Properties

Label 560.2.bw.e
Level 560560
Weight 22
Character orbit 560.bw
Analytic conductor 4.4724.472
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [560,2,Mod(289,560)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("560.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(560, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: N N == 560=2457 560 = 2^{4} \cdot 5 \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 560.bw (of order 66, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,6,0,1,0,3,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.471622513194.47162251319
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(3,19)\Q(\sqrt{-3}, \sqrt{-19})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x34x25x+25 x^{4} - x^{3} - 4x^{2} - 5x + 25 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β2+1)q3+(β2β1+1)q5+(β3+2β2)q7+(2β3+2β2β11)q11+(2β32β22β1+2)q13++(8β24)q97+O(q100) q + (\beta_{2} + 1) q^{3} + ( - \beta_{2} - \beta_1 + 1) q^{5} + (\beta_{3} + 2 \beta_{2}) q^{7} + (2 \beta_{3} + 2 \beta_{2} - \beta_1 - 1) q^{11} + (2 \beta_{3} - 2 \beta_{2} - 2 \beta_1 + 2) q^{13}+ \cdots + (8 \beta_{2} - 4) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+6q3+q5+3q73q11+3q15+9q17+q19+12q23+9q252q29q319q3316q35+27q37+6q3930q41+15q47+5q49+9q51++q95+O(q100) 4 q + 6 q^{3} + q^{5} + 3 q^{7} - 3 q^{11} + 3 q^{15} + 9 q^{17} + q^{19} + 12 q^{23} + 9 q^{25} - 2 q^{29} - q^{31} - 9 q^{33} - 16 q^{35} + 27 q^{37} + 6 q^{39} - 30 q^{41} + 15 q^{47} + 5 q^{49} + 9 q^{51}+ \cdots + q^{95}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x34x25x+25 x^{4} - x^{3} - 4x^{2} - 5x + 25 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν3+4ν24ν5)/20 ( \nu^{3} + 4\nu^{2} - 4\nu - 5 ) / 20 Copy content Toggle raw display
β3\beta_{3}== (ν3+4ν+5)/4 ( -\nu^{3} + 4\nu + 5 ) / 4 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3+5β2 \beta_{3} + 5\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 4β3+4β1+5 -4\beta_{3} + 4\beta _1 + 5 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/560Z)×\left(\mathbb{Z}/560\mathbb{Z}\right)^\times.

nn 241241 337337 351351 421421
χ(n)\chi(n) β2-\beta_{2} 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
289.1
2.13746 0.656712i
−1.63746 + 1.52274i
2.13746 + 0.656712i
−1.63746 1.52274i
0 1.50000 0.866025i 0 −1.63746 + 1.52274i 0 2.63746 0.209313i 0 0 0
289.2 0 1.50000 0.866025i 0 2.13746 0.656712i 0 −1.13746 2.38876i 0 0 0
529.1 0 1.50000 + 0.866025i 0 −1.63746 1.52274i 0 2.63746 + 0.209313i 0 0 0
529.2 0 1.50000 + 0.866025i 0 2.13746 + 0.656712i 0 −1.13746 + 2.38876i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
35.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 560.2.bw.e 4
4.b odd 2 1 140.2.q.a 4
5.b even 2 1 560.2.bw.a 4
7.c even 3 1 560.2.bw.a 4
12.b even 2 1 1260.2.bm.a 4
20.d odd 2 1 140.2.q.b yes 4
20.e even 4 2 700.2.i.f 8
28.d even 2 1 980.2.q.g 4
28.f even 6 1 980.2.e.c 4
28.f even 6 1 980.2.q.b 4
28.g odd 6 1 140.2.q.b yes 4
28.g odd 6 1 980.2.e.f 4
35.j even 6 1 inner 560.2.bw.e 4
60.h even 2 1 1260.2.bm.b 4
84.n even 6 1 1260.2.bm.b 4
140.c even 2 1 980.2.q.b 4
140.p odd 6 1 140.2.q.a 4
140.p odd 6 1 980.2.e.f 4
140.s even 6 1 980.2.e.c 4
140.s even 6 1 980.2.q.g 4
140.w even 12 2 700.2.i.f 8
140.w even 12 2 4900.2.a.be 4
140.x odd 12 2 4900.2.a.bf 4
420.ba even 6 1 1260.2.bm.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.q.a 4 4.b odd 2 1
140.2.q.a 4 140.p odd 6 1
140.2.q.b yes 4 20.d odd 2 1
140.2.q.b yes 4 28.g odd 6 1
560.2.bw.a 4 5.b even 2 1
560.2.bw.a 4 7.c even 3 1
560.2.bw.e 4 1.a even 1 1 trivial
560.2.bw.e 4 35.j even 6 1 inner
700.2.i.f 8 20.e even 4 2
700.2.i.f 8 140.w even 12 2
980.2.e.c 4 28.f even 6 1
980.2.e.c 4 140.s even 6 1
980.2.e.f 4 28.g odd 6 1
980.2.e.f 4 140.p odd 6 1
980.2.q.b 4 28.f even 6 1
980.2.q.b 4 140.c even 2 1
980.2.q.g 4 28.d even 2 1
980.2.q.g 4 140.s even 6 1
1260.2.bm.a 4 12.b even 2 1
1260.2.bm.a 4 420.ba even 6 1
1260.2.bm.b 4 60.h even 2 1
1260.2.bm.b 4 84.n even 6 1
4900.2.a.be 4 140.w even 12 2
4900.2.a.bf 4 140.x odd 12 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T323T3+3 T_{3}^{2} - 3T_{3} + 3 acting on S2new(560,[χ])S_{2}^{\mathrm{new}}(560, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T23T+3)2 (T^{2} - 3 T + 3)^{2} Copy content Toggle raw display
55 T4T3++25 T^{4} - T^{3} + \cdots + 25 Copy content Toggle raw display
77 T43T3++49 T^{4} - 3 T^{3} + \cdots + 49 Copy content Toggle raw display
1111 T4+3T3++144 T^{4} + 3 T^{3} + \cdots + 144 Copy content Toggle raw display
1313 T4+44T2+256 T^{4} + 44T^{2} + 256 Copy content Toggle raw display
1717 T49T3++4 T^{4} - 9 T^{3} + \cdots + 4 Copy content Toggle raw display
1919 T4T3++196 T^{4} - T^{3} + \cdots + 196 Copy content Toggle raw display
2323 T412T3++49 T^{4} - 12 T^{3} + \cdots + 49 Copy content Toggle raw display
2929 (T2+T14)2 (T^{2} + T - 14)^{2} Copy content Toggle raw display
3131 T4+T3++196 T^{4} + T^{3} + \cdots + 196 Copy content Toggle raw display
3737 T427T3++3136 T^{4} - 27 T^{3} + \cdots + 3136 Copy content Toggle raw display
4141 (T2+15T+42)2 (T^{2} + 15 T + 42)^{2} Copy content Toggle raw display
4343 T4+47T2+196 T^{4} + 47T^{2} + 196 Copy content Toggle raw display
4747 T415T3++196 T^{4} - 15 T^{3} + \cdots + 196 Copy content Toggle raw display
5353 T4+3T3++1764 T^{4} + 3 T^{3} + \cdots + 1764 Copy content Toggle raw display
5959 T4+T3++196 T^{4} + T^{3} + \cdots + 196 Copy content Toggle raw display
6161 T412T3++441 T^{4} - 12 T^{3} + \cdots + 441 Copy content Toggle raw display
6767 T418T3++2401 T^{4} - 18 T^{3} + \cdots + 2401 Copy content Toggle raw display
7171 (T2+6T48)2 (T^{2} + 6 T - 48)^{2} Copy content Toggle raw display
7373 T4+15T3++196 T^{4} + 15 T^{3} + \cdots + 196 Copy content Toggle raw display
7979 T4+7T3++4 T^{4} + 7 T^{3} + \cdots + 4 Copy content Toggle raw display
8383 T4+87T2+1764 T^{4} + 87T^{2} + 1764 Copy content Toggle raw display
8989 (T2+7T+49)2 (T^{2} + 7 T + 49)^{2} Copy content Toggle raw display
9797 (T2+48)2 (T^{2} + 48)^{2} Copy content Toggle raw display
show more
show less