gp: [N,k,chi] = [560,2,Mod(289,560)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("560.289");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(560, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 3, 2]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [4,0,6,0,1,0,3,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − x 3 − 4 x 2 − 5 x + 25 x^{4} - x^{3} - 4x^{2} - 5x + 25 x 4 − x 3 − 4 x 2 − 5 x + 2 5
x^4 - x^3 - 4*x^2 - 5*x + 25
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( ν 3 + 4 ν 2 − 4 ν − 5 ) / 20 ( \nu^{3} + 4\nu^{2} - 4\nu - 5 ) / 20 ( ν 3 + 4 ν 2 − 4 ν − 5 ) / 2 0
(v^3 + 4*v^2 - 4*v - 5) / 20
β 3 \beta_{3} β 3 = = =
( − ν 3 + 4 ν + 5 ) / 4 ( -\nu^{3} + 4\nu + 5 ) / 4 ( − ν 3 + 4 ν + 5 ) / 4
(-v^3 + 4*v + 5) / 4
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 3 + 5 β 2 \beta_{3} + 5\beta_{2} β 3 + 5 β 2
b3 + 5*b2
ν 3 \nu^{3} ν 3 = = =
− 4 β 3 + 4 β 1 + 5 -4\beta_{3} + 4\beta _1 + 5 − 4 β 3 + 4 β 1 + 5
-4*b3 + 4*b1 + 5
Character values
We give the values of χ \chi χ on generators for ( Z / 560 Z ) × \left(\mathbb{Z}/560\mathbb{Z}\right)^\times ( Z / 5 6 0 Z ) × .
n n n
241 241 2 4 1
337 337 3 3 7
351 351 3 5 1
421 421 4 2 1
χ ( n ) \chi(n) χ ( n )
− β 2 -\beta_{2} − β 2
− 1 -1 − 1
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 2 − 3 T 3 + 3 T_{3}^{2} - 3T_{3} + 3 T 3 2 − 3 T 3 + 3
T3^2 - 3*T3 + 3
acting on S 2 n e w ( 560 , [ χ ] ) S_{2}^{\mathrm{new}}(560, [\chi]) S 2 n e w ( 5 6 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
( T 2 − 3 T + 3 ) 2 (T^{2} - 3 T + 3)^{2} ( T 2 − 3 T + 3 ) 2
(T^2 - 3*T + 3)^2
5 5 5
T 4 − T 3 + ⋯ + 25 T^{4} - T^{3} + \cdots + 25 T 4 − T 3 + ⋯ + 2 5
T^4 - T^3 - 4*T^2 - 5*T + 25
7 7 7
T 4 − 3 T 3 + ⋯ + 49 T^{4} - 3 T^{3} + \cdots + 49 T 4 − 3 T 3 + ⋯ + 4 9
T^4 - 3*T^3 + 2*T^2 - 21*T + 49
11 11 1 1
T 4 + 3 T 3 + ⋯ + 144 T^{4} + 3 T^{3} + \cdots + 144 T 4 + 3 T 3 + ⋯ + 1 4 4
T^4 + 3*T^3 + 21*T^2 - 36*T + 144
13 13 1 3
T 4 + 44 T 2 + 256 T^{4} + 44T^{2} + 256 T 4 + 4 4 T 2 + 2 5 6
T^4 + 44*T^2 + 256
17 17 1 7
T 4 − 9 T 3 + ⋯ + 4 T^{4} - 9 T^{3} + \cdots + 4 T 4 − 9 T 3 + ⋯ + 4
T^4 - 9*T^3 + 29*T^2 - 18*T + 4
19 19 1 9
T 4 − T 3 + ⋯ + 196 T^{4} - T^{3} + \cdots + 196 T 4 − T 3 + ⋯ + 1 9 6
T^4 - T^3 + 15*T^2 + 14*T + 196
23 23 2 3
T 4 − 12 T 3 + ⋯ + 49 T^{4} - 12 T^{3} + \cdots + 49 T 4 − 1 2 T 3 + ⋯ + 4 9
T^4 - 12*T^3 + 41*T^2 + 84*T + 49
29 29 2 9
( T 2 + T − 14 ) 2 (T^{2} + T - 14)^{2} ( T 2 + T − 1 4 ) 2
(T^2 + T - 14)^2
31 31 3 1
T 4 + T 3 + ⋯ + 196 T^{4} + T^{3} + \cdots + 196 T 4 + T 3 + ⋯ + 1 9 6
T^4 + T^3 + 15*T^2 - 14*T + 196
37 37 3 7
T 4 − 27 T 3 + ⋯ + 3136 T^{4} - 27 T^{3} + \cdots + 3136 T 4 − 2 7 T 3 + ⋯ + 3 1 3 6
T^4 - 27*T^3 + 299*T^2 - 1512*T + 3136
41 41 4 1
( T 2 + 15 T + 42 ) 2 (T^{2} + 15 T + 42)^{2} ( T 2 + 1 5 T + 4 2 ) 2
(T^2 + 15*T + 42)^2
43 43 4 3
T 4 + 47 T 2 + 196 T^{4} + 47T^{2} + 196 T 4 + 4 7 T 2 + 1 9 6
T^4 + 47*T^2 + 196
47 47 4 7
T 4 − 15 T 3 + ⋯ + 196 T^{4} - 15 T^{3} + \cdots + 196 T 4 − 1 5 T 3 + ⋯ + 1 9 6
T^4 - 15*T^3 + 89*T^2 - 210*T + 196
53 53 5 3
T 4 + 3 T 3 + ⋯ + 1764 T^{4} + 3 T^{3} + \cdots + 1764 T 4 + 3 T 3 + ⋯ + 1 7 6 4
T^4 + 3*T^3 - 39*T^2 - 126*T + 1764
59 59 5 9
T 4 + T 3 + ⋯ + 196 T^{4} + T^{3} + \cdots + 196 T 4 + T 3 + ⋯ + 1 9 6
T^4 + T^3 + 15*T^2 - 14*T + 196
61 61 6 1
T 4 − 12 T 3 + ⋯ + 441 T^{4} - 12 T^{3} + \cdots + 441 T 4 − 1 2 T 3 + ⋯ + 4 4 1
T^4 - 12*T^3 + 165*T^2 + 252*T + 441
67 67 6 7
T 4 − 18 T 3 + ⋯ + 2401 T^{4} - 18 T^{3} + \cdots + 2401 T 4 − 1 8 T 3 + ⋯ + 2 4 0 1
T^4 - 18*T^3 + 59*T^2 + 882*T + 2401
71 71 7 1
( T 2 + 6 T − 48 ) 2 (T^{2} + 6 T - 48)^{2} ( T 2 + 6 T − 4 8 ) 2
(T^2 + 6*T - 48)^2
73 73 7 3
T 4 + 15 T 3 + ⋯ + 196 T^{4} + 15 T^{3} + \cdots + 196 T 4 + 1 5 T 3 + ⋯ + 1 9 6
T^4 + 15*T^3 + 89*T^2 + 210*T + 196
79 79 7 9
T 4 + 7 T 3 + ⋯ + 4 T^{4} + 7 T^{3} + \cdots + 4 T 4 + 7 T 3 + ⋯ + 4
T^4 + 7*T^3 + 51*T^2 - 14*T + 4
83 83 8 3
T 4 + 87 T 2 + 1764 T^{4} + 87T^{2} + 1764 T 4 + 8 7 T 2 + 1 7 6 4
T^4 + 87*T^2 + 1764
89 89 8 9
( T 2 + 7 T + 49 ) 2 (T^{2} + 7 T + 49)^{2} ( T 2 + 7 T + 4 9 ) 2
(T^2 + 7*T + 49)^2
97 97 9 7
( T 2 + 48 ) 2 (T^{2} + 48)^{2} ( T 2 + 4 8 ) 2
(T^2 + 48)^2
show more
show less