Properties

Label 700.2.i.f
Level 700700
Weight 22
Character orbit 700.i
Analytic conductor 5.5905.590
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [700,2,Mod(401,700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("700.401"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(700, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: N N == 700=22527 700 = 2^{2} \cdot 5^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 700.i (of order 33, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.589528141495.58952814149
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: 8.0.2702336256.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x8+9x6+56x4+225x2+625 x^{8} + 9x^{6} + 56x^{4} + 225x^{2} + 625 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 32 3^{2}
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β6+β4)q3+(β4+β3)q7+(β2+β1+1)q11+(2β62β5++2β3)q13+(2β6β5+2β4)q17++4β4q97+O(q100) q + ( - \beta_{6} + \beta_{4}) q^{3} + ( - \beta_{4} + \beta_{3}) q^{7} + ( - \beta_{2} + \beta_1 + 1) q^{11} + ( - 2 \beta_{6} - 2 \beta_{5} + \cdots + 2 \beta_{3}) q^{13} + ( - 2 \beta_{6} - \beta_{5} + 2 \beta_{4}) q^{17}+ \cdots + 4 \beta_{4} q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+6q11+2q19+4q29+2q31+12q3960q4110q4918q512q59+24q6148q69+24q7114q79+36q81+28q89+20q91+O(q100) 8 q + 6 q^{11} + 2 q^{19} + 4 q^{29} + 2 q^{31} + 12 q^{39} - 60 q^{41} - 10 q^{49} - 18 q^{51} - 2 q^{59} + 24 q^{61} - 48 q^{69} + 24 q^{71} - 14 q^{79} + 36 q^{81} + 28 q^{89} + 20 q^{91}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+9x6+56x4+225x2+625 x^{8} + 9x^{6} + 56x^{4} + 225x^{2} + 625 : Copy content Toggle raw display

β1\beta_{1}== (ν656ν4224ν2895)/280 ( \nu^{6} - 56\nu^{4} - 224\nu^{2} - 895 ) / 280 Copy content Toggle raw display
β2\beta_{2}== (9ν6+56ν4+504ν2+2025)/1400 ( 9\nu^{6} + 56\nu^{4} + 504\nu^{2} + 2025 ) / 1400 Copy content Toggle raw display
β3\beta_{3}== (11ν7+224ν5+616ν3+9475ν)/7000 ( 11\nu^{7} + 224\nu^{5} + 616\nu^{3} + 9475\nu ) / 7000 Copy content Toggle raw display
β4\beta_{4}== (ν7+16ν5+44ν3+175ν)/500 ( -\nu^{7} + 16\nu^{5} + 44\nu^{3} + 175\nu ) / 500 Copy content Toggle raw display
β5\beta_{5}== (ν7+14ν5+126ν3+505ν)/350 ( \nu^{7} + 14\nu^{5} + 126\nu^{3} + 505\nu ) / 350 Copy content Toggle raw display
β6\beta_{6}== (47ν7+448ν5+1232ν3+4975ν)/7000 ( 47\nu^{7} + 448\nu^{5} + 1232\nu^{3} + 4975\nu ) / 7000 Copy content Toggle raw display
β7\beta_{7}== (ν69ν431ν2100)/25 ( -\nu^{6} - 9\nu^{4} - 31\nu^{2} - 100 ) / 25 Copy content Toggle raw display
ν\nu== (β6β4+3β3)/3 ( -\beta_{6} - \beta_{4} + 3\beta_{3} ) / 3 Copy content Toggle raw display
ν2\nu^{2}== (2β7+13β2β114)/3 ( 2\beta_{7} + 13\beta_{2} - \beta _1 - 14 ) / 3 Copy content Toggle raw display
ν3\nu^{3}== (2β6+12β5+β412β3)/3 ( -2\beta_{6} + 12\beta_{5} + \beta_{4} - 12\beta_{3} ) / 3 Copy content Toggle raw display
ν4\nu^{4}== 3β717β23β1+3 -3\beta_{7} - 17\beta_{2} - 3\beta _1 + 3 Copy content Toggle raw display
ν5\nu^{5}== (34β633β5+67β4)/3 ( 34\beta_{6} - 33\beta_{5} + 67\beta_{4} ) / 3 Copy content Toggle raw display
ν6\nu^{6}== (56β7+56β2+112β1+53)/3 ( -56\beta_{7} + 56\beta_{2} + 112\beta _1 + 53 ) / 3 Copy content Toggle raw display
ν7\nu^{7}== (281β6559β43β3)/3 ( 281\beta_{6} - 559\beta_{4} - 3\beta_{3} ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/700Z)×\left(\mathbb{Z}/700\mathbb{Z}\right)^\times.

nn 101101 351351 477477
χ(n)\chi(n) β2-\beta_{2} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
401.1
−0.656712 + 2.13746i
1.52274 1.63746i
−1.52274 + 1.63746i
0.656712 2.13746i
−0.656712 2.13746i
1.52274 + 1.63746i
−1.52274 1.63746i
0.656712 + 2.13746i
0 −0.866025 1.50000i 0 0 0 0.209313 + 2.63746i 0 0 0
401.2 0 −0.866025 1.50000i 0 0 0 2.38876 1.13746i 0 0 0
401.3 0 0.866025 + 1.50000i 0 0 0 −2.38876 + 1.13746i 0 0 0
401.4 0 0.866025 + 1.50000i 0 0 0 −0.209313 2.63746i 0 0 0
501.1 0 −0.866025 + 1.50000i 0 0 0 0.209313 2.63746i 0 0 0
501.2 0 −0.866025 + 1.50000i 0 0 0 2.38876 + 1.13746i 0 0 0
501.3 0 0.866025 1.50000i 0 0 0 −2.38876 1.13746i 0 0 0
501.4 0 0.866025 1.50000i 0 0 0 −0.209313 + 2.63746i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 401.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
7.c even 3 1 inner
35.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 700.2.i.f 8
5.b even 2 1 inner 700.2.i.f 8
5.c odd 4 1 140.2.q.a 4
5.c odd 4 1 140.2.q.b yes 4
7.c even 3 1 inner 700.2.i.f 8
7.c even 3 1 4900.2.a.be 4
7.d odd 6 1 4900.2.a.bf 4
15.e even 4 1 1260.2.bm.a 4
15.e even 4 1 1260.2.bm.b 4
20.e even 4 1 560.2.bw.a 4
20.e even 4 1 560.2.bw.e 4
35.f even 4 1 980.2.q.b 4
35.f even 4 1 980.2.q.g 4
35.i odd 6 1 4900.2.a.bf 4
35.j even 6 1 inner 700.2.i.f 8
35.j even 6 1 4900.2.a.be 4
35.k even 12 2 980.2.e.c 4
35.k even 12 1 980.2.q.b 4
35.k even 12 1 980.2.q.g 4
35.l odd 12 1 140.2.q.a 4
35.l odd 12 1 140.2.q.b yes 4
35.l odd 12 2 980.2.e.f 4
105.x even 12 1 1260.2.bm.a 4
105.x even 12 1 1260.2.bm.b 4
140.w even 12 1 560.2.bw.a 4
140.w even 12 1 560.2.bw.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.q.a 4 5.c odd 4 1
140.2.q.a 4 35.l odd 12 1
140.2.q.b yes 4 5.c odd 4 1
140.2.q.b yes 4 35.l odd 12 1
560.2.bw.a 4 20.e even 4 1
560.2.bw.a 4 140.w even 12 1
560.2.bw.e 4 20.e even 4 1
560.2.bw.e 4 140.w even 12 1
700.2.i.f 8 1.a even 1 1 trivial
700.2.i.f 8 5.b even 2 1 inner
700.2.i.f 8 7.c even 3 1 inner
700.2.i.f 8 35.j even 6 1 inner
980.2.e.c 4 35.k even 12 2
980.2.e.f 4 35.l odd 12 2
980.2.q.b 4 35.f even 4 1
980.2.q.b 4 35.k even 12 1
980.2.q.g 4 35.f even 4 1
980.2.q.g 4 35.k even 12 1
1260.2.bm.a 4 15.e even 4 1
1260.2.bm.a 4 105.x even 12 1
1260.2.bm.b 4 15.e even 4 1
1260.2.bm.b 4 105.x even 12 1
4900.2.a.be 4 7.c even 3 1
4900.2.a.be 4 35.j even 6 1
4900.2.a.bf 4 7.d odd 6 1
4900.2.a.bf 4 35.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(700,[χ])S_{2}^{\mathrm{new}}(700, [\chi]):

T34+3T32+9 T_{3}^{4} + 3T_{3}^{2} + 9 Copy content Toggle raw display
T1143T113+21T112+36T11+144 T_{11}^{4} - 3T_{11}^{3} + 21T_{11}^{2} + 36T_{11} + 144 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 (T4+3T2+9)2 (T^{4} + 3 T^{2} + 9)^{2} Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 T8+5T6++2401 T^{8} + 5 T^{6} + \cdots + 2401 Copy content Toggle raw display
1111 (T43T3++144)2 (T^{4} - 3 T^{3} + \cdots + 144)^{2} Copy content Toggle raw display
1313 (T444T2+256)2 (T^{4} - 44 T^{2} + 256)^{2} Copy content Toggle raw display
1717 T8+23T6++16 T^{8} + 23 T^{6} + \cdots + 16 Copy content Toggle raw display
1919 (T4T3+15T2++196)2 (T^{4} - T^{3} + 15 T^{2} + \cdots + 196)^{2} Copy content Toggle raw display
2323 T8+62T6++2401 T^{8} + 62 T^{6} + \cdots + 2401 Copy content Toggle raw display
2929 (T2T14)4 (T^{2} - T - 14)^{4} Copy content Toggle raw display
3131 (T4T3+15T2++196)2 (T^{4} - T^{3} + 15 T^{2} + \cdots + 196)^{2} Copy content Toggle raw display
3737 T8+131T6++9834496 T^{8} + 131 T^{6} + \cdots + 9834496 Copy content Toggle raw display
4141 (T2+15T+42)4 (T^{2} + 15 T + 42)^{4} Copy content Toggle raw display
4343 (T447T2+196)2 (T^{4} - 47 T^{2} + 196)^{2} Copy content Toggle raw display
4747 T8+47T6++38416 T^{8} + 47 T^{6} + \cdots + 38416 Copy content Toggle raw display
5353 T8+87T6++3111696 T^{8} + 87 T^{6} + \cdots + 3111696 Copy content Toggle raw display
5959 (T4+T3+15T2++196)2 (T^{4} + T^{3} + 15 T^{2} + \cdots + 196)^{2} Copy content Toggle raw display
6161 (T412T3++441)2 (T^{4} - 12 T^{3} + \cdots + 441)^{2} Copy content Toggle raw display
6767 T8+206T6++5764801 T^{8} + 206 T^{6} + \cdots + 5764801 Copy content Toggle raw display
7171 (T26T48)4 (T^{2} - 6 T - 48)^{4} Copy content Toggle raw display
7373 T8+47T6++38416 T^{8} + 47 T^{6} + \cdots + 38416 Copy content Toggle raw display
7979 (T4+7T3+51T2++4)2 (T^{4} + 7 T^{3} + 51 T^{2} + \cdots + 4)^{2} Copy content Toggle raw display
8383 (T487T2+1764)2 (T^{4} - 87 T^{2} + 1764)^{2} Copy content Toggle raw display
8989 (T27T+49)4 (T^{2} - 7 T + 49)^{4} Copy content Toggle raw display
9797 (T248)4 (T^{2} - 48)^{4} Copy content Toggle raw display
show more
show less