Defining parameters
Level: | \( N \) | \(=\) | \( 6936 = 2^{3} \cdot 3 \cdot 17^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 6936.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 43 \) | ||
Sturm bound: | \(2448\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(6936))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1296 | 135 | 1161 |
Cusp forms | 1153 | 135 | 1018 |
Eisenstein series | 143 | 0 | 143 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(153\) | \(18\) | \(135\) | \(136\) | \(18\) | \(118\) | \(17\) | \(0\) | \(17\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(170\) | \(16\) | \(154\) | \(152\) | \(16\) | \(136\) | \(18\) | \(0\) | \(18\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(162\) | \(18\) | \(144\) | \(144\) | \(18\) | \(126\) | \(18\) | \(0\) | \(18\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(161\) | \(16\) | \(145\) | \(143\) | \(16\) | \(127\) | \(18\) | \(0\) | \(18\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(171\) | \(22\) | \(149\) | \(153\) | \(22\) | \(131\) | \(18\) | \(0\) | \(18\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(154\) | \(12\) | \(142\) | \(136\) | \(12\) | \(124\) | \(18\) | \(0\) | \(18\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(162\) | \(13\) | \(149\) | \(144\) | \(13\) | \(131\) | \(18\) | \(0\) | \(18\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(163\) | \(20\) | \(143\) | \(145\) | \(20\) | \(125\) | \(18\) | \(0\) | \(18\) | |||
Plus space | \(+\) | \(630\) | \(59\) | \(571\) | \(559\) | \(59\) | \(500\) | \(71\) | \(0\) | \(71\) | |||||
Minus space | \(-\) | \(666\) | \(76\) | \(590\) | \(594\) | \(76\) | \(518\) | \(72\) | \(0\) | \(72\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(6936))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(6936))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(6936)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(102))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(136))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(204))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(289))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(408))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(578))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(867))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1156))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1734))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2312))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3468))\)\(^{\oplus 2}\)