L(s) = 1 | + 8i·3-s − 7i·7-s − 37·9-s + 28·11-s + 82i·13-s + 46i·17-s − 8·19-s + 56·21-s − 128i·23-s − 80i·27-s − 174·29-s − 152·31-s + 224i·33-s + 290i·37-s − 656·39-s + ⋯ |
L(s) = 1 | + 1.53i·3-s − 0.377i·7-s − 1.37·9-s + 0.767·11-s + 1.74i·13-s + 0.656i·17-s − 0.0965·19-s + 0.581·21-s − 1.16i·23-s − 0.570i·27-s − 1.11·29-s − 0.880·31-s + 1.18i·33-s + 1.28i·37-s − 2.69·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.103718828\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.103718828\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + 7iT \) |
good | 3 | \( 1 - 8iT - 27T^{2} \) |
| 11 | \( 1 - 28T + 1.33e3T^{2} \) |
| 13 | \( 1 - 82iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 46iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 8T + 6.85e3T^{2} \) |
| 23 | \( 1 + 128iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 174T + 2.43e4T^{2} \) |
| 31 | \( 1 + 152T + 2.97e4T^{2} \) |
| 37 | \( 1 - 290iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 50T + 6.89e4T^{2} \) |
| 43 | \( 1 - 396iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 296iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 570iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 272T + 2.05e5T^{2} \) |
| 61 | \( 1 + 662T + 2.26e5T^{2} \) |
| 67 | \( 1 + 876iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 880T + 3.57e5T^{2} \) |
| 73 | \( 1 + 638iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 600T + 4.93e5T^{2} \) |
| 83 | \( 1 - 624iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 698T + 7.04e5T^{2} \) |
| 97 | \( 1 + 754iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.55238199537600222012803758495, −9.499454328805588279025131180738, −9.228259159953760951262975320245, −8.214284632426944496340882235301, −6.87544597511449857560571261948, −6.07221787033952056893091077214, −4.70028353381260808266200760309, −4.23532740230581283573488280724, −3.35776654549675455023011525330, −1.72200907760468139473499418965,
0.30524584098653598233976479280, 1.42815544350459708405149936829, 2.53256220596016406188806003134, 3.67382707712152931985444751142, 5.46654608291612254616942162197, 5.90827927603145375737447094643, 7.24808176302326686493362470518, 7.47864079344163137652058518185, 8.572871489071158700617674233676, 9.348723809694728938475439172381