0.933106i \(-0.382912\pi\)
\(822\) 0 0
\(823\) 8.59314 4.96125i 0.299538 0.172938i −0.342697 0.939446i \(-0.611341\pi\)
0.642235 + 0.766508i \(0.278007\pi\)
\(824\) −2.38843 8.91374i −0.0832049 0.310525i
\(825\) 0 0
\(826\) 11.4733 11.4733i 0.399209 0.399209i
\(827\) 16.5758 + 16.5758i 0.576398 + 0.576398i 0.933909 0.357511i \(-0.116375\pi\)
−0.357511 + 0.933909i \(0.616375\pi\)
\(828\) 0 0
\(829\) −29.4031 + 16.9759i −1.02121 + 0.589598i −0.914455 0.404687i \(-0.867380\pi\)
−0.106758 + 0.994285i \(0.534047\pi\)
\(830\) −34.9772 + 9.37210i −1.21408 + 0.325310i
\(831\) 0 0
\(832\) −3.60484 0.0715101i −0.124975 0.00247917i
\(833\) 5.17482 + 2.98768i 0.179297 + 0.103517i
\(834\) 0 0
\(835\) 21.7217 37.6230i 0.751709 1.30200i
\(836\) 2.21328 3.83351i 0.0765478 0.132585i
\(837\) 0 0
\(838\) −18.1260 + 4.85685i −0.626152 + 0.167777i
\(839\) −1.52746 1.52746i −0.0527338 0.0527338i 0.680248 0.732982i \(-0.261872\pi\)
−0.732982 + 0.680248i \(0.761872\pi\)
\(840\) 0 0
\(841\) 22.4753 + 38.9284i 0.775011 + 1.34236i
\(842\) 23.9496 0.825357
\(843\) 0 0
\(844\) 8.43636 4.87073i 0.290391 0.167658i
\(845\) 9.04100 + 40.0297i 0.311020 + 1.37706i
\(846\) 0 0
\(847\) 7.79808 29.1028i 0.267945 0.999985i
\(848\) 5.82922 + 3.36550i 0.200176 + 0.115572i
\(849\) 0 0
\(850\) 17.2740 4.62856i 0.592493 0.158758i
\(851\) 21.5578 + 5.77639i 0.738991 + 0.198012i
\(852\) 0 0
\(853\) −37.4530 10.0355i −1.28237 0.343609i −0.447611 0.894229i \(-0.647725\pi\)
−0.834756 + 0.550619i \(0.814392\pi\)
\(854\) −16.2306 9.37074i −0.555400 0.320660i
\(855\) 0 0
\(856\) −0.234711 0.0628908i −0.00802227 0.00214956i
\(857\) 9.92497 + 17.1906i 0.339031 + 0.587218i 0.984251 0.176779i \(-0.0565677\pi\)
−0.645220 + 0.763997i \(0.723234\pi\)
\(858\) 0 0
\(859\) −6.14228 + 10.6387i −0.209572 + 0.362989i −0.951580 0.307402i \(-0.900540\pi\)
0.742008 + 0.670391i \(0.233874\pi\)
\(860\) −14.1426 + 14.1426i −0.482259 + 0.482259i
\(861\) 0 0
\(862\) 0.766096i 0.0260933i
\(863\) −30.8583 + 30.8583i −1.05043 + 1.05043i −0.0517694 + 0.998659i \(0.516486\pi\)
−0.998659 + 0.0517694i \(0.983514\pi\)
\(864\) 0 0
\(865\) 3.31721 + 12.3800i 0.112789 + 0.420932i
\(866\) −3.69544 + 13.7916i −0.125576 + 0.468656i
\(867\) 0 0
\(868\) 15.1289i 0.513509i
\(869\) −1.61210 1.61210i −0.0546866 0.0546866i
\(870\) 0 0
\(871\) −21.5112 + 20.6744i −0.728879 + 0.700524i
\(872\) 4.07253i 0.137913i
\(873\) 0 0
\(874\) 9.47649 + 16.4138i 0.320547 + 0.555204i
\(875\) 0.323320 0.0109302
\(876\) 0 0
\(877\) 8.30313 30.9877i 0.280377 1.04638i −0.671775 0.740755i \(-0.734468\pi\)
0.952152 0.305626i \(-0.0988656\pi\)
\(878\) 3.28400 12.2560i 0.110830 0.413621i
\(879\) 0 0
\(880\) −2.75384 −0.0928321
\(881\) −7.71084 13.3556i −0.259785 0.449960i 0.706399 0.707813i \(-0.250318\pi\)
−0.966184 + 0.257853i \(0.916985\pi\)
\(882\) 0 0
\(883\) 37.0096i 1.24547i −0.782432 0.622736i \(-0.786021\pi\)
0.782432 0.622736i \(-0.213979\pi\)
\(884\) 12.9837 + 0.257561i 0.436690 + 0.00866272i
\(885\) 0 0
\(886\) −7.35234 7.35234i −0.247007 0.247007i
\(887\) 8.80501i 0.295643i 0.989014 + 0.147822i \(0.0472262\pi\)
−0.989014 + 0.147822i \(0.952774\pi\)
\(888\) 0 0
\(889\) −14.5613 + 54.3434i −0.488369 + 1.82262i
\(890\) −6.63534 24.7634i −0.222417 0.830072i
\(891\) 0 0
\(892\) 13.4223 13.4223i 0.449412 0.449412i
\(893\) 32.0887i 1.07381i
\(894\) 0 0
\(895\) −43.3327 + 43.3327i −1.44845 + 1.44845i
\(896\) 1.47131 2.54838i 0.0491530 0.0851356i
\(897\) 0 0
\(898\) −4.61489 7.99323i −0.154001 0.266738i
\(899\) 42.7060 + 11.4430i 1.42432 + 0.381646i
\(900\) 0 0
\(901\) −20.9954 12.1217i −0.699457 0.403832i
\(902\) 9.20508 + 2.46649i 0.306496 + 0.0821253i
\(903\) 0 0
\(904\) 2.95275 + 0.791187i 0.0982070 + 0.0263145i
\(905\) −0.299691 + 0.0803021i −0.00996208 + 0.00266933i
\(906\) 0 0
\(907\) −30.5565 17.6418i −1.01461 0.585787i −0.102074 0.994777i \(-0.532548\pi\)
−0.912539 + 0.408990i \(0.865881\pi\)
\(908\) −4.00365 + 14.9418i −0.132866 + 0.495861i
\(909\) 0 0
\(910\) −32.1731 9.30845i −1.06653 0.308572i
\(911\) −28.0830 + 16.2137i −0.930431 + 0.537185i −0.886948 0.461870i \(-0.847179\pi\)
−0.0434832 + 0.999054i \(0.513845\pi\)
\(912\) 0 0
\(913\) −10.0068 −0.331176
\(914\) 4.35273 + 7.53915i 0.143975 + 0.249373i
\(915\) 0 0
\(916\) −10.7191 10.7191i −0.354170 0.354170i
\(917\) −35.1083 + 9.40725i −1.15938 + 0.310655i
\(918\) 0 0
\(919\) −14.7996 + 25.6336i −0.488193 + 0.845575i −0.999908 0.0135801i \(-0.995677\pi\)
0.511715 + 0.859155i \(0.329011\pi\)
\(920\) 5.89551 10.2113i 0.194369 0.336657i
\(921\) 0 0
\(922\) −9.05081 5.22549i −0.298072 0.172092i
\(923\) 22.4495 5.54055i 0.738936 0.182369i
\(924\) 0 0
\(925\) 28.6571 7.67864i 0.942239 0.252472i
\(926\) 4.85852 2.80507i 0.159661 0.0921802i
\(927\) 0 0
\(928\) −6.08073 6.08073i −0.199610 0.199610i
\(929\) −16.5152 + 16.5152i −0.541847 + 0.541847i −0.924070 0.382223i \(-0.875159\pi\)
0.382223 + 0.924070i \(0.375159\pi\)
\(930\) 0 0
\(931\) 2.17880 + 8.13139i 0.0714073 + 0.266496i
\(932\) 9.97049 5.75646i 0.326594 0.188559i
\(933\) 0 0
\(934\) 3.07313 + 11.4691i 0.100556 + 0.375280i
\(935\) 9.91865 0.324374
\(936\) 0 0
\(937\) 13.0003 0.424700 0.212350 0.977194i \(-0.431888\pi\)
0.212350 + 0.977194i \(0.431888\pi\)
\(938\) −6.30221 23.5202i −0.205775 0.767961i
\(939\) 0 0
\(940\) −17.2884 + 9.98148i −0.563887 + 0.325560i
\(941\) −8.01337 29.9063i −0.261229 0.974918i −0.964519 0.264015i \(-0.914953\pi\)
0.703290 0.710903i \(-0.251714\pi\)
\(942\) 0 0
\(943\) −28.8523 + 28.8523i −0.939560 + 0.939560i
\(944\) 3.89902 + 3.89902i 0.126902 + 0.126902i
\(945\) 0 0
\(946\) −4.78661 + 2.76355i −0.155626 + 0.0898509i
\(947\) −19.8309 + 5.31368i −0.644419 + 0.172671i −0.566204 0.824265i \(-0.691589\pi\)
−0.0782146 + 0.996937i \(0.524922\pi\)
\(948\) 0 0
\(949\) 37.6015 + 39.1235i 1.22060 + 1.27000i
\(950\) 21.8191 + 12.5972i 0.707904 + 0.408709i
\(951\) 0 0
\(952\) −5.29929 + 9.17863i −0.171751 + 0.297481i
\(953\) 17.8354 30.8919i 0.577747 1.00069i −0.417990 0.908451i \(-0.637265\pi\)
0.995737 0.0922353i \(-0.0294012\pi\)
\(954\) 0 0
\(955\) 38.7163 10.3740i 1.25283 0.335695i
\(956\) 2.84897 + 2.84897i 0.0921423 + 0.0921423i
\(957\) 0 0
\(958\) −15.7094 27.2094i −0.507547 0.879096i
\(959\) −20.4599 −0.660686
\(960\) 0 0
\(961\) −3.95508 + 2.28347i −0.127583 + 0.0736602i
\(962\) 21.5396 + 0.427286i 0.694466 + 0.0137763i
\(963\) 0 0
\(964\) −3.83319 + 14.3057i −0.123459 + 0.460754i
\(965\) −64.8694 37.4524i −2.08822 1.20563i
\(966\) 0 0
\(967\) 35.4997 9.51213i 1.14159 0.305889i 0.362003 0.932177i \(-0.382093\pi\)
0.779592 + 0.626288i \(0.215426\pi\)
\(968\) 9.89010 + 2.65004i 0.317880 + 0.0851757i
\(969\) 0 0
\(970\) −51.5796 13.8207i −1.65612 0.443756i
\(971\) −2.23727 1.29169i −0.0717976 0.0414523i 0.463671 0.886007i \(-0.346532\pi\)
−0.535469 + 0.844555i \(0.679865\pi\)
\(972\) 0 0
\(973\) −16.1480 4.32684i −0.517680 0.138712i
\(974\) −13.4282 23.2584i −0.430268 0.745246i
\(975\) 0 0
\(976\) 3.18449 5.51569i 0.101933 0.176553i
\(977\) −22.2793 + 22.2793i −0.712777 + 0.712777i −0.967115 0.254339i \(-0.918142\pi\)
0.254339 + 0.967115i \(0.418142\pi\)
\(978\) 0 0
\(979\) 7.08469i 0.226428i
\(980\) 3.70322 3.70322i 0.118295 0.118295i
\(981\) 0 0
\(982\) −0.692234 2.58345i −0.0220901 0.0824413i
\(983\) −6.89232 + 25.7225i −0.219831 + 0.820420i 0.764579 + 0.644530i \(0.222947\pi\)
−0.984410 + 0.175890i \(0.943720\pi\)
\(984\) 0 0
\(985\) 16.8691i 0.537493i
\(986\) 21.9013 + 21.9013i 0.697478 + 0.697478i
\(987\) 0 0
\(988\) 12.6777 + 13.1908i 0.403330 + 0.419656i
\(989\) 23.6652i 0.752508i
\(990\) 0 0
\(991\) −12.7440 22.0732i −0.404826 0.701179i 0.589475 0.807787i \(-0.299335\pi\)
−0.994301 + 0.106607i \(0.966001\pi\)
\(992\) −5.14131 −0.163237
\(993\) 0 0
\(994\) −4.88434 + 18.2286i −0.154922 + 0.578176i
\(995\) −7.02330 + 26.2113i −0.222654 + 0.830954i
\(996\) 0 0
\(997\) 6.42015 0.203328 0.101664 0.994819i \(-0.467583\pi\)
0.101664 + 0.994819i \(0.467583\pi\)
\(998\) 2.23670 + 3.87408i 0.0708016 + 0.122632i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.bc.a.557.8 56
3.2 odd 2 234.2.z.a.167.2 yes 56
9.2 odd 6 702.2.bb.a.89.1 56
9.7 even 3 234.2.y.a.11.11 56
13.6 odd 12 702.2.bb.a.71.1 56
39.32 even 12 234.2.y.a.149.11 yes 56
117.97 odd 12 234.2.z.a.227.2 yes 56
117.110 even 12 inner 702.2.bc.a.305.8 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.y.a.11.11 56 9.7 even 3
234.2.y.a.149.11 yes 56 39.32 even 12
234.2.z.a.167.2 yes 56 3.2 odd 2
234.2.z.a.227.2 yes 56 117.97 odd 12
702.2.bb.a.71.1 56 13.6 odd 12
702.2.bb.a.89.1 56 9.2 odd 6
702.2.bc.a.305.8 56 117.110 even 12 inner
702.2.bc.a.557.8 56 1.1 even 1 trivial