Properties

Label 6936.2.a.ba
Level $6936$
Weight $2$
Character orbit 6936.a
Self dual yes
Analytic conductor $55.384$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6936,2,Mod(1,6936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6936, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6936.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6936 = 2^{3} \cdot 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6936.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,2,0,3,0,4,0,2,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.3842388420\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 408)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{33})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + (\beta + 1) q^{5} + 2 q^{7} + q^{9} + ( - \beta + 1) q^{11} + ( - \beta + 3) q^{13} + (\beta + 1) q^{15} + ( - \beta + 1) q^{19} + 2 q^{21} + (\beta + 1) q^{23} + (3 \beta + 4) q^{25} + q^{27}+ \cdots + ( - \beta + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 3 q^{5} + 4 q^{7} + 2 q^{9} + q^{11} + 5 q^{13} + 3 q^{15} + q^{19} + 4 q^{21} + 3 q^{23} + 11 q^{25} + 2 q^{27} + 4 q^{29} + 12 q^{31} + q^{33} + 6 q^{35} - 4 q^{37} + 5 q^{39} + 3 q^{41}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.37228
3.37228
0 1.00000 0 −1.37228 0 2.00000 0 1.00000 0
1.2 0 1.00000 0 4.37228 0 2.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6936.2.a.ba 2
17.b even 2 1 6936.2.a.r 2
17.c even 4 2 408.2.c.a 4
51.f odd 4 2 1224.2.c.g 4
68.f odd 4 2 816.2.c.e 4
136.i even 4 2 3264.2.c.k 4
136.j odd 4 2 3264.2.c.l 4
204.l even 4 2 2448.2.c.q 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
408.2.c.a 4 17.c even 4 2
816.2.c.e 4 68.f odd 4 2
1224.2.c.g 4 51.f odd 4 2
2448.2.c.q 4 204.l even 4 2
3264.2.c.k 4 136.i even 4 2
3264.2.c.l 4 136.j odd 4 2
6936.2.a.r 2 17.b even 2 1
6936.2.a.ba 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6936))\):

\( T_{5}^{2} - 3T_{5} - 6 \) Copy content Toggle raw display
\( T_{7} - 2 \) Copy content Toggle raw display
\( T_{11}^{2} - T_{11} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 3T - 6 \) Copy content Toggle raw display
$7$ \( (T - 2)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - T - 8 \) Copy content Toggle raw display
$13$ \( T^{2} - 5T - 2 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - T - 8 \) Copy content Toggle raw display
$23$ \( T^{2} - 3T - 6 \) Copy content Toggle raw display
$29$ \( (T - 2)^{2} \) Copy content Toggle raw display
$31$ \( (T - 6)^{2} \) Copy content Toggle raw display
$37$ \( (T + 2)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 3T - 72 \) Copy content Toggle raw display
$43$ \( T^{2} + 9T + 12 \) Copy content Toggle raw display
$47$ \( T^{2} - 14T + 16 \) Copy content Toggle raw display
$53$ \( T^{2} - 132 \) Copy content Toggle raw display
$59$ \( (T - 8)^{2} \) Copy content Toggle raw display
$61$ \( (T + 10)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 4T - 128 \) Copy content Toggle raw display
$71$ \( T^{2} + 18T + 48 \) Copy content Toggle raw display
$73$ \( T^{2} - 2T - 32 \) Copy content Toggle raw display
$79$ \( T^{2} - 10T - 8 \) Copy content Toggle raw display
$83$ \( T^{2} - 14T + 16 \) Copy content Toggle raw display
$89$ \( (T - 10)^{2} \) Copy content Toggle raw display
$97$ \( (T - 4)^{2} \) Copy content Toggle raw display
show more
show less