Properties

Label 700.4.e.c.449.2
Level $700$
Weight $4$
Character 700.449
Analytic conductor $41.301$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [700,4,Mod(449,700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(700, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("700.449"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 700.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,-74,0,56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.3013370040\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 700.449
Dual form 700.4.e.c.449.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000i q^{3} -7.00000i q^{7} -37.0000 q^{9} +28.0000 q^{11} +82.0000i q^{13} +46.0000i q^{17} -8.00000 q^{19} +56.0000 q^{21} -128.000i q^{23} -80.0000i q^{27} -174.000 q^{29} -152.000 q^{31} +224.000i q^{33} +290.000i q^{37} -656.000 q^{39} +50.0000 q^{41} +396.000i q^{43} +296.000i q^{47} -49.0000 q^{49} -368.000 q^{51} -570.000i q^{53} -64.0000i q^{57} +272.000 q^{59} -662.000 q^{61} +259.000i q^{63} -876.000i q^{67} +1024.00 q^{69} -880.000 q^{71} -638.000i q^{73} -196.000i q^{77} +600.000 q^{79} -359.000 q^{81} +624.000i q^{83} -1392.00i q^{87} -698.000 q^{89} +574.000 q^{91} -1216.00i q^{93} -754.000i q^{97} -1036.00 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 74 q^{9} + 56 q^{11} - 16 q^{19} + 112 q^{21} - 348 q^{29} - 304 q^{31} - 1312 q^{39} + 100 q^{41} - 98 q^{49} - 736 q^{51} + 544 q^{59} - 1324 q^{61} + 2048 q^{69} - 1760 q^{71} + 1200 q^{79} - 718 q^{81}+ \cdots - 2072 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 8.00000i 1.53960i 0.638285 + 0.769800i \(0.279644\pi\)
−0.638285 + 0.769800i \(0.720356\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 7.00000i − 0.377964i
\(8\) 0 0
\(9\) −37.0000 −1.37037
\(10\) 0 0
\(11\) 28.0000 0.767483 0.383742 0.923440i \(-0.374635\pi\)
0.383742 + 0.923440i \(0.374635\pi\)
\(12\) 0 0
\(13\) 82.0000i 1.74944i 0.484629 + 0.874720i \(0.338954\pi\)
−0.484629 + 0.874720i \(0.661046\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 46.0000i 0.656273i 0.944630 + 0.328136i \(0.106421\pi\)
−0.944630 + 0.328136i \(0.893579\pi\)
\(18\) 0 0
\(19\) −8.00000 −0.0965961 −0.0482980 0.998833i \(-0.515380\pi\)
−0.0482980 + 0.998833i \(0.515380\pi\)
\(20\) 0 0
\(21\) 56.0000 0.581914
\(22\) 0 0
\(23\) − 128.000i − 1.16043i −0.814464 0.580214i \(-0.802969\pi\)
0.814464 0.580214i \(-0.197031\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 80.0000i − 0.570222i
\(28\) 0 0
\(29\) −174.000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −152.000 −0.880645 −0.440323 0.897840i \(-0.645136\pi\)
−0.440323 + 0.897840i \(0.645136\pi\)
\(32\) 0 0
\(33\) 224.000i 1.18162i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 290.000i 1.28853i 0.764801 + 0.644266i \(0.222837\pi\)
−0.764801 + 0.644266i \(0.777163\pi\)
\(38\) 0 0
\(39\) −656.000 −2.69344
\(40\) 0 0
\(41\) 50.0000 0.190456 0.0952279 0.995455i \(-0.469642\pi\)
0.0952279 + 0.995455i \(0.469642\pi\)
\(42\) 0 0
\(43\) 396.000i 1.40441i 0.711977 + 0.702203i \(0.247800\pi\)
−0.711977 + 0.702203i \(0.752200\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 296.000i 0.918639i 0.888271 + 0.459320i \(0.151907\pi\)
−0.888271 + 0.459320i \(0.848093\pi\)
\(48\) 0 0
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) −368.000 −1.01040
\(52\) 0 0
\(53\) − 570.000i − 1.47727i −0.674103 0.738637i \(-0.735470\pi\)
0.674103 0.738637i \(-0.264530\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 64.0000i − 0.148719i
\(58\) 0 0
\(59\) 272.000 0.600193 0.300096 0.953909i \(-0.402981\pi\)
0.300096 + 0.953909i \(0.402981\pi\)
\(60\) 0 0
\(61\) −662.000 −1.38951 −0.694757 0.719244i \(-0.744488\pi\)
−0.694757 + 0.719244i \(0.744488\pi\)
\(62\) 0 0
\(63\) 259.000i 0.517951i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 876.000i − 1.59732i −0.601783 0.798660i \(-0.705543\pi\)
0.601783 0.798660i \(-0.294457\pi\)
\(68\) 0 0
\(69\) 1024.00 1.78660
\(70\) 0 0
\(71\) −880.000 −1.47094 −0.735470 0.677557i \(-0.763039\pi\)
−0.735470 + 0.677557i \(0.763039\pi\)
\(72\) 0 0
\(73\) − 638.000i − 1.02291i −0.859311 0.511454i \(-0.829107\pi\)
0.859311 0.511454i \(-0.170893\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 196.000i − 0.290081i
\(78\) 0 0
\(79\) 600.000 0.854497 0.427249 0.904134i \(-0.359483\pi\)
0.427249 + 0.904134i \(0.359483\pi\)
\(80\) 0 0
\(81\) −359.000 −0.492455
\(82\) 0 0
\(83\) 624.000i 0.825216i 0.910909 + 0.412608i \(0.135382\pi\)
−0.910909 + 0.412608i \(0.864618\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 1392.00i − 1.71538i
\(88\) 0 0
\(89\) −698.000 −0.831324 −0.415662 0.909519i \(-0.636450\pi\)
−0.415662 + 0.909519i \(0.636450\pi\)
\(90\) 0 0
\(91\) 574.000 0.661226
\(92\) 0 0
\(93\) − 1216.00i − 1.35584i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 754.000i − 0.789248i −0.918843 0.394624i \(-0.870875\pi\)
0.918843 0.394624i \(-0.129125\pi\)
\(98\) 0 0
\(99\) −1036.00 −1.05174
\(100\) 0 0
\(101\) 354.000 0.348756 0.174378 0.984679i \(-0.444209\pi\)
0.174378 + 0.984679i \(0.444209\pi\)
\(102\) 0 0
\(103\) 1904.00i 1.82142i 0.413042 + 0.910712i \(0.364466\pi\)
−0.413042 + 0.910712i \(0.635534\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1108.00i − 1.00107i −0.865717 0.500535i \(-0.833137\pi\)
0.865717 0.500535i \(-0.166863\pi\)
\(108\) 0 0
\(109\) 146.000 0.128296 0.0641480 0.997940i \(-0.479567\pi\)
0.0641480 + 0.997940i \(0.479567\pi\)
\(110\) 0 0
\(111\) −2320.00 −1.98383
\(112\) 0 0
\(113\) − 2078.00i − 1.72993i −0.501834 0.864964i \(-0.667341\pi\)
0.501834 0.864964i \(-0.332659\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 3034.00i − 2.39738i
\(118\) 0 0
\(119\) 322.000 0.248048
\(120\) 0 0
\(121\) −547.000 −0.410969
\(122\) 0 0
\(123\) 400.000i 0.293226i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 600.000i 0.419224i 0.977785 + 0.209612i \(0.0672200\pi\)
−0.977785 + 0.209612i \(0.932780\pi\)
\(128\) 0 0
\(129\) −3168.00 −2.16222
\(130\) 0 0
\(131\) −168.000 −0.112048 −0.0560238 0.998429i \(-0.517842\pi\)
−0.0560238 + 0.998429i \(0.517842\pi\)
\(132\) 0 0
\(133\) 56.0000i 0.0365099i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 394.000i − 0.245706i −0.992425 0.122853i \(-0.960796\pi\)
0.992425 0.122853i \(-0.0392043\pi\)
\(138\) 0 0
\(139\) 472.000 0.288018 0.144009 0.989576i \(-0.454001\pi\)
0.144009 + 0.989576i \(0.454001\pi\)
\(140\) 0 0
\(141\) −2368.00 −1.41434
\(142\) 0 0
\(143\) 2296.00i 1.34267i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 392.000i − 0.219943i
\(148\) 0 0
\(149\) 2658.00 1.46142 0.730711 0.682687i \(-0.239189\pi\)
0.730711 + 0.682687i \(0.239189\pi\)
\(150\) 0 0
\(151\) 1256.00 0.676900 0.338450 0.940984i \(-0.390097\pi\)
0.338450 + 0.940984i \(0.390097\pi\)
\(152\) 0 0
\(153\) − 1702.00i − 0.899337i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 3266.00i − 1.66022i −0.557597 0.830112i \(-0.688276\pi\)
0.557597 0.830112i \(-0.311724\pi\)
\(158\) 0 0
\(159\) 4560.00 2.27441
\(160\) 0 0
\(161\) −896.000 −0.438601
\(162\) 0 0
\(163\) 1716.00i 0.824586i 0.911051 + 0.412293i \(0.135272\pi\)
−0.911051 + 0.412293i \(0.864728\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2272.00i 1.05277i 0.850246 + 0.526385i \(0.176453\pi\)
−0.850246 + 0.526385i \(0.823547\pi\)
\(168\) 0 0
\(169\) −4527.00 −2.06054
\(170\) 0 0
\(171\) 296.000 0.132372
\(172\) 0 0
\(173\) 4226.00i 1.85721i 0.371073 + 0.928604i \(0.378990\pi\)
−0.371073 + 0.928604i \(0.621010\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2176.00i 0.924057i
\(178\) 0 0
\(179\) −988.000 −0.412551 −0.206275 0.978494i \(-0.566134\pi\)
−0.206275 + 0.978494i \(0.566134\pi\)
\(180\) 0 0
\(181\) 2138.00 0.877991 0.438995 0.898489i \(-0.355334\pi\)
0.438995 + 0.898489i \(0.355334\pi\)
\(182\) 0 0
\(183\) − 5296.00i − 2.13930i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1288.00i 0.503679i
\(188\) 0 0
\(189\) −560.000 −0.215524
\(190\) 0 0
\(191\) −3832.00 −1.45170 −0.725848 0.687856i \(-0.758552\pi\)
−0.725848 + 0.687856i \(0.758552\pi\)
\(192\) 0 0
\(193\) 1378.00i 0.513941i 0.966419 + 0.256970i \(0.0827243\pi\)
−0.966419 + 0.256970i \(0.917276\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4266.00i 1.54284i 0.636325 + 0.771421i \(0.280454\pi\)
−0.636325 + 0.771421i \(0.719546\pi\)
\(198\) 0 0
\(199\) −5120.00 −1.82386 −0.911928 0.410351i \(-0.865406\pi\)
−0.911928 + 0.410351i \(0.865406\pi\)
\(200\) 0 0
\(201\) 7008.00 2.45923
\(202\) 0 0
\(203\) 1218.00i 0.421117i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 4736.00i 1.59022i
\(208\) 0 0
\(209\) −224.000 −0.0741359
\(210\) 0 0
\(211\) −1780.00 −0.580759 −0.290380 0.956911i \(-0.593782\pi\)
−0.290380 + 0.956911i \(0.593782\pi\)
\(212\) 0 0
\(213\) − 7040.00i − 2.26466i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1064.00i 0.332853i
\(218\) 0 0
\(219\) 5104.00 1.57487
\(220\) 0 0
\(221\) −3772.00 −1.14811
\(222\) 0 0
\(223\) 4896.00i 1.47023i 0.677945 + 0.735113i \(0.262871\pi\)
−0.677945 + 0.735113i \(0.737129\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3504.00i 1.02453i 0.858827 + 0.512266i \(0.171194\pi\)
−0.858827 + 0.512266i \(0.828806\pi\)
\(228\) 0 0
\(229\) −826.000 −0.238356 −0.119178 0.992873i \(-0.538026\pi\)
−0.119178 + 0.992873i \(0.538026\pi\)
\(230\) 0 0
\(231\) 1568.00 0.446610
\(232\) 0 0
\(233\) − 278.000i − 0.0781647i −0.999236 0.0390824i \(-0.987557\pi\)
0.999236 0.0390824i \(-0.0124435\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 4800.00i 1.31558i
\(238\) 0 0
\(239\) −4736.00 −1.28178 −0.640892 0.767631i \(-0.721435\pi\)
−0.640892 + 0.767631i \(0.721435\pi\)
\(240\) 0 0
\(241\) −3990.00 −1.06647 −0.533233 0.845968i \(-0.679023\pi\)
−0.533233 + 0.845968i \(0.679023\pi\)
\(242\) 0 0
\(243\) − 5032.00i − 1.32841i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 656.000i − 0.168989i
\(248\) 0 0
\(249\) −4992.00 −1.27050
\(250\) 0 0
\(251\) 2296.00 0.577379 0.288690 0.957423i \(-0.406780\pi\)
0.288690 + 0.957423i \(0.406780\pi\)
\(252\) 0 0
\(253\) − 3584.00i − 0.890609i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 4058.00i − 0.984946i −0.870328 0.492473i \(-0.836093\pi\)
0.870328 0.492473i \(-0.163907\pi\)
\(258\) 0 0
\(259\) 2030.00 0.487020
\(260\) 0 0
\(261\) 6438.00 1.52683
\(262\) 0 0
\(263\) 5640.00i 1.32235i 0.750233 + 0.661174i \(0.229941\pi\)
−0.750233 + 0.661174i \(0.770059\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 5584.00i − 1.27991i
\(268\) 0 0
\(269\) 7758.00 1.75841 0.879207 0.476439i \(-0.158073\pi\)
0.879207 + 0.476439i \(0.158073\pi\)
\(270\) 0 0
\(271\) 3264.00 0.731638 0.365819 0.930686i \(-0.380789\pi\)
0.365819 + 0.930686i \(0.380789\pi\)
\(272\) 0 0
\(273\) 4592.00i 1.01802i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 566.000i − 0.122771i −0.998114 0.0613856i \(-0.980448\pi\)
0.998114 0.0613856i \(-0.0195519\pi\)
\(278\) 0 0
\(279\) 5624.00 1.20681
\(280\) 0 0
\(281\) 4234.00 0.898859 0.449429 0.893316i \(-0.351627\pi\)
0.449429 + 0.893316i \(0.351627\pi\)
\(282\) 0 0
\(283\) 728.000i 0.152916i 0.997073 + 0.0764578i \(0.0243610\pi\)
−0.997073 + 0.0764578i \(0.975639\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 350.000i − 0.0719855i
\(288\) 0 0
\(289\) 2797.00 0.569306
\(290\) 0 0
\(291\) 6032.00 1.21513
\(292\) 0 0
\(293\) 5490.00i 1.09464i 0.836924 + 0.547319i \(0.184352\pi\)
−0.836924 + 0.547319i \(0.815648\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 2240.00i − 0.437636i
\(298\) 0 0
\(299\) 10496.0 2.03010
\(300\) 0 0
\(301\) 2772.00 0.530815
\(302\) 0 0
\(303\) 2832.00i 0.536944i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 1664.00i − 0.309347i −0.987966 0.154673i \(-0.950567\pi\)
0.987966 0.154673i \(-0.0494325\pi\)
\(308\) 0 0
\(309\) −15232.0 −2.80427
\(310\) 0 0
\(311\) 1688.00 0.307774 0.153887 0.988088i \(-0.450821\pi\)
0.153887 + 0.988088i \(0.450821\pi\)
\(312\) 0 0
\(313\) − 2294.00i − 0.414264i −0.978313 0.207132i \(-0.933587\pi\)
0.978313 0.207132i \(-0.0664129\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1426.00i 0.252657i 0.991988 + 0.126328i \(0.0403193\pi\)
−0.991988 + 0.126328i \(0.959681\pi\)
\(318\) 0 0
\(319\) −4872.00 −0.855109
\(320\) 0 0
\(321\) 8864.00 1.54125
\(322\) 0 0
\(323\) − 368.000i − 0.0633934i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1168.00i 0.197525i
\(328\) 0 0
\(329\) 2072.00 0.347213
\(330\) 0 0
\(331\) −740.000 −0.122882 −0.0614412 0.998111i \(-0.519570\pi\)
−0.0614412 + 0.998111i \(0.519570\pi\)
\(332\) 0 0
\(333\) − 10730.0i − 1.76577i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 11086.0i 1.79197i 0.444087 + 0.895984i \(0.353528\pi\)
−0.444087 + 0.895984i \(0.646472\pi\)
\(338\) 0 0
\(339\) 16624.0 2.66340
\(340\) 0 0
\(341\) −4256.00 −0.675881
\(342\) 0 0
\(343\) 343.000i 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6420.00i 0.993209i 0.867977 + 0.496605i \(0.165420\pi\)
−0.867977 + 0.496605i \(0.834580\pi\)
\(348\) 0 0
\(349\) 6430.00 0.986218 0.493109 0.869968i \(-0.335860\pi\)
0.493109 + 0.869968i \(0.335860\pi\)
\(350\) 0 0
\(351\) 6560.00 0.997570
\(352\) 0 0
\(353\) − 5910.00i − 0.891098i −0.895258 0.445549i \(-0.853009\pi\)
0.895258 0.445549i \(-0.146991\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 2576.00i 0.381895i
\(358\) 0 0
\(359\) 5720.00 0.840919 0.420460 0.907311i \(-0.361869\pi\)
0.420460 + 0.907311i \(0.361869\pi\)
\(360\) 0 0
\(361\) −6795.00 −0.990669
\(362\) 0 0
\(363\) − 4376.00i − 0.632728i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 8320.00i − 1.18338i −0.806166 0.591690i \(-0.798461\pi\)
0.806166 0.591690i \(-0.201539\pi\)
\(368\) 0 0
\(369\) −1850.00 −0.260995
\(370\) 0 0
\(371\) −3990.00 −0.558357
\(372\) 0 0
\(373\) 1718.00i 0.238484i 0.992865 + 0.119242i \(0.0380465\pi\)
−0.992865 + 0.119242i \(0.961954\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 14268.0i − 1.94918i
\(378\) 0 0
\(379\) −364.000 −0.0493336 −0.0246668 0.999696i \(-0.507852\pi\)
−0.0246668 + 0.999696i \(0.507852\pi\)
\(380\) 0 0
\(381\) −4800.00 −0.645437
\(382\) 0 0
\(383\) 2088.00i 0.278569i 0.990252 + 0.139284i \(0.0444802\pi\)
−0.990252 + 0.139284i \(0.955520\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 14652.0i − 1.92456i
\(388\) 0 0
\(389\) −1446.00 −0.188471 −0.0942354 0.995550i \(-0.530041\pi\)
−0.0942354 + 0.995550i \(0.530041\pi\)
\(390\) 0 0
\(391\) 5888.00 0.761557
\(392\) 0 0
\(393\) − 1344.00i − 0.172508i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 10910.0i 1.37924i 0.724173 + 0.689619i \(0.242222\pi\)
−0.724173 + 0.689619i \(0.757778\pi\)
\(398\) 0 0
\(399\) −448.000 −0.0562107
\(400\) 0 0
\(401\) 3090.00 0.384806 0.192403 0.981316i \(-0.438372\pi\)
0.192403 + 0.981316i \(0.438372\pi\)
\(402\) 0 0
\(403\) − 12464.0i − 1.54064i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8120.00i 0.988927i
\(408\) 0 0
\(409\) −2194.00 −0.265248 −0.132624 0.991166i \(-0.542340\pi\)
−0.132624 + 0.991166i \(0.542340\pi\)
\(410\) 0 0
\(411\) 3152.00 0.378289
\(412\) 0 0
\(413\) − 1904.00i − 0.226852i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 3776.00i 0.443433i
\(418\) 0 0
\(419\) −3744.00 −0.436531 −0.218265 0.975889i \(-0.570040\pi\)
−0.218265 + 0.975889i \(0.570040\pi\)
\(420\) 0 0
\(421\) −13106.0 −1.51721 −0.758607 0.651548i \(-0.774120\pi\)
−0.758607 + 0.651548i \(0.774120\pi\)
\(422\) 0 0
\(423\) − 10952.0i − 1.25888i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 4634.00i 0.525187i
\(428\) 0 0
\(429\) −18368.0 −2.06717
\(430\) 0 0
\(431\) 12240.0 1.36794 0.683968 0.729512i \(-0.260253\pi\)
0.683968 + 0.729512i \(0.260253\pi\)
\(432\) 0 0
\(433\) 12402.0i 1.37645i 0.725498 + 0.688224i \(0.241609\pi\)
−0.725498 + 0.688224i \(0.758391\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1024.00i 0.112093i
\(438\) 0 0
\(439\) 12280.0 1.33506 0.667531 0.744582i \(-0.267351\pi\)
0.667531 + 0.744582i \(0.267351\pi\)
\(440\) 0 0
\(441\) 1813.00 0.195767
\(442\) 0 0
\(443\) 3092.00i 0.331615i 0.986158 + 0.165807i \(0.0530230\pi\)
−0.986158 + 0.165807i \(0.946977\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 21264.0i 2.25001i
\(448\) 0 0
\(449\) 14750.0 1.55032 0.775162 0.631762i \(-0.217668\pi\)
0.775162 + 0.631762i \(0.217668\pi\)
\(450\) 0 0
\(451\) 1400.00 0.146172
\(452\) 0 0
\(453\) 10048.0i 1.04216i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 6394.00i − 0.654483i −0.944941 0.327241i \(-0.893881\pi\)
0.944941 0.327241i \(-0.106119\pi\)
\(458\) 0 0
\(459\) 3680.00 0.374222
\(460\) 0 0
\(461\) −14590.0 −1.47402 −0.737011 0.675881i \(-0.763763\pi\)
−0.737011 + 0.675881i \(0.763763\pi\)
\(462\) 0 0
\(463\) 13664.0i 1.37153i 0.727821 + 0.685767i \(0.240533\pi\)
−0.727821 + 0.685767i \(0.759467\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 4960.00i − 0.491481i −0.969336 0.245740i \(-0.920969\pi\)
0.969336 0.245740i \(-0.0790310\pi\)
\(468\) 0 0
\(469\) −6132.00 −0.603730
\(470\) 0 0
\(471\) 26128.0 2.55608
\(472\) 0 0
\(473\) 11088.0i 1.07786i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 21090.0i 2.02441i
\(478\) 0 0
\(479\) −5304.00 −0.505941 −0.252971 0.967474i \(-0.581408\pi\)
−0.252971 + 0.967474i \(0.581408\pi\)
\(480\) 0 0
\(481\) −23780.0 −2.25421
\(482\) 0 0
\(483\) − 7168.00i − 0.675270i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 21120.0i 1.96517i 0.185810 + 0.982586i \(0.440509\pi\)
−0.185810 + 0.982586i \(0.559491\pi\)
\(488\) 0 0
\(489\) −13728.0 −1.26953
\(490\) 0 0
\(491\) 10500.0 0.965088 0.482544 0.875872i \(-0.339713\pi\)
0.482544 + 0.875872i \(0.339713\pi\)
\(492\) 0 0
\(493\) − 8004.00i − 0.731201i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6160.00i 0.555963i
\(498\) 0 0
\(499\) 3620.00 0.324756 0.162378 0.986729i \(-0.448084\pi\)
0.162378 + 0.986729i \(0.448084\pi\)
\(500\) 0 0
\(501\) −18176.0 −1.62085
\(502\) 0 0
\(503\) 11176.0i 0.990682i 0.868699 + 0.495341i \(0.164957\pi\)
−0.868699 + 0.495341i \(0.835043\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 36216.0i − 3.17240i
\(508\) 0 0
\(509\) −3362.00 −0.292766 −0.146383 0.989228i \(-0.546763\pi\)
−0.146383 + 0.989228i \(0.546763\pi\)
\(510\) 0 0
\(511\) −4466.00 −0.386623
\(512\) 0 0
\(513\) 640.000i 0.0550813i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 8288.00i 0.705040i
\(518\) 0 0
\(519\) −33808.0 −2.85936
\(520\) 0 0
\(521\) 16530.0 1.39000 0.695002 0.719007i \(-0.255403\pi\)
0.695002 + 0.719007i \(0.255403\pi\)
\(522\) 0 0
\(523\) 6440.00i 0.538435i 0.963079 + 0.269218i \(0.0867651\pi\)
−0.963079 + 0.269218i \(0.913235\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 6992.00i − 0.577944i
\(528\) 0 0
\(529\) −4217.00 −0.346593
\(530\) 0 0
\(531\) −10064.0 −0.822487
\(532\) 0 0
\(533\) 4100.00i 0.333191i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 7904.00i − 0.635163i
\(538\) 0 0
\(539\) −1372.00 −0.109640
\(540\) 0 0
\(541\) −7210.00 −0.572980 −0.286490 0.958083i \(-0.592488\pi\)
−0.286490 + 0.958083i \(0.592488\pi\)
\(542\) 0 0
\(543\) 17104.0i 1.35175i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 21796.0i − 1.70371i −0.523777 0.851855i \(-0.675478\pi\)
0.523777 0.851855i \(-0.324522\pi\)
\(548\) 0 0
\(549\) 24494.0 1.90415
\(550\) 0 0
\(551\) 1392.00 0.107625
\(552\) 0 0
\(553\) − 4200.00i − 0.322970i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 10030.0i − 0.762989i −0.924371 0.381494i \(-0.875410\pi\)
0.924371 0.381494i \(-0.124590\pi\)
\(558\) 0 0
\(559\) −32472.0 −2.45692
\(560\) 0 0
\(561\) −10304.0 −0.775464
\(562\) 0 0
\(563\) 9144.00i 0.684500i 0.939609 + 0.342250i \(0.111189\pi\)
−0.939609 + 0.342250i \(0.888811\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 2513.00i 0.186131i
\(568\) 0 0
\(569\) −11946.0 −0.880145 −0.440072 0.897962i \(-0.645047\pi\)
−0.440072 + 0.897962i \(0.645047\pi\)
\(570\) 0 0
\(571\) 11596.0 0.849873 0.424937 0.905223i \(-0.360296\pi\)
0.424937 + 0.905223i \(0.360296\pi\)
\(572\) 0 0
\(573\) − 30656.0i − 2.23503i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 1754.00i − 0.126551i −0.997996 0.0632755i \(-0.979845\pi\)
0.997996 0.0632755i \(-0.0201547\pi\)
\(578\) 0 0
\(579\) −11024.0 −0.791264
\(580\) 0 0
\(581\) 4368.00 0.311902
\(582\) 0 0
\(583\) − 15960.0i − 1.13378i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 13152.0i − 0.924772i −0.886679 0.462386i \(-0.846993\pi\)
0.886679 0.462386i \(-0.153007\pi\)
\(588\) 0 0
\(589\) 1216.00 0.0850669
\(590\) 0 0
\(591\) −34128.0 −2.37536
\(592\) 0 0
\(593\) − 13014.0i − 0.901216i −0.892722 0.450608i \(-0.851207\pi\)
0.892722 0.450608i \(-0.148793\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 40960.0i − 2.80801i
\(598\) 0 0
\(599\) 19936.0 1.35987 0.679936 0.733272i \(-0.262008\pi\)
0.679936 + 0.733272i \(0.262008\pi\)
\(600\) 0 0
\(601\) 15578.0 1.05730 0.528652 0.848839i \(-0.322698\pi\)
0.528652 + 0.848839i \(0.322698\pi\)
\(602\) 0 0
\(603\) 32412.0i 2.18892i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 3792.00i 0.253563i 0.991931 + 0.126781i \(0.0404646\pi\)
−0.991931 + 0.126781i \(0.959535\pi\)
\(608\) 0 0
\(609\) −9744.00 −0.648353
\(610\) 0 0
\(611\) −24272.0 −1.60710
\(612\) 0 0
\(613\) − 5074.00i − 0.334318i −0.985930 0.167159i \(-0.946541\pi\)
0.985930 0.167159i \(-0.0534593\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 13670.0i 0.891951i 0.895045 + 0.445975i \(0.147143\pi\)
−0.895045 + 0.445975i \(0.852857\pi\)
\(618\) 0 0
\(619\) 18560.0 1.20515 0.602576 0.798061i \(-0.294141\pi\)
0.602576 + 0.798061i \(0.294141\pi\)
\(620\) 0 0
\(621\) −10240.0 −0.661702
\(622\) 0 0
\(623\) 4886.00i 0.314211i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 1792.00i − 0.114140i
\(628\) 0 0
\(629\) −13340.0 −0.845629
\(630\) 0 0
\(631\) −8400.00 −0.529950 −0.264975 0.964255i \(-0.585364\pi\)
−0.264975 + 0.964255i \(0.585364\pi\)
\(632\) 0 0
\(633\) − 14240.0i − 0.894138i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 4018.00i − 0.249920i
\(638\) 0 0
\(639\) 32560.0 2.01573
\(640\) 0 0
\(641\) 16770.0 1.03335 0.516673 0.856183i \(-0.327170\pi\)
0.516673 + 0.856183i \(0.327170\pi\)
\(642\) 0 0
\(643\) − 12152.0i − 0.745300i −0.927972 0.372650i \(-0.878449\pi\)
0.927972 0.372650i \(-0.121551\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 14896.0i − 0.905135i −0.891730 0.452567i \(-0.850508\pi\)
0.891730 0.452567i \(-0.149492\pi\)
\(648\) 0 0
\(649\) 7616.00 0.460638
\(650\) 0 0
\(651\) −8512.00 −0.512460
\(652\) 0 0
\(653\) 11942.0i 0.715661i 0.933787 + 0.357830i \(0.116483\pi\)
−0.933787 + 0.357830i \(0.883517\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 23606.0i 1.40176i
\(658\) 0 0
\(659\) 31772.0 1.87809 0.939045 0.343794i \(-0.111712\pi\)
0.939045 + 0.343794i \(0.111712\pi\)
\(660\) 0 0
\(661\) −9502.00 −0.559130 −0.279565 0.960127i \(-0.590190\pi\)
−0.279565 + 0.960127i \(0.590190\pi\)
\(662\) 0 0
\(663\) − 30176.0i − 1.76763i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 22272.0i 1.29292i
\(668\) 0 0
\(669\) −39168.0 −2.26356
\(670\) 0 0
\(671\) −18536.0 −1.06643
\(672\) 0 0
\(673\) − 4750.00i − 0.272064i −0.990704 0.136032i \(-0.956565\pi\)
0.990704 0.136032i \(-0.0434350\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 23610.0i − 1.34033i −0.742210 0.670167i \(-0.766223\pi\)
0.742210 0.670167i \(-0.233777\pi\)
\(678\) 0 0
\(679\) −5278.00 −0.298308
\(680\) 0 0
\(681\) −28032.0 −1.57737
\(682\) 0 0
\(683\) 26852.0i 1.50434i 0.658970 + 0.752169i \(0.270992\pi\)
−0.658970 + 0.752169i \(0.729008\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 6608.00i − 0.366974i
\(688\) 0 0
\(689\) 46740.0 2.58440
\(690\) 0 0
\(691\) −2648.00 −0.145781 −0.0728905 0.997340i \(-0.523222\pi\)
−0.0728905 + 0.997340i \(0.523222\pi\)
\(692\) 0 0
\(693\) 7252.00i 0.397519i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2300.00i 0.124991i
\(698\) 0 0
\(699\) 2224.00 0.120342
\(700\) 0 0
\(701\) 29118.0 1.56886 0.784431 0.620217i \(-0.212955\pi\)
0.784431 + 0.620217i \(0.212955\pi\)
\(702\) 0 0
\(703\) − 2320.00i − 0.124467i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 2478.00i − 0.131817i
\(708\) 0 0
\(709\) 14474.0 0.766689 0.383344 0.923605i \(-0.374772\pi\)
0.383344 + 0.923605i \(0.374772\pi\)
\(710\) 0 0
\(711\) −22200.0 −1.17098
\(712\) 0 0
\(713\) 19456.0i 1.02193i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 37888.0i − 1.97344i
\(718\) 0 0
\(719\) −10968.0 −0.568898 −0.284449 0.958691i \(-0.591811\pi\)
−0.284449 + 0.958691i \(0.591811\pi\)
\(720\) 0 0
\(721\) 13328.0 0.688434
\(722\) 0 0
\(723\) − 31920.0i − 1.64193i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 18624.0i − 0.950104i −0.879958 0.475052i \(-0.842429\pi\)
0.879958 0.475052i \(-0.157571\pi\)
\(728\) 0 0
\(729\) 30563.0 1.55276
\(730\) 0 0
\(731\) −18216.0 −0.921673
\(732\) 0 0
\(733\) − 37014.0i − 1.86513i −0.360997 0.932567i \(-0.617563\pi\)
0.360997 0.932567i \(-0.382437\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 24528.0i − 1.22592i
\(738\) 0 0
\(739\) −1284.00 −0.0639143 −0.0319572 0.999489i \(-0.510174\pi\)
−0.0319572 + 0.999489i \(0.510174\pi\)
\(740\) 0 0
\(741\) 5248.00 0.260176
\(742\) 0 0
\(743\) 25584.0i 1.26324i 0.775279 + 0.631619i \(0.217609\pi\)
−0.775279 + 0.631619i \(0.782391\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 23088.0i − 1.13085i
\(748\) 0 0
\(749\) −7756.00 −0.378369
\(750\) 0 0
\(751\) −3872.00 −0.188138 −0.0940688 0.995566i \(-0.529987\pi\)
−0.0940688 + 0.995566i \(0.529987\pi\)
\(752\) 0 0
\(753\) 18368.0i 0.888934i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 22238.0i − 1.06771i −0.845577 0.533853i \(-0.820743\pi\)
0.845577 0.533853i \(-0.179257\pi\)
\(758\) 0 0
\(759\) 28672.0 1.37118
\(760\) 0 0
\(761\) 10178.0 0.484826 0.242413 0.970173i \(-0.422061\pi\)
0.242413 + 0.970173i \(0.422061\pi\)
\(762\) 0 0
\(763\) − 1022.00i − 0.0484913i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 22304.0i 1.05000i
\(768\) 0 0
\(769\) −31498.0 −1.47704 −0.738522 0.674229i \(-0.764476\pi\)
−0.738522 + 0.674229i \(0.764476\pi\)
\(770\) 0 0
\(771\) 32464.0 1.51642
\(772\) 0 0
\(773\) 19090.0i 0.888253i 0.895964 + 0.444127i \(0.146486\pi\)
−0.895964 + 0.444127i \(0.853514\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 16240.0i 0.749816i
\(778\) 0 0
\(779\) −400.000 −0.0183973
\(780\) 0 0
\(781\) −24640.0 −1.12892
\(782\) 0 0
\(783\) 13920.0i 0.635326i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 23360.0i − 1.05806i −0.848603 0.529031i \(-0.822556\pi\)
0.848603 0.529031i \(-0.177444\pi\)
\(788\) 0 0
\(789\) −45120.0 −2.03589
\(790\) 0 0
\(791\) −14546.0 −0.653851
\(792\) 0 0
\(793\) − 54284.0i − 2.43087i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 28686.0i 1.27492i 0.770484 + 0.637459i \(0.220015\pi\)
−0.770484 + 0.637459i \(0.779985\pi\)
\(798\) 0 0
\(799\) −13616.0 −0.602878
\(800\) 0 0
\(801\) 25826.0 1.13922
\(802\) 0 0
\(803\) − 17864.0i − 0.785065i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 62064.0i 2.70726i
\(808\) 0 0
\(809\) −33226.0 −1.44396 −0.721980 0.691914i \(-0.756768\pi\)
−0.721980 + 0.691914i \(0.756768\pi\)
\(810\) 0 0
\(811\) −33024.0 −1.42988 −0.714938 0.699188i \(-0.753545\pi\)
−0.714938 + 0.699188i \(0.753545\pi\)
\(812\) 0 0
\(813\) 26112.0i 1.12643i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 3168.00i − 0.135660i
\(818\) 0 0
\(819\) −21238.0 −0.906124
\(820\) 0 0
\(821\) −17090.0 −0.726486 −0.363243 0.931694i \(-0.618331\pi\)
−0.363243 + 0.931694i \(0.618331\pi\)
\(822\) 0 0
\(823\) − 11720.0i − 0.496396i −0.968709 0.248198i \(-0.920162\pi\)
0.968709 0.248198i \(-0.0798383\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 34764.0i 1.46174i 0.682514 + 0.730872i \(0.260886\pi\)
−0.682514 + 0.730872i \(0.739114\pi\)
\(828\) 0 0
\(829\) −650.000 −0.0272321 −0.0136161 0.999907i \(-0.504334\pi\)
−0.0136161 + 0.999907i \(0.504334\pi\)
\(830\) 0 0
\(831\) 4528.00 0.189019
\(832\) 0 0
\(833\) − 2254.00i − 0.0937533i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 12160.0i 0.502164i
\(838\) 0 0
\(839\) 33888.0 1.39445 0.697225 0.716852i \(-0.254418\pi\)
0.697225 + 0.716852i \(0.254418\pi\)
\(840\) 0 0
\(841\) 5887.00 0.241379
\(842\) 0 0
\(843\) 33872.0i 1.38388i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 3829.00i 0.155332i
\(848\) 0 0
\(849\) −5824.00 −0.235429
\(850\) 0 0
\(851\) 37120.0 1.49525
\(852\) 0 0
\(853\) − 14246.0i − 0.571833i −0.958255 0.285917i \(-0.907702\pi\)
0.958255 0.285917i \(-0.0922980\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 362.000i − 0.0144290i −0.999974 0.00721452i \(-0.997704\pi\)
0.999974 0.00721452i \(-0.00229647\pi\)
\(858\) 0 0
\(859\) −25544.0 −1.01461 −0.507305 0.861767i \(-0.669358\pi\)
−0.507305 + 0.861767i \(0.669358\pi\)
\(860\) 0 0
\(861\) 2800.00 0.110829
\(862\) 0 0
\(863\) 18576.0i 0.732717i 0.930474 + 0.366358i \(0.119396\pi\)
−0.930474 + 0.366358i \(0.880604\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 22376.0i 0.876504i
\(868\) 0 0
\(869\) 16800.0 0.655812
\(870\) 0 0
\(871\) 71832.0 2.79441
\(872\) 0 0
\(873\) 27898.0i 1.08156i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 29606.0i − 1.13994i −0.821667 0.569968i \(-0.806956\pi\)
0.821667 0.569968i \(-0.193044\pi\)
\(878\) 0 0
\(879\) −43920.0 −1.68531
\(880\) 0 0
\(881\) 45378.0 1.73533 0.867664 0.497151i \(-0.165621\pi\)
0.867664 + 0.497151i \(0.165621\pi\)
\(882\) 0 0
\(883\) 22540.0i 0.859039i 0.903058 + 0.429519i \(0.141317\pi\)
−0.903058 + 0.429519i \(0.858683\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 20336.0i 0.769804i 0.922957 + 0.384902i \(0.125765\pi\)
−0.922957 + 0.384902i \(0.874235\pi\)
\(888\) 0 0
\(889\) 4200.00 0.158452
\(890\) 0 0
\(891\) −10052.0 −0.377951
\(892\) 0 0
\(893\) − 2368.00i − 0.0887370i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 83968.0i 3.12554i
\(898\) 0 0
\(899\) 26448.0 0.981190
\(900\) 0 0
\(901\) 26220.0 0.969495
\(902\) 0 0
\(903\) 22176.0i 0.817244i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 34764.0i 1.27268i 0.771409 + 0.636339i \(0.219552\pi\)
−0.771409 + 0.636339i \(0.780448\pi\)
\(908\) 0 0
\(909\) −13098.0 −0.477924
\(910\) 0 0
\(911\) −240.000 −0.00872838 −0.00436419 0.999990i \(-0.501389\pi\)
−0.00436419 + 0.999990i \(0.501389\pi\)
\(912\) 0 0
\(913\) 17472.0i 0.633339i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1176.00i 0.0423500i
\(918\) 0 0
\(919\) −37264.0 −1.33757 −0.668785 0.743456i \(-0.733185\pi\)
−0.668785 + 0.743456i \(0.733185\pi\)
\(920\) 0 0
\(921\) 13312.0 0.476271
\(922\) 0 0
\(923\) − 72160.0i − 2.57332i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 70448.0i − 2.49603i
\(928\) 0 0
\(929\) 13286.0 0.469214 0.234607 0.972090i \(-0.424620\pi\)
0.234607 + 0.972090i \(0.424620\pi\)
\(930\) 0 0
\(931\) 392.000 0.0137994
\(932\) 0 0
\(933\) 13504.0i 0.473849i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 13614.0i 0.474653i 0.971430 + 0.237327i \(0.0762711\pi\)
−0.971430 + 0.237327i \(0.923729\pi\)
\(938\) 0 0
\(939\) 18352.0 0.637801
\(940\) 0 0
\(941\) 36570.0 1.26689 0.633447 0.773786i \(-0.281639\pi\)
0.633447 + 0.773786i \(0.281639\pi\)
\(942\) 0 0
\(943\) − 6400.00i − 0.221010i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 8772.00i − 0.301005i −0.988610 0.150502i \(-0.951911\pi\)
0.988610 0.150502i \(-0.0480892\pi\)
\(948\) 0 0
\(949\) 52316.0 1.78951
\(950\) 0 0
\(951\) −11408.0 −0.388990
\(952\) 0 0
\(953\) − 8742.00i − 0.297147i −0.988901 0.148574i \(-0.952532\pi\)
0.988901 0.148574i \(-0.0474682\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 38976.0i − 1.31653i
\(958\) 0 0
\(959\) −2758.00 −0.0928681
\(960\) 0 0
\(961\) −6687.00 −0.224464
\(962\) 0 0
\(963\) 40996.0i 1.37184i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 51248.0i 1.70427i 0.523326 + 0.852133i \(0.324691\pi\)
−0.523326 + 0.852133i \(0.675309\pi\)
\(968\) 0 0
\(969\) 2944.00 0.0976005
\(970\) 0 0
\(971\) 41376.0 1.36748 0.683738 0.729728i \(-0.260353\pi\)
0.683738 + 0.729728i \(0.260353\pi\)
\(972\) 0 0
\(973\) − 3304.00i − 0.108861i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 15234.0i − 0.498852i −0.968394 0.249426i \(-0.919758\pi\)
0.968394 0.249426i \(-0.0802420\pi\)
\(978\) 0 0
\(979\) −19544.0 −0.638028
\(980\) 0 0
\(981\) −5402.00 −0.175813
\(982\) 0 0
\(983\) − 22384.0i − 0.726286i −0.931733 0.363143i \(-0.881704\pi\)
0.931733 0.363143i \(-0.118296\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 16576.0i 0.534569i
\(988\) 0 0
\(989\) 50688.0 1.62971
\(990\) 0 0
\(991\) −3656.00 −0.117191 −0.0585957 0.998282i \(-0.518662\pi\)
−0.0585957 + 0.998282i \(0.518662\pi\)
\(992\) 0 0
\(993\) − 5920.00i − 0.189190i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 15406.0i 0.489381i 0.969601 + 0.244691i \(0.0786864\pi\)
−0.969601 + 0.244691i \(0.921314\pi\)
\(998\) 0 0
\(999\) 23200.0 0.734750
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.4.e.c.449.2 2
5.2 odd 4 140.4.a.e.1.1 1
5.3 odd 4 700.4.a.b.1.1 1
5.4 even 2 inner 700.4.e.c.449.1 2
15.2 even 4 1260.4.a.j.1.1 1
20.7 even 4 560.4.a.b.1.1 1
35.2 odd 12 980.4.i.b.361.1 2
35.12 even 12 980.4.i.q.361.1 2
35.17 even 12 980.4.i.q.961.1 2
35.27 even 4 980.4.a.b.1.1 1
35.32 odd 12 980.4.i.b.961.1 2
40.27 even 4 2240.4.a.bj.1.1 1
40.37 odd 4 2240.4.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.4.a.e.1.1 1 5.2 odd 4
560.4.a.b.1.1 1 20.7 even 4
700.4.a.b.1.1 1 5.3 odd 4
700.4.e.c.449.1 2 5.4 even 2 inner
700.4.e.c.449.2 2 1.1 even 1 trivial
980.4.a.b.1.1 1 35.27 even 4
980.4.i.b.361.1 2 35.2 odd 12
980.4.i.b.961.1 2 35.32 odd 12
980.4.i.q.361.1 2 35.12 even 12
980.4.i.q.961.1 2 35.17 even 12
1260.4.a.j.1.1 1 15.2 even 4
2240.4.a.c.1.1 1 40.37 odd 4
2240.4.a.bj.1.1 1 40.27 even 4