Properties

Label 69.4
Level 69
Weight 4
Dimension 374
Nonzero newspaces 4
Newform subspaces 10
Sturm bound 1408
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 69 = 3 \cdot 23 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 10 \)
Sturm bound: \(1408\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(69))\).

Total New Old
Modular forms 572 418 154
Cusp forms 484 374 110
Eisenstein series 88 44 44

Trace form

\( 374 q - 11 q^{3} - 22 q^{4} - 11 q^{6} - 22 q^{7} - 11 q^{9} - 22 q^{10} - 11 q^{12} - 22 q^{13} + 363 q^{15} + 858 q^{16} + 176 q^{17} - 99 q^{18} - 242 q^{19} - 1408 q^{20} - 671 q^{21} - 968 q^{22} - 968 q^{23}+ \cdots - 1859 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(69))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
69.4.a \(\chi_{69}(1, \cdot)\) 69.4.a.a 2 1
69.4.a.b 2
69.4.a.c 4
69.4.a.d 4
69.4.c \(\chi_{69}(68, \cdot)\) 69.4.c.a 2 1
69.4.c.b 4
69.4.c.c 16
69.4.e \(\chi_{69}(4, \cdot)\) 69.4.e.a 60 10
69.4.e.b 60
69.4.g \(\chi_{69}(5, \cdot)\) 69.4.g.a 220 10

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(69))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(69)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 2}\)