Properties

Label 69.4.a.d.1.3
Level $69$
Weight $4$
Character 69.1
Self dual yes
Analytic conductor $4.071$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [69,4,Mod(1,69)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(69, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("69.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 69 = 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 69.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.07113179040\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.2009704.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 27x^{2} - 6x + 112 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.45983\) of defining polynomial
Character \(\chi\) \(=\) 69.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.45983 q^{2} +3.00000 q^{3} +3.97043 q^{4} +7.89053 q^{5} +10.3795 q^{6} +4.57766 q^{7} -13.9416 q^{8} +9.00000 q^{9} +27.2999 q^{10} -7.16805 q^{11} +11.9113 q^{12} +9.66367 q^{13} +15.8379 q^{14} +23.6716 q^{15} -79.9991 q^{16} -69.1871 q^{17} +31.1385 q^{18} -21.2382 q^{19} +31.3288 q^{20} +13.7330 q^{21} -24.8002 q^{22} +23.0000 q^{23} -41.8249 q^{24} -62.7395 q^{25} +33.4347 q^{26} +27.0000 q^{27} +18.1753 q^{28} +39.5338 q^{29} +81.8997 q^{30} +28.5625 q^{31} -165.251 q^{32} -21.5041 q^{33} -239.376 q^{34} +36.1202 q^{35} +35.7339 q^{36} -170.923 q^{37} -73.4807 q^{38} +28.9910 q^{39} -110.007 q^{40} +395.474 q^{41} +47.5138 q^{42} -214.499 q^{43} -28.4603 q^{44} +71.0148 q^{45} +79.5761 q^{46} +387.800 q^{47} -239.997 q^{48} -322.045 q^{49} -217.068 q^{50} -207.561 q^{51} +38.3690 q^{52} +268.151 q^{53} +93.4155 q^{54} -56.5597 q^{55} -63.8200 q^{56} -63.7147 q^{57} +136.780 q^{58} +552.468 q^{59} +93.9865 q^{60} +354.991 q^{61} +98.8214 q^{62} +41.1989 q^{63} +68.2540 q^{64} +76.2515 q^{65} -74.4007 q^{66} +293.680 q^{67} -274.703 q^{68} +69.0000 q^{69} +124.970 q^{70} +505.691 q^{71} -125.475 q^{72} +1048.26 q^{73} -591.365 q^{74} -188.219 q^{75} -84.3250 q^{76} -32.8129 q^{77} +100.304 q^{78} -38.4080 q^{79} -631.236 q^{80} +81.0000 q^{81} +1368.27 q^{82} -111.501 q^{83} +54.5259 q^{84} -545.923 q^{85} -742.130 q^{86} +118.601 q^{87} +99.9342 q^{88} -1479.10 q^{89} +245.699 q^{90} +44.2370 q^{91} +91.3200 q^{92} +85.6875 q^{93} +1341.72 q^{94} -167.581 q^{95} -495.752 q^{96} -1274.61 q^{97} -1114.22 q^{98} -64.5124 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 12 q^{3} + 26 q^{4} + 4 q^{5} + 12 q^{6} - 14 q^{7} + 84 q^{8} + 36 q^{9} - 100 q^{10} + 70 q^{11} + 78 q^{12} - 12 q^{13} - 18 q^{14} + 12 q^{15} + 130 q^{16} + 178 q^{17} + 36 q^{18} + 96 q^{19}+ \cdots + 630 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.45983 1.22324 0.611618 0.791154i \(-0.290519\pi\)
0.611618 + 0.791154i \(0.290519\pi\)
\(3\) 3.00000 0.577350
\(4\) 3.97043 0.496304
\(5\) 7.89053 0.705751 0.352875 0.935670i \(-0.385204\pi\)
0.352875 + 0.935670i \(0.385204\pi\)
\(6\) 10.3795 0.706235
\(7\) 4.57766 0.247170 0.123585 0.992334i \(-0.460561\pi\)
0.123585 + 0.992334i \(0.460561\pi\)
\(8\) −13.9416 −0.616138
\(9\) 9.00000 0.333333
\(10\) 27.2999 0.863299
\(11\) −7.16805 −0.196477 −0.0982386 0.995163i \(-0.531321\pi\)
−0.0982386 + 0.995163i \(0.531321\pi\)
\(12\) 11.9113 0.286541
\(13\) 9.66367 0.206171 0.103085 0.994673i \(-0.467129\pi\)
0.103085 + 0.994673i \(0.467129\pi\)
\(14\) 15.8379 0.302348
\(15\) 23.6716 0.407465
\(16\) −79.9991 −1.24999
\(17\) −69.1871 −0.987078 −0.493539 0.869724i \(-0.664297\pi\)
−0.493539 + 0.869724i \(0.664297\pi\)
\(18\) 31.1385 0.407745
\(19\) −21.2382 −0.256441 −0.128221 0.991746i \(-0.540927\pi\)
−0.128221 + 0.991746i \(0.540927\pi\)
\(20\) 31.3288 0.350267
\(21\) 13.7330 0.142704
\(22\) −24.8002 −0.240338
\(23\) 23.0000 0.208514
\(24\) −41.8249 −0.355728
\(25\) −62.7395 −0.501916
\(26\) 33.4347 0.252195
\(27\) 27.0000 0.192450
\(28\) 18.1753 0.122672
\(29\) 39.5338 0.253146 0.126573 0.991957i \(-0.459602\pi\)
0.126573 + 0.991957i \(0.459602\pi\)
\(30\) 81.8997 0.498426
\(31\) 28.5625 0.165483 0.0827415 0.996571i \(-0.473632\pi\)
0.0827415 + 0.996571i \(0.473632\pi\)
\(32\) −165.251 −0.912889
\(33\) −21.5041 −0.113436
\(34\) −239.376 −1.20743
\(35\) 36.1202 0.174441
\(36\) 35.7339 0.165435
\(37\) −170.923 −0.759448 −0.379724 0.925100i \(-0.623981\pi\)
−0.379724 + 0.925100i \(0.623981\pi\)
\(38\) −73.4807 −0.313688
\(39\) 28.9910 0.119033
\(40\) −110.007 −0.434840
\(41\) 395.474 1.50641 0.753203 0.657788i \(-0.228508\pi\)
0.753203 + 0.657788i \(0.228508\pi\)
\(42\) 47.5138 0.174560
\(43\) −214.499 −0.760716 −0.380358 0.924839i \(-0.624199\pi\)
−0.380358 + 0.924839i \(0.624199\pi\)
\(44\) −28.4603 −0.0975124
\(45\) 71.0148 0.235250
\(46\) 79.5761 0.255062
\(47\) 387.800 1.20354 0.601771 0.798669i \(-0.294462\pi\)
0.601771 + 0.798669i \(0.294462\pi\)
\(48\) −239.997 −0.721680
\(49\) −322.045 −0.938907
\(50\) −217.068 −0.613961
\(51\) −207.561 −0.569890
\(52\) 38.3690 0.102323
\(53\) 268.151 0.694969 0.347484 0.937686i \(-0.387036\pi\)
0.347484 + 0.937686i \(0.387036\pi\)
\(54\) 93.4155 0.235412
\(55\) −56.5597 −0.138664
\(56\) −63.8200 −0.152291
\(57\) −63.7147 −0.148056
\(58\) 136.780 0.309658
\(59\) 552.468 1.21907 0.609535 0.792759i \(-0.291356\pi\)
0.609535 + 0.792759i \(0.291356\pi\)
\(60\) 93.9865 0.202227
\(61\) 354.991 0.745113 0.372557 0.928009i \(-0.378481\pi\)
0.372557 + 0.928009i \(0.378481\pi\)
\(62\) 98.8214 0.202425
\(63\) 41.1989 0.0823902
\(64\) 68.2540 0.133309
\(65\) 76.2515 0.145505
\(66\) −74.4007 −0.138759
\(67\) 293.680 0.535504 0.267752 0.963488i \(-0.413719\pi\)
0.267752 + 0.963488i \(0.413719\pi\)
\(68\) −274.703 −0.489891
\(69\) 69.0000 0.120386
\(70\) 124.970 0.213382
\(71\) 505.691 0.845274 0.422637 0.906299i \(-0.361105\pi\)
0.422637 + 0.906299i \(0.361105\pi\)
\(72\) −125.475 −0.205379
\(73\) 1048.26 1.68069 0.840343 0.542055i \(-0.182354\pi\)
0.840343 + 0.542055i \(0.182354\pi\)
\(74\) −591.365 −0.928984
\(75\) −188.219 −0.289781
\(76\) −84.3250 −0.127273
\(77\) −32.8129 −0.0485633
\(78\) 100.304 0.145605
\(79\) −38.4080 −0.0546992 −0.0273496 0.999626i \(-0.508707\pi\)
−0.0273496 + 0.999626i \(0.508707\pi\)
\(80\) −631.236 −0.882179
\(81\) 81.0000 0.111111
\(82\) 1368.27 1.84269
\(83\) −111.501 −0.147455 −0.0737276 0.997278i \(-0.523490\pi\)
−0.0737276 + 0.997278i \(0.523490\pi\)
\(84\) 54.5259 0.0708246
\(85\) −545.923 −0.696631
\(86\) −742.130 −0.930534
\(87\) 118.601 0.146154
\(88\) 99.9342 0.121057
\(89\) −1479.10 −1.76163 −0.880813 0.473464i \(-0.843004\pi\)
−0.880813 + 0.473464i \(0.843004\pi\)
\(90\) 245.699 0.287766
\(91\) 44.2370 0.0509593
\(92\) 91.3200 0.103487
\(93\) 85.6875 0.0955417
\(94\) 1341.72 1.47222
\(95\) −167.581 −0.180984
\(96\) −495.752 −0.527057
\(97\) −1274.61 −1.33420 −0.667099 0.744969i \(-0.732464\pi\)
−0.667099 + 0.744969i \(0.732464\pi\)
\(98\) −1114.22 −1.14850
\(99\) −64.5124 −0.0654924
\(100\) −249.103 −0.249103
\(101\) −1030.08 −1.01482 −0.507412 0.861704i \(-0.669398\pi\)
−0.507412 + 0.861704i \(0.669398\pi\)
\(102\) −718.127 −0.697109
\(103\) −1261.15 −1.20646 −0.603229 0.797568i \(-0.706119\pi\)
−0.603229 + 0.797568i \(0.706119\pi\)
\(104\) −134.727 −0.127030
\(105\) 108.361 0.100713
\(106\) 927.757 0.850110
\(107\) 314.435 0.284089 0.142045 0.989860i \(-0.454632\pi\)
0.142045 + 0.989860i \(0.454632\pi\)
\(108\) 107.202 0.0955138
\(109\) −594.442 −0.522360 −0.261180 0.965290i \(-0.584112\pi\)
−0.261180 + 0.965290i \(0.584112\pi\)
\(110\) −195.687 −0.169618
\(111\) −512.769 −0.438468
\(112\) −366.209 −0.308960
\(113\) 705.117 0.587008 0.293504 0.955958i \(-0.405179\pi\)
0.293504 + 0.955958i \(0.405179\pi\)
\(114\) −220.442 −0.181108
\(115\) 181.482 0.147159
\(116\) 156.966 0.125638
\(117\) 86.9730 0.0687236
\(118\) 1911.45 1.49121
\(119\) −316.715 −0.243977
\(120\) −330.020 −0.251055
\(121\) −1279.62 −0.961397
\(122\) 1228.21 0.911449
\(123\) 1186.42 0.869724
\(124\) 113.405 0.0821300
\(125\) −1481.36 −1.05998
\(126\) 142.541 0.100783
\(127\) 365.035 0.255052 0.127526 0.991835i \(-0.459296\pi\)
0.127526 + 0.991835i \(0.459296\pi\)
\(128\) 1558.15 1.07596
\(129\) −643.497 −0.439199
\(130\) 263.817 0.177987
\(131\) 841.502 0.561239 0.280620 0.959819i \(-0.409460\pi\)
0.280620 + 0.959819i \(0.409460\pi\)
\(132\) −85.3808 −0.0562988
\(133\) −97.2214 −0.0633847
\(134\) 1016.08 0.655047
\(135\) 213.044 0.135822
\(136\) 964.580 0.608177
\(137\) 2767.12 1.72563 0.862814 0.505521i \(-0.168700\pi\)
0.862814 + 0.505521i \(0.168700\pi\)
\(138\) 238.728 0.147260
\(139\) −1201.78 −0.733336 −0.366668 0.930352i \(-0.619502\pi\)
−0.366668 + 0.930352i \(0.619502\pi\)
\(140\) 143.413 0.0865757
\(141\) 1163.40 0.694865
\(142\) 1749.61 1.03397
\(143\) −69.2696 −0.0405078
\(144\) −719.992 −0.416662
\(145\) 311.943 0.178658
\(146\) 3626.82 2.05587
\(147\) −966.135 −0.542078
\(148\) −678.639 −0.376917
\(149\) −2411.55 −1.32592 −0.662961 0.748654i \(-0.730700\pi\)
−0.662961 + 0.748654i \(0.730700\pi\)
\(150\) −651.204 −0.354471
\(151\) 2352.41 1.26779 0.633897 0.773418i \(-0.281454\pi\)
0.633897 + 0.773418i \(0.281454\pi\)
\(152\) 296.095 0.158003
\(153\) −622.684 −0.329026
\(154\) −113.527 −0.0594044
\(155\) 225.373 0.116790
\(156\) 115.107 0.0590764
\(157\) −2720.30 −1.38283 −0.691414 0.722459i \(-0.743012\pi\)
−0.691414 + 0.722459i \(0.743012\pi\)
\(158\) −132.885 −0.0669099
\(159\) 804.452 0.401240
\(160\) −1303.91 −0.644272
\(161\) 105.286 0.0515386
\(162\) 280.246 0.135915
\(163\) 910.107 0.437332 0.218666 0.975800i \(-0.429830\pi\)
0.218666 + 0.975800i \(0.429830\pi\)
\(164\) 1570.20 0.747636
\(165\) −169.679 −0.0800576
\(166\) −385.773 −0.180372
\(167\) 370.185 0.171532 0.0857658 0.996315i \(-0.472666\pi\)
0.0857658 + 0.996315i \(0.472666\pi\)
\(168\) −191.460 −0.0879254
\(169\) −2103.61 −0.957494
\(170\) −1888.80 −0.852144
\(171\) −191.144 −0.0854804
\(172\) −851.654 −0.377546
\(173\) −1674.46 −0.735879 −0.367940 0.929850i \(-0.619937\pi\)
−0.367940 + 0.929850i \(0.619937\pi\)
\(174\) 410.341 0.178781
\(175\) −287.200 −0.124059
\(176\) 573.438 0.245594
\(177\) 1657.40 0.703831
\(178\) −5117.45 −2.15488
\(179\) −1890.08 −0.789225 −0.394613 0.918848i \(-0.629121\pi\)
−0.394613 + 0.918848i \(0.629121\pi\)
\(180\) 281.960 0.116756
\(181\) −1249.68 −0.513191 −0.256596 0.966519i \(-0.582601\pi\)
−0.256596 + 0.966519i \(0.582601\pi\)
\(182\) 153.053 0.0623352
\(183\) 1064.97 0.430191
\(184\) −320.657 −0.128474
\(185\) −1348.67 −0.535981
\(186\) 296.464 0.116870
\(187\) 495.936 0.193938
\(188\) 1539.74 0.597323
\(189\) 123.597 0.0475680
\(190\) −579.802 −0.221386
\(191\) 4304.02 1.63051 0.815257 0.579100i \(-0.196596\pi\)
0.815257 + 0.579100i \(0.196596\pi\)
\(192\) 204.762 0.0769657
\(193\) −2955.56 −1.10231 −0.551156 0.834402i \(-0.685813\pi\)
−0.551156 + 0.834402i \(0.685813\pi\)
\(194\) −4409.94 −1.63204
\(195\) 228.754 0.0840074
\(196\) −1278.66 −0.465983
\(197\) 2937.68 1.06244 0.531222 0.847233i \(-0.321733\pi\)
0.531222 + 0.847233i \(0.321733\pi\)
\(198\) −223.202 −0.0801126
\(199\) 4241.65 1.51097 0.755483 0.655168i \(-0.227402\pi\)
0.755483 + 0.655168i \(0.227402\pi\)
\(200\) 874.690 0.309250
\(201\) 881.040 0.309173
\(202\) −3563.92 −1.24137
\(203\) 180.972 0.0625703
\(204\) −824.108 −0.282839
\(205\) 3120.50 1.06315
\(206\) −4363.38 −1.47578
\(207\) 207.000 0.0695048
\(208\) −773.085 −0.257711
\(209\) 152.237 0.0503848
\(210\) 374.909 0.123196
\(211\) 5021.48 1.63835 0.819177 0.573541i \(-0.194431\pi\)
0.819177 + 0.573541i \(0.194431\pi\)
\(212\) 1064.68 0.344916
\(213\) 1517.07 0.488019
\(214\) 1087.89 0.347508
\(215\) −1692.51 −0.536875
\(216\) −376.424 −0.118576
\(217\) 130.749 0.0409025
\(218\) −2056.67 −0.638969
\(219\) 3144.79 0.970344
\(220\) −224.567 −0.0688195
\(221\) −668.601 −0.203507
\(222\) −1774.10 −0.536349
\(223\) −1211.64 −0.363843 −0.181922 0.983313i \(-0.558232\pi\)
−0.181922 + 0.983313i \(0.558232\pi\)
\(224\) −756.461 −0.225639
\(225\) −564.656 −0.167305
\(226\) 2439.59 0.718048
\(227\) 4524.63 1.32295 0.661476 0.749966i \(-0.269930\pi\)
0.661476 + 0.749966i \(0.269930\pi\)
\(228\) −252.975 −0.0734811
\(229\) −6614.12 −1.90862 −0.954309 0.298821i \(-0.903407\pi\)
−0.954309 + 0.298821i \(0.903407\pi\)
\(230\) 627.898 0.180010
\(231\) −98.4387 −0.0280381
\(232\) −551.166 −0.155973
\(233\) −2017.22 −0.567179 −0.283589 0.958946i \(-0.591525\pi\)
−0.283589 + 0.958946i \(0.591525\pi\)
\(234\) 300.912 0.0840651
\(235\) 3059.95 0.849401
\(236\) 2193.54 0.605030
\(237\) −115.224 −0.0315806
\(238\) −1095.78 −0.298441
\(239\) −2191.56 −0.593140 −0.296570 0.955011i \(-0.595843\pi\)
−0.296570 + 0.955011i \(0.595843\pi\)
\(240\) −1893.71 −0.509326
\(241\) 4000.34 1.06923 0.534615 0.845096i \(-0.320457\pi\)
0.534615 + 0.845096i \(0.320457\pi\)
\(242\) −4427.27 −1.17601
\(243\) 243.000 0.0641500
\(244\) 1409.47 0.369803
\(245\) −2541.11 −0.662634
\(246\) 4104.82 1.06388
\(247\) −205.239 −0.0528707
\(248\) −398.207 −0.101960
\(249\) −334.502 −0.0851333
\(250\) −5125.27 −1.29660
\(251\) −2219.23 −0.558075 −0.279037 0.960280i \(-0.590015\pi\)
−0.279037 + 0.960280i \(0.590015\pi\)
\(252\) 163.578 0.0408906
\(253\) −164.865 −0.0409683
\(254\) 1262.96 0.311989
\(255\) −1637.77 −0.402200
\(256\) 4844.91 1.18284
\(257\) −548.420 −0.133111 −0.0665554 0.997783i \(-0.521201\pi\)
−0.0665554 + 0.997783i \(0.521201\pi\)
\(258\) −2226.39 −0.537244
\(259\) −782.428 −0.187713
\(260\) 302.751 0.0722148
\(261\) 355.804 0.0843822
\(262\) 2911.46 0.686528
\(263\) −4180.82 −0.980230 −0.490115 0.871658i \(-0.663045\pi\)
−0.490115 + 0.871658i \(0.663045\pi\)
\(264\) 299.803 0.0698923
\(265\) 2115.85 0.490475
\(266\) −336.370 −0.0775344
\(267\) −4437.31 −1.01708
\(268\) 1166.04 0.265773
\(269\) 4339.45 0.983573 0.491787 0.870716i \(-0.336344\pi\)
0.491787 + 0.870716i \(0.336344\pi\)
\(270\) 737.098 0.166142
\(271\) −1512.65 −0.339066 −0.169533 0.985524i \(-0.554226\pi\)
−0.169533 + 0.985524i \(0.554226\pi\)
\(272\) 5534.91 1.23383
\(273\) 132.711 0.0294214
\(274\) 9573.77 2.11085
\(275\) 449.720 0.0986150
\(276\) 273.960 0.0597480
\(277\) 537.755 0.116645 0.0583223 0.998298i \(-0.481425\pi\)
0.0583223 + 0.998298i \(0.481425\pi\)
\(278\) −4157.96 −0.897042
\(279\) 257.062 0.0551610
\(280\) −503.574 −0.107480
\(281\) 8146.34 1.72943 0.864715 0.502262i \(-0.167499\pi\)
0.864715 + 0.502262i \(0.167499\pi\)
\(282\) 4025.17 0.849984
\(283\) 5231.91 1.09896 0.549479 0.835508i \(-0.314826\pi\)
0.549479 + 0.835508i \(0.314826\pi\)
\(284\) 2007.81 0.419513
\(285\) −502.743 −0.104491
\(286\) −239.661 −0.0495506
\(287\) 1810.35 0.372339
\(288\) −1487.25 −0.304296
\(289\) −126.148 −0.0256764
\(290\) 1079.27 0.218541
\(291\) −3823.84 −0.770300
\(292\) 4162.06 0.834131
\(293\) −1540.05 −0.307067 −0.153534 0.988143i \(-0.549065\pi\)
−0.153534 + 0.988143i \(0.549065\pi\)
\(294\) −3342.66 −0.663089
\(295\) 4359.26 0.860360
\(296\) 2382.95 0.467925
\(297\) −193.537 −0.0378120
\(298\) −8343.57 −1.62191
\(299\) 222.264 0.0429896
\(300\) −747.309 −0.143820
\(301\) −981.903 −0.188026
\(302\) 8138.96 1.55081
\(303\) −3090.25 −0.585909
\(304\) 1699.04 0.320548
\(305\) 2801.07 0.525864
\(306\) −2154.38 −0.402476
\(307\) −8549.38 −1.58938 −0.794689 0.607017i \(-0.792366\pi\)
−0.794689 + 0.607017i \(0.792366\pi\)
\(308\) −130.281 −0.0241022
\(309\) −3783.46 −0.696549
\(310\) 779.753 0.142861
\(311\) −3678.75 −0.670749 −0.335374 0.942085i \(-0.608863\pi\)
−0.335374 + 0.942085i \(0.608863\pi\)
\(312\) −404.181 −0.0733406
\(313\) −4382.07 −0.791339 −0.395669 0.918393i \(-0.629487\pi\)
−0.395669 + 0.918393i \(0.629487\pi\)
\(314\) −9411.80 −1.69152
\(315\) 325.082 0.0581469
\(316\) −152.496 −0.0271474
\(317\) −3015.16 −0.534221 −0.267111 0.963666i \(-0.586069\pi\)
−0.267111 + 0.963666i \(0.586069\pi\)
\(318\) 2783.27 0.490811
\(319\) −283.380 −0.0497375
\(320\) 538.560 0.0940826
\(321\) 943.305 0.164019
\(322\) 364.273 0.0630438
\(323\) 1469.41 0.253128
\(324\) 321.605 0.0551449
\(325\) −606.294 −0.103480
\(326\) 3148.82 0.534959
\(327\) −1783.33 −0.301584
\(328\) −5513.55 −0.928155
\(329\) 1775.22 0.297480
\(330\) −587.061 −0.0979293
\(331\) 8098.73 1.34485 0.672426 0.740164i \(-0.265252\pi\)
0.672426 + 0.740164i \(0.265252\pi\)
\(332\) −442.706 −0.0731827
\(333\) −1538.31 −0.253149
\(334\) 1280.78 0.209824
\(335\) 2317.29 0.377932
\(336\) −1098.63 −0.178378
\(337\) −1279.84 −0.206876 −0.103438 0.994636i \(-0.532984\pi\)
−0.103438 + 0.994636i \(0.532984\pi\)
\(338\) −7278.15 −1.17124
\(339\) 2115.35 0.338909
\(340\) −2167.55 −0.345741
\(341\) −204.737 −0.0325136
\(342\) −661.326 −0.104563
\(343\) −3044.35 −0.479240
\(344\) 2990.46 0.468706
\(345\) 544.447 0.0849624
\(346\) −5793.36 −0.900153
\(347\) −6965.46 −1.07760 −0.538798 0.842435i \(-0.681121\pi\)
−0.538798 + 0.842435i \(0.681121\pi\)
\(348\) 470.899 0.0725370
\(349\) 11580.9 1.77625 0.888123 0.459606i \(-0.152009\pi\)
0.888123 + 0.459606i \(0.152009\pi\)
\(350\) −993.664 −0.151753
\(351\) 260.919 0.0396776
\(352\) 1184.52 0.179362
\(353\) −1359.33 −0.204958 −0.102479 0.994735i \(-0.532677\pi\)
−0.102479 + 0.994735i \(0.532677\pi\)
\(354\) 5734.34 0.860951
\(355\) 3990.17 0.596553
\(356\) −5872.69 −0.874303
\(357\) −950.145 −0.140860
\(358\) −6539.36 −0.965408
\(359\) −11315.1 −1.66348 −0.831738 0.555168i \(-0.812654\pi\)
−0.831738 + 0.555168i \(0.812654\pi\)
\(360\) −990.061 −0.144947
\(361\) −6407.94 −0.934238
\(362\) −4323.67 −0.627754
\(363\) −3838.86 −0.555063
\(364\) 175.640 0.0252913
\(365\) 8271.36 1.18614
\(366\) 3684.62 0.526225
\(367\) −9260.84 −1.31720 −0.658600 0.752494i \(-0.728851\pi\)
−0.658600 + 0.752494i \(0.728851\pi\)
\(368\) −1839.98 −0.260640
\(369\) 3559.27 0.502136
\(370\) −4666.19 −0.655631
\(371\) 1227.50 0.171776
\(372\) 340.216 0.0474177
\(373\) 7448.35 1.03394 0.516972 0.856002i \(-0.327059\pi\)
0.516972 + 0.856002i \(0.327059\pi\)
\(374\) 1715.86 0.237232
\(375\) −4444.09 −0.611979
\(376\) −5406.56 −0.741549
\(377\) 382.042 0.0521914
\(378\) 427.624 0.0581868
\(379\) 13428.8 1.82003 0.910017 0.414570i \(-0.136068\pi\)
0.910017 + 0.414570i \(0.136068\pi\)
\(380\) −665.369 −0.0898229
\(381\) 1095.11 0.147255
\(382\) 14891.2 1.99450
\(383\) −12530.8 −1.67178 −0.835891 0.548896i \(-0.815048\pi\)
−0.835891 + 0.548896i \(0.815048\pi\)
\(384\) 4674.45 0.621204
\(385\) −258.911 −0.0342736
\(386\) −10225.8 −1.34839
\(387\) −1930.49 −0.253572
\(388\) −5060.76 −0.662168
\(389\) −2037.90 −0.265619 −0.132809 0.991142i \(-0.542400\pi\)
−0.132809 + 0.991142i \(0.542400\pi\)
\(390\) 791.452 0.102761
\(391\) −1591.30 −0.205820
\(392\) 4489.83 0.578496
\(393\) 2524.51 0.324032
\(394\) 10163.9 1.29962
\(395\) −303.059 −0.0386040
\(396\) −256.142 −0.0325041
\(397\) −12445.6 −1.57337 −0.786683 0.617357i \(-0.788203\pi\)
−0.786683 + 0.617357i \(0.788203\pi\)
\(398\) 14675.4 1.84827
\(399\) −291.664 −0.0365952
\(400\) 5019.11 0.627388
\(401\) 7515.90 0.935976 0.467988 0.883735i \(-0.344979\pi\)
0.467988 + 0.883735i \(0.344979\pi\)
\(402\) 3048.25 0.378191
\(403\) 276.018 0.0341178
\(404\) −4089.88 −0.503661
\(405\) 639.133 0.0784167
\(406\) 626.134 0.0765382
\(407\) 1225.19 0.149214
\(408\) 2893.74 0.351131
\(409\) 4458.77 0.539051 0.269526 0.962993i \(-0.413133\pi\)
0.269526 + 0.962993i \(0.413133\pi\)
\(410\) 10796.4 1.30048
\(411\) 8301.36 0.996292
\(412\) −5007.33 −0.598770
\(413\) 2529.01 0.301318
\(414\) 716.185 0.0850207
\(415\) −879.799 −0.104067
\(416\) −1596.93 −0.188211
\(417\) −3605.34 −0.423392
\(418\) 526.713 0.0616325
\(419\) 4506.59 0.525445 0.262722 0.964871i \(-0.415380\pi\)
0.262722 + 0.964871i \(0.415380\pi\)
\(420\) 430.238 0.0499845
\(421\) 4391.61 0.508395 0.254197 0.967152i \(-0.418189\pi\)
0.254197 + 0.967152i \(0.418189\pi\)
\(422\) 17373.5 2.00409
\(423\) 3490.20 0.401181
\(424\) −3738.46 −0.428197
\(425\) 4340.76 0.495431
\(426\) 5248.82 0.596962
\(427\) 1625.03 0.184170
\(428\) 1248.44 0.140995
\(429\) −207.809 −0.0233872
\(430\) −5855.80 −0.656725
\(431\) −4034.85 −0.450932 −0.225466 0.974251i \(-0.572390\pi\)
−0.225466 + 0.974251i \(0.572390\pi\)
\(432\) −2159.98 −0.240560
\(433\) −2378.67 −0.263999 −0.131999 0.991250i \(-0.542140\pi\)
−0.131999 + 0.991250i \(0.542140\pi\)
\(434\) 452.371 0.0500334
\(435\) 935.829 0.103148
\(436\) −2360.19 −0.259249
\(437\) −488.479 −0.0534717
\(438\) 10880.5 1.18696
\(439\) 6767.22 0.735722 0.367861 0.929881i \(-0.380090\pi\)
0.367861 + 0.929881i \(0.380090\pi\)
\(440\) 788.534 0.0854361
\(441\) −2898.41 −0.312969
\(442\) −2313.25 −0.248936
\(443\) 2767.13 0.296773 0.148386 0.988929i \(-0.452592\pi\)
0.148386 + 0.988929i \(0.452592\pi\)
\(444\) −2035.92 −0.217613
\(445\) −11670.9 −1.24327
\(446\) −4192.05 −0.445066
\(447\) −7234.66 −0.765521
\(448\) 312.443 0.0329499
\(449\) 3616.87 0.380158 0.190079 0.981769i \(-0.439126\pi\)
0.190079 + 0.981769i \(0.439126\pi\)
\(450\) −1953.61 −0.204654
\(451\) −2834.78 −0.295974
\(452\) 2799.62 0.291334
\(453\) 7057.24 0.731961
\(454\) 15654.5 1.61828
\(455\) 349.053 0.0359646
\(456\) 888.286 0.0912233
\(457\) −5912.55 −0.605202 −0.302601 0.953117i \(-0.597855\pi\)
−0.302601 + 0.953117i \(0.597855\pi\)
\(458\) −22883.8 −2.33469
\(459\) −1868.05 −0.189963
\(460\) 720.563 0.0730357
\(461\) 3865.90 0.390570 0.195285 0.980747i \(-0.437437\pi\)
0.195285 + 0.980747i \(0.437437\pi\)
\(462\) −340.581 −0.0342971
\(463\) −11789.4 −1.18337 −0.591687 0.806168i \(-0.701538\pi\)
−0.591687 + 0.806168i \(0.701538\pi\)
\(464\) −3162.67 −0.316430
\(465\) 676.120 0.0674286
\(466\) −6979.25 −0.693793
\(467\) 3867.34 0.383210 0.191605 0.981472i \(-0.438631\pi\)
0.191605 + 0.981472i \(0.438631\pi\)
\(468\) 345.321 0.0341078
\(469\) 1344.37 0.132361
\(470\) 10586.9 1.03902
\(471\) −8160.91 −0.798376
\(472\) −7702.30 −0.751116
\(473\) 1537.54 0.149463
\(474\) −398.655 −0.0386305
\(475\) 1332.48 0.128712
\(476\) −1257.50 −0.121087
\(477\) 2413.36 0.231656
\(478\) −7582.44 −0.725549
\(479\) −17656.8 −1.68425 −0.842127 0.539279i \(-0.818697\pi\)
−0.842127 + 0.539279i \(0.818697\pi\)
\(480\) −3911.74 −0.371971
\(481\) −1651.74 −0.156576
\(482\) 13840.5 1.30792
\(483\) 315.859 0.0297558
\(484\) −5080.64 −0.477145
\(485\) −10057.4 −0.941611
\(486\) 840.739 0.0784706
\(487\) −5750.71 −0.535092 −0.267546 0.963545i \(-0.586213\pi\)
−0.267546 + 0.963545i \(0.586213\pi\)
\(488\) −4949.14 −0.459093
\(489\) 2730.32 0.252493
\(490\) −8791.80 −0.810557
\(491\) 12090.0 1.11123 0.555616 0.831439i \(-0.312483\pi\)
0.555616 + 0.831439i \(0.312483\pi\)
\(492\) 4710.61 0.431648
\(493\) −2735.23 −0.249875
\(494\) −710.093 −0.0646733
\(495\) −509.037 −0.0462213
\(496\) −2284.97 −0.206852
\(497\) 2314.88 0.208927
\(498\) −1157.32 −0.104138
\(499\) 14759.4 1.32410 0.662048 0.749462i \(-0.269688\pi\)
0.662048 + 0.749462i \(0.269688\pi\)
\(500\) −5881.66 −0.526072
\(501\) 1110.56 0.0990339
\(502\) −7678.17 −0.682657
\(503\) 15790.7 1.39975 0.699875 0.714265i \(-0.253239\pi\)
0.699875 + 0.714265i \(0.253239\pi\)
\(504\) −574.380 −0.0507637
\(505\) −8127.91 −0.716212
\(506\) −570.406 −0.0501139
\(507\) −6310.84 −0.552809
\(508\) 1449.35 0.126584
\(509\) −4800.46 −0.418029 −0.209014 0.977913i \(-0.567026\pi\)
−0.209014 + 0.977913i \(0.567026\pi\)
\(510\) −5666.40 −0.491985
\(511\) 4798.60 0.415416
\(512\) 4297.36 0.370934
\(513\) −573.432 −0.0493522
\(514\) −1897.44 −0.162826
\(515\) −9951.17 −0.851458
\(516\) −2554.96 −0.217976
\(517\) −2779.77 −0.236469
\(518\) −2707.07 −0.229617
\(519\) −5023.39 −0.424860
\(520\) −1063.07 −0.0896513
\(521\) −5068.16 −0.426180 −0.213090 0.977033i \(-0.568353\pi\)
−0.213090 + 0.977033i \(0.568353\pi\)
\(522\) 1231.02 0.103219
\(523\) −4316.59 −0.360901 −0.180451 0.983584i \(-0.557756\pi\)
−0.180451 + 0.983584i \(0.557756\pi\)
\(524\) 3341.13 0.278546
\(525\) −861.601 −0.0716254
\(526\) −14464.9 −1.19905
\(527\) −1976.16 −0.163345
\(528\) 1720.31 0.141794
\(529\) 529.000 0.0434783
\(530\) 7320.49 0.599966
\(531\) 4972.21 0.406357
\(532\) −386.011 −0.0314581
\(533\) 3821.73 0.310577
\(534\) −15352.4 −1.24412
\(535\) 2481.06 0.200496
\(536\) −4094.38 −0.329944
\(537\) −5670.25 −0.455660
\(538\) 15013.8 1.20314
\(539\) 2308.43 0.184474
\(540\) 845.879 0.0674089
\(541\) 19439.9 1.54490 0.772448 0.635079i \(-0.219032\pi\)
0.772448 + 0.635079i \(0.219032\pi\)
\(542\) −5233.51 −0.414758
\(543\) −3749.03 −0.296291
\(544\) 11433.2 0.901093
\(545\) −4690.46 −0.368656
\(546\) 459.158 0.0359893
\(547\) 17162.2 1.34150 0.670752 0.741682i \(-0.265972\pi\)
0.670752 + 0.741682i \(0.265972\pi\)
\(548\) 10986.7 0.856437
\(549\) 3194.92 0.248371
\(550\) 1555.96 0.120629
\(551\) −839.629 −0.0649172
\(552\) −961.972 −0.0741743
\(553\) −175.819 −0.0135200
\(554\) 1860.54 0.142684
\(555\) −4046.02 −0.309449
\(556\) −4771.59 −0.363958
\(557\) 9533.83 0.725245 0.362622 0.931936i \(-0.381881\pi\)
0.362622 + 0.931936i \(0.381881\pi\)
\(558\) 889.393 0.0674749
\(559\) −2072.85 −0.156837
\(560\) −2889.58 −0.218048
\(561\) 1487.81 0.111970
\(562\) 28185.0 2.11550
\(563\) −14499.5 −1.08540 −0.542702 0.839925i \(-0.682599\pi\)
−0.542702 + 0.839925i \(0.682599\pi\)
\(564\) 4619.21 0.344865
\(565\) 5563.75 0.414281
\(566\) 18101.5 1.34428
\(567\) 370.791 0.0274634
\(568\) −7050.15 −0.520806
\(569\) −3689.09 −0.271801 −0.135900 0.990723i \(-0.543393\pi\)
−0.135900 + 0.990723i \(0.543393\pi\)
\(570\) −1739.41 −0.127817
\(571\) −18230.6 −1.33612 −0.668061 0.744106i \(-0.732876\pi\)
−0.668061 + 0.744106i \(0.732876\pi\)
\(572\) −275.031 −0.0201042
\(573\) 12912.1 0.941377
\(574\) 6263.49 0.455458
\(575\) −1443.01 −0.104657
\(576\) 614.286 0.0444362
\(577\) 20164.4 1.45486 0.727432 0.686180i \(-0.240714\pi\)
0.727432 + 0.686180i \(0.240714\pi\)
\(578\) −436.451 −0.0314083
\(579\) −8866.69 −0.636420
\(580\) 1238.55 0.0886689
\(581\) −510.412 −0.0364466
\(582\) −13229.8 −0.942258
\(583\) −1922.12 −0.136545
\(584\) −14614.5 −1.03553
\(585\) 686.263 0.0485017
\(586\) −5328.32 −0.375616
\(587\) 3604.51 0.253448 0.126724 0.991938i \(-0.459554\pi\)
0.126724 + 0.991938i \(0.459554\pi\)
\(588\) −3835.98 −0.269036
\(589\) −606.617 −0.0424367
\(590\) 15082.3 1.05242
\(591\) 8813.05 0.613402
\(592\) 13673.7 0.949300
\(593\) 21451.6 1.48551 0.742757 0.669561i \(-0.233518\pi\)
0.742757 + 0.669561i \(0.233518\pi\)
\(594\) −669.607 −0.0462530
\(595\) −2499.05 −0.172187
\(596\) −9574.92 −0.658060
\(597\) 12724.9 0.872357
\(598\) 768.997 0.0525863
\(599\) −14824.4 −1.01120 −0.505599 0.862769i \(-0.668728\pi\)
−0.505599 + 0.862769i \(0.668728\pi\)
\(600\) 2624.07 0.178545
\(601\) −18786.5 −1.27507 −0.637535 0.770422i \(-0.720046\pi\)
−0.637535 + 0.770422i \(0.720046\pi\)
\(602\) −3397.22 −0.230001
\(603\) 2643.12 0.178501
\(604\) 9340.11 0.629211
\(605\) −10096.9 −0.678506
\(606\) −10691.8 −0.716704
\(607\) −2160.73 −0.144484 −0.0722418 0.997387i \(-0.523015\pi\)
−0.0722418 + 0.997387i \(0.523015\pi\)
\(608\) 3509.63 0.234102
\(609\) 542.917 0.0361250
\(610\) 9691.21 0.643255
\(611\) 3747.57 0.248135
\(612\) −2472.32 −0.163297
\(613\) 20705.6 1.36426 0.682131 0.731230i \(-0.261053\pi\)
0.682131 + 0.731230i \(0.261053\pi\)
\(614\) −29579.4 −1.94418
\(615\) 9361.50 0.613808
\(616\) 457.465 0.0299217
\(617\) −19079.1 −1.24488 −0.622442 0.782666i \(-0.713860\pi\)
−0.622442 + 0.782666i \(0.713860\pi\)
\(618\) −13090.1 −0.852043
\(619\) 18244.3 1.18465 0.592325 0.805699i \(-0.298210\pi\)
0.592325 + 0.805699i \(0.298210\pi\)
\(620\) 894.830 0.0579633
\(621\) 621.000 0.0401286
\(622\) −12727.9 −0.820484
\(623\) −6770.84 −0.435422
\(624\) −2319.25 −0.148789
\(625\) −3846.31 −0.246164
\(626\) −15161.2 −0.967993
\(627\) 456.710 0.0290897
\(628\) −10800.8 −0.686303
\(629\) 11825.7 0.749635
\(630\) 1124.73 0.0711273
\(631\) 4623.60 0.291700 0.145850 0.989307i \(-0.453408\pi\)
0.145850 + 0.989307i \(0.453408\pi\)
\(632\) 535.469 0.0337022
\(633\) 15064.4 0.945904
\(634\) −10431.9 −0.653478
\(635\) 2880.32 0.180003
\(636\) 3194.03 0.199137
\(637\) −3112.14 −0.193575
\(638\) −980.449 −0.0608406
\(639\) 4551.22 0.281758
\(640\) 12294.6 0.759357
\(641\) 21059.1 1.29763 0.648816 0.760945i \(-0.275264\pi\)
0.648816 + 0.760945i \(0.275264\pi\)
\(642\) 3263.68 0.200634
\(643\) 18828.5 1.15478 0.577390 0.816468i \(-0.304071\pi\)
0.577390 + 0.816468i \(0.304071\pi\)
\(644\) 418.032 0.0255788
\(645\) −5077.53 −0.309965
\(646\) 5083.92 0.309635
\(647\) −18686.1 −1.13543 −0.567716 0.823224i \(-0.692173\pi\)
−0.567716 + 0.823224i \(0.692173\pi\)
\(648\) −1129.27 −0.0684598
\(649\) −3960.12 −0.239520
\(650\) −2097.67 −0.126581
\(651\) 392.248 0.0236151
\(652\) 3613.52 0.217050
\(653\) −13267.2 −0.795078 −0.397539 0.917585i \(-0.630136\pi\)
−0.397539 + 0.917585i \(0.630136\pi\)
\(654\) −6170.01 −0.368909
\(655\) 6639.90 0.396095
\(656\) −31637.6 −1.88299
\(657\) 9434.38 0.560228
\(658\) 6141.96 0.363888
\(659\) 9430.56 0.557455 0.278727 0.960370i \(-0.410087\pi\)
0.278727 + 0.960370i \(0.410087\pi\)
\(660\) −673.700 −0.0397329
\(661\) −8433.69 −0.496267 −0.248134 0.968726i \(-0.579817\pi\)
−0.248134 + 0.968726i \(0.579817\pi\)
\(662\) 28020.2 1.64507
\(663\) −2005.80 −0.117495
\(664\) 1554.50 0.0908528
\(665\) −767.129 −0.0447338
\(666\) −5322.29 −0.309661
\(667\) 909.278 0.0527847
\(668\) 1469.80 0.0851319
\(669\) −3634.91 −0.210065
\(670\) 8017.44 0.462300
\(671\) −2544.59 −0.146398
\(672\) −2269.38 −0.130273
\(673\) 1486.31 0.0851310 0.0425655 0.999094i \(-0.486447\pi\)
0.0425655 + 0.999094i \(0.486447\pi\)
\(674\) −4428.03 −0.253058
\(675\) −1693.97 −0.0965938
\(676\) −8352.26 −0.475208
\(677\) 3996.72 0.226893 0.113446 0.993544i \(-0.463811\pi\)
0.113446 + 0.993544i \(0.463811\pi\)
\(678\) 7318.76 0.414565
\(679\) −5834.74 −0.329774
\(680\) 7611.05 0.429221
\(681\) 13573.9 0.763807
\(682\) −708.357 −0.0397718
\(683\) −4484.96 −0.251262 −0.125631 0.992077i \(-0.540096\pi\)
−0.125631 + 0.992077i \(0.540096\pi\)
\(684\) −758.925 −0.0424243
\(685\) 21834.0 1.21786
\(686\) −10532.9 −0.586224
\(687\) −19842.4 −1.10194
\(688\) 17159.7 0.950884
\(689\) 2591.32 0.143282
\(690\) 1883.69 0.103929
\(691\) 8534.58 0.469856 0.234928 0.972013i \(-0.424515\pi\)
0.234928 + 0.972013i \(0.424515\pi\)
\(692\) −6648.35 −0.365220
\(693\) −295.316 −0.0161878
\(694\) −24099.3 −1.31815
\(695\) −9482.69 −0.517552
\(696\) −1653.50 −0.0900512
\(697\) −27361.7 −1.48694
\(698\) 40067.9 2.17277
\(699\) −6051.67 −0.327461
\(700\) −1140.31 −0.0615709
\(701\) 5562.07 0.299681 0.149841 0.988710i \(-0.452124\pi\)
0.149841 + 0.988710i \(0.452124\pi\)
\(702\) 902.736 0.0485350
\(703\) 3630.11 0.194754
\(704\) −489.248 −0.0261921
\(705\) 9179.85 0.490402
\(706\) −4703.07 −0.250711
\(707\) −4715.38 −0.250834
\(708\) 6580.61 0.349314
\(709\) 8050.95 0.426460 0.213230 0.977002i \(-0.431602\pi\)
0.213230 + 0.977002i \(0.431602\pi\)
\(710\) 13805.3 0.729724
\(711\) −345.672 −0.0182331
\(712\) 20621.1 1.08541
\(713\) 656.937 0.0345056
\(714\) −3287.34 −0.172305
\(715\) −546.574 −0.0285884
\(716\) −7504.45 −0.391696
\(717\) −6574.69 −0.342449
\(718\) −39148.3 −2.03482
\(719\) 5103.08 0.264691 0.132345 0.991204i \(-0.457749\pi\)
0.132345 + 0.991204i \(0.457749\pi\)
\(720\) −5681.12 −0.294060
\(721\) −5773.13 −0.298201
\(722\) −22170.4 −1.14279
\(723\) 12001.0 0.617320
\(724\) −4961.75 −0.254699
\(725\) −2480.33 −0.127058
\(726\) −13281.8 −0.678972
\(727\) −19611.5 −1.00048 −0.500240 0.865887i \(-0.666755\pi\)
−0.500240 + 0.865887i \(0.666755\pi\)
\(728\) −616.735 −0.0313980
\(729\) 729.000 0.0370370
\(730\) 28617.5 1.45093
\(731\) 14840.5 0.750886
\(732\) 4228.40 0.213506
\(733\) −13236.7 −0.666998 −0.333499 0.942750i \(-0.608229\pi\)
−0.333499 + 0.942750i \(0.608229\pi\)
\(734\) −32041.0 −1.61124
\(735\) −7623.32 −0.382572
\(736\) −3800.76 −0.190350
\(737\) −2105.11 −0.105214
\(738\) 12314.5 0.614230
\(739\) −25308.9 −1.25981 −0.629906 0.776671i \(-0.716907\pi\)
−0.629906 + 0.776671i \(0.716907\pi\)
\(740\) −5354.82 −0.266010
\(741\) −615.718 −0.0305249
\(742\) 4246.95 0.210122
\(743\) 15214.4 0.751230 0.375615 0.926776i \(-0.377432\pi\)
0.375615 + 0.926776i \(0.377432\pi\)
\(744\) −1194.62 −0.0588669
\(745\) −19028.4 −0.935770
\(746\) 25770.0 1.26476
\(747\) −1003.51 −0.0491517
\(748\) 1969.08 0.0962524
\(749\) 1439.38 0.0702185
\(750\) −15375.8 −0.748594
\(751\) −2600.26 −0.126345 −0.0631724 0.998003i \(-0.520122\pi\)
−0.0631724 + 0.998003i \(0.520122\pi\)
\(752\) −31023.7 −1.50441
\(753\) −6657.70 −0.322205
\(754\) 1321.80 0.0638423
\(755\) 18561.8 0.894746
\(756\) 490.733 0.0236082
\(757\) −24500.2 −1.17632 −0.588160 0.808745i \(-0.700147\pi\)
−0.588160 + 0.808745i \(0.700147\pi\)
\(758\) 46461.5 2.22633
\(759\) −494.595 −0.0236531
\(760\) 2336.35 0.111511
\(761\) 7901.08 0.376365 0.188183 0.982134i \(-0.439740\pi\)
0.188183 + 0.982134i \(0.439740\pi\)
\(762\) 3788.88 0.180127
\(763\) −2721.15 −0.129112
\(764\) 17088.8 0.809231
\(765\) −4913.31 −0.232210
\(766\) −43354.3 −2.04498
\(767\) 5338.86 0.251337
\(768\) 14534.7 0.682913
\(769\) −33754.8 −1.58287 −0.791436 0.611252i \(-0.790666\pi\)
−0.791436 + 0.611252i \(0.790666\pi\)
\(770\) −895.789 −0.0419247
\(771\) −1645.26 −0.0768516
\(772\) −11734.9 −0.547082
\(773\) 9500.18 0.442041 0.221021 0.975269i \(-0.429061\pi\)
0.221021 + 0.975269i \(0.429061\pi\)
\(774\) −6679.17 −0.310178
\(775\) −1792.00 −0.0830586
\(776\) 17770.2 0.822051
\(777\) −2347.28 −0.108376
\(778\) −7050.79 −0.324914
\(779\) −8399.17 −0.386305
\(780\) 908.254 0.0416932
\(781\) −3624.82 −0.166077
\(782\) −5505.64 −0.251766
\(783\) 1067.41 0.0487181
\(784\) 25763.3 1.17362
\(785\) −21464.6 −0.975931
\(786\) 8734.37 0.396367
\(787\) −37524.0 −1.69960 −0.849800 0.527105i \(-0.823277\pi\)
−0.849800 + 0.527105i \(0.823277\pi\)
\(788\) 11663.9 0.527295
\(789\) −12542.5 −0.565936
\(790\) −1048.53 −0.0472217
\(791\) 3227.79 0.145091
\(792\) 899.408 0.0403524
\(793\) 3430.51 0.153620
\(794\) −43059.6 −1.92460
\(795\) 6347.56 0.283176
\(796\) 16841.2 0.749899
\(797\) 33330.8 1.48135 0.740675 0.671864i \(-0.234506\pi\)
0.740675 + 0.671864i \(0.234506\pi\)
\(798\) −1009.11 −0.0447645
\(799\) −26830.8 −1.18799
\(800\) 10367.7 0.458194
\(801\) −13311.9 −0.587209
\(802\) 26003.8 1.14492
\(803\) −7514.01 −0.330216
\(804\) 3498.11 0.153444
\(805\) 830.764 0.0363734
\(806\) 954.977 0.0417340
\(807\) 13018.4 0.567866
\(808\) 14361.0 0.625272
\(809\) 16696.0 0.725586 0.362793 0.931870i \(-0.381823\pi\)
0.362793 + 0.931870i \(0.381823\pi\)
\(810\) 2211.29 0.0959221
\(811\) 27187.8 1.17718 0.588589 0.808432i \(-0.299684\pi\)
0.588589 + 0.808432i \(0.299684\pi\)
\(812\) 718.539 0.0310539
\(813\) −4537.95 −0.195760
\(814\) 4238.94 0.182524
\(815\) 7181.22 0.308647
\(816\) 16604.7 0.712355
\(817\) 4555.58 0.195079
\(818\) 15426.6 0.659387
\(819\) 398.133 0.0169864
\(820\) 12389.7 0.527645
\(821\) −14087.5 −0.598852 −0.299426 0.954119i \(-0.596795\pi\)
−0.299426 + 0.954119i \(0.596795\pi\)
\(822\) 28721.3 1.21870
\(823\) 10841.3 0.459178 0.229589 0.973288i \(-0.426262\pi\)
0.229589 + 0.973288i \(0.426262\pi\)
\(824\) 17582.5 0.743345
\(825\) 1349.16 0.0569354
\(826\) 8749.95 0.368583
\(827\) 11420.3 0.480195 0.240097 0.970749i \(-0.422821\pi\)
0.240097 + 0.970749i \(0.422821\pi\)
\(828\) 821.880 0.0344955
\(829\) 20555.8 0.861196 0.430598 0.902544i \(-0.358303\pi\)
0.430598 + 0.902544i \(0.358303\pi\)
\(830\) −3043.96 −0.127298
\(831\) 1613.27 0.0673448
\(832\) 659.583 0.0274843
\(833\) 22281.4 0.926775
\(834\) −12473.9 −0.517908
\(835\) 2920.96 0.121059
\(836\) 604.446 0.0250062
\(837\) 771.187 0.0318472
\(838\) 15592.0 0.642742
\(839\) −12.5459 −0.000516247 0 −0.000258123 1.00000i \(-0.500082\pi\)
−0.000258123 1.00000i \(0.500082\pi\)
\(840\) −1510.72 −0.0620534
\(841\) −22826.1 −0.935917
\(842\) 15194.2 0.621886
\(843\) 24439.0 0.998487
\(844\) 19937.4 0.813122
\(845\) −16598.6 −0.675752
\(846\) 12075.5 0.490738
\(847\) −5857.66 −0.237629
\(848\) −21451.8 −0.868701
\(849\) 15695.7 0.634483
\(850\) 15018.3 0.606028
\(851\) −3931.23 −0.158356
\(852\) 6023.44 0.242206
\(853\) −19060.7 −0.765096 −0.382548 0.923936i \(-0.624953\pi\)
−0.382548 + 0.923936i \(0.624953\pi\)
\(854\) 5622.32 0.225283
\(855\) −1508.23 −0.0603279
\(856\) −4383.73 −0.175038
\(857\) −15239.1 −0.607418 −0.303709 0.952765i \(-0.598225\pi\)
−0.303709 + 0.952765i \(0.598225\pi\)
\(858\) −718.984 −0.0286080
\(859\) 9970.27 0.396020 0.198010 0.980200i \(-0.436552\pi\)
0.198010 + 0.980200i \(0.436552\pi\)
\(860\) −6720.00 −0.266454
\(861\) 5431.04 0.214970
\(862\) −13959.9 −0.551596
\(863\) 35257.3 1.39070 0.695350 0.718671i \(-0.255249\pi\)
0.695350 + 0.718671i \(0.255249\pi\)
\(864\) −4461.76 −0.175686
\(865\) −13212.4 −0.519347
\(866\) −8229.79 −0.322932
\(867\) −378.444 −0.0148243
\(868\) 519.132 0.0203001
\(869\) 275.310 0.0107471
\(870\) 3237.81 0.126175
\(871\) 2838.03 0.110405
\(872\) 8287.48 0.321846
\(873\) −11471.5 −0.444733
\(874\) −1690.06 −0.0654085
\(875\) −6781.18 −0.261995
\(876\) 12486.2 0.481586
\(877\) −19721.8 −0.759358 −0.379679 0.925118i \(-0.623966\pi\)
−0.379679 + 0.925118i \(0.623966\pi\)
\(878\) 23413.4 0.899960
\(879\) −4620.15 −0.177285
\(880\) 4524.73 0.173328
\(881\) 27621.7 1.05630 0.528150 0.849151i \(-0.322886\pi\)
0.528150 + 0.849151i \(0.322886\pi\)
\(882\) −10028.0 −0.382835
\(883\) 35195.3 1.34135 0.670677 0.741750i \(-0.266004\pi\)
0.670677 + 0.741750i \(0.266004\pi\)
\(884\) −2654.64 −0.101001
\(885\) 13077.8 0.496729
\(886\) 9573.80 0.363023
\(887\) −37874.1 −1.43369 −0.716847 0.697231i \(-0.754415\pi\)
−0.716847 + 0.697231i \(0.754415\pi\)
\(888\) 7148.84 0.270157
\(889\) 1671.01 0.0630414
\(890\) −40379.4 −1.52081
\(891\) −580.612 −0.0218308
\(892\) −4810.72 −0.180577
\(893\) −8236.19 −0.308638
\(894\) −25030.7 −0.936412
\(895\) −14913.7 −0.556996
\(896\) 7132.69 0.265945
\(897\) 666.793 0.0248200
\(898\) 12513.8 0.465022
\(899\) 1129.18 0.0418915
\(900\) −2241.93 −0.0830344
\(901\) −18552.6 −0.685989
\(902\) −9807.85 −0.362046
\(903\) −2945.71 −0.108557
\(904\) −9830.48 −0.361678
\(905\) −9860.60 −0.362185
\(906\) 24416.9 0.895360
\(907\) −23648.3 −0.865744 −0.432872 0.901455i \(-0.642500\pi\)
−0.432872 + 0.901455i \(0.642500\pi\)
\(908\) 17964.7 0.656587
\(909\) −9270.76 −0.338275
\(910\) 1207.67 0.0439931
\(911\) −24936.9 −0.906911 −0.453456 0.891279i \(-0.649809\pi\)
−0.453456 + 0.891279i \(0.649809\pi\)
\(912\) 5097.12 0.185069
\(913\) 799.242 0.0289716
\(914\) −20456.4 −0.740304
\(915\) 8403.20 0.303608
\(916\) −26260.9 −0.947255
\(917\) 3852.11 0.138722
\(918\) −6463.14 −0.232370
\(919\) 38348.8 1.37651 0.688253 0.725470i \(-0.258378\pi\)
0.688253 + 0.725470i \(0.258378\pi\)
\(920\) −2530.16 −0.0906704
\(921\) −25648.1 −0.917628
\(922\) 13375.4 0.477759
\(923\) 4886.83 0.174271
\(924\) −390.844 −0.0139154
\(925\) 10723.6 0.381179
\(926\) −40789.5 −1.44754
\(927\) −11350.4 −0.402153
\(928\) −6532.99 −0.231095
\(929\) −28584.5 −1.00950 −0.504751 0.863265i \(-0.668416\pi\)
−0.504751 + 0.863265i \(0.668416\pi\)
\(930\) 2339.26 0.0824810
\(931\) 6839.67 0.240774
\(932\) −8009.25 −0.281493
\(933\) −11036.3 −0.387257
\(934\) 13380.3 0.468756
\(935\) 3913.20 0.136872
\(936\) −1212.54 −0.0423432
\(937\) −6982.17 −0.243434 −0.121717 0.992565i \(-0.538840\pi\)
−0.121717 + 0.992565i \(0.538840\pi\)
\(938\) 4651.29 0.161908
\(939\) −13146.2 −0.456880
\(940\) 12149.3 0.421561
\(941\) −34182.7 −1.18419 −0.592095 0.805868i \(-0.701699\pi\)
−0.592095 + 0.805868i \(0.701699\pi\)
\(942\) −28235.4 −0.976602
\(943\) 9095.90 0.314108
\(944\) −44196.9 −1.52382
\(945\) 975.245 0.0335711
\(946\) 5319.62 0.182829
\(947\) −44105.7 −1.51346 −0.756729 0.653729i \(-0.773204\pi\)
−0.756729 + 0.653729i \(0.773204\pi\)
\(948\) −457.489 −0.0156736
\(949\) 10130.1 0.346508
\(950\) 4610.14 0.157445
\(951\) −9045.47 −0.308433
\(952\) 4415.52 0.150323
\(953\) 22993.3 0.781560 0.390780 0.920484i \(-0.372205\pi\)
0.390780 + 0.920484i \(0.372205\pi\)
\(954\) 8349.81 0.283370
\(955\) 33961.0 1.15074
\(956\) −8701.45 −0.294378
\(957\) −850.141 −0.0287160
\(958\) −61089.4 −2.06024
\(959\) 12666.9 0.426524
\(960\) 1615.68 0.0543186
\(961\) −28975.2 −0.972615
\(962\) −5714.76 −0.191529
\(963\) 2829.91 0.0946965
\(964\) 15883.1 0.530664
\(965\) −23321.0 −0.777957
\(966\) 1092.82 0.0363984
\(967\) 30170.2 1.00332 0.501658 0.865066i \(-0.332724\pi\)
0.501658 + 0.865066i \(0.332724\pi\)
\(968\) 17840.0 0.592353
\(969\) 4408.23 0.146143
\(970\) −34796.8 −1.15181
\(971\) 59927.1 1.98059 0.990295 0.138984i \(-0.0443838\pi\)
0.990295 + 0.138984i \(0.0443838\pi\)
\(972\) 964.816 0.0318379
\(973\) −5501.34 −0.181259
\(974\) −19896.5 −0.654543
\(975\) −1818.88 −0.0597444
\(976\) −28398.9 −0.931381
\(977\) −22546.4 −0.738304 −0.369152 0.929369i \(-0.620352\pi\)
−0.369152 + 0.929369i \(0.620352\pi\)
\(978\) 9446.45 0.308859
\(979\) 10602.3 0.346119
\(980\) −10089.3 −0.328868
\(981\) −5349.98 −0.174120
\(982\) 41829.4 1.35930
\(983\) 1932.66 0.0627084 0.0313542 0.999508i \(-0.490018\pi\)
0.0313542 + 0.999508i \(0.490018\pi\)
\(984\) −16540.6 −0.535871
\(985\) 23179.9 0.749820
\(986\) −9463.44 −0.305656
\(987\) 5325.66 0.171750
\(988\) −814.889 −0.0262399
\(989\) −4933.47 −0.158620
\(990\) −1761.18 −0.0565395
\(991\) −47353.0 −1.51788 −0.758939 0.651161i \(-0.774282\pi\)
−0.758939 + 0.651161i \(0.774282\pi\)
\(992\) −4719.97 −0.151068
\(993\) 24296.2 0.776451
\(994\) 8009.10 0.255567
\(995\) 33468.8 1.06637
\(996\) −1328.12 −0.0422520
\(997\) 20613.3 0.654795 0.327397 0.944887i \(-0.393828\pi\)
0.327397 + 0.944887i \(0.393828\pi\)
\(998\) 51065.2 1.61968
\(999\) −4614.92 −0.146156
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 69.4.a.d.1.3 4
3.2 odd 2 207.4.a.d.1.2 4
4.3 odd 2 1104.4.a.t.1.3 4
5.4 even 2 1725.4.a.p.1.2 4
23.22 odd 2 1587.4.a.g.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
69.4.a.d.1.3 4 1.1 even 1 trivial
207.4.a.d.1.2 4 3.2 odd 2
1104.4.a.t.1.3 4 4.3 odd 2
1587.4.a.g.1.3 4 23.22 odd 2
1725.4.a.p.1.2 4 5.4 even 2