Properties

Label 7.8
Level 7
Weight 8
Dimension 11
Nonzero newspaces 2
Newform subspaces 3
Sturm bound 32
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 7 \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 3 \)
Sturm bound: \(32\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(7))\).

Total New Old
Modular forms 17 15 2
Cusp forms 11 11 0
Eisenstein series 6 4 2

Trace form

\( 11 q - 3 q^{2} + 24 q^{3} - 259 q^{4} - 6 q^{5} + 1290 q^{6} + 329 q^{7} - 1833 q^{8} - 657 q^{9} - 9090 q^{10} + 1248 q^{11} + 20370 q^{12} - 4970 q^{13} + 46473 q^{14} - 5424 q^{15} - 89071 q^{16} - 71838 q^{17}+ \cdots + 25873884 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(7))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
7.8.a \(\chi_{7}(1, \cdot)\) 7.8.a.a 1 1
7.8.a.b 2
7.8.c \(\chi_{7}(2, \cdot)\) 7.8.c.a 8 2