Properties

Label 7.8.c
Level $7$
Weight $8$
Character orbit 7.c
Rep. character $\chi_{7}(2,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $8$
Newform subspaces $1$
Sturm bound $5$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 7.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 1 \)
Sturm bound: \(5\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(7, [\chi])\).

Total New Old
Modular forms 12 12 0
Cusp forms 8 8 0
Eisenstein series 4 4 0

Trace form

\( 8 q + 6 q^{2} - 28 q^{3} - 348 q^{4} - 252 q^{5} + 2044 q^{6} + 672 q^{7} - 1968 q^{8} - 2008 q^{9} - 4774 q^{10} + 3972 q^{11} + 5404 q^{12} - 2352 q^{13} + 47502 q^{14} - 33112 q^{15} - 57264 q^{16} - 56364 q^{17}+ \cdots + 30427952 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(7, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
7.8.c.a 7.c 7.c $8$ $2.187$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 7.8.c.a \(6\) \(-28\) \(-252\) \(672\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+2\beta _{2}+\beta _{3}-\beta _{4})q^{2}+(-6+\cdots)q^{3}+\cdots\)