Properties

Label 702.2.b.g
Level $702$
Weight $2$
Character orbit 702.b
Analytic conductor $5.605$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [702,2,Mod(649,702)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("702.649"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(702, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,0,0,0,0,-4,0,0,-8,4,0,4,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} - q^{4} + ( - \beta_{3} - \beta_{2} - \beta_1) q^{5} + (\beta_{3} + \beta_{2} + \beta_1) q^{7} + \beta_{2} q^{8} + (\beta_{3} - \beta_1 - 1) q^{10} - 3 \beta_{2} q^{11} + ( - \beta_{3} - 2 \beta_{2} - 2) q^{13}+ \cdots + (2 \beta_{3} + 4 \beta_{2} + 2 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 4 q^{10} - 8 q^{13} + 4 q^{14} + 4 q^{16} + 8 q^{17} - 12 q^{22} + 8 q^{23} - 24 q^{25} - 8 q^{26} - 8 q^{29} + 44 q^{35} - 24 q^{38} + 4 q^{40} - 16 q^{49} + 8 q^{52} - 12 q^{53} - 12 q^{55}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 5\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 5\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
649.1
1.58114 + 1.58114i
−1.58114 1.58114i
−1.58114 + 1.58114i
1.58114 1.58114i
1.00000i 0 −1.00000 4.16228i 0 4.16228i 1.00000i 0 −4.16228
649.2 1.00000i 0 −1.00000 2.16228i 0 2.16228i 1.00000i 0 2.16228
649.3 1.00000i 0 −1.00000 2.16228i 0 2.16228i 1.00000i 0 2.16228
649.4 1.00000i 0 −1.00000 4.16228i 0 4.16228i 1.00000i 0 −4.16228
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 702.2.b.g yes 4
3.b odd 2 1 702.2.b.f 4
13.b even 2 1 inner 702.2.b.g yes 4
13.d odd 4 1 9126.2.a.bn 2
13.d odd 4 1 9126.2.a.cc 2
39.d odd 2 1 702.2.b.f 4
39.f even 4 1 9126.2.a.bo 2
39.f even 4 1 9126.2.a.cb 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
702.2.b.f 4 3.b odd 2 1
702.2.b.f 4 39.d odd 2 1
702.2.b.g yes 4 1.a even 1 1 trivial
702.2.b.g yes 4 13.b even 2 1 inner
9126.2.a.bn 2 13.d odd 4 1
9126.2.a.bo 2 39.f even 4 1
9126.2.a.cb 2 39.f even 4 1
9126.2.a.cc 2 13.d odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(702, [\chi])\):

\( T_{5}^{4} + 22T_{5}^{2} + 81 \) Copy content Toggle raw display
\( T_{7}^{4} + 22T_{7}^{2} + 81 \) Copy content Toggle raw display
\( T_{17}^{2} - 4T_{17} - 6 \) Copy content Toggle raw display
\( T_{23}^{2} - 4T_{23} - 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 22T^{2} + 81 \) Copy content Toggle raw display
$7$ \( T^{4} + 22T^{2} + 81 \) Copy content Toggle raw display
$11$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 8 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$17$ \( (T^{2} - 4 T - 6)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 4 T - 6)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 4 T - 36)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + 70T^{2} + 225 \) Copy content Toggle raw display
$37$ \( T^{4} + 88T^{2} + 1296 \) Copy content Toggle raw display
$41$ \( T^{4} + 52T^{2} + 36 \) Copy content Toggle raw display
$43$ \( (T^{2} - 10)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 6 T - 81)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 88T^{2} + 1296 \) Copy content Toggle raw display
$61$ \( (T^{2} - 10)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 52T^{2} + 36 \) Copy content Toggle raw display
$71$ \( (T^{2} + 90)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 322 T^{2} + 25281 \) Copy content Toggle raw display
$79$ \( (T^{2} + 8 T - 144)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 82T^{2} + 1521 \) Copy content Toggle raw display
$89$ \( (T^{2} + 90)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
show more
show less