Properties

Label 702.2.bb.a.89.1
Level $702$
Weight $2$
Character 702.89
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [702,2,Mod(71,702)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(702, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([10, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("702.71"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bb (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 89.1
Character \(\chi\) \(=\) 702.89
Dual form 702.2.bb.a.71.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(-3.04921 - 0.817032i) q^{5} +(2.84235 + 0.761606i) q^{7} +(0.707107 + 0.707107i) q^{8} +(2.73384 - 1.57838i) q^{10} +(0.616853 + 0.616853i) q^{11} +(-3.08613 - 1.86435i) q^{13} +(-2.54838 + 1.47131i) q^{14} -1.00000 q^{16} +(1.80087 - 3.11920i) q^{17} +(-4.90132 + 1.31331i) q^{19} +(-0.817032 + 3.04921i) q^{20} -0.872362 q^{22} +(-1.86758 + 3.23474i) q^{23} +(4.29998 + 2.48260i) q^{25} +(3.50052 - 0.863928i) q^{26} +(0.761606 - 2.84235i) q^{28} -8.59946i q^{29} +(1.33067 - 4.96612i) q^{31} +(0.707107 - 0.707107i) q^{32} +(0.932200 + 3.47902i) q^{34} +(-8.04466 - 4.64459i) q^{35} +(-5.77159 - 1.54649i) q^{37} +(2.53711 - 4.39440i) q^{38} +(-1.57838 - 2.73384i) q^{40} +(-2.82738 - 10.5519i) q^{41} +(5.48696 - 3.16790i) q^{43} +(0.616853 - 0.616853i) q^{44} +(-0.966728 - 3.60788i) q^{46} +(-6.10838 + 1.63674i) q^{47} +(1.43675 + 0.829510i) q^{49} +(-4.79601 + 1.28509i) q^{50} +(-1.86435 + 3.08613i) q^{52} -6.73100i q^{53} +(-1.37692 - 2.38490i) q^{55} +(1.47131 + 2.54838i) q^{56} +(6.08073 + 6.08073i) q^{58} +(3.89902 + 3.89902i) q^{59} +(-3.18449 - 5.51569i) q^{61} +(2.57066 + 4.45251i) q^{62} +1.00000i q^{64} +(7.88701 + 8.20625i) q^{65} +(-7.99294 + 2.14170i) q^{67} +(-3.11920 - 1.80087i) q^{68} +(8.97266 - 2.40422i) q^{70} +(1.65986 + 6.19468i) q^{71} +(10.6419 - 10.6419i) q^{73} +(5.17467 - 2.98760i) q^{74} +(1.31331 + 4.90132i) q^{76} +(1.28351 + 2.22311i) q^{77} +(-1.30671 + 2.26329i) q^{79} +(3.04921 + 0.817032i) q^{80} +(9.46058 + 5.46207i) q^{82} +(-2.96889 - 11.0800i) q^{83} +(-8.03972 + 8.03972i) q^{85} +(-1.63983 + 6.11991i) q^{86} +0.872362i q^{88} +(-2.10194 + 7.84455i) q^{89} +(-7.35197 - 7.64956i) q^{91} +(3.23474 + 1.86758i) q^{92} +(3.16193 - 5.47662i) q^{94} +16.0181 q^{95} +(-4.37811 + 16.3393i) q^{97} +(-1.60249 + 0.429386i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{7} - 56 q^{16} - 8 q^{19} - 4 q^{28} + 8 q^{31} - 24 q^{35} - 4 q^{37} + 36 q^{38} + 48 q^{41} + 12 q^{43} - 60 q^{47} + 24 q^{50} - 4 q^{52} + 120 q^{65} - 56 q^{67} - 24 q^{71} + 28 q^{73}+ \cdots + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −3.04921 0.817032i −1.36365 0.365388i −0.498492 0.866894i \(-0.666113\pi\)
−0.865154 + 0.501506i \(0.832779\pi\)
\(6\) 0 0
\(7\) 2.84235 + 0.761606i 1.07431 + 0.287860i 0.752262 0.658864i \(-0.228963\pi\)
0.322046 + 0.946724i \(0.395629\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) 2.73384 1.57838i 0.864517 0.499129i
\(11\) 0.616853 + 0.616853i 0.185988 + 0.185988i 0.793959 0.607971i \(-0.208016\pi\)
−0.607971 + 0.793959i \(0.708016\pi\)
\(12\) 0 0
\(13\) −3.08613 1.86435i −0.855938 0.517078i
\(14\) −2.54838 + 1.47131i −0.681084 + 0.393224i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 1.80087 3.11920i 0.436776 0.756518i −0.560663 0.828044i \(-0.689454\pi\)
0.997439 + 0.0715262i \(0.0227870\pi\)
\(18\) 0 0
\(19\) −4.90132 + 1.31331i −1.12444 + 0.301293i −0.772679 0.634797i \(-0.781084\pi\)
−0.351761 + 0.936090i \(0.614417\pi\)
\(20\) −0.817032 + 3.04921i −0.182694 + 0.681823i
\(21\) 0 0
\(22\) −0.872362 −0.185988
\(23\) −1.86758 + 3.23474i −0.389416 + 0.674489i −0.992371 0.123286i \(-0.960657\pi\)
0.602955 + 0.797775i \(0.293990\pi\)
\(24\) 0 0
\(25\) 4.29998 + 2.48260i 0.859997 + 0.496519i
\(26\) 3.50052 0.863928i 0.686508 0.169430i
\(27\) 0 0
\(28\) 0.761606 2.84235i 0.143930 0.537154i
\(29\) 8.59946i 1.59688i −0.602075 0.798439i \(-0.705659\pi\)
0.602075 0.798439i \(-0.294341\pi\)
\(30\) 0 0
\(31\) 1.33067 4.96612i 0.238995 0.891942i −0.737312 0.675553i \(-0.763905\pi\)
0.976307 0.216390i \(-0.0694282\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) 0.932200 + 3.47902i 0.159871 + 0.596647i
\(35\) −8.04466 4.64459i −1.35980 0.785079i
\(36\) 0 0
\(37\) −5.77159 1.54649i −0.948844 0.254242i −0.248972 0.968511i \(-0.580093\pi\)
−0.699872 + 0.714269i \(0.746760\pi\)
\(38\) 2.53711 4.39440i 0.411574 0.712867i
\(39\) 0 0
\(40\) −1.57838 2.73384i −0.249565 0.432258i
\(41\) −2.82738 10.5519i −0.441562 1.64793i −0.724858 0.688899i \(-0.758094\pi\)
0.283296 0.959033i \(-0.408572\pi\)
\(42\) 0 0
\(43\) 5.48696 3.16790i 0.836754 0.483100i −0.0194056 0.999812i \(-0.506177\pi\)
0.856159 + 0.516712i \(0.172844\pi\)
\(44\) 0.616853 0.616853i 0.0929941 0.0929941i
\(45\) 0 0
\(46\) −0.966728 3.60788i −0.142536 0.531953i
\(47\) −6.10838 + 1.63674i −0.890999 + 0.238742i −0.675146 0.737684i \(-0.735920\pi\)
−0.215852 + 0.976426i \(0.569253\pi\)
\(48\) 0 0
\(49\) 1.43675 + 0.829510i 0.205251 + 0.118501i
\(50\) −4.79601 + 1.28509i −0.678258 + 0.181739i
\(51\) 0 0
\(52\) −1.86435 + 3.08613i −0.258539 + 0.427969i
\(53\) 6.73100i 0.924574i −0.886730 0.462287i \(-0.847029\pi\)
0.886730 0.462287i \(-0.152971\pi\)
\(54\) 0 0
\(55\) −1.37692 2.38490i −0.185664 0.321580i
\(56\) 1.47131 + 2.54838i 0.196612 + 0.340542i
\(57\) 0 0
\(58\) 6.08073 + 6.08073i 0.798439 + 0.798439i
\(59\) 3.89902 + 3.89902i 0.507609 + 0.507609i 0.913792 0.406183i \(-0.133140\pi\)
−0.406183 + 0.913792i \(0.633140\pi\)
\(60\) 0 0
\(61\) −3.18449 5.51569i −0.407732 0.706212i 0.586903 0.809657i \(-0.300347\pi\)
−0.994635 + 0.103445i \(0.967014\pi\)
\(62\) 2.57066 + 4.45251i 0.326474 + 0.565469i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 7.88701 + 8.20625i 0.978263 + 1.01786i
\(66\) 0 0
\(67\) −7.99294 + 2.14170i −0.976493 + 0.261650i −0.711567 0.702618i \(-0.752014\pi\)
−0.264926 + 0.964269i \(0.585347\pi\)
\(68\) −3.11920 1.80087i −0.378259 0.218388i
\(69\) 0 0
\(70\) 8.97266 2.40422i 1.07244 0.287359i
\(71\) 1.65986 + 6.19468i 0.196989 + 0.735174i 0.991743 + 0.128242i \(0.0409333\pi\)
−0.794754 + 0.606932i \(0.792400\pi\)
\(72\) 0 0
\(73\) 10.6419 10.6419i 1.24555 1.24555i 0.287878 0.957667i \(-0.407050\pi\)
0.957667 0.287878i \(-0.0929498\pi\)
\(74\) 5.17467 2.98760i 0.601543 0.347301i
\(75\) 0 0
\(76\) 1.31331 + 4.90132i 0.150646 + 0.562220i
\(77\) 1.28351 + 2.22311i 0.146270 + 0.253347i
\(78\) 0 0
\(79\) −1.30671 + 2.26329i −0.147016 + 0.254640i −0.930123 0.367247i \(-0.880300\pi\)
0.783107 + 0.621887i \(0.213634\pi\)
\(80\) 3.04921 + 0.817032i 0.340912 + 0.0913470i
\(81\) 0 0
\(82\) 9.46058 + 5.46207i 1.04475 + 0.603185i
\(83\) −2.96889 11.0800i −0.325878 1.21619i −0.913426 0.407004i \(-0.866573\pi\)
0.587548 0.809189i \(-0.300093\pi\)
\(84\) 0 0
\(85\) −8.03972 + 8.03972i −0.872030 + 0.872030i
\(86\) −1.63983 + 6.11991i −0.176827 + 0.659927i
\(87\) 0 0
\(88\) 0.872362i 0.0929941i
\(89\) −2.10194 + 7.84455i −0.222805 + 0.831521i 0.760467 + 0.649377i \(0.224970\pi\)
−0.983272 + 0.182144i \(0.941696\pi\)
\(90\) 0 0
\(91\) −7.35197 7.64956i −0.770696 0.801892i
\(92\) 3.23474 + 1.86758i 0.337244 + 0.194708i
\(93\) 0 0
\(94\) 3.16193 5.47662i 0.326128 0.564871i
\(95\) 16.0181 1.64343
\(96\) 0 0
\(97\) −4.37811 + 16.3393i −0.444530 + 1.65901i 0.272644 + 0.962115i \(0.412102\pi\)
−0.717174 + 0.696894i \(0.754565\pi\)
\(98\) −1.60249 + 0.429386i −0.161876 + 0.0433745i
\(99\) 0 0
\(100\) 2.48260 4.29998i 0.248260 0.429998i
\(101\) −5.16265 −0.513703 −0.256851 0.966451i \(-0.582685\pi\)
−0.256851 + 0.966451i \(0.582685\pi\)
\(102\) 0 0
\(103\) −7.99184 + 4.61409i −0.787459 + 0.454640i −0.839067 0.544028i \(-0.816899\pi\)
0.0516081 + 0.998667i \(0.483565\pi\)
\(104\) −0.863928 3.50052i −0.0847151 0.343254i
\(105\) 0 0
\(106\) 4.75954 + 4.75954i 0.462287 + 0.462287i
\(107\) −0.210437 + 0.121496i −0.0203437 + 0.0117454i −0.510137 0.860093i \(-0.670405\pi\)
0.489794 + 0.871838i \(0.337072\pi\)
\(108\) 0 0
\(109\) 2.87971 + 2.87971i 0.275827 + 0.275827i 0.831440 0.555614i \(-0.187517\pi\)
−0.555614 + 0.831440i \(0.687517\pi\)
\(110\) 2.66001 + 0.712747i 0.253622 + 0.0679578i
\(111\) 0 0
\(112\) −2.84235 0.761606i −0.268577 0.0719650i
\(113\) 3.05691i 0.287570i 0.989609 + 0.143785i \(0.0459274\pi\)
−0.989609 + 0.143785i \(0.954073\pi\)
\(114\) 0 0
\(115\) 8.33750 8.33750i 0.777476 0.777476i
\(116\) −8.59946 −0.798439
\(117\) 0 0
\(118\) −5.51405 −0.507609
\(119\) 7.49432 7.49432i 0.687004 0.687004i
\(120\) 0 0
\(121\) 10.2390i 0.930817i
\(122\) 6.15196 + 1.64841i 0.556972 + 0.149240i
\(123\) 0 0
\(124\) −4.96612 1.33067i −0.445971 0.119498i
\(125\) 0.0776933 + 0.0776933i 0.00694910 + 0.00694910i
\(126\) 0 0
\(127\) 16.5577 9.55958i 1.46926 0.848276i 0.469851 0.882746i \(-0.344308\pi\)
0.999406 + 0.0344705i \(0.0109745\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 0 0
\(130\) −11.3797 0.225741i −0.998062 0.0197988i
\(131\) 10.6970 6.17593i 0.934603 0.539593i 0.0463386 0.998926i \(-0.485245\pi\)
0.888264 + 0.459332i \(0.151911\pi\)
\(132\) 0 0
\(133\) −14.9315 −1.29473
\(134\) 4.13745 7.16627i 0.357421 0.619072i
\(135\) 0 0
\(136\) 3.47902 0.932200i 0.298323 0.0799355i
\(137\) −1.79956 + 6.71605i −0.153747 + 0.573791i 0.845463 + 0.534035i \(0.179325\pi\)
−0.999209 + 0.0397562i \(0.987342\pi\)
\(138\) 0 0
\(139\) −5.68120 −0.481873 −0.240937 0.970541i \(-0.577455\pi\)
−0.240937 + 0.970541i \(0.577455\pi\)
\(140\) −4.64459 + 8.04466i −0.392539 + 0.679898i
\(141\) 0 0
\(142\) −5.55400 3.20660i −0.466081 0.269092i
\(143\) −0.753658 3.05372i −0.0630240 0.255365i
\(144\) 0 0
\(145\) −7.02603 + 26.2215i −0.583480 + 2.17758i
\(146\) 15.0500i 1.24555i
\(147\) 0 0
\(148\) −1.54649 + 5.77159i −0.127121 + 0.474422i
\(149\) −14.6958 + 14.6958i −1.20393 + 1.20393i −0.230964 + 0.972962i \(0.574188\pi\)
−0.972962 + 0.230964i \(0.925812\pi\)
\(150\) 0 0
\(151\) −1.90772 7.11970i −0.155248 0.579393i −0.999084 0.0427921i \(-0.986375\pi\)
0.843836 0.536601i \(-0.180292\pi\)
\(152\) −4.39440 2.53711i −0.356433 0.205787i
\(153\) 0 0
\(154\) −2.47956 0.664396i −0.199809 0.0535386i
\(155\) −8.11497 + 14.0555i −0.651810 + 1.12897i
\(156\) 0 0
\(157\) −5.21020 9.02434i −0.415819 0.720220i 0.579695 0.814834i \(-0.303172\pi\)
−0.995514 + 0.0946134i \(0.969838\pi\)
\(158\) −0.676403 2.52437i −0.0538118 0.200828i
\(159\) 0 0
\(160\) −2.73384 + 1.57838i −0.216129 + 0.124782i
\(161\) −7.77191 + 7.77191i −0.612512 + 0.612512i
\(162\) 0 0
\(163\) 1.76529 + 6.58816i 0.138268 + 0.516025i 0.999963 + 0.00859756i \(0.00273672\pi\)
−0.861695 + 0.507427i \(0.830597\pi\)
\(164\) −10.5519 + 2.82738i −0.823966 + 0.220781i
\(165\) 0 0
\(166\) 9.93410 + 5.73546i 0.771036 + 0.445158i
\(167\) 13.2930 3.56186i 1.02865 0.275625i 0.295245 0.955422i \(-0.404599\pi\)
0.733400 + 0.679797i \(0.237932\pi\)
\(168\) 0 0
\(169\) 6.04839 + 11.5073i 0.465261 + 0.885174i
\(170\) 11.3699i 0.872030i
\(171\) 0 0
\(172\) −3.16790 5.48696i −0.241550 0.418377i
\(173\) −2.03004 3.51613i −0.154341 0.267326i 0.778478 0.627672i \(-0.215992\pi\)
−0.932819 + 0.360346i \(0.882659\pi\)
\(174\) 0 0
\(175\) 10.3313 + 10.3313i 0.780974 + 0.780974i
\(176\) −0.616853 0.616853i −0.0464970 0.0464970i
\(177\) 0 0
\(178\) −4.06064 7.03323i −0.304358 0.527163i
\(179\) 9.70640 + 16.8120i 0.725490 + 1.25659i 0.958772 + 0.284177i \(0.0917203\pi\)
−0.233282 + 0.972409i \(0.574946\pi\)
\(180\) 0 0
\(181\) 0.0982851i 0.00730547i −0.999993 0.00365274i \(-0.998837\pi\)
0.999993 0.00365274i \(-0.00116270\pi\)
\(182\) 10.6077 + 0.210427i 0.786294 + 0.0155979i
\(183\) 0 0
\(184\) −3.60788 + 0.966728i −0.265976 + 0.0712681i
\(185\) 16.3352 + 9.43115i 1.20099 + 0.693392i
\(186\) 0 0
\(187\) 3.03496 0.813216i 0.221938 0.0594682i
\(188\) 1.63674 + 6.10838i 0.119371 + 0.445499i
\(189\) 0 0
\(190\) −11.3265 + 11.3265i −0.821714 + 0.821714i
\(191\) −10.9961 + 6.34858i −0.795648 + 0.459367i −0.841947 0.539560i \(-0.818591\pi\)
0.0462993 + 0.998928i \(0.485257\pi\)
\(192\) 0 0
\(193\) 6.14134 + 22.9198i 0.442063 + 1.64980i 0.723576 + 0.690244i \(0.242497\pi\)
−0.281513 + 0.959557i \(0.590836\pi\)
\(194\) −8.45787 14.6495i −0.607240 1.05177i
\(195\) 0 0
\(196\) 0.829510 1.43675i 0.0592507 0.102625i
\(197\) 5.16169 + 1.38307i 0.367755 + 0.0985397i 0.437964 0.898993i \(-0.355700\pi\)
−0.0702085 + 0.997532i \(0.522366\pi\)
\(198\) 0 0
\(199\) −7.44445 4.29806i −0.527723 0.304681i 0.212366 0.977190i \(-0.431883\pi\)
−0.740089 + 0.672509i \(0.765217\pi\)
\(200\) 1.28509 + 4.79601i 0.0908694 + 0.339129i
\(201\) 0 0
\(202\) 3.65055 3.65055i 0.256851 0.256851i
\(203\) 6.54940 24.4427i 0.459678 1.71554i
\(204\) 0 0
\(205\) 34.4850i 2.40854i
\(206\) 2.38843 8.91374i 0.166410 0.621050i
\(207\) 0 0
\(208\) 3.08613 + 1.86435i 0.213985 + 0.129269i
\(209\) −3.83351 2.21328i −0.265169 0.153096i
\(210\) 0 0
\(211\) 4.87073 8.43636i 0.335315 0.580783i −0.648230 0.761444i \(-0.724491\pi\)
0.983545 + 0.180662i \(0.0578239\pi\)
\(212\) −6.73100 −0.462287
\(213\) 0 0
\(214\) 0.0628908 0.234711i 0.00429912 0.0160445i
\(215\) −19.3191 + 5.17655i −1.31755 + 0.353038i
\(216\) 0 0
\(217\) 7.56446 13.1020i 0.513509 0.889424i
\(218\) −4.07253 −0.275827
\(219\) 0 0
\(220\) −2.38490 + 1.37692i −0.160790 + 0.0928321i
\(221\) −11.3730 + 6.26881i −0.765032 + 0.421686i
\(222\) 0 0
\(223\) 13.4223 + 13.4223i 0.898824 + 0.898824i 0.995332 0.0965083i \(-0.0307674\pi\)
−0.0965083 + 0.995332i \(0.530767\pi\)
\(224\) 2.54838 1.47131i 0.170271 0.0983061i
\(225\) 0 0
\(226\) −2.16156 2.16156i −0.143785 0.143785i
\(227\) 14.9418 + 4.00365i 0.991723 + 0.265731i 0.717974 0.696070i \(-0.245070\pi\)
0.273749 + 0.961801i \(0.411736\pi\)
\(228\) 0 0
\(229\) −14.6426 3.92348i −0.967612 0.259271i −0.259792 0.965664i \(-0.583654\pi\)
−0.707819 + 0.706394i \(0.750321\pi\)
\(230\) 11.7910i 0.777476i
\(231\) 0 0
\(232\) 6.08073 6.08073i 0.399220 0.399220i
\(233\) 11.5129 0.754237 0.377118 0.926165i \(-0.376915\pi\)
0.377118 + 0.926165i \(0.376915\pi\)
\(234\) 0 0
\(235\) 19.9630 1.30224
\(236\) 3.89902 3.89902i 0.253805 0.253805i
\(237\) 0 0
\(238\) 10.5986i 0.687004i
\(239\) −3.89177 1.04280i −0.251737 0.0674528i 0.130743 0.991416i \(-0.458264\pi\)
−0.382481 + 0.923963i \(0.624930\pi\)
\(240\) 0 0
\(241\) −14.3057 3.83319i −0.921509 0.246918i −0.233279 0.972410i \(-0.574945\pi\)
−0.688230 + 0.725492i \(0.741612\pi\)
\(242\) 7.24006 + 7.24006i 0.465408 + 0.465408i
\(243\) 0 0
\(244\) −5.51569 + 3.18449i −0.353106 + 0.203866i
\(245\) −3.70322 3.70322i −0.236590 0.236590i
\(246\) 0 0
\(247\) 17.5746 + 5.08475i 1.11824 + 0.323535i
\(248\) 4.45251 2.57066i 0.282734 0.163237i
\(249\) 0 0
\(250\) −0.109875 −0.00694910
\(251\) −1.98281 + 3.43432i −0.125154 + 0.216772i −0.921793 0.387682i \(-0.873276\pi\)
0.796639 + 0.604455i \(0.206609\pi\)
\(252\) 0 0
\(253\) −3.14737 + 0.843337i −0.197874 + 0.0530201i
\(254\) −4.94840 + 18.4677i −0.310490 + 1.15877i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 6.92795 11.9996i 0.432153 0.748512i −0.564905 0.825156i \(-0.691087\pi\)
0.997059 + 0.0766441i \(0.0244205\pi\)
\(258\) 0 0
\(259\) −15.2271 8.79137i −0.946165 0.546269i
\(260\) 8.20625 7.88701i 0.508930 0.489132i
\(261\) 0 0
\(262\) −3.19690 + 11.9310i −0.197505 + 0.737098i
\(263\) 16.0207i 0.987880i −0.869496 0.493940i \(-0.835556\pi\)
0.869496 0.493940i \(-0.164444\pi\)
\(264\) 0 0
\(265\) −5.49945 + 20.5242i −0.337828 + 1.26079i
\(266\) 10.5582 10.5582i 0.647363 0.647363i
\(267\) 0 0
\(268\) 2.14170 + 7.99294i 0.130825 + 0.488246i
\(269\) −1.90561 1.10021i −0.116187 0.0670808i 0.440780 0.897615i \(-0.354702\pi\)
−0.556967 + 0.830534i \(0.688035\pi\)
\(270\) 0 0
\(271\) −5.96826 1.59919i −0.362546 0.0971439i 0.0729474 0.997336i \(-0.476759\pi\)
−0.435494 + 0.900192i \(0.643426\pi\)
\(272\) −1.80087 + 3.11920i −0.109194 + 0.189129i
\(273\) 0 0
\(274\) −3.47648 6.02145i −0.210022 0.363769i
\(275\) 1.12106 + 4.18385i 0.0676025 + 0.252296i
\(276\) 0 0
\(277\) 17.6848 10.2103i 1.06258 0.613479i 0.136433 0.990649i \(-0.456436\pi\)
0.926144 + 0.377170i \(0.123103\pi\)
\(278\) 4.01721 4.01721i 0.240937 0.240937i
\(279\) 0 0
\(280\) −2.40422 8.97266i −0.143679 0.536219i
\(281\) −20.0659 + 5.37665i −1.19703 + 0.320744i −0.801662 0.597777i \(-0.796051\pi\)
−0.395372 + 0.918521i \(0.629384\pi\)
\(282\) 0 0
\(283\) −20.8752 12.0523i −1.24090 0.716436i −0.271626 0.962403i \(-0.587561\pi\)
−0.969278 + 0.245966i \(0.920895\pi\)
\(284\) 6.19468 1.65986i 0.367587 0.0984946i
\(285\) 0 0
\(286\) 2.69222 + 1.62639i 0.159194 + 0.0961703i
\(287\) 32.1456i 1.89750i
\(288\) 0 0
\(289\) 2.01371 + 3.48785i 0.118454 + 0.205168i
\(290\) −13.5733 23.5096i −0.797049 1.38053i
\(291\) 0 0
\(292\) −10.6419 10.6419i −0.622773 0.622773i
\(293\) −1.83330 1.83330i −0.107103 0.107103i 0.651525 0.758627i \(-0.274130\pi\)
−0.758627 + 0.651525i \(0.774130\pi\)
\(294\) 0 0
\(295\) −8.70329 15.0745i −0.506725 0.877674i
\(296\) −2.98760 5.17467i −0.173651 0.300772i
\(297\) 0 0
\(298\) 20.7830i 1.20393i
\(299\) 11.7943 6.50100i 0.682080 0.375962i
\(300\) 0 0
\(301\) 18.0086 4.82538i 1.03800 0.278131i
\(302\) 6.38335 + 3.68543i 0.367321 + 0.212073i
\(303\) 0 0
\(304\) 4.90132 1.31331i 0.281110 0.0753232i
\(305\) 5.20366 + 19.4203i 0.297961 + 1.11200i
\(306\) 0 0
\(307\) 0.409589 0.409589i 0.0233765 0.0233765i −0.695322 0.718698i \(-0.744738\pi\)
0.718698 + 0.695322i \(0.244738\pi\)
\(308\) 2.22311 1.28351i 0.126674 0.0731350i
\(309\) 0 0
\(310\) −4.20062 15.6769i −0.238579 0.890389i
\(311\) −8.67641 15.0280i −0.491994 0.852159i 0.507963 0.861379i \(-0.330398\pi\)
−0.999957 + 0.00921998i \(0.997065\pi\)
\(312\) 0 0
\(313\) 12.3328 21.3610i 0.697089 1.20739i −0.272382 0.962189i \(-0.587812\pi\)
0.969471 0.245205i \(-0.0788552\pi\)
\(314\) 10.0653 + 2.69700i 0.568020 + 0.152200i
\(315\) 0 0
\(316\) 2.26329 + 1.30671i 0.127320 + 0.0735082i
\(317\) −6.46561 24.1300i −0.363145 1.35528i −0.869918 0.493196i \(-0.835828\pi\)
0.506773 0.862080i \(-0.330838\pi\)
\(318\) 0 0
\(319\) 5.30460 5.30460i 0.297000 0.297000i
\(320\) 0.817032 3.04921i 0.0456735 0.170456i
\(321\) 0 0
\(322\) 10.9911i 0.612512i
\(323\) −4.73019 + 17.6533i −0.263195 + 0.982257i
\(324\) 0 0
\(325\) −8.64188 15.6783i −0.479365 0.869675i
\(326\) −5.90679 3.41028i −0.327147 0.188878i
\(327\) 0 0
\(328\) 5.46207 9.46058i 0.301592 0.522373i
\(329\) −18.6087 −1.02593
\(330\) 0 0
\(331\) 8.32961 31.0865i 0.457837 1.70867i −0.221775 0.975098i \(-0.571185\pi\)
0.679612 0.733572i \(-0.262148\pi\)
\(332\) −11.0800 + 2.96889i −0.608097 + 0.162939i
\(333\) 0 0
\(334\) −6.88098 + 11.9182i −0.376510 + 0.652135i
\(335\) 26.1219 1.42719
\(336\) 0 0
\(337\) 25.7601 14.8726i 1.40324 0.810161i 0.408516 0.912751i \(-0.366046\pi\)
0.994724 + 0.102590i \(0.0327131\pi\)
\(338\) −12.4137 3.86000i −0.675217 0.209956i
\(339\) 0 0
\(340\) 8.03972 + 8.03972i 0.436015 + 0.436015i
\(341\) 3.88419 2.24254i 0.210341 0.121440i
\(342\) 0 0
\(343\) −11.1132 11.1132i −0.600058 0.600058i
\(344\) 6.11991 + 1.63983i 0.329963 + 0.0884134i
\(345\) 0 0
\(346\) 3.92173 + 1.05082i 0.210833 + 0.0564927i
\(347\) 33.9806i 1.82418i 0.409995 + 0.912088i \(0.365531\pi\)
−0.409995 + 0.912088i \(0.634469\pi\)
\(348\) 0 0
\(349\) −5.80406 + 5.80406i −0.310684 + 0.310684i −0.845175 0.534490i \(-0.820504\pi\)
0.534490 + 0.845175i \(0.320504\pi\)
\(350\) −14.6107 −0.780974
\(351\) 0 0
\(352\) 0.872362 0.0464970
\(353\) 11.0972 11.0972i 0.590646 0.590646i −0.347160 0.937806i \(-0.612854\pi\)
0.937806 + 0.347160i \(0.112854\pi\)
\(354\) 0 0
\(355\) 20.2450i 1.07449i
\(356\) 7.84455 + 2.10194i 0.415760 + 0.111403i
\(357\) 0 0
\(358\) −18.7513 5.02440i −0.991038 0.265548i
\(359\) 12.5155 + 12.5155i 0.660544 + 0.660544i 0.955508 0.294964i \(-0.0953077\pi\)
−0.294964 + 0.955508i \(0.595308\pi\)
\(360\) 0 0
\(361\) 5.84370 3.37386i 0.307563 0.177572i
\(362\) 0.0694981 + 0.0694981i 0.00365274 + 0.00365274i
\(363\) 0 0
\(364\) −7.64956 + 7.35197i −0.400946 + 0.385348i
\(365\) −41.1443 + 23.7547i −2.15359 + 1.24338i
\(366\) 0 0
\(367\) 26.4242 1.37933 0.689666 0.724128i \(-0.257757\pi\)
0.689666 + 0.724128i \(0.257757\pi\)
\(368\) 1.86758 3.23474i 0.0973541 0.168622i
\(369\) 0 0
\(370\) −18.2196 + 4.88192i −0.947191 + 0.253799i
\(371\) 5.12638 19.1319i 0.266148 0.993278i
\(372\) 0 0
\(373\) 22.6990 1.17531 0.587656 0.809111i \(-0.300051\pi\)
0.587656 + 0.809111i \(0.300051\pi\)
\(374\) −1.57101 + 2.72107i −0.0812351 + 0.140703i
\(375\) 0 0
\(376\) −5.47662 3.16193i −0.282435 0.163064i
\(377\) −16.0324 + 26.5390i −0.825711 + 1.36683i
\(378\) 0 0
\(379\) −2.62959 + 9.81377i −0.135073 + 0.504100i 0.864924 + 0.501902i \(0.167366\pi\)
−0.999998 + 0.00219770i \(0.999300\pi\)
\(380\) 16.0181i 0.821714i
\(381\) 0 0
\(382\) 3.28627 12.2645i 0.168140 0.627508i
\(383\) 13.2359 13.2359i 0.676323 0.676323i −0.282843 0.959166i \(-0.591278\pi\)
0.959166 + 0.282843i \(0.0912777\pi\)
\(384\) 0 0
\(385\) −2.09735 7.82740i −0.106891 0.398921i
\(386\) −20.5493 11.8641i −1.04593 0.603869i
\(387\) 0 0
\(388\) 16.3393 + 4.37811i 0.829505 + 0.222265i
\(389\) −10.9802 + 19.0182i −0.556716 + 0.964261i 0.441051 + 0.897482i \(0.354606\pi\)
−0.997768 + 0.0667792i \(0.978728\pi\)
\(390\) 0 0
\(391\) 6.72653 + 11.6507i 0.340175 + 0.589201i
\(392\) 0.429386 + 1.60249i 0.0216873 + 0.0809380i
\(393\) 0 0
\(394\) −4.62785 + 2.67189i −0.233148 + 0.134608i
\(395\) 5.83361 5.83361i 0.293521 0.293521i
\(396\) 0 0
\(397\) 0.908301 + 3.38983i 0.0455863 + 0.170130i 0.984966 0.172748i \(-0.0552647\pi\)
−0.939380 + 0.342879i \(0.888598\pi\)
\(398\) 8.30321 2.22484i 0.416202 0.111521i
\(399\) 0 0
\(400\) −4.29998 2.48260i −0.214999 0.124130i
\(401\) 2.43364 0.652092i 0.121530 0.0325639i −0.197541 0.980295i \(-0.563296\pi\)
0.319071 + 0.947731i \(0.396629\pi\)
\(402\) 0 0
\(403\) −13.3652 + 12.8453i −0.665769 + 0.639868i
\(404\) 5.16265i 0.256851i
\(405\) 0 0
\(406\) 12.6525 + 21.9147i 0.627932 + 1.08761i
\(407\) −2.60626 4.51418i −0.129188 0.223760i
\(408\) 0 0
\(409\) 12.1955 + 12.1955i 0.603027 + 0.603027i 0.941115 0.338087i \(-0.109780\pi\)
−0.338087 + 0.941115i \(0.609780\pi\)
\(410\) −24.3846 24.3846i −1.20427 1.20427i
\(411\) 0 0
\(412\) 4.61409 + 7.99184i 0.227320 + 0.393730i
\(413\) 8.11288 + 14.0519i 0.399209 + 0.691450i
\(414\) 0 0
\(415\) 36.2110i 1.77753i
\(416\) −3.50052 + 0.863928i −0.171627 + 0.0423576i
\(417\) 0 0
\(418\) 4.27572 1.14568i 0.209133 0.0560369i
\(419\) 16.2513 + 9.38271i 0.793929 + 0.458375i 0.841344 0.540500i \(-0.181765\pi\)
−0.0474148 + 0.998875i \(0.515098\pi\)
\(420\) 0 0
\(421\) −23.1335 + 6.19861i −1.12746 + 0.302102i −0.773898 0.633310i \(-0.781696\pi\)
−0.353560 + 0.935412i \(0.615029\pi\)
\(422\) 2.52128 + 9.40954i 0.122734 + 0.458049i
\(423\) 0 0
\(424\) 4.75954 4.75954i 0.231144 0.231144i
\(425\) 15.4874 8.94168i 0.751252 0.433735i
\(426\) 0 0
\(427\) −4.85065 18.1029i −0.234740 0.876060i
\(428\) 0.121496 + 0.210437i 0.00587271 + 0.0101718i
\(429\) 0 0
\(430\) 10.0003 17.3211i 0.482259 0.835296i
\(431\) 0.739992 + 0.198280i 0.0356441 + 0.00955082i 0.276597 0.960986i \(-0.410793\pi\)
−0.240953 + 0.970537i \(0.577460\pi\)
\(432\) 0 0
\(433\) 12.3652 + 7.13904i 0.594233 + 0.343080i 0.766769 0.641923i \(-0.221863\pi\)
−0.172537 + 0.985003i \(0.555196\pi\)
\(434\) 3.91565 + 14.6134i 0.187957 + 0.701467i
\(435\) 0 0
\(436\) 2.87971 2.87971i 0.137913 0.137913i
\(437\) 4.90539 18.3072i 0.234657 0.875751i
\(438\) 0 0
\(439\) 12.6884i 0.605584i 0.953057 + 0.302792i \(0.0979187\pi\)
−0.953057 + 0.302792i \(0.902081\pi\)
\(440\) 0.712747 2.66001i 0.0339789 0.126811i
\(441\) 0 0
\(442\) 3.60922 12.4747i 0.171673 0.593359i
\(443\) −9.00475 5.19889i −0.427828 0.247007i 0.270593 0.962694i \(-0.412780\pi\)
−0.698421 + 0.715687i \(0.746114\pi\)
\(444\) 0 0
\(445\) 12.8185 22.2023i 0.607655 1.05249i
\(446\) −18.9820 −0.898824
\(447\) 0 0
\(448\) −0.761606 + 2.84235i −0.0359825 + 0.134289i
\(449\) 8.91529 2.38885i 0.420739 0.112737i −0.0422369 0.999108i \(-0.513448\pi\)
0.462976 + 0.886371i \(0.346782\pi\)
\(450\) 0 0
\(451\) 4.76490 8.25305i 0.224370 0.388621i
\(452\) 3.05691 0.143785
\(453\) 0 0
\(454\) −13.3965 + 7.73445i −0.628727 + 0.362996i
\(455\) 16.1677 + 29.3319i 0.757955 + 1.37510i
\(456\) 0 0
\(457\) −6.15569 6.15569i −0.287951 0.287951i 0.548319 0.836270i \(-0.315268\pi\)
−0.836270 + 0.548319i \(0.815268\pi\)
\(458\) 13.1282 7.57958i 0.613441 0.354170i
\(459\) 0 0
\(460\) −8.33750 8.33750i −0.388738 0.388738i
\(461\) −10.0949 2.70491i −0.470165 0.125980i 0.0159546 0.999873i \(-0.494921\pi\)
−0.486119 + 0.873892i \(0.661588\pi\)
\(462\) 0 0
\(463\) 5.41897 + 1.45201i 0.251841 + 0.0674806i 0.382531 0.923943i \(-0.375053\pi\)
−0.130690 + 0.991423i \(0.541719\pi\)
\(464\) 8.59946i 0.399220i
\(465\) 0 0
\(466\) −8.14087 + 8.14087i −0.377118 + 0.377118i
\(467\) −11.8737 −0.549447 −0.274724 0.961523i \(-0.588586\pi\)
−0.274724 + 0.961523i \(0.588586\pi\)
\(468\) 0 0
\(469\) −24.3499 −1.12437
\(470\) −14.1159 + 14.1159i −0.651120 + 0.651120i
\(471\) 0 0
\(472\) 5.51405i 0.253805i
\(473\) 5.33877 + 1.43052i 0.245477 + 0.0657754i
\(474\) 0 0
\(475\) −24.3360 6.52081i −1.11661 0.299195i
\(476\) −7.49432 7.49432i −0.343502 0.343502i
\(477\) 0 0
\(478\) 3.48926 2.01453i 0.159595 0.0921423i
\(479\) −22.2164 22.2164i −1.01509 1.01509i −0.999884 0.0152087i \(-0.995159\pi\)
−0.0152087 0.999884i \(-0.504841\pi\)
\(480\) 0 0
\(481\) 14.9287 + 15.5330i 0.680689 + 0.708242i
\(482\) 12.8261 7.40516i 0.584213 0.337296i
\(483\) 0 0
\(484\) −10.2390 −0.465408
\(485\) 26.6995 46.2450i 1.21236 2.09988i
\(486\) 0 0
\(487\) −25.9413 + 6.95096i −1.17551 + 0.314978i −0.793145 0.609032i \(-0.791558\pi\)
−0.382368 + 0.924010i \(0.624891\pi\)
\(488\) 1.64841 6.15196i 0.0746201 0.278486i
\(489\) 0 0
\(490\) 5.23714 0.236590
\(491\) −1.33729 + 2.31626i −0.0603512 + 0.104531i −0.894622 0.446823i \(-0.852555\pi\)
0.834271 + 0.551354i \(0.185889\pi\)
\(492\) 0 0
\(493\) −26.8235 15.4865i −1.20807 0.697478i
\(494\) −16.0226 + 8.83164i −0.720889 + 0.397354i
\(495\) 0 0
\(496\) −1.33067 + 4.96612i −0.0597488 + 0.222986i
\(497\) 18.8716i 0.846509i
\(498\) 0 0
\(499\) −1.15780 + 4.32098i −0.0518304 + 0.193434i −0.986987 0.160802i \(-0.948592\pi\)
0.935156 + 0.354235i \(0.115259\pi\)
\(500\) 0.0776933 0.0776933i 0.00347455 0.00347455i
\(501\) 0 0
\(502\) −1.02638 3.83049i −0.0458094 0.170963i
\(503\) −35.5709 20.5369i −1.58603 0.915694i −0.993952 0.109812i \(-0.964975\pi\)
−0.592076 0.805882i \(-0.701692\pi\)
\(504\) 0 0
\(505\) 15.7420 + 4.21805i 0.700509 + 0.187701i
\(506\) 1.62920 2.82186i 0.0724268 0.125447i
\(507\) 0 0
\(508\) −9.55958 16.5577i −0.424138 0.734628i
\(509\) 2.46519 + 9.20021i 0.109268 + 0.407792i 0.998794 0.0490909i \(-0.0156324\pi\)
−0.889527 + 0.456883i \(0.848966\pi\)
\(510\) 0 0
\(511\) 38.3531 22.1432i 1.69664 0.979557i
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 3.58617 + 13.3838i 0.158179 + 0.590333i
\(515\) 28.1386 7.53972i 1.23994 0.332240i
\(516\) 0 0
\(517\) −4.77760 2.75835i −0.210118 0.121312i
\(518\) 16.9836 4.55075i 0.746217 0.199948i
\(519\) 0 0
\(520\) −0.225741 + 11.3797i −0.00989939 + 0.499031i
\(521\) 8.13120i 0.356234i −0.984009 0.178117i \(-0.942999\pi\)
0.984009 0.178117i \(-0.0570006\pi\)
\(522\) 0 0
\(523\) 18.9364 + 32.7988i 0.828031 + 1.43419i 0.899580 + 0.436755i \(0.143872\pi\)
−0.0715491 + 0.997437i \(0.522794\pi\)
\(524\) −6.17593 10.6970i −0.269797 0.467302i
\(525\) 0 0
\(526\) 11.3284 + 11.3284i 0.493940 + 0.493940i
\(527\) −13.0940 13.0940i −0.570383 0.570383i
\(528\) 0 0
\(529\) 4.52432 + 7.83636i 0.196710 + 0.340711i
\(530\) −10.6241 18.4015i −0.461482 0.799310i
\(531\) 0 0
\(532\) 14.9315i 0.647363i
\(533\) −10.9468 + 37.8358i −0.474159 + 1.63885i
\(534\) 0 0
\(535\) 0.740930 0.198532i 0.0320332 0.00858327i
\(536\) −7.16627 4.13745i −0.309536 0.178711i
\(537\) 0 0
\(538\) 2.12544 0.569509i 0.0916341 0.0245533i
\(539\) 0.374580 + 1.39795i 0.0161343 + 0.0602140i
\(540\) 0 0
\(541\) −9.80824 + 9.80824i −0.421689 + 0.421689i −0.885785 0.464096i \(-0.846379\pi\)
0.464096 + 0.885785i \(0.346379\pi\)
\(542\) 5.35100 3.08940i 0.229845 0.132701i
\(543\) 0 0
\(544\) −0.932200 3.47902i −0.0399678 0.149162i
\(545\) −6.42802 11.1337i −0.275346 0.476914i
\(546\) 0 0
\(547\) −18.8226 + 32.6018i −0.804798 + 1.39395i 0.111629 + 0.993750i \(0.464393\pi\)
−0.916427 + 0.400201i \(0.868940\pi\)
\(548\) 6.71605 + 1.79956i 0.286895 + 0.0768734i
\(549\) 0 0
\(550\) −3.75114 2.16572i −0.159949 0.0923467i
\(551\) 11.2937 + 42.1487i 0.481128 + 1.79559i
\(552\) 0 0
\(553\) −5.43787 + 5.43787i −0.231242 + 0.231242i
\(554\) −5.28525 + 19.7248i −0.224549 + 0.838028i
\(555\) 0 0
\(556\) 5.68120i 0.240937i
\(557\) 8.83844 32.9855i 0.374497 1.39764i −0.479582 0.877497i \(-0.659212\pi\)
0.854079 0.520143i \(-0.174122\pi\)
\(558\) 0 0
\(559\) −22.8396 0.453073i −0.966010 0.0191630i
\(560\) 8.04466 + 4.64459i 0.339949 + 0.196270i
\(561\) 0 0
\(562\) 10.3869 17.9906i 0.438145 0.758889i
\(563\) 29.5035 1.24343 0.621713 0.783245i \(-0.286437\pi\)
0.621713 + 0.783245i \(0.286437\pi\)
\(564\) 0 0
\(565\) 2.49759 9.32115i 0.105075 0.392144i
\(566\) 23.2833 6.23874i 0.978670 0.262234i
\(567\) 0 0
\(568\) −3.20660 + 5.55400i −0.134546 + 0.233041i
\(569\) −14.7196 −0.617076 −0.308538 0.951212i \(-0.599840\pi\)
−0.308538 + 0.951212i \(0.599840\pi\)
\(570\) 0 0
\(571\) 16.5923 9.57956i 0.694365 0.400892i −0.110880 0.993834i \(-0.535367\pi\)
0.805245 + 0.592942i \(0.202034\pi\)
\(572\) −3.05372 + 0.753658i −0.127682 + 0.0315120i
\(573\) 0 0
\(574\) 22.7304 + 22.7304i 0.948748 + 0.948748i
\(575\) −16.0611 + 9.27287i −0.669794 + 0.386706i
\(576\) 0 0
\(577\) 0.887796 + 0.887796i 0.0369594 + 0.0369594i 0.725345 0.688386i \(-0.241680\pi\)
−0.688386 + 0.725345i \(0.741680\pi\)
\(578\) −3.89020 1.04237i −0.161811 0.0433571i
\(579\) 0 0
\(580\) 26.2215 + 7.02603i 1.08879 + 0.291740i
\(581\) 33.7545i 1.40037i
\(582\) 0 0
\(583\) 4.15204 4.15204i 0.171960 0.171960i
\(584\) 15.0500 0.622773
\(585\) 0 0
\(586\) 2.59268 0.107103
\(587\) 7.08404 7.08404i 0.292390 0.292390i −0.545634 0.838024i \(-0.683711\pi\)
0.838024 + 0.545634i \(0.183711\pi\)
\(588\) 0 0
\(589\) 26.0881i 1.07494i
\(590\) 16.8135 + 4.50515i 0.692199 + 0.185474i
\(591\) 0 0
\(592\) 5.77159 + 1.54649i 0.237211 + 0.0635605i
\(593\) −26.1095 26.1095i −1.07219 1.07219i −0.997183 0.0750069i \(-0.976102\pi\)
−0.0750069 0.997183i \(-0.523898\pi\)
\(594\) 0 0
\(595\) −28.9748 + 16.7286i −1.18785 + 0.685807i
\(596\) 14.6958 + 14.6958i 0.601963 + 0.601963i
\(597\) 0 0
\(598\) −3.74290 + 12.9367i −0.153059 + 0.529021i
\(599\) −6.17074 + 3.56268i −0.252130 + 0.145567i −0.620739 0.784017i \(-0.713167\pi\)
0.368609 + 0.929584i \(0.379834\pi\)
\(600\) 0 0
\(601\) −3.21196 −0.131018 −0.0655092 0.997852i \(-0.520867\pi\)
−0.0655092 + 0.997852i \(0.520867\pi\)
\(602\) −9.32193 + 16.1461i −0.379933 + 0.658064i
\(603\) 0 0
\(604\) −7.11970 + 1.90772i −0.289697 + 0.0776240i
\(605\) −8.36558 + 31.2208i −0.340109 + 1.26930i
\(606\) 0 0
\(607\) −41.3322 −1.67762 −0.838812 0.544421i \(-0.816749\pi\)
−0.838812 + 0.544421i \(0.816749\pi\)
\(608\) −2.53711 + 4.39440i −0.102893 + 0.178217i
\(609\) 0 0
\(610\) −17.4118 10.0527i −0.704982 0.407022i
\(611\) 21.9027 + 6.33698i 0.886088 + 0.256367i
\(612\) 0 0
\(613\) 5.73651 21.4090i 0.231695 0.864699i −0.747915 0.663794i \(-0.768945\pi\)
0.979611 0.200905i \(-0.0643883\pi\)
\(614\) 0.579246i 0.0233765i
\(615\) 0 0
\(616\) −0.664396 + 2.47956i −0.0267693 + 0.0999043i
\(617\) 15.7837 15.7837i 0.635428 0.635428i −0.313997 0.949424i \(-0.601668\pi\)
0.949424 + 0.313997i \(0.101668\pi\)
\(618\) 0 0
\(619\) −4.30594 16.0700i −0.173070 0.645907i −0.996872 0.0790293i \(-0.974818\pi\)
0.823802 0.566878i \(-0.191849\pi\)
\(620\) 14.0555 + 8.11497i 0.564484 + 0.325905i
\(621\) 0 0
\(622\) 16.7615 + 4.49124i 0.672076 + 0.180082i
\(623\) −11.9489 + 20.6961i −0.478723 + 0.829173i
\(624\) 0 0
\(625\) −12.5864 21.8003i −0.503456 0.872012i
\(626\) 6.38391 + 23.8251i 0.255152 + 0.952241i
\(627\) 0 0
\(628\) −9.02434 + 5.21020i −0.360110 + 0.207910i
\(629\) −15.2177 + 15.2177i −0.606771 + 0.606771i
\(630\) 0 0
\(631\) −3.53536 13.1942i −0.140741 0.525251i −0.999908 0.0135565i \(-0.995685\pi\)
0.859168 0.511694i \(-0.170982\pi\)
\(632\) −2.52437 + 0.676403i −0.100414 + 0.0269059i
\(633\) 0 0
\(634\) 21.6344 + 12.4906i 0.859211 + 0.496065i
\(635\) −58.2982 + 15.6210i −2.31350 + 0.619899i
\(636\) 0 0
\(637\) −2.88751 5.23859i −0.114407 0.207560i
\(638\) 7.50184i 0.297000i
\(639\) 0 0
\(640\) 1.57838 + 2.73384i 0.0623911 + 0.108065i
\(641\) 11.0893 + 19.2072i 0.438000 + 0.758638i 0.997535 0.0701685i \(-0.0223537\pi\)
−0.559535 + 0.828807i \(0.689020\pi\)
\(642\) 0 0
\(643\) 6.53919 + 6.53919i 0.257881 + 0.257881i 0.824192 0.566311i \(-0.191630\pi\)
−0.566311 + 0.824192i \(0.691630\pi\)
\(644\) 7.77191 + 7.77191i 0.306256 + 0.306256i
\(645\) 0 0
\(646\) −9.13803 15.8275i −0.359531 0.622726i
\(647\) 8.23841 + 14.2694i 0.323886 + 0.560986i 0.981286 0.192555i \(-0.0616774\pi\)
−0.657401 + 0.753541i \(0.728344\pi\)
\(648\) 0 0
\(649\) 4.81024i 0.188819i
\(650\) 17.1970 + 4.97550i 0.674520 + 0.195155i
\(651\) 0 0
\(652\) 6.58816 1.76529i 0.258012 0.0691342i
\(653\) −29.3351 16.9366i −1.14797 0.662781i −0.199579 0.979882i \(-0.563957\pi\)
−0.948392 + 0.317101i \(0.897291\pi\)
\(654\) 0 0
\(655\) −37.6633 + 10.0919i −1.47163 + 0.394322i
\(656\) 2.82738 + 10.5519i 0.110390 + 0.411983i
\(657\) 0 0
\(658\) 13.1584 13.1584i 0.512966 0.512966i
\(659\) −8.33425 + 4.81178i −0.324656 + 0.187440i −0.653466 0.756956i \(-0.726686\pi\)
0.328810 + 0.944396i \(0.393352\pi\)
\(660\) 0 0
\(661\) 6.81782 + 25.4445i 0.265182 + 0.989675i 0.962139 + 0.272561i \(0.0878706\pi\)
−0.696956 + 0.717114i \(0.745463\pi\)
\(662\) 16.0916 + 27.8714i 0.625417 + 1.08325i
\(663\) 0 0
\(664\) 5.73546 9.93410i 0.222579 0.385518i
\(665\) 45.5292 + 12.1995i 1.76555 + 0.473077i
\(666\) 0 0
\(667\) 27.8170 + 16.0601i 1.07708 + 0.621851i
\(668\) −3.56186 13.2930i −0.137812 0.514323i
\(669\) 0 0
\(670\) −18.4710 + 18.4710i −0.713597 + 0.713597i
\(671\) 1.43801 5.36673i 0.0555138 0.207180i
\(672\) 0 0
\(673\) 5.36459i 0.206790i −0.994640 0.103395i \(-0.967029\pi\)
0.994640 0.103395i \(-0.0329706\pi\)
\(674\) −7.69861 + 28.7316i −0.296539 + 1.10670i
\(675\) 0 0
\(676\) 11.5073 6.04839i 0.442587 0.232631i
\(677\) 6.42329 + 3.70849i 0.246867 + 0.142529i 0.618329 0.785919i \(-0.287810\pi\)
−0.371462 + 0.928448i \(0.621143\pi\)
\(678\) 0 0
\(679\) −24.8883 + 43.1078i −0.955125 + 1.65433i
\(680\) −11.3699 −0.436015
\(681\) 0 0
\(682\) −1.16082 + 4.33226i −0.0444503 + 0.165891i
\(683\) −17.3967 + 4.66144i −0.665668 + 0.178365i −0.575803 0.817589i \(-0.695310\pi\)
−0.0898653 + 0.995954i \(0.528644\pi\)
\(684\) 0 0
\(685\) 10.9745 19.0083i 0.419312 0.726270i
\(686\) 15.7165 0.600058
\(687\) 0 0
\(688\) −5.48696 + 3.16790i −0.209188 + 0.120775i
\(689\) −12.5489 + 20.7727i −0.478077 + 0.791379i
\(690\) 0 0
\(691\) 11.2660 + 11.2660i 0.428581 + 0.428581i 0.888145 0.459564i \(-0.151994\pi\)
−0.459564 + 0.888145i \(0.651994\pi\)
\(692\) −3.51613 + 2.03004i −0.133663 + 0.0771704i
\(693\) 0 0
\(694\) −24.0279 24.0279i −0.912088 0.912088i
\(695\) 17.3231 + 4.64172i 0.657104 + 0.176071i
\(696\) 0 0
\(697\) −38.0053 10.1835i −1.43955 0.385727i
\(698\) 8.20818i 0.310684i
\(699\) 0 0
\(700\) 10.3313 10.3313i 0.390487 0.390487i
\(701\) 10.3675 0.391576 0.195788 0.980646i \(-0.437274\pi\)
0.195788 + 0.980646i \(0.437274\pi\)
\(702\) 0 0
\(703\) 30.3195 1.14352
\(704\) −0.616853 + 0.616853i −0.0232485 + 0.0232485i
\(705\) 0 0
\(706\) 15.6939i 0.590646i
\(707\) −14.6741 3.93191i −0.551876 0.147875i
\(708\) 0 0
\(709\) 22.1814 + 5.94348i 0.833038 + 0.223212i 0.650039 0.759901i \(-0.274753\pi\)
0.182999 + 0.983113i \(0.441419\pi\)
\(710\) 14.3154 + 14.3154i 0.537247 + 0.537247i
\(711\) 0 0
\(712\) −7.03323 + 4.06064i −0.263582 + 0.152179i
\(713\) 13.5790 + 13.5790i 0.508537 + 0.508537i
\(714\) 0 0
\(715\) −0.196928 + 9.92717i −0.00736467 + 0.371255i
\(716\) 16.8120 9.70640i 0.628293 0.362745i
\(717\) 0 0
\(718\) −17.6996 −0.660544
\(719\) 25.3323 43.8768i 0.944735 1.63633i 0.188454 0.982082i \(-0.439652\pi\)
0.756281 0.654247i \(-0.227014\pi\)
\(720\) 0 0
\(721\) −26.2298 + 7.02824i −0.976847 + 0.261745i
\(722\) −1.74644 + 6.51780i −0.0649957 + 0.242567i
\(723\) 0 0
\(724\) −0.0982851 −0.00365274
\(725\) 21.3490 36.9775i 0.792881 1.37331i
\(726\) 0 0
\(727\) −26.9809 15.5774i −1.00067 0.577734i −0.0922201 0.995739i \(-0.529396\pi\)
−0.908445 + 0.418004i \(0.862730\pi\)
\(728\) 0.210427 10.6077i 0.00779894 0.393147i
\(729\) 0 0
\(730\) 12.2963 45.8905i 0.455107 1.69848i
\(731\) 22.8199i 0.844026i
\(732\) 0 0
\(733\) 1.99422 7.44254i 0.0736583 0.274896i −0.919267 0.393634i \(-0.871218\pi\)
0.992926 + 0.118737i \(0.0378846\pi\)
\(734\) −18.6847 + 18.6847i −0.689666 + 0.689666i
\(735\) 0 0
\(736\) 0.966728 + 3.60788i 0.0356341 + 0.132988i
\(737\) −6.25158 3.60935i −0.230280 0.132952i
\(738\) 0 0
\(739\) 9.13725 + 2.44832i 0.336119 + 0.0900629i 0.422931 0.906162i \(-0.361001\pi\)
−0.0868119 + 0.996225i \(0.527668\pi\)
\(740\) 9.43115 16.3352i 0.346696 0.600495i
\(741\) 0 0
\(742\) 9.90340 + 17.1532i 0.363565 + 0.629713i
\(743\) 1.36869 + 5.10804i 0.0502125 + 0.187396i 0.986477 0.163901i \(-0.0524076\pi\)
−0.936264 + 0.351296i \(0.885741\pi\)
\(744\) 0 0
\(745\) 56.8174 32.8036i 2.08163 1.20183i
\(746\) −16.0506 + 16.0506i −0.587656 + 0.587656i
\(747\) 0 0
\(748\) −0.813216 3.03496i −0.0297341 0.110969i
\(749\) −0.690667 + 0.185064i −0.0252364 + 0.00676208i
\(750\) 0 0
\(751\) −13.5277 7.81023i −0.493633 0.284999i 0.232447 0.972609i \(-0.425327\pi\)
−0.726081 + 0.687610i \(0.758660\pi\)
\(752\) 6.10838 1.63674i 0.222750 0.0596856i
\(753\) 0 0
\(754\) −7.42931 30.1026i −0.270560 1.09627i
\(755\) 23.2681i 0.846813i
\(756\) 0 0
\(757\) −2.81998 4.88435i −0.102494 0.177525i 0.810218 0.586129i \(-0.199349\pi\)
−0.912712 + 0.408604i \(0.866016\pi\)
\(758\) −5.07998 8.79879i −0.184513 0.319586i
\(759\) 0 0
\(760\) 11.3265 + 11.3265i 0.410857 + 0.410857i
\(761\) 12.9764 + 12.9764i 0.470394 + 0.470394i 0.902042 0.431648i \(-0.142068\pi\)
−0.431648 + 0.902042i \(0.642068\pi\)
\(762\) 0 0
\(763\) 5.99196 + 10.3784i 0.216923 + 0.375722i
\(764\) 6.34858 + 10.9961i 0.229684 + 0.397824i
\(765\) 0 0
\(766\) 18.7184i 0.676323i
\(767\) −4.76374 19.3020i −0.172009 0.696956i
\(768\) 0 0
\(769\) −19.4642 + 5.21542i −0.701897 + 0.188073i −0.592080 0.805879i \(-0.701693\pi\)
−0.109817 + 0.993952i \(0.535026\pi\)
\(770\) 7.01786 + 4.05176i 0.252906 + 0.146015i
\(771\) 0 0
\(772\) 22.9198 6.14134i 0.824901 0.221031i
\(773\) −5.89523 22.0013i −0.212037 0.791331i −0.987189 0.159557i \(-0.948994\pi\)
0.775152 0.631774i \(-0.217673\pi\)
\(774\) 0 0
\(775\) 18.0507 18.0507i 0.648402 0.648402i
\(776\) −14.6495 + 8.45787i −0.525885 + 0.303620i
\(777\) 0 0
\(778\) −5.68375 21.2120i −0.203772 0.760489i
\(779\) 27.7158 + 48.0051i 0.993020 + 1.71996i
\(780\) 0 0
\(781\) −2.79732 + 4.84510i −0.100096 + 0.173371i
\(782\) −12.9947 3.48191i −0.464688 0.124513i
\(783\) 0 0
\(784\) −1.43675 0.829510i −0.0513126 0.0296254i
\(785\) 8.51380 + 31.7740i 0.303871 + 1.13406i
\(786\) 0 0
\(787\) 39.3475 39.3475i 1.40259 1.40259i 0.610802 0.791784i \(-0.290847\pi\)
0.791784 0.610802i \(-0.209153\pi\)
\(788\) 1.38307 5.16169i 0.0492699 0.183878i
\(789\) 0 0
\(790\) 8.24997i 0.293521i
\(791\) −2.32816 + 8.68882i −0.0827799 + 0.308939i
\(792\) 0 0
\(793\) −0.455446 + 22.9592i −0.0161734 + 0.815303i
\(794\) −3.03923 1.75470i −0.107858 0.0622721i
\(795\) 0 0
\(796\) −4.29806 + 7.44445i −0.152341 + 0.263862i
\(797\) 13.2860 0.470613 0.235306 0.971921i \(-0.424391\pi\)
0.235306 + 0.971921i \(0.424391\pi\)
\(798\) 0 0
\(799\) −5.89510 + 22.0008i −0.208554 + 0.778333i
\(800\) 4.79601 1.28509i 0.169565 0.0454347i
\(801\) 0 0
\(802\) −1.25974 + 2.18194i −0.0444831 + 0.0770470i
\(803\) 13.1290 0.463313
\(804\) 0 0
\(805\) 30.0480 17.3482i 1.05905 0.611445i
\(806\) 0.367655 18.5336i 0.0129501 0.652819i
\(807\) 0 0
\(808\) −3.65055 3.65055i −0.128426 0.128426i
\(809\) −27.6216 + 15.9473i −0.971122 + 0.560678i −0.899578 0.436760i \(-0.856126\pi\)
−0.0715440 + 0.997437i \(0.522793\pi\)
\(810\) 0 0
\(811\) −3.25912 3.25912i −0.114443 0.114443i 0.647566 0.762009i \(-0.275787\pi\)
−0.762009 + 0.647566i \(0.775787\pi\)
\(812\) −24.4427 6.54940i −0.857771 0.229839i
\(813\) 0 0
\(814\) 5.03492 + 1.34910i 0.176474 + 0.0472860i
\(815\) 21.5310i 0.754197i
\(816\) 0 0
\(817\) −22.7329 + 22.7329i −0.795325 + 0.795325i
\(818\) −17.2470 −0.603027
\(819\) 0 0
\(820\) 34.4850 1.20427
\(821\) 32.7511 32.7511i 1.14302 1.14302i 0.155128 0.987894i \(-0.450421\pi\)
0.987894 0.155128i \(-0.0495789\pi\)
\(822\) 0 0
\(823\) 9.92250i 0.345877i 0.984933 + 0.172938i \(0.0553261\pi\)
−0.984933 + 0.172938i \(0.944674\pi\)
\(824\) −8.91374 2.38843i −0.310525 0.0832049i
\(825\) 0 0
\(826\) −15.6729 4.19953i −0.545329 0.146120i
\(827\) −16.5758 16.5758i −0.576398 0.576398i 0.357511 0.933909i \(-0.383625\pi\)
−0.933909 + 0.357511i \(0.883625\pi\)
\(828\) 0 0
\(829\) −29.4031 + 16.9759i −1.02121 + 0.589598i −0.914455 0.404687i \(-0.867380\pi\)
−0.106758 + 0.994285i \(0.534047\pi\)
\(830\) −25.6051 25.6051i −0.888765 0.888765i
\(831\) 0 0
\(832\) 1.86435 3.08613i 0.0646347 0.106992i
\(833\) 5.17482 2.98768i 0.179297 0.103517i
\(834\) 0 0
\(835\) −43.4433 −1.50342
\(836\) −2.21328 + 3.83351i −0.0765478 + 0.132585i
\(837\) 0 0
\(838\) −18.1260 + 4.85685i −0.626152 + 0.167777i
\(839\) 0.559089 2.08655i 0.0193019 0.0720357i −0.955603 0.294657i \(-0.904795\pi\)
0.974905 + 0.222621i \(0.0714613\pi\)
\(840\) 0 0
\(841\) −44.9507 −1.55002
\(842\) 11.9748 20.7409i 0.412678 0.714780i
\(843\) 0 0
\(844\) −8.43636 4.87073i −0.290391 0.167658i
\(845\) −9.04100 40.0297i −0.311020 1.37706i
\(846\) 0 0
\(847\) 7.79808 29.1028i 0.267945 0.999985i
\(848\) 6.73100i 0.231144i
\(849\) 0 0
\(850\) −4.62856 + 17.2740i −0.158758 + 0.592493i
\(851\) 15.7814 15.7814i 0.540979 0.540979i
\(852\) 0 0
\(853\) 10.0355 + 37.4530i 0.343609 + 1.28237i 0.894229 + 0.447611i \(0.147725\pi\)
−0.550619 + 0.834756i \(0.685608\pi\)
\(854\) 16.2306 + 9.37074i 0.555400 + 0.320660i
\(855\) 0 0
\(856\) −0.234711 0.0628908i −0.00802227 0.00214956i
\(857\) −9.92497 + 17.1906i −0.339031 + 0.587218i −0.984251 0.176779i \(-0.943432\pi\)
0.645220 + 0.763997i \(0.276766\pi\)
\(858\) 0 0
\(859\) −6.14228 10.6387i −0.209572 0.362989i 0.742008 0.670391i \(-0.233874\pi\)
−0.951580 + 0.307402i \(0.900540\pi\)
\(860\) 5.17655 + 19.3191i 0.176519 + 0.658777i
\(861\) 0 0
\(862\) −0.663458 + 0.383048i −0.0225975 + 0.0130467i
\(863\) 30.8583 30.8583i 1.05043 1.05043i 0.0517694 0.998659i \(-0.483514\pi\)
0.998659 0.0517694i \(-0.0164861\pi\)
\(864\) 0 0
\(865\) 3.31721 + 12.3800i 0.112789 + 0.420932i
\(866\) −13.7916 + 3.69544i −0.468656 + 0.125576i
\(867\) 0 0
\(868\) −13.1020 7.56446i −0.444712 0.256755i
\(869\) −2.20216 + 0.590068i −0.0747033 + 0.0200167i
\(870\) 0 0
\(871\) 28.6601 + 8.29207i 0.971111 + 0.280966i
\(872\) 4.07253i 0.137913i
\(873\) 0 0
\(874\) 9.47649 + 16.4138i 0.320547 + 0.555204i
\(875\) 0.161660 + 0.280004i 0.00546511 + 0.00946585i
\(876\) 0 0
\(877\) 22.6846 + 22.6846i 0.766004 + 0.766004i 0.977400 0.211396i \(-0.0678011\pi\)
−0.211396 + 0.977400i \(0.567801\pi\)
\(878\) −8.97204 8.97204i −0.302792 0.302792i
\(879\) 0 0
\(880\) 1.37692 + 2.38490i 0.0464160 + 0.0803949i
\(881\) 7.71084 + 13.3556i 0.259785 + 0.449960i 0.966184 0.257853i \(-0.0830151\pi\)
−0.706399 + 0.707813i \(0.749682\pi\)
\(882\) 0 0
\(883\) 37.0096i 1.24547i −0.782432 0.622736i \(-0.786021\pi\)
0.782432 0.622736i \(-0.213979\pi\)
\(884\) 6.26881 + 11.3730i 0.210843 + 0.382516i
\(885\) 0 0
\(886\) 10.0435 2.69114i 0.337418 0.0904108i
\(887\) 7.62537 + 4.40251i 0.256035 + 0.147822i 0.622524 0.782600i \(-0.286107\pi\)
−0.366490 + 0.930422i \(0.619440\pi\)
\(888\) 0 0
\(889\) 54.3434 14.5613i 1.82262 0.488369i
\(890\) 6.63534 + 24.7634i 0.222417 + 0.830072i
\(891\) 0 0
\(892\) 13.4223 13.4223i 0.449412 0.449412i
\(893\) 27.7896 16.0443i 0.929943 0.536903i
\(894\) 0 0
\(895\) −15.8609 59.1936i −0.530171 1.97862i
\(896\) −1.47131 2.54838i −0.0491530 0.0851356i
\(897\) 0 0
\(898\) −4.61489 + 7.99323i −0.154001 + 0.266738i
\(899\) −42.7060 11.4430i −1.42432 0.381646i
\(900\) 0 0
\(901\) −20.9954 12.1217i −0.699457 0.403832i
\(902\) 2.46649 + 9.20508i 0.0821253 + 0.306496i
\(903\) 0 0
\(904\) −2.16156 + 2.16156i −0.0718925 + 0.0718925i
\(905\) −0.0803021 + 0.299691i −0.00266933 + 0.00996208i
\(906\) 0 0
\(907\) 35.2836i 1.17157i 0.810465 + 0.585787i \(0.199215\pi\)
−0.810465 + 0.585787i \(0.800785\pi\)
\(908\) 4.00365 14.9418i 0.132866 0.495861i
\(909\) 0 0
\(910\) −32.1731 9.30845i −1.06653 0.308572i
\(911\) −28.0830 16.2137i −0.930431 0.537185i −0.0434832 0.999054i \(-0.513845\pi\)
−0.886948 + 0.461870i \(0.847179\pi\)
\(912\) 0 0
\(913\) 5.00339 8.66613i 0.165588 0.286807i
\(914\) 8.70546 0.287951
\(915\) 0 0
\(916\) −3.92348 + 14.6426i −0.129635 + 0.483806i
\(917\) 35.1083 9.40725i 1.15938 0.310655i
\(918\) 0 0
\(919\) −14.7996 + 25.6336i −0.488193 + 0.845575i −0.999908 0.0135801i \(-0.995677\pi\)
0.511715 + 0.859155i \(0.329011\pi\)
\(920\) 11.7910 0.388738
\(921\) 0 0
\(922\) 9.05081 5.22549i 0.298072 0.172092i
\(923\) 6.42652 22.2122i 0.211531 0.731122i
\(924\) 0 0
\(925\) −20.9784 20.9784i −0.689767 0.689767i
\(926\) −4.85852 + 2.80507i −0.159661 + 0.0921802i
\(927\) 0 0
\(928\) −6.08073 6.08073i −0.199610 0.199610i
\(929\) −22.5602 6.04499i −0.740177 0.198330i −0.131020 0.991380i \(-0.541825\pi\)
−0.609157 + 0.793050i \(0.708492\pi\)
\(930\) 0 0
\(931\) −8.13139 2.17880i −0.266496 0.0714073i
\(932\) 11.5129i 0.377118i
\(933\) 0 0
\(934\) 8.39594 8.39594i 0.274724 0.274724i
\(935\) −9.91865 −0.324374
\(936\) 0 0
\(937\) 13.0003 0.424700 0.212350 0.977194i \(-0.431888\pi\)
0.212350 + 0.977194i \(0.431888\pi\)
\(938\) 17.2180 17.2180i 0.562187 0.562187i
\(939\) 0 0
\(940\) 19.9630i 0.651120i
\(941\) −29.9063 8.01337i −0.974918 0.261229i −0.264015 0.964519i \(-0.585047\pi\)
−0.710903 + 0.703290i \(0.751714\pi\)
\(942\) 0 0
\(943\) 39.4130 + 10.5607i 1.28346 + 0.343903i
\(944\) −3.89902 3.89902i −0.126902 0.126902i
\(945\) 0 0
\(946\) −4.78661 + 2.76355i −0.155626 + 0.0898509i
\(947\) −14.5173 14.5173i −0.471747 0.471747i 0.430732 0.902480i \(-0.358255\pi\)
−0.902480 + 0.430732i \(0.858255\pi\)
\(948\) 0 0
\(949\) −52.6827 + 13.0021i −1.71015 + 0.422066i
\(950\) 21.8191 12.5972i 0.707904 0.408709i
\(951\) 0 0
\(952\) 10.5986 0.343502
\(953\) −17.8354 + 30.8919i −0.577747 + 1.00069i 0.417990 + 0.908451i \(0.362735\pi\)
−0.995737 + 0.0922353i \(0.970599\pi\)
\(954\) 0 0
\(955\) 38.7163 10.3740i 1.25283 0.335695i
\(956\) −1.04280 + 3.89177i −0.0337264 + 0.125869i
\(957\) 0 0
\(958\) 31.4187 1.01509
\(959\) −10.2300 + 17.7188i −0.330343 + 0.572171i
\(960\) 0 0
\(961\) 3.95508 + 2.28347i 0.127583 + 0.0736602i
\(962\) −21.5396 0.427286i −0.694466 0.0137763i
\(963\) 0 0
\(964\) −3.83319 + 14.3057i −0.123459 + 0.460754i
\(965\) 74.9048i 2.41127i
\(966\) 0 0
\(967\) −9.51213 + 35.4997i −0.305889 + 1.14159i 0.626288 + 0.779592i \(0.284574\pi\)
−0.932177 + 0.362003i \(0.882093\pi\)
\(968\) 7.24006 7.24006i 0.232704 0.232704i
\(969\) 0 0
\(970\) 13.8207 + 51.5796i 0.443756 + 1.65612i
\(971\) 2.23727 + 1.29169i 0.0717976 + 0.0414523i 0.535469 0.844555i \(-0.320135\pi\)
−0.463671 + 0.886007i \(0.653468\pi\)
\(972\) 0 0
\(973\) −16.1480 4.32684i −0.517680 0.138712i
\(974\) 13.4282 23.2584i 0.430268 0.745246i
\(975\) 0 0
\(976\) 3.18449 + 5.51569i 0.101933 + 0.176553i
\(977\) 8.15477 + 30.4340i 0.260894 + 0.973671i 0.964716 + 0.263294i \(0.0848089\pi\)
−0.703821 + 0.710377i \(0.748524\pi\)
\(978\) 0 0
\(979\) −6.13552 + 3.54235i −0.196092 + 0.113214i
\(980\) −3.70322 + 3.70322i −0.118295 + 0.118295i
\(981\) 0 0
\(982\) −0.692234 2.58345i −0.0220901 0.0824413i
\(983\) −25.7225 + 6.89232i −0.820420 + 0.219831i −0.644530 0.764579i \(-0.722947\pi\)
−0.175890 + 0.984410i \(0.556280\pi\)
\(984\) 0 0
\(985\) −14.6090 8.43454i −0.465483 0.268747i
\(986\) 29.9177 8.01642i 0.952773 0.255295i
\(987\) 0 0
\(988\) 5.08475 17.5746i 0.161767 0.559122i
\(989\) 23.6652i 0.752508i
\(990\) 0 0
\(991\) −12.7440 22.0732i −0.404826 0.701179i 0.589475 0.807787i \(-0.299335\pi\)
−0.994301 + 0.106607i \(0.966001\pi\)
\(992\) −2.57066 4.45251i −0.0816184 0.141367i
\(993\) 0 0
\(994\) −13.3443 13.3443i −0.423254 0.423254i
\(995\) 19.1880 + 19.1880i 0.608301 + 0.608301i
\(996\) 0 0
\(997\) −3.21008 5.56002i −0.101664 0.176087i 0.810706 0.585453i \(-0.199083\pi\)
−0.912370 + 0.409366i \(0.865750\pi\)
\(998\) −2.23670 3.87408i −0.0708016 0.122632i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.bb.a.89.1 56
3.2 odd 2 234.2.y.a.11.11 56
9.4 even 3 234.2.z.a.167.2 yes 56
9.5 odd 6 702.2.bc.a.557.8 56
13.6 odd 12 702.2.bc.a.305.8 56
39.32 even 12 234.2.z.a.227.2 yes 56
117.32 even 12 inner 702.2.bb.a.71.1 56
117.58 odd 12 234.2.y.a.149.11 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.y.a.11.11 56 3.2 odd 2
234.2.y.a.149.11 yes 56 117.58 odd 12
234.2.z.a.167.2 yes 56 9.4 even 3
234.2.z.a.227.2 yes 56 39.32 even 12
702.2.bb.a.71.1 56 117.32 even 12 inner
702.2.bb.a.89.1 56 1.1 even 1 trivial
702.2.bc.a.305.8 56 13.6 odd 12
702.2.bc.a.557.8 56 9.5 odd 6