gp: [N,k,chi] = [700,2,Mod(401,700)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("700.401");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(700, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 2]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [8,0,0,0,0,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 8 + 9 x 6 + 56 x 4 + 225 x 2 + 625 x^{8} + 9x^{6} + 56x^{4} + 225x^{2} + 625 x 8 + 9 x 6 + 5 6 x 4 + 2 2 5 x 2 + 6 2 5
x^8 + 9*x^6 + 56*x^4 + 225*x^2 + 625
:
β 1 \beta_{1} β 1 = = =
( ν 6 − 56 ν 4 − 224 ν 2 − 895 ) / 280 ( \nu^{6} - 56\nu^{4} - 224\nu^{2} - 895 ) / 280 ( ν 6 − 5 6 ν 4 − 2 2 4 ν 2 − 8 9 5 ) / 2 8 0
(v^6 - 56*v^4 - 224*v^2 - 895) / 280
β 2 \beta_{2} β 2 = = =
( 9 ν 6 + 56 ν 4 + 504 ν 2 + 2025 ) / 1400 ( 9\nu^{6} + 56\nu^{4} + 504\nu^{2} + 2025 ) / 1400 ( 9 ν 6 + 5 6 ν 4 + 5 0 4 ν 2 + 2 0 2 5 ) / 1 4 0 0
(9*v^6 + 56*v^4 + 504*v^2 + 2025) / 1400
β 3 \beta_{3} β 3 = = =
( 11 ν 7 + 224 ν 5 + 616 ν 3 + 9475 ν ) / 7000 ( 11\nu^{7} + 224\nu^{5} + 616\nu^{3} + 9475\nu ) / 7000 ( 1 1 ν 7 + 2 2 4 ν 5 + 6 1 6 ν 3 + 9 4 7 5 ν ) / 7 0 0 0
(11*v^7 + 224*v^5 + 616*v^3 + 9475*v) / 7000
β 4 \beta_{4} β 4 = = =
( − ν 7 + 16 ν 5 + 44 ν 3 + 175 ν ) / 500 ( -\nu^{7} + 16\nu^{5} + 44\nu^{3} + 175\nu ) / 500 ( − ν 7 + 1 6 ν 5 + 4 4 ν 3 + 1 7 5 ν ) / 5 0 0
(-v^7 + 16*v^5 + 44*v^3 + 175*v) / 500
β 5 \beta_{5} β 5 = = =
( ν 7 + 14 ν 5 + 126 ν 3 + 505 ν ) / 350 ( \nu^{7} + 14\nu^{5} + 126\nu^{3} + 505\nu ) / 350 ( ν 7 + 1 4 ν 5 + 1 2 6 ν 3 + 5 0 5 ν ) / 3 5 0
(v^7 + 14*v^5 + 126*v^3 + 505*v) / 350
β 6 \beta_{6} β 6 = = =
( 47 ν 7 + 448 ν 5 + 1232 ν 3 + 4975 ν ) / 7000 ( 47\nu^{7} + 448\nu^{5} + 1232\nu^{3} + 4975\nu ) / 7000 ( 4 7 ν 7 + 4 4 8 ν 5 + 1 2 3 2 ν 3 + 4 9 7 5 ν ) / 7 0 0 0
(47*v^7 + 448*v^5 + 1232*v^3 + 4975*v) / 7000
β 7 \beta_{7} β 7 = = =
( − ν 6 − 9 ν 4 − 31 ν 2 − 100 ) / 25 ( -\nu^{6} - 9\nu^{4} - 31\nu^{2} - 100 ) / 25 ( − ν 6 − 9 ν 4 − 3 1 ν 2 − 1 0 0 ) / 2 5
(-v^6 - 9*v^4 - 31*v^2 - 100) / 25
ν \nu ν = = =
( − β 6 − β 4 + 3 β 3 ) / 3 ( -\beta_{6} - \beta_{4} + 3\beta_{3} ) / 3 ( − β 6 − β 4 + 3 β 3 ) / 3
(-b6 - b4 + 3*b3) / 3
ν 2 \nu^{2} ν 2 = = =
( 2 β 7 + 13 β 2 − β 1 − 14 ) / 3 ( 2\beta_{7} + 13\beta_{2} - \beta _1 - 14 ) / 3 ( 2 β 7 + 1 3 β 2 − β 1 − 1 4 ) / 3
(2*b7 + 13*b2 - b1 - 14) / 3
ν 3 \nu^{3} ν 3 = = =
( − 2 β 6 + 12 β 5 + β 4 − 12 β 3 ) / 3 ( -2\beta_{6} + 12\beta_{5} + \beta_{4} - 12\beta_{3} ) / 3 ( − 2 β 6 + 1 2 β 5 + β 4 − 1 2 β 3 ) / 3
(-2*b6 + 12*b5 + b4 - 12*b3) / 3
ν 4 \nu^{4} ν 4 = = =
− 3 β 7 − 17 β 2 − 3 β 1 + 3 -3\beta_{7} - 17\beta_{2} - 3\beta _1 + 3 − 3 β 7 − 1 7 β 2 − 3 β 1 + 3
-3*b7 - 17*b2 - 3*b1 + 3
ν 5 \nu^{5} ν 5 = = =
( 34 β 6 − 33 β 5 + 67 β 4 ) / 3 ( 34\beta_{6} - 33\beta_{5} + 67\beta_{4} ) / 3 ( 3 4 β 6 − 3 3 β 5 + 6 7 β 4 ) / 3
(34*b6 - 33*b5 + 67*b4) / 3
ν 6 \nu^{6} ν 6 = = =
( − 56 β 7 + 56 β 2 + 112 β 1 + 53 ) / 3 ( -56\beta_{7} + 56\beta_{2} + 112\beta _1 + 53 ) / 3 ( − 5 6 β 7 + 5 6 β 2 + 1 1 2 β 1 + 5 3 ) / 3
(-56*b7 + 56*b2 + 112*b1 + 53) / 3
ν 7 \nu^{7} ν 7 = = =
( 281 β 6 − 559 β 4 − 3 β 3 ) / 3 ( 281\beta_{6} - 559\beta_{4} - 3\beta_{3} ) / 3 ( 2 8 1 β 6 − 5 5 9 β 4 − 3 β 3 ) / 3
(281*b6 - 559*b4 - 3*b3) / 3
Character values
We give the values of χ \chi χ on generators for ( Z / 700 Z ) × \left(\mathbb{Z}/700\mathbb{Z}\right)^\times ( Z / 7 0 0 Z ) × .
n n n
101 101 1 0 1
351 351 3 5 1
477 477 4 7 7
χ ( n ) \chi(n) χ ( n )
− β 2 -\beta_{2} − β 2
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 700 , [ χ ] ) S_{2}^{\mathrm{new}}(700, [\chi]) S 2 n e w ( 7 0 0 , [ χ ] ) :
T 3 4 + 3 T 3 2 + 9 T_{3}^{4} + 3T_{3}^{2} + 9 T 3 4 + 3 T 3 2 + 9
T3^4 + 3*T3^2 + 9
T 11 4 − 3 T 11 3 + 21 T 11 2 + 36 T 11 + 144 T_{11}^{4} - 3T_{11}^{3} + 21T_{11}^{2} + 36T_{11} + 144 T 1 1 4 − 3 T 1 1 3 + 2 1 T 1 1 2 + 3 6 T 1 1 + 1 4 4
T11^4 - 3*T11^3 + 21*T11^2 + 36*T11 + 144
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 T^{8} T 8
T^8
3 3 3
( T 4 + 3 T 2 + 9 ) 2 (T^{4} + 3 T^{2} + 9)^{2} ( T 4 + 3 T 2 + 9 ) 2
(T^4 + 3*T^2 + 9)^2
5 5 5
T 8 T^{8} T 8
T^8
7 7 7
T 8 + 5 T 6 + ⋯ + 2401 T^{8} + 5 T^{6} + \cdots + 2401 T 8 + 5 T 6 + ⋯ + 2 4 0 1
T^8 + 5*T^6 - 24*T^4 + 245*T^2 + 2401
11 11 1 1
( T 4 − 3 T 3 + ⋯ + 144 ) 2 (T^{4} - 3 T^{3} + \cdots + 144)^{2} ( T 4 − 3 T 3 + ⋯ + 1 4 4 ) 2
(T^4 - 3*T^3 + 21*T^2 + 36*T + 144)^2
13 13 1 3
( T 4 − 44 T 2 + 256 ) 2 (T^{4} - 44 T^{2} + 256)^{2} ( T 4 − 4 4 T 2 + 2 5 6 ) 2
(T^4 - 44*T^2 + 256)^2
17 17 1 7
T 8 + 23 T 6 + ⋯ + 16 T^{8} + 23 T^{6} + \cdots + 16 T 8 + 2 3 T 6 + ⋯ + 1 6
T^8 + 23*T^6 + 525*T^4 + 92*T^2 + 16
19 19 1 9
( T 4 − T 3 + 15 T 2 + ⋯ + 196 ) 2 (T^{4} - T^{3} + 15 T^{2} + \cdots + 196)^{2} ( T 4 − T 3 + 1 5 T 2 + ⋯ + 1 9 6 ) 2
(T^4 - T^3 + 15*T^2 + 14*T + 196)^2
23 23 2 3
T 8 + 62 T 6 + ⋯ + 2401 T^{8} + 62 T^{6} + \cdots + 2401 T 8 + 6 2 T 6 + ⋯ + 2 4 0 1
T^8 + 62*T^6 + 3795*T^4 + 3038*T^2 + 2401
29 29 2 9
( T 2 − T − 14 ) 4 (T^{2} - T - 14)^{4} ( T 2 − T − 1 4 ) 4
(T^2 - T - 14)^4
31 31 3 1
( T 4 − T 3 + 15 T 2 + ⋯ + 196 ) 2 (T^{4} - T^{3} + 15 T^{2} + \cdots + 196)^{2} ( T 4 − T 3 + 1 5 T 2 + ⋯ + 1 9 6 ) 2
(T^4 - T^3 + 15*T^2 + 14*T + 196)^2
37 37 3 7
T 8 + 131 T 6 + ⋯ + 9834496 T^{8} + 131 T^{6} + \cdots + 9834496 T 8 + 1 3 1 T 6 + ⋯ + 9 8 3 4 4 9 6
T^8 + 131*T^6 + 14025*T^4 + 410816*T^2 + 9834496
41 41 4 1
( T 2 + 15 T + 42 ) 4 (T^{2} + 15 T + 42)^{4} ( T 2 + 1 5 T + 4 2 ) 4
(T^2 + 15*T + 42)^4
43 43 4 3
( T 4 − 47 T 2 + 196 ) 2 (T^{4} - 47 T^{2} + 196)^{2} ( T 4 − 4 7 T 2 + 1 9 6 ) 2
(T^4 - 47*T^2 + 196)^2
47 47 4 7
T 8 + 47 T 6 + ⋯ + 38416 T^{8} + 47 T^{6} + \cdots + 38416 T 8 + 4 7 T 6 + ⋯ + 3 8 4 1 6
T^8 + 47*T^6 + 2013*T^4 + 9212*T^2 + 38416
53 53 5 3
T 8 + 87 T 6 + ⋯ + 3111696 T^{8} + 87 T^{6} + \cdots + 3111696 T 8 + 8 7 T 6 + ⋯ + 3 1 1 1 6 9 6
T^8 + 87*T^6 + 5805*T^4 + 153468*T^2 + 3111696
59 59 5 9
( T 4 + T 3 + 15 T 2 + ⋯ + 196 ) 2 (T^{4} + T^{3} + 15 T^{2} + \cdots + 196)^{2} ( T 4 + T 3 + 1 5 T 2 + ⋯ + 1 9 6 ) 2
(T^4 + T^3 + 15*T^2 - 14*T + 196)^2
61 61 6 1
( T 4 − 12 T 3 + ⋯ + 441 ) 2 (T^{4} - 12 T^{3} + \cdots + 441)^{2} ( T 4 − 1 2 T 3 + ⋯ + 4 4 1 ) 2
(T^4 - 12*T^3 + 165*T^2 + 252*T + 441)^2
67 67 6 7
T 8 + 206 T 6 + ⋯ + 5764801 T^{8} + 206 T^{6} + \cdots + 5764801 T 8 + 2 0 6 T 6 + ⋯ + 5 7 6 4 8 0 1
T^8 + 206*T^6 + 40035*T^4 + 494606*T^2 + 5764801
71 71 7 1
( T 2 − 6 T − 48 ) 4 (T^{2} - 6 T - 48)^{4} ( T 2 − 6 T − 4 8 ) 4
(T^2 - 6*T - 48)^4
73 73 7 3
T 8 + 47 T 6 + ⋯ + 38416 T^{8} + 47 T^{6} + \cdots + 38416 T 8 + 4 7 T 6 + ⋯ + 3 8 4 1 6
T^8 + 47*T^6 + 2013*T^4 + 9212*T^2 + 38416
79 79 7 9
( T 4 + 7 T 3 + 51 T 2 + ⋯ + 4 ) 2 (T^{4} + 7 T^{3} + 51 T^{2} + \cdots + 4)^{2} ( T 4 + 7 T 3 + 5 1 T 2 + ⋯ + 4 ) 2
(T^4 + 7*T^3 + 51*T^2 - 14*T + 4)^2
83 83 8 3
( T 4 − 87 T 2 + 1764 ) 2 (T^{4} - 87 T^{2} + 1764)^{2} ( T 4 − 8 7 T 2 + 1 7 6 4 ) 2
(T^4 - 87*T^2 + 1764)^2
89 89 8 9
( T 2 − 7 T + 49 ) 4 (T^{2} - 7 T + 49)^{4} ( T 2 − 7 T + 4 9 ) 4
(T^2 - 7*T + 49)^4
97 97 9 7
( T 2 − 48 ) 4 (T^{2} - 48)^{4} ( T 2 − 4 8 ) 4
(T^2 - 48)^4
show more
show less