Properties

Label 6936.2.a.bd
Level $6936$
Weight $2$
Character orbit 6936.a
Self dual yes
Analytic conductor $55.384$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6936,2,Mod(1,6936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6936, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6936.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6936 = 2^{3} \cdot 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6936.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,3,0,-3,0,-3,0,3,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.3842388420\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + (\beta_1 - 1) q^{5} + (\beta_{2} - \beta_1 - 1) q^{7} + q^{9} + ( - \beta_{2} + \beta_1 - 1) q^{11} + (\beta_1 - 1) q^{13} + (\beta_1 - 1) q^{15} + ( - \beta_{2} - \beta_1 + 1) q^{19} + (\beta_{2} - \beta_1 - 1) q^{21}+ \cdots + ( - \beta_{2} + \beta_1 - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} - 3 q^{5} - 3 q^{7} + 3 q^{9} - 3 q^{11} - 3 q^{13} - 3 q^{15} + 3 q^{19} - 3 q^{21} + 3 q^{23} - 6 q^{25} + 3 q^{27} + 6 q^{29} + 6 q^{31} - 3 q^{33} + 9 q^{37} - 3 q^{39} + 6 q^{41} - 12 q^{43}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{18} + \zeta_{18}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.53209
−0.347296
1.87939
0 1.00000 0 −2.53209 0 0.879385 0 1.00000 0
1.2 0 1.00000 0 −1.34730 0 −2.53209 0 1.00000 0
1.3 0 1.00000 0 0.879385 0 −1.34730 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6936.2.a.bd yes 3
17.b even 2 1 6936.2.a.bc 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6936.2.a.bc 3 17.b even 2 1
6936.2.a.bd yes 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6936))\):

\( T_{5}^{3} + 3T_{5}^{2} - 3 \) Copy content Toggle raw display
\( T_{7}^{3} + 3T_{7}^{2} - 3 \) Copy content Toggle raw display
\( T_{11}^{3} + 3T_{11}^{2} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T - 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 3T^{2} - 3 \) Copy content Toggle raw display
$7$ \( T^{3} + 3T^{2} - 3 \) Copy content Toggle raw display
$11$ \( T^{3} + 3T^{2} - 1 \) Copy content Toggle raw display
$13$ \( T^{3} + 3T^{2} - 3 \) Copy content Toggle raw display
$17$ \( T^{3} \) Copy content Toggle raw display
$19$ \( T^{3} - 3 T^{2} + \cdots + 17 \) Copy content Toggle raw display
$23$ \( T^{3} - 3T^{2} + 1 \) Copy content Toggle raw display
$29$ \( T^{3} - 6 T^{2} + \cdots + 51 \) Copy content Toggle raw display
$31$ \( T^{3} - 6 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$37$ \( T^{3} - 9 T^{2} + \cdots - 19 \) Copy content Toggle raw display
$41$ \( T^{3} - 6 T^{2} + \cdots - 57 \) Copy content Toggle raw display
$43$ \( T^{3} + 12 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$47$ \( T^{3} + 6 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$53$ \( T^{3} + 12 T^{2} + \cdots - 361 \) Copy content Toggle raw display
$59$ \( T^{3} + 9T^{2} - 27 \) Copy content Toggle raw display
$61$ \( T^{3} + 3 T^{2} + \cdots + 51 \) Copy content Toggle raw display
$67$ \( T^{3} - 6 T^{2} + \cdots + 856 \) Copy content Toggle raw display
$71$ \( T^{3} - 3 T^{2} + \cdots + 219 \) Copy content Toggle raw display
$73$ \( T^{3} + 3 T^{2} + \cdots + 197 \) Copy content Toggle raw display
$79$ \( T^{3} + 3 T^{2} + \cdots - 307 \) Copy content Toggle raw display
$83$ \( T^{3} - 6 T^{2} + \cdots + 647 \) Copy content Toggle raw display
$89$ \( T^{3} + 36 T^{2} + \cdots + 1439 \) Copy content Toggle raw display
$97$ \( T^{3} - 3 T^{2} + \cdots - 213 \) Copy content Toggle raw display
show more
show less