Properties

Label 702.2.b.g.649.1
Level $702$
Weight $2$
Character 702.649
Analytic conductor $5.605$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [702,2,Mod(649,702)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("702.649"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(702, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,0,0,0,0,-4,0,0,-8,4,0,4,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.1
Root \(1.58114 + 1.58114i\) of defining polynomial
Character \(\chi\) \(=\) 702.649
Dual form 702.2.b.g.649.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} -4.16228i q^{5} +4.16228i q^{7} +1.00000i q^{8} -4.16228 q^{10} -3.00000i q^{11} +(-0.418861 - 3.58114i) q^{13} +4.16228 q^{14} +1.00000 q^{16} -1.16228 q^{17} -6.00000i q^{19} +4.16228i q^{20} -3.00000 q^{22} -1.16228 q^{23} -12.3246 q^{25} +(-3.58114 + 0.418861i) q^{26} -4.16228i q^{28} -8.32456 q^{29} -1.83772i q^{31} -1.00000i q^{32} +1.16228i q^{34} +17.3246 q^{35} +8.32456i q^{37} -6.00000 q^{38} +4.16228 q^{40} +7.16228i q^{41} +3.16228 q^{43} +3.00000i q^{44} +1.16228i q^{46} -6.00000i q^{47} -10.3246 q^{49} +12.3246i q^{50} +(0.418861 + 3.58114i) q^{52} +6.48683 q^{53} -12.4868 q^{55} -4.16228 q^{56} +8.32456i q^{58} -8.32456i q^{59} -3.16228 q^{61} -1.83772 q^{62} -1.00000 q^{64} +(-14.9057 + 1.74342i) q^{65} +7.16228i q^{67} +1.16228 q^{68} -17.3246i q^{70} -9.48683i q^{71} -13.6491i q^{73} +8.32456 q^{74} +6.00000i q^{76} +12.4868 q^{77} +8.64911 q^{79} -4.16228i q^{80} +7.16228 q^{82} +5.32456i q^{83} +4.83772i q^{85} -3.16228i q^{86} +3.00000 q^{88} -9.48683i q^{89} +(14.9057 - 1.74342i) q^{91} +1.16228 q^{92} -6.00000 q^{94} -24.9737 q^{95} -3.00000i q^{97} +10.3246i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 4 q^{10} - 8 q^{13} + 4 q^{14} + 4 q^{16} + 8 q^{17} - 12 q^{22} + 8 q^{23} - 24 q^{25} - 8 q^{26} - 8 q^{29} + 44 q^{35} - 24 q^{38} + 4 q^{40} - 16 q^{49} + 8 q^{52} - 12 q^{53} - 12 q^{55}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 4.16228i 1.86143i −0.365749 0.930714i \(-0.619187\pi\)
0.365749 0.930714i \(-0.380813\pi\)
\(6\) 0 0
\(7\) 4.16228i 1.57319i 0.617467 + 0.786597i \(0.288159\pi\)
−0.617467 + 0.786597i \(0.711841\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −4.16228 −1.31623
\(11\) 3.00000i 0.904534i −0.891883 0.452267i \(-0.850615\pi\)
0.891883 0.452267i \(-0.149385\pi\)
\(12\) 0 0
\(13\) −0.418861 3.58114i −0.116171 0.993229i
\(14\) 4.16228 1.11242
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.16228 −0.281894 −0.140947 0.990017i \(-0.545015\pi\)
−0.140947 + 0.990017i \(0.545015\pi\)
\(18\) 0 0
\(19\) 6.00000i 1.37649i −0.725476 0.688247i \(-0.758380\pi\)
0.725476 0.688247i \(-0.241620\pi\)
\(20\) 4.16228i 0.930714i
\(21\) 0 0
\(22\) −3.00000 −0.639602
\(23\) −1.16228 −0.242352 −0.121176 0.992631i \(-0.538666\pi\)
−0.121176 + 0.992631i \(0.538666\pi\)
\(24\) 0 0
\(25\) −12.3246 −2.46491
\(26\) −3.58114 + 0.418861i −0.702319 + 0.0821454i
\(27\) 0 0
\(28\) 4.16228i 0.786597i
\(29\) −8.32456 −1.54583 −0.772916 0.634509i \(-0.781202\pi\)
−0.772916 + 0.634509i \(0.781202\pi\)
\(30\) 0 0
\(31\) 1.83772i 0.330065i −0.986288 0.165032i \(-0.947227\pi\)
0.986288 0.165032i \(-0.0527729\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 1.16228i 0.199329i
\(35\) 17.3246 2.92838
\(36\) 0 0
\(37\) 8.32456i 1.36855i 0.729225 + 0.684274i \(0.239881\pi\)
−0.729225 + 0.684274i \(0.760119\pi\)
\(38\) −6.00000 −0.973329
\(39\) 0 0
\(40\) 4.16228 0.658114
\(41\) 7.16228i 1.11856i 0.828979 + 0.559280i \(0.188922\pi\)
−0.828979 + 0.559280i \(0.811078\pi\)
\(42\) 0 0
\(43\) 3.16228 0.482243 0.241121 0.970495i \(-0.422485\pi\)
0.241121 + 0.970495i \(0.422485\pi\)
\(44\) 3.00000i 0.452267i
\(45\) 0 0
\(46\) 1.16228i 0.171368i
\(47\) 6.00000i 0.875190i −0.899172 0.437595i \(-0.855830\pi\)
0.899172 0.437595i \(-0.144170\pi\)
\(48\) 0 0
\(49\) −10.3246 −1.47494
\(50\) 12.3246i 1.74296i
\(51\) 0 0
\(52\) 0.418861 + 3.58114i 0.0580856 + 0.496615i
\(53\) 6.48683 0.891035 0.445518 0.895273i \(-0.353020\pi\)
0.445518 + 0.895273i \(0.353020\pi\)
\(54\) 0 0
\(55\) −12.4868 −1.68372
\(56\) −4.16228 −0.556208
\(57\) 0 0
\(58\) 8.32456i 1.09307i
\(59\) 8.32456i 1.08376i −0.840454 0.541882i \(-0.817712\pi\)
0.840454 0.541882i \(-0.182288\pi\)
\(60\) 0 0
\(61\) −3.16228 −0.404888 −0.202444 0.979294i \(-0.564888\pi\)
−0.202444 + 0.979294i \(0.564888\pi\)
\(62\) −1.83772 −0.233391
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −14.9057 + 1.74342i −1.84882 + 0.216244i
\(66\) 0 0
\(67\) 7.16228i 0.875011i 0.899216 + 0.437506i \(0.144138\pi\)
−0.899216 + 0.437506i \(0.855862\pi\)
\(68\) 1.16228 0.140947
\(69\) 0 0
\(70\) 17.3246i 2.07068i
\(71\) 9.48683i 1.12588i −0.826498 0.562940i \(-0.809670\pi\)
0.826498 0.562940i \(-0.190330\pi\)
\(72\) 0 0
\(73\) 13.6491i 1.59751i −0.601658 0.798754i \(-0.705493\pi\)
0.601658 0.798754i \(-0.294507\pi\)
\(74\) 8.32456 0.967710
\(75\) 0 0
\(76\) 6.00000i 0.688247i
\(77\) 12.4868 1.42301
\(78\) 0 0
\(79\) 8.64911 0.973101 0.486550 0.873652i \(-0.338255\pi\)
0.486550 + 0.873652i \(0.338255\pi\)
\(80\) 4.16228i 0.465357i
\(81\) 0 0
\(82\) 7.16228 0.790941
\(83\) 5.32456i 0.584446i 0.956350 + 0.292223i \(0.0943949\pi\)
−0.956350 + 0.292223i \(0.905605\pi\)
\(84\) 0 0
\(85\) 4.83772i 0.524725i
\(86\) 3.16228i 0.340997i
\(87\) 0 0
\(88\) 3.00000 0.319801
\(89\) 9.48683i 1.00560i −0.864402 0.502801i \(-0.832303\pi\)
0.864402 0.502801i \(-0.167697\pi\)
\(90\) 0 0
\(91\) 14.9057 1.74342i 1.56254 0.182760i
\(92\) 1.16228 0.121176
\(93\) 0 0
\(94\) −6.00000 −0.618853
\(95\) −24.9737 −2.56224
\(96\) 0 0
\(97\) 3.00000i 0.304604i −0.988334 0.152302i \(-0.951331\pi\)
0.988334 0.152302i \(-0.0486686\pi\)
\(98\) 10.3246i 1.04294i
\(99\) 0 0
\(100\) 12.3246 1.23246
\(101\) −1.83772 −0.182860 −0.0914301 0.995811i \(-0.529144\pi\)
−0.0914301 + 0.995811i \(0.529144\pi\)
\(102\) 0 0
\(103\) 14.0000 1.37946 0.689730 0.724066i \(-0.257729\pi\)
0.689730 + 0.724066i \(0.257729\pi\)
\(104\) 3.58114 0.418861i 0.351160 0.0410727i
\(105\) 0 0
\(106\) 6.48683i 0.630057i
\(107\) 6.67544 0.645340 0.322670 0.946512i \(-0.395420\pi\)
0.322670 + 0.946512i \(0.395420\pi\)
\(108\) 0 0
\(109\) 10.8377i 1.03807i −0.854754 0.519033i \(-0.826292\pi\)
0.854754 0.519033i \(-0.173708\pi\)
\(110\) 12.4868i 1.19057i
\(111\) 0 0
\(112\) 4.16228i 0.393298i
\(113\) 7.16228 0.673770 0.336885 0.941546i \(-0.390627\pi\)
0.336885 + 0.941546i \(0.390627\pi\)
\(114\) 0 0
\(115\) 4.83772i 0.451120i
\(116\) 8.32456 0.772916
\(117\) 0 0
\(118\) −8.32456 −0.766337
\(119\) 4.83772i 0.443473i
\(120\) 0 0
\(121\) 2.00000 0.181818
\(122\) 3.16228i 0.286299i
\(123\) 0 0
\(124\) 1.83772i 0.165032i
\(125\) 30.4868i 2.72683i
\(126\) 0 0
\(127\) −6.16228 −0.546814 −0.273407 0.961898i \(-0.588151\pi\)
−0.273407 + 0.961898i \(0.588151\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 1.74342 + 14.9057i 0.152908 + 1.30732i
\(131\) 5.32456 0.465209 0.232604 0.972571i \(-0.425275\pi\)
0.232604 + 0.972571i \(0.425275\pi\)
\(132\) 0 0
\(133\) 24.9737 2.16549
\(134\) 7.16228 0.618727
\(135\) 0 0
\(136\) 1.16228i 0.0996645i
\(137\) 8.32456i 0.711215i −0.934635 0.355607i \(-0.884274\pi\)
0.934635 0.355607i \(-0.115726\pi\)
\(138\) 0 0
\(139\) 9.16228 0.777134 0.388567 0.921420i \(-0.372970\pi\)
0.388567 + 0.921420i \(0.372970\pi\)
\(140\) −17.3246 −1.46419
\(141\) 0 0
\(142\) −9.48683 −0.796117
\(143\) −10.7434 + 1.25658i −0.898410 + 0.105081i
\(144\) 0 0
\(145\) 34.6491i 2.87745i
\(146\) −13.6491 −1.12961
\(147\) 0 0
\(148\) 8.32456i 0.684274i
\(149\) 14.8114i 1.21340i 0.794932 + 0.606698i \(0.207506\pi\)
−0.794932 + 0.606698i \(0.792494\pi\)
\(150\) 0 0
\(151\) 10.1623i 0.826994i 0.910505 + 0.413497i \(0.135693\pi\)
−0.910505 + 0.413497i \(0.864307\pi\)
\(152\) 6.00000 0.486664
\(153\) 0 0
\(154\) 12.4868i 1.00622i
\(155\) −7.64911 −0.614391
\(156\) 0 0
\(157\) 5.67544 0.452950 0.226475 0.974017i \(-0.427280\pi\)
0.226475 + 0.974017i \(0.427280\pi\)
\(158\) 8.64911i 0.688086i
\(159\) 0 0
\(160\) −4.16228 −0.329057
\(161\) 4.83772i 0.381266i
\(162\) 0 0
\(163\) 9.67544i 0.757839i 0.925430 + 0.378920i \(0.123704\pi\)
−0.925430 + 0.378920i \(0.876296\pi\)
\(164\) 7.16228i 0.559280i
\(165\) 0 0
\(166\) 5.32456 0.413266
\(167\) 15.4868i 1.19841i −0.800597 0.599204i \(-0.795484\pi\)
0.800597 0.599204i \(-0.204516\pi\)
\(168\) 0 0
\(169\) −12.6491 + 3.00000i −0.973009 + 0.230769i
\(170\) 4.83772 0.371036
\(171\) 0 0
\(172\) −3.16228 −0.241121
\(173\) 6.48683 0.493185 0.246592 0.969119i \(-0.420689\pi\)
0.246592 + 0.969119i \(0.420689\pi\)
\(174\) 0 0
\(175\) 51.2982i 3.87778i
\(176\) 3.00000i 0.226134i
\(177\) 0 0
\(178\) −9.48683 −0.711068
\(179\) −3.00000 −0.224231 −0.112115 0.993695i \(-0.535763\pi\)
−0.112115 + 0.993695i \(0.535763\pi\)
\(180\) 0 0
\(181\) 22.1359 1.64535 0.822676 0.568511i \(-0.192480\pi\)
0.822676 + 0.568511i \(0.192480\pi\)
\(182\) −1.74342 14.9057i −0.129231 1.10488i
\(183\) 0 0
\(184\) 1.16228i 0.0856842i
\(185\) 34.6491 2.54745
\(186\) 0 0
\(187\) 3.48683i 0.254982i
\(188\) 6.00000i 0.437595i
\(189\) 0 0
\(190\) 24.9737i 1.81178i
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 0 0
\(193\) 5.32456i 0.383270i −0.981466 0.191635i \(-0.938621\pi\)
0.981466 0.191635i \(-0.0613790\pi\)
\(194\) −3.00000 −0.215387
\(195\) 0 0
\(196\) 10.3246 0.737468
\(197\) 4.16228i 0.296550i −0.988946 0.148275i \(-0.952628\pi\)
0.988946 0.148275i \(-0.0473721\pi\)
\(198\) 0 0
\(199\) 2.16228 0.153280 0.0766399 0.997059i \(-0.475581\pi\)
0.0766399 + 0.997059i \(0.475581\pi\)
\(200\) 12.3246i 0.871478i
\(201\) 0 0
\(202\) 1.83772i 0.129302i
\(203\) 34.6491i 2.43189i
\(204\) 0 0
\(205\) 29.8114 2.08212
\(206\) 14.0000i 0.975426i
\(207\) 0 0
\(208\) −0.418861 3.58114i −0.0290428 0.248307i
\(209\) −18.0000 −1.24509
\(210\) 0 0
\(211\) −4.32456 −0.297715 −0.148857 0.988859i \(-0.547560\pi\)
−0.148857 + 0.988859i \(0.547560\pi\)
\(212\) −6.48683 −0.445518
\(213\) 0 0
\(214\) 6.67544i 0.456324i
\(215\) 13.1623i 0.897660i
\(216\) 0 0
\(217\) 7.64911 0.519255
\(218\) −10.8377 −0.734023
\(219\) 0 0
\(220\) 12.4868 0.841862
\(221\) 0.486833 + 4.16228i 0.0327479 + 0.279985i
\(222\) 0 0
\(223\) 28.6491i 1.91849i 0.282582 + 0.959243i \(0.408809\pi\)
−0.282582 + 0.959243i \(0.591191\pi\)
\(224\) 4.16228 0.278104
\(225\) 0 0
\(226\) 7.16228i 0.476428i
\(227\) 22.6491i 1.50327i −0.659577 0.751637i \(-0.729264\pi\)
0.659577 0.751637i \(-0.270736\pi\)
\(228\) 0 0
\(229\) 20.3246i 1.34308i −0.740966 0.671542i \(-0.765632\pi\)
0.740966 0.671542i \(-0.234368\pi\)
\(230\) 4.83772 0.318990
\(231\) 0 0
\(232\) 8.32456i 0.546534i
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) −24.9737 −1.62910
\(236\) 8.32456i 0.541882i
\(237\) 0 0
\(238\) −4.83772 −0.313583
\(239\) 22.8377i 1.47725i 0.674117 + 0.738625i \(0.264524\pi\)
−0.674117 + 0.738625i \(0.735476\pi\)
\(240\) 0 0
\(241\) 1.35089i 0.0870184i 0.999053 + 0.0435092i \(0.0138538\pi\)
−0.999053 + 0.0435092i \(0.986146\pi\)
\(242\) 2.00000i 0.128565i
\(243\) 0 0
\(244\) 3.16228 0.202444
\(245\) 42.9737i 2.74549i
\(246\) 0 0
\(247\) −21.4868 + 2.51317i −1.36717 + 0.159909i
\(248\) 1.83772 0.116695
\(249\) 0 0
\(250\) 30.4868 1.92816
\(251\) 10.6491 0.672166 0.336083 0.941832i \(-0.390898\pi\)
0.336083 + 0.941832i \(0.390898\pi\)
\(252\) 0 0
\(253\) 3.48683i 0.219215i
\(254\) 6.16228i 0.386656i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −27.4868 −1.71458 −0.857291 0.514833i \(-0.827854\pi\)
−0.857291 + 0.514833i \(0.827854\pi\)
\(258\) 0 0
\(259\) −34.6491 −2.15299
\(260\) 14.9057 1.74342i 0.924412 0.108122i
\(261\) 0 0
\(262\) 5.32456i 0.328952i
\(263\) 6.00000 0.369976 0.184988 0.982741i \(-0.440775\pi\)
0.184988 + 0.982741i \(0.440775\pi\)
\(264\) 0 0
\(265\) 27.0000i 1.65860i
\(266\) 24.9737i 1.53123i
\(267\) 0 0
\(268\) 7.16228i 0.437506i
\(269\) −26.3246 −1.60504 −0.802518 0.596628i \(-0.796507\pi\)
−0.802518 + 0.596628i \(0.796507\pi\)
\(270\) 0 0
\(271\) 7.83772i 0.476108i 0.971252 + 0.238054i \(0.0765095\pi\)
−0.971252 + 0.238054i \(0.923491\pi\)
\(272\) −1.16228 −0.0704734
\(273\) 0 0
\(274\) −8.32456 −0.502905
\(275\) 36.9737i 2.22960i
\(276\) 0 0
\(277\) −3.81139 −0.229004 −0.114502 0.993423i \(-0.536527\pi\)
−0.114502 + 0.993423i \(0.536527\pi\)
\(278\) 9.16228i 0.549517i
\(279\) 0 0
\(280\) 17.3246i 1.03534i
\(281\) 17.8114i 1.06254i 0.847203 + 0.531269i \(0.178285\pi\)
−0.847203 + 0.531269i \(0.821715\pi\)
\(282\) 0 0
\(283\) 25.4868 1.51503 0.757517 0.652815i \(-0.226412\pi\)
0.757517 + 0.652815i \(0.226412\pi\)
\(284\) 9.48683i 0.562940i
\(285\) 0 0
\(286\) 1.25658 + 10.7434i 0.0743033 + 0.635272i
\(287\) −29.8114 −1.75971
\(288\) 0 0
\(289\) −15.6491 −0.920536
\(290\) 34.6491 2.03467
\(291\) 0 0
\(292\) 13.6491i 0.798754i
\(293\) 22.6491i 1.32318i 0.749868 + 0.661588i \(0.230117\pi\)
−0.749868 + 0.661588i \(0.769883\pi\)
\(294\) 0 0
\(295\) −34.6491 −2.01735
\(296\) −8.32456 −0.483855
\(297\) 0 0
\(298\) 14.8114 0.858001
\(299\) 0.486833 + 4.16228i 0.0281543 + 0.240711i
\(300\) 0 0
\(301\) 13.1623i 0.758661i
\(302\) 10.1623 0.584773
\(303\) 0 0
\(304\) 6.00000i 0.344124i
\(305\) 13.1623i 0.753670i
\(306\) 0 0
\(307\) 22.8377i 1.30342i −0.758469 0.651709i \(-0.774052\pi\)
0.758469 0.651709i \(-0.225948\pi\)
\(308\) −12.4868 −0.711503
\(309\) 0 0
\(310\) 7.64911i 0.434440i
\(311\) 13.1623 0.746364 0.373182 0.927758i \(-0.378267\pi\)
0.373182 + 0.927758i \(0.378267\pi\)
\(312\) 0 0
\(313\) −17.0000 −0.960897 −0.480448 0.877023i \(-0.659526\pi\)
−0.480448 + 0.877023i \(0.659526\pi\)
\(314\) 5.67544i 0.320284i
\(315\) 0 0
\(316\) −8.64911 −0.486550
\(317\) 0.486833i 0.0273433i −0.999907 0.0136716i \(-0.995648\pi\)
0.999907 0.0136716i \(-0.00435195\pi\)
\(318\) 0 0
\(319\) 24.9737i 1.39826i
\(320\) 4.16228i 0.232678i
\(321\) 0 0
\(322\) −4.83772 −0.269596
\(323\) 6.97367i 0.388025i
\(324\) 0 0
\(325\) 5.16228 + 44.1359i 0.286352 + 2.44822i
\(326\) 9.67544 0.535873
\(327\) 0 0
\(328\) −7.16228 −0.395471
\(329\) 24.9737 1.37684
\(330\) 0 0
\(331\) 19.1623i 1.05325i −0.850096 0.526627i \(-0.823456\pi\)
0.850096 0.526627i \(-0.176544\pi\)
\(332\) 5.32456i 0.292223i
\(333\) 0 0
\(334\) −15.4868 −0.847402
\(335\) 29.8114 1.62877
\(336\) 0 0
\(337\) 4.00000 0.217894 0.108947 0.994048i \(-0.465252\pi\)
0.108947 + 0.994048i \(0.465252\pi\)
\(338\) 3.00000 + 12.6491i 0.163178 + 0.688021i
\(339\) 0 0
\(340\) 4.83772i 0.262362i
\(341\) −5.51317 −0.298555
\(342\) 0 0
\(343\) 13.8377i 0.747167i
\(344\) 3.16228i 0.170499i
\(345\) 0 0
\(346\) 6.48683i 0.348734i
\(347\) −9.97367 −0.535414 −0.267707 0.963500i \(-0.586266\pi\)
−0.267707 + 0.963500i \(0.586266\pi\)
\(348\) 0 0
\(349\) 15.2982i 0.818895i 0.912334 + 0.409448i \(0.134279\pi\)
−0.912334 + 0.409448i \(0.865721\pi\)
\(350\) −51.2982 −2.74201
\(351\) 0 0
\(352\) −3.00000 −0.159901
\(353\) 26.1359i 1.39108i −0.718489 0.695538i \(-0.755166\pi\)
0.718489 0.695538i \(-0.244834\pi\)
\(354\) 0 0
\(355\) −39.4868 −2.09574
\(356\) 9.48683i 0.502801i
\(357\) 0 0
\(358\) 3.00000i 0.158555i
\(359\) 15.6754i 0.827318i 0.910432 + 0.413659i \(0.135749\pi\)
−0.910432 + 0.413659i \(0.864251\pi\)
\(360\) 0 0
\(361\) −17.0000 −0.894737
\(362\) 22.1359i 1.16344i
\(363\) 0 0
\(364\) −14.9057 + 1.74342i −0.781271 + 0.0913799i
\(365\) −56.8114 −2.97364
\(366\) 0 0
\(367\) 27.4605 1.43343 0.716713 0.697368i \(-0.245646\pi\)
0.716713 + 0.697368i \(0.245646\pi\)
\(368\) −1.16228 −0.0605879
\(369\) 0 0
\(370\) 34.6491i 1.80132i
\(371\) 27.0000i 1.40177i
\(372\) 0 0
\(373\) 13.6754 0.708088 0.354044 0.935229i \(-0.384806\pi\)
0.354044 + 0.935229i \(0.384806\pi\)
\(374\) 3.48683 0.180300
\(375\) 0 0
\(376\) 6.00000 0.309426
\(377\) 3.48683 + 29.8114i 0.179581 + 1.53536i
\(378\) 0 0
\(379\) 26.3246i 1.35220i −0.736809 0.676101i \(-0.763668\pi\)
0.736809 0.676101i \(-0.236332\pi\)
\(380\) 24.9737 1.28112
\(381\) 0 0
\(382\) 12.0000i 0.613973i
\(383\) 2.32456i 0.118779i 0.998235 + 0.0593896i \(0.0189154\pi\)
−0.998235 + 0.0593896i \(0.981085\pi\)
\(384\) 0 0
\(385\) 51.9737i 2.64882i
\(386\) −5.32456 −0.271013
\(387\) 0 0
\(388\) 3.00000i 0.152302i
\(389\) 0.486833 0.0246834 0.0123417 0.999924i \(-0.496071\pi\)
0.0123417 + 0.999924i \(0.496071\pi\)
\(390\) 0 0
\(391\) 1.35089 0.0683174
\(392\) 10.3246i 0.521469i
\(393\) 0 0
\(394\) −4.16228 −0.209693
\(395\) 36.0000i 1.81136i
\(396\) 0 0
\(397\) 4.64911i 0.233332i −0.993171 0.116666i \(-0.962779\pi\)
0.993171 0.116666i \(-0.0372207\pi\)
\(398\) 2.16228i 0.108385i
\(399\) 0 0
\(400\) −12.3246 −0.616228
\(401\) 18.9737i 0.947500i −0.880659 0.473750i \(-0.842900\pi\)
0.880659 0.473750i \(-0.157100\pi\)
\(402\) 0 0
\(403\) −6.58114 + 0.769751i −0.327830 + 0.0383440i
\(404\) 1.83772 0.0914301
\(405\) 0 0
\(406\) −34.6491 −1.71961
\(407\) 24.9737 1.23790
\(408\) 0 0
\(409\) 32.6228i 1.61309i 0.591171 + 0.806546i \(0.298666\pi\)
−0.591171 + 0.806546i \(0.701334\pi\)
\(410\) 29.8114i 1.47228i
\(411\) 0 0
\(412\) −14.0000 −0.689730
\(413\) 34.6491 1.70497
\(414\) 0 0
\(415\) 22.1623 1.08790
\(416\) −3.58114 + 0.418861i −0.175580 + 0.0205364i
\(417\) 0 0
\(418\) 18.0000i 0.880409i
\(419\) −3.67544 −0.179557 −0.0897786 0.995962i \(-0.528616\pi\)
−0.0897786 + 0.995962i \(0.528616\pi\)
\(420\) 0 0
\(421\) 31.1623i 1.51876i −0.650649 0.759378i \(-0.725503\pi\)
0.650649 0.759378i \(-0.274497\pi\)
\(422\) 4.32456i 0.210516i
\(423\) 0 0
\(424\) 6.48683i 0.315028i
\(425\) 14.3246 0.694843
\(426\) 0 0
\(427\) 13.1623i 0.636967i
\(428\) −6.67544 −0.322670
\(429\) 0 0
\(430\) −13.1623 −0.634741
\(431\) 13.3509i 0.643090i −0.946894 0.321545i \(-0.895798\pi\)
0.946894 0.321545i \(-0.104202\pi\)
\(432\) 0 0
\(433\) −11.0000 −0.528626 −0.264313 0.964437i \(-0.585145\pi\)
−0.264313 + 0.964437i \(0.585145\pi\)
\(434\) 7.64911i 0.367169i
\(435\) 0 0
\(436\) 10.8377i 0.519033i
\(437\) 6.97367i 0.333596i
\(438\) 0 0
\(439\) −14.1623 −0.675929 −0.337964 0.941159i \(-0.609738\pi\)
−0.337964 + 0.941159i \(0.609738\pi\)
\(440\) 12.4868i 0.595286i
\(441\) 0 0
\(442\) 4.16228 0.486833i 0.197979 0.0231563i
\(443\) −27.2982 −1.29698 −0.648489 0.761224i \(-0.724599\pi\)
−0.648489 + 0.761224i \(0.724599\pi\)
\(444\) 0 0
\(445\) −39.4868 −1.87186
\(446\) 28.6491 1.35657
\(447\) 0 0
\(448\) 4.16228i 0.196649i
\(449\) 12.9737i 0.612265i 0.951989 + 0.306133i \(0.0990351\pi\)
−0.951989 + 0.306133i \(0.900965\pi\)
\(450\) 0 0
\(451\) 21.4868 1.01178
\(452\) −7.16228 −0.336885
\(453\) 0 0
\(454\) −22.6491 −1.06298
\(455\) −7.25658 62.0416i −0.340194 2.90856i
\(456\) 0 0
\(457\) 6.67544i 0.312264i 0.987736 + 0.156132i \(0.0499025\pi\)
−0.987736 + 0.156132i \(0.950097\pi\)
\(458\) −20.3246 −0.949704
\(459\) 0 0
\(460\) 4.83772i 0.225560i
\(461\) 11.5132i 0.536222i 0.963388 + 0.268111i \(0.0863993\pi\)
−0.963388 + 0.268111i \(0.913601\pi\)
\(462\) 0 0
\(463\) 31.4605i 1.46209i 0.682327 + 0.731047i \(0.260968\pi\)
−0.682327 + 0.731047i \(0.739032\pi\)
\(464\) −8.32456 −0.386458
\(465\) 0 0
\(466\) 6.00000i 0.277945i
\(467\) 15.0000 0.694117 0.347059 0.937843i \(-0.387180\pi\)
0.347059 + 0.937843i \(0.387180\pi\)
\(468\) 0 0
\(469\) −29.8114 −1.37656
\(470\) 24.9737i 1.15195i
\(471\) 0 0
\(472\) 8.32456 0.383169
\(473\) 9.48683i 0.436205i
\(474\) 0 0
\(475\) 73.9473i 3.39294i
\(476\) 4.83772i 0.221737i
\(477\) 0 0
\(478\) 22.8377 1.04457
\(479\) 3.48683i 0.159317i −0.996822 0.0796587i \(-0.974617\pi\)
0.996822 0.0796587i \(-0.0253831\pi\)
\(480\) 0 0
\(481\) 29.8114 3.48683i 1.35928 0.158986i
\(482\) 1.35089 0.0615313
\(483\) 0 0
\(484\) −2.00000 −0.0909091
\(485\) −12.4868 −0.566998
\(486\) 0 0
\(487\) 12.0000i 0.543772i −0.962329 0.271886i \(-0.912353\pi\)
0.962329 0.271886i \(-0.0876473\pi\)
\(488\) 3.16228i 0.143150i
\(489\) 0 0
\(490\) 42.9737 1.94135
\(491\) 18.6754 0.842811 0.421406 0.906872i \(-0.361537\pi\)
0.421406 + 0.906872i \(0.361537\pi\)
\(492\) 0 0
\(493\) 9.67544 0.435760
\(494\) 2.51317 + 21.4868i 0.113073 + 0.966738i
\(495\) 0 0
\(496\) 1.83772i 0.0825162i
\(497\) 39.4868 1.77123
\(498\) 0 0
\(499\) 8.32456i 0.372658i 0.982487 + 0.186329i \(0.0596591\pi\)
−0.982487 + 0.186329i \(0.940341\pi\)
\(500\) 30.4868i 1.36341i
\(501\) 0 0
\(502\) 10.6491i 0.475293i
\(503\) −12.9737 −0.578467 −0.289234 0.957259i \(-0.593400\pi\)
−0.289234 + 0.957259i \(0.593400\pi\)
\(504\) 0 0
\(505\) 7.64911i 0.340381i
\(506\) 3.48683 0.155009
\(507\) 0 0
\(508\) 6.16228 0.273407
\(509\) 23.5132i 1.04220i 0.853495 + 0.521101i \(0.174479\pi\)
−0.853495 + 0.521101i \(0.825521\pi\)
\(510\) 0 0
\(511\) 56.8114 2.51319
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 27.4868i 1.21239i
\(515\) 58.2719i 2.56777i
\(516\) 0 0
\(517\) −18.0000 −0.791639
\(518\) 34.6491i 1.52239i
\(519\) 0 0
\(520\) −1.74342 14.9057i −0.0764539 0.653658i
\(521\) −42.9737 −1.88271 −0.941355 0.337417i \(-0.890447\pi\)
−0.941355 + 0.337417i \(0.890447\pi\)
\(522\) 0 0
\(523\) 33.1623 1.45009 0.725043 0.688704i \(-0.241820\pi\)
0.725043 + 0.688704i \(0.241820\pi\)
\(524\) −5.32456 −0.232604
\(525\) 0 0
\(526\) 6.00000i 0.261612i
\(527\) 2.13594i 0.0930432i
\(528\) 0 0
\(529\) −21.6491 −0.941266
\(530\) −27.0000 −1.17281
\(531\) 0 0
\(532\) −24.9737 −1.08275
\(533\) 25.6491 3.00000i 1.11099 0.129944i
\(534\) 0 0
\(535\) 27.7851i 1.20125i
\(536\) −7.16228 −0.309363
\(537\) 0 0
\(538\) 26.3246i 1.13493i
\(539\) 30.9737i 1.33413i
\(540\) 0 0
\(541\) 11.8114i 0.507811i −0.967229 0.253906i \(-0.918285\pi\)
0.967229 0.253906i \(-0.0817153\pi\)
\(542\) 7.83772 0.336659
\(543\) 0 0
\(544\) 1.16228i 0.0498322i
\(545\) −45.1096 −1.93228
\(546\) 0 0
\(547\) 31.6228 1.35209 0.676046 0.736859i \(-0.263692\pi\)
0.676046 + 0.736859i \(0.263692\pi\)
\(548\) 8.32456i 0.355607i
\(549\) 0 0
\(550\) 36.9737 1.57656
\(551\) 49.9473i 2.12783i
\(552\) 0 0
\(553\) 36.0000i 1.53088i
\(554\) 3.81139i 0.161930i
\(555\) 0 0
\(556\) −9.16228 −0.388567
\(557\) 11.5132i 0.487829i −0.969797 0.243914i \(-0.921568\pi\)
0.969797 0.243914i \(-0.0784316\pi\)
\(558\) 0 0
\(559\) −1.32456 11.3246i −0.0560227 0.478978i
\(560\) 17.3246 0.732096
\(561\) 0 0
\(562\) 17.8114 0.751328
\(563\) 1.64911 0.0695017 0.0347509 0.999396i \(-0.488936\pi\)
0.0347509 + 0.999396i \(0.488936\pi\)
\(564\) 0 0
\(565\) 29.8114i 1.25417i
\(566\) 25.4868i 1.07129i
\(567\) 0 0
\(568\) 9.48683 0.398059
\(569\) 19.3509 0.811231 0.405616 0.914044i \(-0.367057\pi\)
0.405616 + 0.914044i \(0.367057\pi\)
\(570\) 0 0
\(571\) −2.18861 −0.0915905 −0.0457953 0.998951i \(-0.514582\pi\)
−0.0457953 + 0.998951i \(0.514582\pi\)
\(572\) 10.7434 1.25658i 0.449205 0.0525404i
\(573\) 0 0
\(574\) 29.8114i 1.24430i
\(575\) 14.3246 0.597375
\(576\) 0 0
\(577\) 35.6228i 1.48300i −0.670955 0.741498i \(-0.734116\pi\)
0.670955 0.741498i \(-0.265884\pi\)
\(578\) 15.6491i 0.650917i
\(579\) 0 0
\(580\) 34.6491i 1.43873i
\(581\) −22.1623 −0.919446
\(582\) 0 0
\(583\) 19.4605i 0.805972i
\(584\) 13.6491 0.564804
\(585\) 0 0
\(586\) 22.6491 0.935626
\(587\) 6.29822i 0.259955i −0.991517 0.129978i \(-0.958509\pi\)
0.991517 0.129978i \(-0.0414906\pi\)
\(588\) 0 0
\(589\) −11.0263 −0.454332
\(590\) 34.6491i 1.42648i
\(591\) 0 0
\(592\) 8.32456i 0.342137i
\(593\) 14.1359i 0.580494i −0.956952 0.290247i \(-0.906263\pi\)
0.956952 0.290247i \(-0.0937374\pi\)
\(594\) 0 0
\(595\) −20.1359 −0.825493
\(596\) 14.8114i 0.606698i
\(597\) 0 0
\(598\) 4.16228 0.486833i 0.170208 0.0199081i
\(599\) 27.4868 1.12308 0.561541 0.827449i \(-0.310209\pi\)
0.561541 + 0.827449i \(0.310209\pi\)
\(600\) 0 0
\(601\) −30.9473 −1.26237 −0.631184 0.775633i \(-0.717431\pi\)
−0.631184 + 0.775633i \(0.717431\pi\)
\(602\) 13.1623 0.536454
\(603\) 0 0
\(604\) 10.1623i 0.413497i
\(605\) 8.32456i 0.338441i
\(606\) 0 0
\(607\) 5.67544 0.230359 0.115180 0.993345i \(-0.463256\pi\)
0.115180 + 0.993345i \(0.463256\pi\)
\(608\) −6.00000 −0.243332
\(609\) 0 0
\(610\) 13.1623 0.532925
\(611\) −21.4868 + 2.51317i −0.869264 + 0.101672i
\(612\) 0 0
\(613\) 3.29822i 0.133214i −0.997779 0.0666070i \(-0.978783\pi\)
0.997779 0.0666070i \(-0.0212174\pi\)
\(614\) −22.8377 −0.921655
\(615\) 0 0
\(616\) 12.4868i 0.503109i
\(617\) 15.6754i 0.631070i −0.948914 0.315535i \(-0.897816\pi\)
0.948914 0.315535i \(-0.102184\pi\)
\(618\) 0 0
\(619\) 35.6228i 1.43180i 0.698203 + 0.715900i \(0.253983\pi\)
−0.698203 + 0.715900i \(0.746017\pi\)
\(620\) 7.64911 0.307196
\(621\) 0 0
\(622\) 13.1623i 0.527759i
\(623\) 39.4868 1.58201
\(624\) 0 0
\(625\) 65.2719 2.61088
\(626\) 17.0000i 0.679457i
\(627\) 0 0
\(628\) −5.67544 −0.226475
\(629\) 9.67544i 0.385785i
\(630\) 0 0
\(631\) 22.1623i 0.882266i 0.897442 + 0.441133i \(0.145423\pi\)
−0.897442 + 0.441133i \(0.854577\pi\)
\(632\) 8.64911i 0.344043i
\(633\) 0 0
\(634\) −0.486833 −0.0193346
\(635\) 25.6491i 1.01785i
\(636\) 0 0
\(637\) 4.32456 + 36.9737i 0.171345 + 1.46495i
\(638\) 24.9737 0.988717
\(639\) 0 0
\(640\) 4.16228 0.164528
\(641\) −24.9737 −0.986400 −0.493200 0.869916i \(-0.664173\pi\)
−0.493200 + 0.869916i \(0.664173\pi\)
\(642\) 0 0
\(643\) 46.4605i 1.83222i −0.400923 0.916112i \(-0.631311\pi\)
0.400923 0.916112i \(-0.368689\pi\)
\(644\) 4.83772i 0.190633i
\(645\) 0 0
\(646\) 6.97367 0.274375
\(647\) −26.1359 −1.02751 −0.513755 0.857937i \(-0.671746\pi\)
−0.513755 + 0.857937i \(0.671746\pi\)
\(648\) 0 0
\(649\) −24.9737 −0.980302
\(650\) 44.1359 5.16228i 1.73115 0.202481i
\(651\) 0 0
\(652\) 9.67544i 0.378920i
\(653\) −29.1359 −1.14018 −0.570089 0.821583i \(-0.693091\pi\)
−0.570089 + 0.821583i \(0.693091\pi\)
\(654\) 0 0
\(655\) 22.1623i 0.865952i
\(656\) 7.16228i 0.279640i
\(657\) 0 0
\(658\) 24.9737i 0.973575i
\(659\) −35.3246 −1.37605 −0.688025 0.725687i \(-0.741522\pi\)
−0.688025 + 0.725687i \(0.741522\pi\)
\(660\) 0 0
\(661\) 10.8377i 0.421539i 0.977536 + 0.210769i \(0.0675969\pi\)
−0.977536 + 0.210769i \(0.932403\pi\)
\(662\) −19.1623 −0.744763
\(663\) 0 0
\(664\) −5.32456 −0.206633
\(665\) 103.947i 4.03090i
\(666\) 0 0
\(667\) 9.67544 0.374635
\(668\) 15.4868i 0.599204i
\(669\) 0 0
\(670\) 29.8114i 1.15171i
\(671\) 9.48683i 0.366235i
\(672\) 0 0
\(673\) 18.3509 0.707375 0.353687 0.935364i \(-0.384928\pi\)
0.353687 + 0.935364i \(0.384928\pi\)
\(674\) 4.00000i 0.154074i
\(675\) 0 0
\(676\) 12.6491 3.00000i 0.486504 0.115385i
\(677\) 31.9473 1.22784 0.613918 0.789370i \(-0.289593\pi\)
0.613918 + 0.789370i \(0.289593\pi\)
\(678\) 0 0
\(679\) 12.4868 0.479201
\(680\) −4.83772 −0.185518
\(681\) 0 0
\(682\) 5.51317i 0.211110i
\(683\) 31.9473i 1.22243i −0.791464 0.611215i \(-0.790681\pi\)
0.791464 0.611215i \(-0.209319\pi\)
\(684\) 0 0
\(685\) −34.6491 −1.32387
\(686\) −13.8377 −0.528327
\(687\) 0 0
\(688\) 3.16228 0.120561
\(689\) −2.71708 23.2302i −0.103513 0.885002i
\(690\) 0 0
\(691\) 10.8377i 0.412286i 0.978522 + 0.206143i \(0.0660913\pi\)
−0.978522 + 0.206143i \(0.933909\pi\)
\(692\) −6.48683 −0.246592
\(693\) 0 0
\(694\) 9.97367i 0.378595i
\(695\) 38.1359i 1.44658i
\(696\) 0 0
\(697\) 8.32456i 0.315315i
\(698\) 15.2982 0.579046
\(699\) 0 0
\(700\) 51.2982i 1.93889i
\(701\) −16.1623 −0.610441 −0.305220 0.952282i \(-0.598730\pi\)
−0.305220 + 0.952282i \(0.598730\pi\)
\(702\) 0 0
\(703\) 49.9473 1.88380
\(704\) 3.00000i 0.113067i
\(705\) 0 0
\(706\) −26.1359 −0.983639
\(707\) 7.64911i 0.287674i
\(708\) 0 0
\(709\) 37.9473i 1.42514i −0.701600 0.712571i \(-0.747531\pi\)
0.701600 0.712571i \(-0.252469\pi\)
\(710\) 39.4868i 1.48191i
\(711\) 0 0
\(712\) 9.48683 0.355534
\(713\) 2.13594i 0.0799917i
\(714\) 0 0
\(715\) 5.23025 + 44.7171i 0.195600 + 1.67232i
\(716\) 3.00000 0.112115
\(717\) 0 0
\(718\) 15.6754 0.585002
\(719\) −40.8377 −1.52299 −0.761495 0.648171i \(-0.775534\pi\)
−0.761495 + 0.648171i \(0.775534\pi\)
\(720\) 0 0
\(721\) 58.2719i 2.17016i
\(722\) 17.0000i 0.632674i
\(723\) 0 0
\(724\) −22.1359 −0.822676
\(725\) 102.596 3.81034
\(726\) 0 0
\(727\) −30.1623 −1.11866 −0.559328 0.828946i \(-0.688941\pi\)
−0.559328 + 0.828946i \(0.688941\pi\)
\(728\) 1.74342 + 14.9057i 0.0646153 + 0.552442i
\(729\) 0 0
\(730\) 56.8114i 2.10268i
\(731\) −3.67544 −0.135941
\(732\) 0 0
\(733\) 5.81139i 0.214649i −0.994224 0.107324i \(-0.965772\pi\)
0.994224 0.107324i \(-0.0342283\pi\)
\(734\) 27.4605i 1.01359i
\(735\) 0 0
\(736\) 1.16228i 0.0428421i
\(737\) 21.4868 0.791478
\(738\) 0 0
\(739\) 41.8114i 1.53806i −0.639215 0.769028i \(-0.720740\pi\)
0.639215 0.769028i \(-0.279260\pi\)
\(740\) −34.6491 −1.27373
\(741\) 0 0
\(742\) 27.0000 0.991201
\(743\) 28.6491i 1.05103i 0.850783 + 0.525517i \(0.176128\pi\)
−0.850783 + 0.525517i \(0.823872\pi\)
\(744\) 0 0
\(745\) 61.6491 2.25865
\(746\) 13.6754i 0.500694i
\(747\) 0 0
\(748\) 3.48683i 0.127491i
\(749\) 27.7851i 1.01524i
\(750\) 0 0
\(751\) −16.4868 −0.601613 −0.300807 0.953685i \(-0.597256\pi\)
−0.300807 + 0.953685i \(0.597256\pi\)
\(752\) 6.00000i 0.218797i
\(753\) 0 0
\(754\) 29.8114 3.48683i 1.08567 0.126983i
\(755\) 42.2982 1.53939
\(756\) 0 0
\(757\) 45.8114 1.66504 0.832522 0.553993i \(-0.186896\pi\)
0.832522 + 0.553993i \(0.186896\pi\)
\(758\) −26.3246 −0.956151
\(759\) 0 0
\(760\) 24.9737i 0.905890i
\(761\) 12.0000i 0.435000i 0.976060 + 0.217500i \(0.0697902\pi\)
−0.976060 + 0.217500i \(0.930210\pi\)
\(762\) 0 0
\(763\) 45.1096 1.63308
\(764\) −12.0000 −0.434145
\(765\) 0 0
\(766\) 2.32456 0.0839896
\(767\) −29.8114 + 3.48683i −1.07643 + 0.125902i
\(768\) 0 0
\(769\) 28.9473i 1.04387i 0.852986 + 0.521934i \(0.174789\pi\)
−0.852986 + 0.521934i \(0.825211\pi\)
\(770\) −51.9737 −1.87300
\(771\) 0 0
\(772\) 5.32456i 0.191635i
\(773\) 48.9737i 1.76146i 0.473618 + 0.880730i \(0.342948\pi\)
−0.473618 + 0.880730i \(0.657052\pi\)
\(774\) 0 0
\(775\) 22.6491i 0.813580i
\(776\) 3.00000 0.107694
\(777\) 0 0
\(778\) 0.486833i 0.0174538i
\(779\) 42.9737 1.53969
\(780\) 0 0
\(781\) −28.4605 −1.01840
\(782\) 1.35089i 0.0483077i
\(783\) 0 0
\(784\) −10.3246 −0.368734
\(785\) 23.6228i 0.843133i
\(786\) 0 0
\(787\) 4.64911i 0.165723i −0.996561 0.0828614i \(-0.973594\pi\)
0.996561 0.0828614i \(-0.0264059\pi\)
\(788\) 4.16228i 0.148275i
\(789\) 0 0
\(790\) −36.0000 −1.28082
\(791\) 29.8114i 1.05997i
\(792\) 0 0
\(793\) 1.32456 + 11.3246i 0.0470363 + 0.402147i
\(794\) −4.64911 −0.164991
\(795\) 0 0
\(796\) −2.16228 −0.0766399
\(797\) −22.1623 −0.785028 −0.392514 0.919746i \(-0.628395\pi\)
−0.392514 + 0.919746i \(0.628395\pi\)
\(798\) 0 0
\(799\) 6.97367i 0.246711i
\(800\) 12.3246i 0.435739i
\(801\) 0 0
\(802\) −18.9737 −0.669983
\(803\) −40.9473 −1.44500
\(804\) 0 0
\(805\) −20.1359 −0.709699
\(806\) 0.769751 + 6.58114i 0.0271133 + 0.231811i
\(807\) 0 0
\(808\) 1.83772i 0.0646508i
\(809\) 25.3509 0.891290 0.445645 0.895210i \(-0.352974\pi\)
0.445645 + 0.895210i \(0.352974\pi\)
\(810\) 0 0
\(811\) 23.8114i 0.836131i −0.908417 0.418065i \(-0.862708\pi\)
0.908417 0.418065i \(-0.137292\pi\)
\(812\) 34.6491i 1.21595i
\(813\) 0 0
\(814\) 24.9737i 0.875327i
\(815\) 40.2719 1.41066
\(816\) 0 0
\(817\) 18.9737i 0.663805i
\(818\) 32.6228 1.14063
\(819\) 0 0
\(820\) −29.8114 −1.04106
\(821\) 0.973666i 0.0339812i 0.999856 + 0.0169906i \(0.00540853\pi\)
−0.999856 + 0.0169906i \(0.994591\pi\)
\(822\) 0 0
\(823\) −8.16228 −0.284519 −0.142260 0.989829i \(-0.545437\pi\)
−0.142260 + 0.989829i \(0.545437\pi\)
\(824\) 14.0000i 0.487713i
\(825\) 0 0
\(826\) 34.6491i 1.20560i
\(827\) 30.0000i 1.04320i 0.853189 + 0.521601i \(0.174665\pi\)
−0.853189 + 0.521601i \(0.825335\pi\)
\(828\) 0 0
\(829\) 14.6491 0.508785 0.254392 0.967101i \(-0.418125\pi\)
0.254392 + 0.967101i \(0.418125\pi\)
\(830\) 22.1623i 0.769264i
\(831\) 0 0
\(832\) 0.418861 + 3.58114i 0.0145214 + 0.124154i
\(833\) 12.0000 0.415775
\(834\) 0 0
\(835\) −64.4605 −2.23075
\(836\) 18.0000 0.622543
\(837\) 0 0
\(838\) 3.67544i 0.126966i
\(839\) 9.29822i 0.321010i 0.987035 + 0.160505i \(0.0513123\pi\)
−0.987035 + 0.160505i \(0.948688\pi\)
\(840\) 0 0
\(841\) 40.2982 1.38959
\(842\) −31.1623 −1.07392
\(843\) 0 0
\(844\) 4.32456 0.148857
\(845\) 12.4868 + 52.6491i 0.429560 + 1.81118i
\(846\) 0 0
\(847\) 8.32456i 0.286035i
\(848\) 6.48683 0.222759
\(849\) 0 0
\(850\) 14.3246i 0.491328i
\(851\) 9.67544i 0.331670i
\(852\) 0 0
\(853\) 1.16228i 0.0397956i −0.999802 0.0198978i \(-0.993666\pi\)
0.999802 0.0198978i \(-0.00633409\pi\)
\(854\) −13.1623 −0.450404
\(855\) 0 0
\(856\) 6.67544i 0.228162i
\(857\) 52.6491 1.79846 0.899230 0.437477i \(-0.144128\pi\)
0.899230 + 0.437477i \(0.144128\pi\)
\(858\) 0 0
\(859\) −2.97367 −0.101460 −0.0507301 0.998712i \(-0.516155\pi\)
−0.0507301 + 0.998712i \(0.516155\pi\)
\(860\) 13.1623i 0.448830i
\(861\) 0 0
\(862\) −13.3509 −0.454733
\(863\) 33.2982i 1.13348i −0.823895 0.566742i \(-0.808204\pi\)
0.823895 0.566742i \(-0.191796\pi\)
\(864\) 0 0
\(865\) 27.0000i 0.918028i
\(866\) 11.0000i 0.373795i
\(867\) 0 0
\(868\) −7.64911 −0.259628
\(869\) 25.9473i 0.880203i
\(870\) 0 0
\(871\) 25.6491 3.00000i 0.869087 0.101651i
\(872\) 10.8377 0.367012
\(873\) 0 0
\(874\) 6.97367 0.235888
\(875\) −126.895 −4.28982
\(876\) 0 0
\(877\) 29.8114i 1.00666i 0.864095 + 0.503330i \(0.167892\pi\)
−0.864095 + 0.503330i \(0.832108\pi\)
\(878\) 14.1623i 0.477954i
\(879\) 0 0
\(880\) −12.4868 −0.420931
\(881\) 5.02633 0.169341 0.0846707 0.996409i \(-0.473016\pi\)
0.0846707 + 0.996409i \(0.473016\pi\)
\(882\) 0 0
\(883\) 4.18861 0.140958 0.0704790 0.997513i \(-0.477547\pi\)
0.0704790 + 0.997513i \(0.477547\pi\)
\(884\) −0.486833 4.16228i −0.0163740 0.139993i
\(885\) 0 0
\(886\) 27.2982i 0.917102i
\(887\) −40.4605 −1.35853 −0.679265 0.733893i \(-0.737701\pi\)
−0.679265 + 0.733893i \(0.737701\pi\)
\(888\) 0 0
\(889\) 25.6491i 0.860244i
\(890\) 39.4868i 1.32360i
\(891\) 0 0
\(892\) 28.6491i 0.959243i
\(893\) −36.0000 −1.20469
\(894\) 0 0
\(895\) 12.4868i 0.417389i
\(896\) −4.16228 −0.139052
\(897\) 0 0
\(898\) 12.9737 0.432937
\(899\) 15.2982i 0.510224i
\(900\) 0 0
\(901\) −7.53950 −0.251177
\(902\) 21.4868i 0.715433i
\(903\) 0 0
\(904\) 7.16228i 0.238214i
\(905\) 92.1359i 3.06270i
\(906\) 0 0
\(907\) 10.0000 0.332045 0.166022 0.986122i \(-0.446908\pi\)
0.166022 + 0.986122i \(0.446908\pi\)
\(908\) 22.6491i 0.751637i
\(909\) 0 0
\(910\) −62.0416 + 7.25658i −2.05666 + 0.240553i
\(911\) 43.9473 1.45604 0.728020 0.685556i \(-0.240441\pi\)
0.728020 + 0.685556i \(0.240441\pi\)
\(912\) 0 0
\(913\) 15.9737 0.528651
\(914\) 6.67544 0.220804
\(915\) 0 0
\(916\) 20.3246i 0.671542i
\(917\) 22.1623i 0.731863i
\(918\) 0 0
\(919\) −22.8114 −0.752478 −0.376239 0.926523i \(-0.622783\pi\)
−0.376239 + 0.926523i \(0.622783\pi\)
\(920\) −4.83772 −0.159495
\(921\) 0 0
\(922\) 11.5132 0.379166
\(923\) −33.9737 + 3.97367i −1.11826 + 0.130795i
\(924\) 0 0
\(925\) 102.596i 3.37335i
\(926\) 31.4605 1.03386
\(927\) 0 0
\(928\) 8.32456i 0.273267i
\(929\) 36.0000i 1.18112i −0.806993 0.590561i \(-0.798907\pi\)
0.806993 0.590561i \(-0.201093\pi\)
\(930\) 0 0
\(931\) 61.9473i 2.03024i
\(932\) −6.00000 −0.196537
\(933\) 0 0
\(934\) 15.0000i 0.490815i
\(935\) 14.5132 0.474631
\(936\) 0 0
\(937\) 38.9473 1.27235 0.636177 0.771543i \(-0.280515\pi\)
0.636177 + 0.771543i \(0.280515\pi\)
\(938\) 29.8114i 0.973376i
\(939\) 0 0
\(940\) 24.9737 0.814551
\(941\) 31.8377i 1.03788i 0.854811 + 0.518940i \(0.173673\pi\)
−0.854811 + 0.518940i \(0.826327\pi\)
\(942\) 0 0
\(943\) 8.32456i 0.271085i
\(944\) 8.32456i 0.270941i
\(945\) 0 0
\(946\) −9.48683 −0.308444
\(947\) 35.3246i 1.14789i 0.818893 + 0.573947i \(0.194588\pi\)
−0.818893 + 0.573947i \(0.805412\pi\)
\(948\) 0 0
\(949\) −48.8794 + 5.71708i −1.58669 + 0.185584i
\(950\) 73.9473 2.39917
\(951\) 0 0
\(952\) 4.83772 0.156791
\(953\) −10.4605 −0.338849 −0.169424 0.985543i \(-0.554191\pi\)
−0.169424 + 0.985543i \(0.554191\pi\)
\(954\) 0 0
\(955\) 49.9473i 1.61626i
\(956\) 22.8377i 0.738625i
\(957\) 0 0
\(958\) −3.48683 −0.112654
\(959\) 34.6491 1.11888
\(960\) 0 0
\(961\) 27.6228 0.891057
\(962\) −3.48683 29.8114i −0.112420 0.961158i
\(963\) 0 0
\(964\) 1.35089i 0.0435092i
\(965\) −22.1623 −0.713429
\(966\) 0 0
\(967\) 9.18861i 0.295486i −0.989026 0.147743i \(-0.952799\pi\)
0.989026 0.147743i \(-0.0472008\pi\)
\(968\) 2.00000i 0.0642824i
\(969\) 0 0
\(970\) 12.4868i 0.400928i
\(971\) 15.9737 0.512619 0.256310 0.966595i \(-0.417493\pi\)
0.256310 + 0.966595i \(0.417493\pi\)
\(972\) 0 0
\(973\) 38.1359i 1.22258i
\(974\) −12.0000 −0.384505
\(975\) 0 0
\(976\) −3.16228 −0.101222
\(977\) 42.0000i 1.34370i 0.740688 + 0.671850i \(0.234500\pi\)
−0.740688 + 0.671850i \(0.765500\pi\)
\(978\) 0 0
\(979\) −28.4605 −0.909601
\(980\) 42.9737i 1.37274i
\(981\) 0 0
\(982\) 18.6754i 0.595957i
\(983\) 3.48683i 0.111213i 0.998453 + 0.0556064i \(0.0177092\pi\)
−0.998453 + 0.0556064i \(0.982291\pi\)
\(984\) 0 0
\(985\) −17.3246 −0.552006
\(986\) 9.67544i 0.308129i
\(987\) 0 0
\(988\) 21.4868 2.51317i 0.683587 0.0799545i
\(989\) −3.67544 −0.116872
\(990\) 0 0
\(991\) −29.8377 −0.947826 −0.473913 0.880572i \(-0.657159\pi\)
−0.473913 + 0.880572i \(0.657159\pi\)
\(992\) −1.83772 −0.0583477
\(993\) 0 0
\(994\) 39.4868i 1.25245i
\(995\) 9.00000i 0.285319i
\(996\) 0 0
\(997\) 12.8377 0.406575 0.203287 0.979119i \(-0.434837\pi\)
0.203287 + 0.979119i \(0.434837\pi\)
\(998\) 8.32456 0.263509
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.b.g.649.1 yes 4
3.2 odd 2 702.2.b.f.649.4 yes 4
13.5 odd 4 9126.2.a.bn.1.1 2
13.8 odd 4 9126.2.a.cc.1.2 2
13.12 even 2 inner 702.2.b.g.649.4 yes 4
39.5 even 4 9126.2.a.cb.1.2 2
39.8 even 4 9126.2.a.bo.1.1 2
39.38 odd 2 702.2.b.f.649.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
702.2.b.f.649.1 4 39.38 odd 2
702.2.b.f.649.4 yes 4 3.2 odd 2
702.2.b.g.649.1 yes 4 1.1 even 1 trivial
702.2.b.g.649.4 yes 4 13.12 even 2 inner
9126.2.a.bn.1.1 2 13.5 odd 4
9126.2.a.bo.1.1 2 39.8 even 4
9126.2.a.cb.1.2 2 39.5 even 4
9126.2.a.cc.1.2 2 13.8 odd 4