Properties

Label 6897.2.a.bc.1.6
Level $6897$
Weight $2$
Character 6897.1
Self dual yes
Analytic conductor $55.073$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6897,2,Mod(1,6897)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6897.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6897, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6897 = 3 \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6897.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-1,-8,9,-2,1,-6,-6,8,-3,0,-9,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.0728222741\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 12x^{6} + 9x^{5} + 40x^{4} - 22x^{3} - 28x^{2} + 12x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-0.962830\) of defining polynomial
Character \(\chi\) \(=\) 6897.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.962830 q^{2} -1.00000 q^{3} -1.07296 q^{4} -2.82062 q^{5} -0.962830 q^{6} +3.66641 q^{7} -2.95874 q^{8} +1.00000 q^{9} -2.71578 q^{10} +1.07296 q^{12} +0.962830 q^{13} +3.53013 q^{14} +2.82062 q^{15} -0.702842 q^{16} -5.56155 q^{17} +0.962830 q^{18} +1.00000 q^{19} +3.02641 q^{20} -3.66641 q^{21} -2.40347 q^{23} +2.95874 q^{24} +2.95590 q^{25} +0.927041 q^{26} -1.00000 q^{27} -3.93391 q^{28} +3.20441 q^{29} +2.71578 q^{30} +8.46230 q^{31} +5.24075 q^{32} -5.35483 q^{34} -10.3416 q^{35} -1.07296 q^{36} -4.15265 q^{37} +0.962830 q^{38} -0.962830 q^{39} +8.34547 q^{40} +6.94427 q^{41} -3.53013 q^{42} -1.69751 q^{43} -2.82062 q^{45} -2.31414 q^{46} -0.318191 q^{47} +0.702842 q^{48} +6.44257 q^{49} +2.84603 q^{50} +5.56155 q^{51} -1.03308 q^{52} -3.60355 q^{53} -0.962830 q^{54} -10.8479 q^{56} -1.00000 q^{57} +3.08530 q^{58} -5.94245 q^{59} -3.02641 q^{60} -3.85942 q^{61} +8.14775 q^{62} +3.66641 q^{63} +6.45164 q^{64} -2.71578 q^{65} +7.65808 q^{67} +5.96731 q^{68} +2.40347 q^{69} -9.95716 q^{70} +4.26434 q^{71} -2.95874 q^{72} -2.88048 q^{73} -3.99830 q^{74} -2.95590 q^{75} -1.07296 q^{76} -0.927041 q^{78} +16.1718 q^{79} +1.98245 q^{80} +1.00000 q^{81} +6.68615 q^{82} +12.2304 q^{83} +3.93391 q^{84} +15.6870 q^{85} -1.63441 q^{86} -3.20441 q^{87} -15.1984 q^{89} -2.71578 q^{90} +3.53013 q^{91} +2.57883 q^{92} -8.46230 q^{93} -0.306364 q^{94} -2.82062 q^{95} -5.24075 q^{96} -12.7065 q^{97} +6.20310 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} - 8 q^{3} + 9 q^{4} - 2 q^{5} + q^{6} - 6 q^{7} - 6 q^{8} + 8 q^{9} - 3 q^{10} - 9 q^{12} - q^{13} + 7 q^{14} + 2 q^{15} + 23 q^{16} - 15 q^{17} - q^{18} + 8 q^{19} - 4 q^{20} + 6 q^{21}+ \cdots - 55 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.962830 0.680824 0.340412 0.940276i \(-0.389434\pi\)
0.340412 + 0.940276i \(0.389434\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.07296 −0.536479
\(5\) −2.82062 −1.26142 −0.630710 0.776019i \(-0.717236\pi\)
−0.630710 + 0.776019i \(0.717236\pi\)
\(6\) −0.962830 −0.393074
\(7\) 3.66641 1.38577 0.692887 0.721047i \(-0.256339\pi\)
0.692887 + 0.721047i \(0.256339\pi\)
\(8\) −2.95874 −1.04607
\(9\) 1.00000 0.333333
\(10\) −2.71578 −0.858804
\(11\) 0 0
\(12\) 1.07296 0.309736
\(13\) 0.962830 0.267041 0.133520 0.991046i \(-0.457372\pi\)
0.133520 + 0.991046i \(0.457372\pi\)
\(14\) 3.53013 0.943467
\(15\) 2.82062 0.728281
\(16\) −0.702842 −0.175711
\(17\) −5.56155 −1.34887 −0.674437 0.738333i \(-0.735614\pi\)
−0.674437 + 0.738333i \(0.735614\pi\)
\(18\) 0.962830 0.226941
\(19\) 1.00000 0.229416
\(20\) 3.02641 0.676726
\(21\) −3.66641 −0.800077
\(22\) 0 0
\(23\) −2.40347 −0.501159 −0.250580 0.968096i \(-0.580621\pi\)
−0.250580 + 0.968096i \(0.580621\pi\)
\(24\) 2.95874 0.603950
\(25\) 2.95590 0.591180
\(26\) 0.927041 0.181808
\(27\) −1.00000 −0.192450
\(28\) −3.93391 −0.743439
\(29\) 3.20441 0.595043 0.297522 0.954715i \(-0.403840\pi\)
0.297522 + 0.954715i \(0.403840\pi\)
\(30\) 2.71578 0.495831
\(31\) 8.46230 1.51987 0.759937 0.649997i \(-0.225230\pi\)
0.759937 + 0.649997i \(0.225230\pi\)
\(32\) 5.24075 0.926443
\(33\) 0 0
\(34\) −5.35483 −0.918345
\(35\) −10.3416 −1.74804
\(36\) −1.07296 −0.178826
\(37\) −4.15265 −0.682692 −0.341346 0.939938i \(-0.610883\pi\)
−0.341346 + 0.939938i \(0.610883\pi\)
\(38\) 0.962830 0.156192
\(39\) −0.962830 −0.154176
\(40\) 8.34547 1.31954
\(41\) 6.94427 1.08451 0.542257 0.840213i \(-0.317570\pi\)
0.542257 + 0.840213i \(0.317570\pi\)
\(42\) −3.53013 −0.544711
\(43\) −1.69751 −0.258868 −0.129434 0.991588i \(-0.541316\pi\)
−0.129434 + 0.991588i \(0.541316\pi\)
\(44\) 0 0
\(45\) −2.82062 −0.420473
\(46\) −2.31414 −0.341201
\(47\) −0.318191 −0.0464130 −0.0232065 0.999731i \(-0.507388\pi\)
−0.0232065 + 0.999731i \(0.507388\pi\)
\(48\) 0.702842 0.101447
\(49\) 6.44257 0.920368
\(50\) 2.84603 0.402489
\(51\) 5.56155 0.778773
\(52\) −1.03308 −0.143262
\(53\) −3.60355 −0.494986 −0.247493 0.968890i \(-0.579607\pi\)
−0.247493 + 0.968890i \(0.579607\pi\)
\(54\) −0.962830 −0.131025
\(55\) 0 0
\(56\) −10.8479 −1.44962
\(57\) −1.00000 −0.132453
\(58\) 3.08530 0.405120
\(59\) −5.94245 −0.773641 −0.386820 0.922155i \(-0.626427\pi\)
−0.386820 + 0.922155i \(0.626427\pi\)
\(60\) −3.02641 −0.390708
\(61\) −3.85942 −0.494148 −0.247074 0.968997i \(-0.579469\pi\)
−0.247074 + 0.968997i \(0.579469\pi\)
\(62\) 8.14775 1.03477
\(63\) 3.66641 0.461924
\(64\) 6.45164 0.806455
\(65\) −2.71578 −0.336851
\(66\) 0 0
\(67\) 7.65808 0.935583 0.467792 0.883839i \(-0.345050\pi\)
0.467792 + 0.883839i \(0.345050\pi\)
\(68\) 5.96731 0.723643
\(69\) 2.40347 0.289344
\(70\) −9.95716 −1.19011
\(71\) 4.26434 0.506084 0.253042 0.967455i \(-0.418569\pi\)
0.253042 + 0.967455i \(0.418569\pi\)
\(72\) −2.95874 −0.348690
\(73\) −2.88048 −0.337135 −0.168567 0.985690i \(-0.553914\pi\)
−0.168567 + 0.985690i \(0.553914\pi\)
\(74\) −3.99830 −0.464793
\(75\) −2.95590 −0.341318
\(76\) −1.07296 −0.123077
\(77\) 0 0
\(78\) −0.927041 −0.104967
\(79\) 16.1718 1.81946 0.909732 0.415196i \(-0.136287\pi\)
0.909732 + 0.415196i \(0.136287\pi\)
\(80\) 1.98245 0.221645
\(81\) 1.00000 0.111111
\(82\) 6.68615 0.738362
\(83\) 12.2304 1.34246 0.671230 0.741249i \(-0.265766\pi\)
0.671230 + 0.741249i \(0.265766\pi\)
\(84\) 3.93391 0.429225
\(85\) 15.6870 1.70150
\(86\) −1.63441 −0.176243
\(87\) −3.20441 −0.343548
\(88\) 0 0
\(89\) −15.1984 −1.61103 −0.805513 0.592578i \(-0.798110\pi\)
−0.805513 + 0.592578i \(0.798110\pi\)
\(90\) −2.71578 −0.286268
\(91\) 3.53013 0.370058
\(92\) 2.57883 0.268862
\(93\) −8.46230 −0.877499
\(94\) −0.306364 −0.0315990
\(95\) −2.82062 −0.289390
\(96\) −5.24075 −0.534882
\(97\) −12.7065 −1.29015 −0.645076 0.764119i \(-0.723174\pi\)
−0.645076 + 0.764119i \(0.723174\pi\)
\(98\) 6.20310 0.626608
\(99\) 0 0
\(100\) −3.17156 −0.317156
\(101\) −1.93582 −0.192622 −0.0963109 0.995351i \(-0.530704\pi\)
−0.0963109 + 0.995351i \(0.530704\pi\)
\(102\) 5.35483 0.530207
\(103\) −16.3279 −1.60884 −0.804420 0.594061i \(-0.797524\pi\)
−0.804420 + 0.594061i \(0.797524\pi\)
\(104\) −2.84876 −0.279344
\(105\) 10.3416 1.00923
\(106\) −3.46961 −0.336998
\(107\) 7.93372 0.766982 0.383491 0.923545i \(-0.374722\pi\)
0.383491 + 0.923545i \(0.374722\pi\)
\(108\) 1.07296 0.103245
\(109\) 12.2084 1.16935 0.584676 0.811267i \(-0.301222\pi\)
0.584676 + 0.811267i \(0.301222\pi\)
\(110\) 0 0
\(111\) 4.15265 0.394152
\(112\) −2.57691 −0.243495
\(113\) 7.76336 0.730315 0.365158 0.930946i \(-0.381015\pi\)
0.365158 + 0.930946i \(0.381015\pi\)
\(114\) −0.962830 −0.0901773
\(115\) 6.77929 0.632172
\(116\) −3.43820 −0.319228
\(117\) 0.962830 0.0890137
\(118\) −5.72157 −0.526713
\(119\) −20.3909 −1.86923
\(120\) −8.34547 −0.761834
\(121\) 0 0
\(122\) −3.71597 −0.336428
\(123\) −6.94427 −0.626144
\(124\) −9.07969 −0.815380
\(125\) 5.76563 0.515694
\(126\) 3.53013 0.314489
\(127\) −18.0045 −1.59764 −0.798821 0.601569i \(-0.794543\pi\)
−0.798821 + 0.601569i \(0.794543\pi\)
\(128\) −4.26968 −0.377390
\(129\) 1.69751 0.149457
\(130\) −2.61483 −0.229336
\(131\) −3.09592 −0.270492 −0.135246 0.990812i \(-0.543182\pi\)
−0.135246 + 0.990812i \(0.543182\pi\)
\(132\) 0 0
\(133\) 3.66641 0.317918
\(134\) 7.37343 0.636967
\(135\) 2.82062 0.242760
\(136\) 16.4552 1.41102
\(137\) −16.6118 −1.41924 −0.709620 0.704585i \(-0.751133\pi\)
−0.709620 + 0.704585i \(0.751133\pi\)
\(138\) 2.31414 0.196992
\(139\) 16.4703 1.39699 0.698494 0.715616i \(-0.253854\pi\)
0.698494 + 0.715616i \(0.253854\pi\)
\(140\) 11.0961 0.937788
\(141\) 0.318191 0.0267965
\(142\) 4.10583 0.344554
\(143\) 0 0
\(144\) −0.702842 −0.0585702
\(145\) −9.03842 −0.750600
\(146\) −2.77341 −0.229529
\(147\) −6.44257 −0.531374
\(148\) 4.45562 0.366250
\(149\) −22.2886 −1.82595 −0.912977 0.408010i \(-0.866223\pi\)
−0.912977 + 0.408010i \(0.866223\pi\)
\(150\) −2.84603 −0.232377
\(151\) 16.7012 1.35912 0.679561 0.733619i \(-0.262170\pi\)
0.679561 + 0.733619i \(0.262170\pi\)
\(152\) −2.95874 −0.239985
\(153\) −5.56155 −0.449625
\(154\) 0 0
\(155\) −23.8689 −1.91720
\(156\) 1.03308 0.0827123
\(157\) −5.79752 −0.462692 −0.231346 0.972872i \(-0.574313\pi\)
−0.231346 + 0.972872i \(0.574313\pi\)
\(158\) 15.5706 1.23873
\(159\) 3.60355 0.285780
\(160\) −14.7822 −1.16863
\(161\) −8.81213 −0.694493
\(162\) 0.962830 0.0756471
\(163\) −6.07716 −0.476000 −0.238000 0.971265i \(-0.576492\pi\)
−0.238000 + 0.971265i \(0.576492\pi\)
\(164\) −7.45092 −0.581819
\(165\) 0 0
\(166\) 11.7758 0.913978
\(167\) −18.4820 −1.43018 −0.715091 0.699031i \(-0.753615\pi\)
−0.715091 + 0.699031i \(0.753615\pi\)
\(168\) 10.8479 0.836937
\(169\) −12.0730 −0.928689
\(170\) 15.1039 1.15842
\(171\) 1.00000 0.0764719
\(172\) 1.82136 0.138877
\(173\) −1.02758 −0.0781256 −0.0390628 0.999237i \(-0.512437\pi\)
−0.0390628 + 0.999237i \(0.512437\pi\)
\(174\) −3.08530 −0.233896
\(175\) 10.8375 0.819241
\(176\) 0 0
\(177\) 5.94245 0.446662
\(178\) −14.6335 −1.09682
\(179\) −2.24583 −0.167861 −0.0839305 0.996472i \(-0.526747\pi\)
−0.0839305 + 0.996472i \(0.526747\pi\)
\(180\) 3.02641 0.225575
\(181\) 3.70115 0.275104 0.137552 0.990495i \(-0.456077\pi\)
0.137552 + 0.990495i \(0.456077\pi\)
\(182\) 3.39892 0.251944
\(183\) 3.85942 0.285297
\(184\) 7.11125 0.524248
\(185\) 11.7131 0.861161
\(186\) −8.14775 −0.597422
\(187\) 0 0
\(188\) 0.341406 0.0248996
\(189\) −3.66641 −0.266692
\(190\) −2.71578 −0.197023
\(191\) −12.2848 −0.888900 −0.444450 0.895804i \(-0.646601\pi\)
−0.444450 + 0.895804i \(0.646601\pi\)
\(192\) −6.45164 −0.465607
\(193\) −6.70816 −0.482864 −0.241432 0.970418i \(-0.577617\pi\)
−0.241432 + 0.970418i \(0.577617\pi\)
\(194\) −12.2342 −0.878365
\(195\) 2.71578 0.194481
\(196\) −6.91261 −0.493758
\(197\) 9.39270 0.669202 0.334601 0.942360i \(-0.391398\pi\)
0.334601 + 0.942360i \(0.391398\pi\)
\(198\) 0 0
\(199\) −0.121631 −0.00862222 −0.00431111 0.999991i \(-0.501372\pi\)
−0.00431111 + 0.999991i \(0.501372\pi\)
\(200\) −8.74573 −0.618416
\(201\) −7.65808 −0.540159
\(202\) −1.86387 −0.131141
\(203\) 11.7487 0.824595
\(204\) −5.96731 −0.417795
\(205\) −19.5872 −1.36803
\(206\) −15.7210 −1.09534
\(207\) −2.40347 −0.167053
\(208\) −0.676718 −0.0469219
\(209\) 0 0
\(210\) 9.95716 0.687109
\(211\) 22.4878 1.54813 0.774063 0.633109i \(-0.218221\pi\)
0.774063 + 0.633109i \(0.218221\pi\)
\(212\) 3.86646 0.265550
\(213\) −4.26434 −0.292188
\(214\) 7.63882 0.522179
\(215\) 4.78803 0.326541
\(216\) 2.95874 0.201317
\(217\) 31.0263 2.10620
\(218\) 11.7546 0.796123
\(219\) 2.88048 0.194645
\(220\) 0 0
\(221\) −5.35483 −0.360205
\(222\) 3.99830 0.268348
\(223\) −18.4720 −1.23698 −0.618488 0.785794i \(-0.712254\pi\)
−0.618488 + 0.785794i \(0.712254\pi\)
\(224\) 19.2148 1.28384
\(225\) 2.95590 0.197060
\(226\) 7.47479 0.497216
\(227\) −4.18180 −0.277556 −0.138778 0.990324i \(-0.544317\pi\)
−0.138778 + 0.990324i \(0.544317\pi\)
\(228\) 1.07296 0.0710584
\(229\) −6.67998 −0.441426 −0.220713 0.975339i \(-0.570838\pi\)
−0.220713 + 0.975339i \(0.570838\pi\)
\(230\) 6.52730 0.430398
\(231\) 0 0
\(232\) −9.48100 −0.622458
\(233\) −21.3747 −1.40030 −0.700150 0.713996i \(-0.746884\pi\)
−0.700150 + 0.713996i \(0.746884\pi\)
\(234\) 0.927041 0.0606026
\(235\) 0.897497 0.0585462
\(236\) 6.37600 0.415042
\(237\) −16.1718 −1.05047
\(238\) −19.6330 −1.27262
\(239\) −27.9617 −1.80869 −0.904345 0.426801i \(-0.859640\pi\)
−0.904345 + 0.426801i \(0.859640\pi\)
\(240\) −1.98245 −0.127967
\(241\) 7.45365 0.480132 0.240066 0.970757i \(-0.422831\pi\)
0.240066 + 0.970757i \(0.422831\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 4.14100 0.265100
\(245\) −18.1721 −1.16097
\(246\) −6.68615 −0.426294
\(247\) 0.962830 0.0612634
\(248\) −25.0377 −1.58990
\(249\) −12.2304 −0.775070
\(250\) 5.55132 0.351096
\(251\) −6.98528 −0.440907 −0.220454 0.975397i \(-0.570754\pi\)
−0.220454 + 0.975397i \(0.570754\pi\)
\(252\) −3.93391 −0.247813
\(253\) 0 0
\(254\) −17.3353 −1.08771
\(255\) −15.6870 −0.982359
\(256\) −17.0143 −1.06339
\(257\) −18.6997 −1.16646 −0.583229 0.812308i \(-0.698211\pi\)
−0.583229 + 0.812308i \(0.698211\pi\)
\(258\) 1.63441 0.101754
\(259\) −15.2253 −0.946056
\(260\) 2.91392 0.180713
\(261\) 3.20441 0.198348
\(262\) −2.98085 −0.184157
\(263\) −22.6579 −1.39714 −0.698572 0.715540i \(-0.746181\pi\)
−0.698572 + 0.715540i \(0.746181\pi\)
\(264\) 0 0
\(265\) 10.1643 0.624385
\(266\) 3.53013 0.216446
\(267\) 15.1984 0.930127
\(268\) −8.21680 −0.501921
\(269\) 5.09792 0.310826 0.155413 0.987850i \(-0.450329\pi\)
0.155413 + 0.987850i \(0.450329\pi\)
\(270\) 2.71578 0.165277
\(271\) −2.37684 −0.144383 −0.0721913 0.997391i \(-0.522999\pi\)
−0.0721913 + 0.997391i \(0.522999\pi\)
\(272\) 3.90889 0.237011
\(273\) −3.53013 −0.213653
\(274\) −15.9943 −0.966252
\(275\) 0 0
\(276\) −2.57883 −0.155227
\(277\) −17.2921 −1.03898 −0.519490 0.854476i \(-0.673878\pi\)
−0.519490 + 0.854476i \(0.673878\pi\)
\(278\) 15.8581 0.951103
\(279\) 8.46230 0.506624
\(280\) 30.5979 1.82858
\(281\) 0.0430852 0.00257025 0.00128512 0.999999i \(-0.499591\pi\)
0.00128512 + 0.999999i \(0.499591\pi\)
\(282\) 0.306364 0.0182437
\(283\) 7.00399 0.416344 0.208172 0.978092i \(-0.433249\pi\)
0.208172 + 0.978092i \(0.433249\pi\)
\(284\) −4.57546 −0.271503
\(285\) 2.82062 0.167079
\(286\) 0 0
\(287\) 25.4606 1.50289
\(288\) 5.24075 0.308814
\(289\) 13.9308 0.819460
\(290\) −8.70246 −0.511026
\(291\) 12.7065 0.744869
\(292\) 3.09063 0.180866
\(293\) −12.0346 −0.703067 −0.351534 0.936175i \(-0.614340\pi\)
−0.351534 + 0.936175i \(0.614340\pi\)
\(294\) −6.20310 −0.361772
\(295\) 16.7614 0.975886
\(296\) 12.2866 0.714144
\(297\) 0 0
\(298\) −21.4601 −1.24315
\(299\) −2.31414 −0.133830
\(300\) 3.17156 0.183110
\(301\) −6.22377 −0.358732
\(302\) 16.0804 0.925322
\(303\) 1.93582 0.111210
\(304\) −0.702842 −0.0403108
\(305\) 10.8860 0.623329
\(306\) −5.35483 −0.306115
\(307\) −29.7991 −1.70072 −0.850362 0.526199i \(-0.823617\pi\)
−0.850362 + 0.526199i \(0.823617\pi\)
\(308\) 0 0
\(309\) 16.3279 0.928864
\(310\) −22.9817 −1.30527
\(311\) 30.6144 1.73598 0.867991 0.496580i \(-0.165411\pi\)
0.867991 + 0.496580i \(0.165411\pi\)
\(312\) 2.84876 0.161279
\(313\) −30.5627 −1.72751 −0.863754 0.503914i \(-0.831893\pi\)
−0.863754 + 0.503914i \(0.831893\pi\)
\(314\) −5.58202 −0.315012
\(315\) −10.3416 −0.582681
\(316\) −17.3516 −0.976105
\(317\) 0.811942 0.0456032 0.0228016 0.999740i \(-0.492741\pi\)
0.0228016 + 0.999740i \(0.492741\pi\)
\(318\) 3.46961 0.194566
\(319\) 0 0
\(320\) −18.1976 −1.01728
\(321\) −7.93372 −0.442817
\(322\) −8.48458 −0.472827
\(323\) −5.56155 −0.309453
\(324\) −1.07296 −0.0596088
\(325\) 2.84603 0.157869
\(326\) −5.85128 −0.324072
\(327\) −12.2084 −0.675126
\(328\) −20.5463 −1.13448
\(329\) −1.16662 −0.0643179
\(330\) 0 0
\(331\) 18.0577 0.992541 0.496271 0.868168i \(-0.334702\pi\)
0.496271 + 0.868168i \(0.334702\pi\)
\(332\) −13.1227 −0.720202
\(333\) −4.15265 −0.227564
\(334\) −17.7950 −0.973701
\(335\) −21.6005 −1.18016
\(336\) 2.57691 0.140582
\(337\) −2.14441 −0.116813 −0.0584066 0.998293i \(-0.518602\pi\)
−0.0584066 + 0.998293i \(0.518602\pi\)
\(338\) −11.6242 −0.632273
\(339\) −7.76336 −0.421648
\(340\) −16.8315 −0.912817
\(341\) 0 0
\(342\) 0.962830 0.0520639
\(343\) −2.04376 −0.110352
\(344\) 5.02249 0.270794
\(345\) −6.77929 −0.364985
\(346\) −0.989386 −0.0531897
\(347\) −15.2883 −0.820721 −0.410361 0.911923i \(-0.634597\pi\)
−0.410361 + 0.911923i \(0.634597\pi\)
\(348\) 3.43820 0.184307
\(349\) 4.60789 0.246655 0.123327 0.992366i \(-0.460643\pi\)
0.123327 + 0.992366i \(0.460643\pi\)
\(350\) 10.4347 0.557759
\(351\) −0.962830 −0.0513921
\(352\) 0 0
\(353\) −16.5059 −0.878520 −0.439260 0.898360i \(-0.644759\pi\)
−0.439260 + 0.898360i \(0.644759\pi\)
\(354\) 5.72157 0.304098
\(355\) −12.0281 −0.638384
\(356\) 16.3072 0.864283
\(357\) 20.3909 1.07920
\(358\) −2.16235 −0.114284
\(359\) 5.10280 0.269316 0.134658 0.990892i \(-0.457006\pi\)
0.134658 + 0.990892i \(0.457006\pi\)
\(360\) 8.34547 0.439845
\(361\) 1.00000 0.0526316
\(362\) 3.56358 0.187297
\(363\) 0 0
\(364\) −3.78768 −0.198529
\(365\) 8.12474 0.425268
\(366\) 3.71597 0.194237
\(367\) 25.2179 1.31636 0.658182 0.752859i \(-0.271326\pi\)
0.658182 + 0.752859i \(0.271326\pi\)
\(368\) 1.68926 0.0880590
\(369\) 6.94427 0.361504
\(370\) 11.2777 0.586298
\(371\) −13.2121 −0.685938
\(372\) 9.07969 0.470760
\(373\) 24.9173 1.29017 0.645086 0.764110i \(-0.276822\pi\)
0.645086 + 0.764110i \(0.276822\pi\)
\(374\) 0 0
\(375\) −5.76563 −0.297736
\(376\) 0.941444 0.0485513
\(377\) 3.08530 0.158901
\(378\) −3.53013 −0.181570
\(379\) −3.66292 −0.188152 −0.0940758 0.995565i \(-0.529990\pi\)
−0.0940758 + 0.995565i \(0.529990\pi\)
\(380\) 3.02641 0.155252
\(381\) 18.0045 0.922399
\(382\) −11.8282 −0.605184
\(383\) 33.7831 1.72623 0.863117 0.505003i \(-0.168509\pi\)
0.863117 + 0.505003i \(0.168509\pi\)
\(384\) 4.26968 0.217886
\(385\) 0 0
\(386\) −6.45882 −0.328745
\(387\) −1.69751 −0.0862893
\(388\) 13.6336 0.692140
\(389\) −34.7163 −1.76018 −0.880092 0.474803i \(-0.842519\pi\)
−0.880092 + 0.474803i \(0.842519\pi\)
\(390\) 2.61483 0.132407
\(391\) 13.3670 0.676000
\(392\) −19.0619 −0.962770
\(393\) 3.09592 0.156169
\(394\) 9.04357 0.455608
\(395\) −45.6144 −2.29511
\(396\) 0 0
\(397\) −3.32667 −0.166961 −0.0834805 0.996509i \(-0.526604\pi\)
−0.0834805 + 0.996509i \(0.526604\pi\)
\(398\) −0.117110 −0.00587021
\(399\) −3.66641 −0.183550
\(400\) −2.07753 −0.103877
\(401\) −10.9214 −0.545389 −0.272695 0.962101i \(-0.587915\pi\)
−0.272695 + 0.962101i \(0.587915\pi\)
\(402\) −7.37343 −0.367753
\(403\) 8.14775 0.405868
\(404\) 2.07706 0.103338
\(405\) −2.82062 −0.140158
\(406\) 11.3120 0.561404
\(407\) 0 0
\(408\) −16.4552 −0.814652
\(409\) −18.6689 −0.923118 −0.461559 0.887109i \(-0.652710\pi\)
−0.461559 + 0.887109i \(0.652710\pi\)
\(410\) −18.8591 −0.931385
\(411\) 16.6118 0.819398
\(412\) 17.5192 0.863109
\(413\) −21.7875 −1.07209
\(414\) −2.31414 −0.113734
\(415\) −34.4973 −1.69341
\(416\) 5.04596 0.247398
\(417\) −16.4703 −0.806552
\(418\) 0 0
\(419\) −5.63200 −0.275141 −0.137571 0.990492i \(-0.543929\pi\)
−0.137571 + 0.990492i \(0.543929\pi\)
\(420\) −11.0961 −0.541432
\(421\) −32.5674 −1.58724 −0.793618 0.608416i \(-0.791805\pi\)
−0.793618 + 0.608416i \(0.791805\pi\)
\(422\) 21.6519 1.05400
\(423\) −0.318191 −0.0154710
\(424\) 10.6620 0.517790
\(425\) −16.4394 −0.797427
\(426\) −4.10583 −0.198928
\(427\) −14.1502 −0.684778
\(428\) −8.51255 −0.411470
\(429\) 0 0
\(430\) 4.61006 0.222317
\(431\) −1.48197 −0.0713838 −0.0356919 0.999363i \(-0.511363\pi\)
−0.0356919 + 0.999363i \(0.511363\pi\)
\(432\) 0.702842 0.0338155
\(433\) −32.4189 −1.55795 −0.778975 0.627054i \(-0.784260\pi\)
−0.778975 + 0.627054i \(0.784260\pi\)
\(434\) 29.8730 1.43395
\(435\) 9.03842 0.433359
\(436\) −13.0991 −0.627333
\(437\) −2.40347 −0.114974
\(438\) 2.77341 0.132519
\(439\) −8.14799 −0.388883 −0.194441 0.980914i \(-0.562289\pi\)
−0.194441 + 0.980914i \(0.562289\pi\)
\(440\) 0 0
\(441\) 6.44257 0.306789
\(442\) −5.15579 −0.245236
\(443\) −37.7913 −1.79552 −0.897759 0.440487i \(-0.854806\pi\)
−0.897759 + 0.440487i \(0.854806\pi\)
\(444\) −4.45562 −0.211454
\(445\) 42.8689 2.03218
\(446\) −17.7854 −0.842162
\(447\) 22.2886 1.05422
\(448\) 23.6544 1.11756
\(449\) 26.9471 1.27171 0.635855 0.771808i \(-0.280648\pi\)
0.635855 + 0.771808i \(0.280648\pi\)
\(450\) 2.84603 0.134163
\(451\) 0 0
\(452\) −8.32976 −0.391799
\(453\) −16.7012 −0.784689
\(454\) −4.02636 −0.188966
\(455\) −9.95716 −0.466799
\(456\) 2.95874 0.138556
\(457\) −11.8589 −0.554736 −0.277368 0.960764i \(-0.589462\pi\)
−0.277368 + 0.960764i \(0.589462\pi\)
\(458\) −6.43169 −0.300533
\(459\) 5.56155 0.259591
\(460\) −7.27390 −0.339147
\(461\) −23.8895 −1.11264 −0.556322 0.830967i \(-0.687788\pi\)
−0.556322 + 0.830967i \(0.687788\pi\)
\(462\) 0 0
\(463\) 8.83615 0.410651 0.205325 0.978694i \(-0.434175\pi\)
0.205325 + 0.978694i \(0.434175\pi\)
\(464\) −2.25219 −0.104555
\(465\) 23.8689 1.10689
\(466\) −20.5802 −0.953357
\(467\) −8.60334 −0.398115 −0.199057 0.979988i \(-0.563788\pi\)
−0.199057 + 0.979988i \(0.563788\pi\)
\(468\) −1.03308 −0.0477540
\(469\) 28.0777 1.29651
\(470\) 0.864137 0.0398597
\(471\) 5.79752 0.267136
\(472\) 17.5821 0.809283
\(473\) 0 0
\(474\) −15.5706 −0.715183
\(475\) 2.95590 0.135626
\(476\) 21.8786 1.00280
\(477\) −3.60355 −0.164995
\(478\) −26.9223 −1.23140
\(479\) −1.84184 −0.0841559 −0.0420779 0.999114i \(-0.513398\pi\)
−0.0420779 + 0.999114i \(0.513398\pi\)
\(480\) 14.7822 0.674711
\(481\) −3.99830 −0.182307
\(482\) 7.17659 0.326885
\(483\) 8.81213 0.400966
\(484\) 0 0
\(485\) 35.8403 1.62742
\(486\) −0.962830 −0.0436748
\(487\) 38.7398 1.75547 0.877734 0.479149i \(-0.159055\pi\)
0.877734 + 0.479149i \(0.159055\pi\)
\(488\) 11.4190 0.516914
\(489\) 6.07716 0.274819
\(490\) −17.4966 −0.790416
\(491\) 23.4360 1.05765 0.528825 0.848731i \(-0.322633\pi\)
0.528825 + 0.848731i \(0.322633\pi\)
\(492\) 7.45092 0.335913
\(493\) −17.8215 −0.802638
\(494\) 0.927041 0.0417096
\(495\) 0 0
\(496\) −5.94766 −0.267058
\(497\) 15.6348 0.701317
\(498\) −11.7758 −0.527686
\(499\) −12.6338 −0.565568 −0.282784 0.959184i \(-0.591258\pi\)
−0.282784 + 0.959184i \(0.591258\pi\)
\(500\) −6.18628 −0.276659
\(501\) 18.4820 0.825716
\(502\) −6.72564 −0.300180
\(503\) 21.7283 0.968819 0.484410 0.874841i \(-0.339034\pi\)
0.484410 + 0.874841i \(0.339034\pi\)
\(504\) −10.8479 −0.483206
\(505\) 5.46023 0.242977
\(506\) 0 0
\(507\) 12.0730 0.536179
\(508\) 19.3181 0.857102
\(509\) 32.4023 1.43621 0.718103 0.695937i \(-0.245011\pi\)
0.718103 + 0.695937i \(0.245011\pi\)
\(510\) −15.1039 −0.668813
\(511\) −10.5610 −0.467192
\(512\) −7.84248 −0.346592
\(513\) −1.00000 −0.0441511
\(514\) −18.0047 −0.794151
\(515\) 46.0549 2.02942
\(516\) −1.82136 −0.0801808
\(517\) 0 0
\(518\) −14.6594 −0.644097
\(519\) 1.02758 0.0451058
\(520\) 8.03527 0.352370
\(521\) −0.675969 −0.0296147 −0.0148074 0.999890i \(-0.504714\pi\)
−0.0148074 + 0.999890i \(0.504714\pi\)
\(522\) 3.08530 0.135040
\(523\) 10.9506 0.478837 0.239419 0.970916i \(-0.423043\pi\)
0.239419 + 0.970916i \(0.423043\pi\)
\(524\) 3.32180 0.145113
\(525\) −10.8375 −0.472989
\(526\) −21.8157 −0.951208
\(527\) −47.0635 −2.05012
\(528\) 0 0
\(529\) −17.2233 −0.748840
\(530\) 9.78644 0.425096
\(531\) −5.94245 −0.257880
\(532\) −3.93391 −0.170557
\(533\) 6.68615 0.289609
\(534\) 14.6335 0.633252
\(535\) −22.3780 −0.967486
\(536\) −22.6582 −0.978687
\(537\) 2.24583 0.0969146
\(538\) 4.90843 0.211618
\(539\) 0 0
\(540\) −3.02641 −0.130236
\(541\) 21.2992 0.915726 0.457863 0.889023i \(-0.348615\pi\)
0.457863 + 0.889023i \(0.348615\pi\)
\(542\) −2.28849 −0.0982990
\(543\) −3.70115 −0.158831
\(544\) −29.1467 −1.24966
\(545\) −34.4353 −1.47504
\(546\) −3.39892 −0.145460
\(547\) −0.992802 −0.0424491 −0.0212246 0.999775i \(-0.506756\pi\)
−0.0212246 + 0.999775i \(0.506756\pi\)
\(548\) 17.8237 0.761393
\(549\) −3.85942 −0.164716
\(550\) 0 0
\(551\) 3.20441 0.136512
\(552\) −7.11125 −0.302675
\(553\) 59.2923 2.52137
\(554\) −16.6493 −0.707362
\(555\) −11.7131 −0.497191
\(556\) −17.6719 −0.749456
\(557\) 15.3684 0.651182 0.325591 0.945511i \(-0.394437\pi\)
0.325591 + 0.945511i \(0.394437\pi\)
\(558\) 8.14775 0.344922
\(559\) −1.63441 −0.0691283
\(560\) 7.26848 0.307150
\(561\) 0 0
\(562\) 0.0414837 0.00174989
\(563\) 38.6591 1.62929 0.814644 0.579961i \(-0.196932\pi\)
0.814644 + 0.579961i \(0.196932\pi\)
\(564\) −0.341406 −0.0143758
\(565\) −21.8975 −0.921234
\(566\) 6.74365 0.283457
\(567\) 3.66641 0.153975
\(568\) −12.6171 −0.529400
\(569\) −11.9126 −0.499404 −0.249702 0.968323i \(-0.580333\pi\)
−0.249702 + 0.968323i \(0.580333\pi\)
\(570\) 2.71578 0.113751
\(571\) 39.7008 1.66143 0.830714 0.556699i \(-0.187932\pi\)
0.830714 + 0.556699i \(0.187932\pi\)
\(572\) 0 0
\(573\) 12.2848 0.513207
\(574\) 24.5142 1.02320
\(575\) −7.10443 −0.296275
\(576\) 6.45164 0.268818
\(577\) −25.6928 −1.06961 −0.534804 0.844976i \(-0.679614\pi\)
−0.534804 + 0.844976i \(0.679614\pi\)
\(578\) 13.4130 0.557908
\(579\) 6.70816 0.278782
\(580\) 9.69785 0.402681
\(581\) 44.8416 1.86034
\(582\) 12.2342 0.507125
\(583\) 0 0
\(584\) 8.52258 0.352667
\(585\) −2.71578 −0.112284
\(586\) −11.5872 −0.478665
\(587\) 36.2436 1.49593 0.747967 0.663736i \(-0.231030\pi\)
0.747967 + 0.663736i \(0.231030\pi\)
\(588\) 6.91261 0.285071
\(589\) 8.46230 0.348683
\(590\) 16.1384 0.664406
\(591\) −9.39270 −0.386364
\(592\) 2.91866 0.119956
\(593\) −28.6234 −1.17542 −0.587711 0.809071i \(-0.699971\pi\)
−0.587711 + 0.809071i \(0.699971\pi\)
\(594\) 0 0
\(595\) 57.5151 2.35789
\(596\) 23.9148 0.979587
\(597\) 0.121631 0.00497804
\(598\) −2.22812 −0.0911146
\(599\) 0.200807 0.00820477 0.00410239 0.999992i \(-0.498694\pi\)
0.00410239 + 0.999992i \(0.498694\pi\)
\(600\) 8.74573 0.357043
\(601\) −10.1160 −0.412641 −0.206321 0.978484i \(-0.566149\pi\)
−0.206321 + 0.978484i \(0.566149\pi\)
\(602\) −5.99243 −0.244233
\(603\) 7.65808 0.311861
\(604\) −17.9197 −0.729140
\(605\) 0 0
\(606\) 1.86387 0.0757145
\(607\) −22.4962 −0.913091 −0.456545 0.889700i \(-0.650913\pi\)
−0.456545 + 0.889700i \(0.650913\pi\)
\(608\) 5.24075 0.212541
\(609\) −11.7487 −0.476080
\(610\) 10.4813 0.424377
\(611\) −0.306364 −0.0123942
\(612\) 5.96731 0.241214
\(613\) −6.59033 −0.266181 −0.133090 0.991104i \(-0.542490\pi\)
−0.133090 + 0.991104i \(0.542490\pi\)
\(614\) −28.6914 −1.15789
\(615\) 19.5872 0.789831
\(616\) 0 0
\(617\) −44.7996 −1.80357 −0.901783 0.432190i \(-0.857741\pi\)
−0.901783 + 0.432190i \(0.857741\pi\)
\(618\) 15.7210 0.632392
\(619\) 36.9201 1.48395 0.741973 0.670430i \(-0.233890\pi\)
0.741973 + 0.670430i \(0.233890\pi\)
\(620\) 25.6104 1.02854
\(621\) 2.40347 0.0964481
\(622\) 29.4764 1.18190
\(623\) −55.7236 −2.23252
\(624\) 0.676718 0.0270904
\(625\) −31.0422 −1.24169
\(626\) −29.4267 −1.17613
\(627\) 0 0
\(628\) 6.22050 0.248225
\(629\) 23.0952 0.920865
\(630\) −9.95716 −0.396703
\(631\) 19.6457 0.782082 0.391041 0.920373i \(-0.372115\pi\)
0.391041 + 0.920373i \(0.372115\pi\)
\(632\) −47.8480 −1.90329
\(633\) −22.4878 −0.893811
\(634\) 0.781762 0.0310477
\(635\) 50.7839 2.01530
\(636\) −3.86646 −0.153315
\(637\) 6.20310 0.245776
\(638\) 0 0
\(639\) 4.26434 0.168695
\(640\) 12.0431 0.476047
\(641\) −4.70463 −0.185822 −0.0929109 0.995674i \(-0.529617\pi\)
−0.0929109 + 0.995674i \(0.529617\pi\)
\(642\) −7.63882 −0.301480
\(643\) −34.5748 −1.36350 −0.681748 0.731587i \(-0.738780\pi\)
−0.681748 + 0.731587i \(0.738780\pi\)
\(644\) 9.45505 0.372581
\(645\) −4.78803 −0.188529
\(646\) −5.35483 −0.210683
\(647\) 37.1307 1.45976 0.729880 0.683576i \(-0.239576\pi\)
0.729880 + 0.683576i \(0.239576\pi\)
\(648\) −2.95874 −0.116230
\(649\) 0 0
\(650\) 2.74024 0.107481
\(651\) −31.0263 −1.21601
\(652\) 6.52055 0.255364
\(653\) 3.86208 0.151135 0.0755674 0.997141i \(-0.475923\pi\)
0.0755674 + 0.997141i \(0.475923\pi\)
\(654\) −11.7546 −0.459642
\(655\) 8.73242 0.341204
\(656\) −4.88073 −0.190561
\(657\) −2.88048 −0.112378
\(658\) −1.12326 −0.0437891
\(659\) 36.8683 1.43619 0.718093 0.695947i \(-0.245015\pi\)
0.718093 + 0.695947i \(0.245015\pi\)
\(660\) 0 0
\(661\) 33.4275 1.30018 0.650089 0.759858i \(-0.274732\pi\)
0.650089 + 0.759858i \(0.274732\pi\)
\(662\) 17.3865 0.675745
\(663\) 5.35483 0.207964
\(664\) −36.1865 −1.40431
\(665\) −10.3416 −0.401028
\(666\) −3.99830 −0.154931
\(667\) −7.70171 −0.298211
\(668\) 19.8304 0.767263
\(669\) 18.4720 0.714168
\(670\) −20.7976 −0.803483
\(671\) 0 0
\(672\) −19.2148 −0.741226
\(673\) −10.7846 −0.415718 −0.207859 0.978159i \(-0.566649\pi\)
−0.207859 + 0.978159i \(0.566649\pi\)
\(674\) −2.06470 −0.0795292
\(675\) −2.95590 −0.113773
\(676\) 12.9538 0.498223
\(677\) −10.6469 −0.409193 −0.204597 0.978846i \(-0.565588\pi\)
−0.204597 + 0.978846i \(0.565588\pi\)
\(678\) −7.47479 −0.287068
\(679\) −46.5873 −1.78786
\(680\) −46.4137 −1.77989
\(681\) 4.18180 0.160247
\(682\) 0 0
\(683\) −35.1109 −1.34348 −0.671740 0.740787i \(-0.734453\pi\)
−0.671740 + 0.740787i \(0.734453\pi\)
\(684\) −1.07296 −0.0410256
\(685\) 46.8555 1.79026
\(686\) −1.96779 −0.0751306
\(687\) 6.67998 0.254857
\(688\) 1.19308 0.0454858
\(689\) −3.46961 −0.132181
\(690\) −6.52730 −0.248490
\(691\) 11.1345 0.423576 0.211788 0.977316i \(-0.432071\pi\)
0.211788 + 0.977316i \(0.432071\pi\)
\(692\) 1.10255 0.0419128
\(693\) 0 0
\(694\) −14.7201 −0.558766
\(695\) −46.4563 −1.76219
\(696\) 9.48100 0.359376
\(697\) −38.6209 −1.46287
\(698\) 4.43662 0.167928
\(699\) 21.3747 0.808464
\(700\) −11.6282 −0.439506
\(701\) −14.7582 −0.557410 −0.278705 0.960377i \(-0.589905\pi\)
−0.278705 + 0.960377i \(0.589905\pi\)
\(702\) −0.927041 −0.0349889
\(703\) −4.15265 −0.156620
\(704\) 0 0
\(705\) −0.897497 −0.0338017
\(706\) −15.8924 −0.598117
\(707\) −7.09753 −0.266930
\(708\) −6.37600 −0.239625
\(709\) −48.0337 −1.80394 −0.901972 0.431796i \(-0.857880\pi\)
−0.901972 + 0.431796i \(0.857880\pi\)
\(710\) −11.5810 −0.434627
\(711\) 16.1718 0.606488
\(712\) 44.9680 1.68525
\(713\) −20.3389 −0.761698
\(714\) 19.6330 0.734746
\(715\) 0 0
\(716\) 2.40968 0.0900540
\(717\) 27.9617 1.04425
\(718\) 4.91313 0.183356
\(719\) 5.42858 0.202452 0.101226 0.994863i \(-0.467723\pi\)
0.101226 + 0.994863i \(0.467723\pi\)
\(720\) 1.98245 0.0738816
\(721\) −59.8649 −2.22949
\(722\) 0.962830 0.0358328
\(723\) −7.45365 −0.277204
\(724\) −3.97118 −0.147588
\(725\) 9.47191 0.351778
\(726\) 0 0
\(727\) −26.6951 −0.990068 −0.495034 0.868874i \(-0.664844\pi\)
−0.495034 + 0.868874i \(0.664844\pi\)
\(728\) −10.4447 −0.387107
\(729\) 1.00000 0.0370370
\(730\) 7.82274 0.289533
\(731\) 9.44079 0.349180
\(732\) −4.14100 −0.153056
\(733\) −41.9342 −1.54888 −0.774438 0.632650i \(-0.781967\pi\)
−0.774438 + 0.632650i \(0.781967\pi\)
\(734\) 24.2806 0.896211
\(735\) 18.1721 0.670286
\(736\) −12.5960 −0.464296
\(737\) 0 0
\(738\) 6.68615 0.246121
\(739\) −4.87247 −0.179237 −0.0896184 0.995976i \(-0.528565\pi\)
−0.0896184 + 0.995976i \(0.528565\pi\)
\(740\) −12.5676 −0.461995
\(741\) −0.962830 −0.0353704
\(742\) −12.7210 −0.467003
\(743\) −4.09643 −0.150283 −0.0751417 0.997173i \(-0.523941\pi\)
−0.0751417 + 0.997173i \(0.523941\pi\)
\(744\) 25.0377 0.917927
\(745\) 62.8677 2.30330
\(746\) 23.9912 0.878379
\(747\) 12.2304 0.447487
\(748\) 0 0
\(749\) 29.0883 1.06286
\(750\) −5.55132 −0.202706
\(751\) 11.1956 0.408534 0.204267 0.978915i \(-0.434519\pi\)
0.204267 + 0.978915i \(0.434519\pi\)
\(752\) 0.223638 0.00815525
\(753\) 6.98528 0.254558
\(754\) 2.97062 0.108184
\(755\) −47.1076 −1.71442
\(756\) 3.93391 0.143075
\(757\) 48.8585 1.77579 0.887897 0.460043i \(-0.152166\pi\)
0.887897 + 0.460043i \(0.152166\pi\)
\(758\) −3.52677 −0.128098
\(759\) 0 0
\(760\) 8.34547 0.302722
\(761\) 9.84873 0.357016 0.178508 0.983938i \(-0.442873\pi\)
0.178508 + 0.983938i \(0.442873\pi\)
\(762\) 17.3353 0.627991
\(763\) 44.7610 1.62046
\(764\) 13.1811 0.476876
\(765\) 15.6870 0.567165
\(766\) 32.5274 1.17526
\(767\) −5.72157 −0.206594
\(768\) 17.0143 0.613949
\(769\) 38.8348 1.40042 0.700210 0.713937i \(-0.253090\pi\)
0.700210 + 0.713937i \(0.253090\pi\)
\(770\) 0 0
\(771\) 18.6997 0.673454
\(772\) 7.19758 0.259047
\(773\) −9.72599 −0.349819 −0.174910 0.984584i \(-0.555963\pi\)
−0.174910 + 0.984584i \(0.555963\pi\)
\(774\) −1.63441 −0.0587478
\(775\) 25.0137 0.898518
\(776\) 37.5952 1.34959
\(777\) 15.2253 0.546206
\(778\) −33.4259 −1.19837
\(779\) 6.94427 0.248804
\(780\) −2.91392 −0.104335
\(781\) 0 0
\(782\) 12.8702 0.460237
\(783\) −3.20441 −0.114516
\(784\) −4.52811 −0.161718
\(785\) 16.3526 0.583649
\(786\) 2.98085 0.106323
\(787\) −52.1724 −1.85975 −0.929873 0.367880i \(-0.880084\pi\)
−0.929873 + 0.367880i \(0.880084\pi\)
\(788\) −10.0780 −0.359013
\(789\) 22.6579 0.806641
\(790\) −43.9189 −1.56256
\(791\) 28.4637 1.01205
\(792\) 0 0
\(793\) −3.71597 −0.131958
\(794\) −3.20302 −0.113671
\(795\) −10.1643 −0.360489
\(796\) 0.130505 0.00462564
\(797\) −6.10493 −0.216248 −0.108124 0.994137i \(-0.534484\pi\)
−0.108124 + 0.994137i \(0.534484\pi\)
\(798\) −3.53013 −0.124965
\(799\) 1.76964 0.0626052
\(800\) 15.4911 0.547695
\(801\) −15.1984 −0.537009
\(802\) −10.5155 −0.371314
\(803\) 0 0
\(804\) 8.21680 0.289784
\(805\) 24.8557 0.876047
\(806\) 7.84490 0.276325
\(807\) −5.09792 −0.179455
\(808\) 5.72759 0.201496
\(809\) −29.4137 −1.03413 −0.517065 0.855946i \(-0.672975\pi\)
−0.517065 + 0.855946i \(0.672975\pi\)
\(810\) −2.71578 −0.0954227
\(811\) −12.4681 −0.437816 −0.218908 0.975746i \(-0.570249\pi\)
−0.218908 + 0.975746i \(0.570249\pi\)
\(812\) −12.6058 −0.442378
\(813\) 2.37684 0.0833593
\(814\) 0 0
\(815\) 17.1414 0.600436
\(816\) −3.90889 −0.136839
\(817\) −1.69751 −0.0593884
\(818\) −17.9750 −0.628481
\(819\) 3.53013 0.123353
\(820\) 21.0162 0.733918
\(821\) −2.33364 −0.0814446 −0.0407223 0.999171i \(-0.512966\pi\)
−0.0407223 + 0.999171i \(0.512966\pi\)
\(822\) 15.9943 0.557866
\(823\) 14.4967 0.505324 0.252662 0.967555i \(-0.418694\pi\)
0.252662 + 0.967555i \(0.418694\pi\)
\(824\) 48.3101 1.68296
\(825\) 0 0
\(826\) −20.9776 −0.729905
\(827\) 42.8222 1.48907 0.744536 0.667582i \(-0.232671\pi\)
0.744536 + 0.667582i \(0.232671\pi\)
\(828\) 2.57883 0.0896205
\(829\) −19.4223 −0.674563 −0.337282 0.941404i \(-0.609507\pi\)
−0.337282 + 0.941404i \(0.609507\pi\)
\(830\) −33.2150 −1.15291
\(831\) 17.2921 0.599855
\(832\) 6.21183 0.215357
\(833\) −35.8307 −1.24146
\(834\) −15.8581 −0.549119
\(835\) 52.1308 1.80406
\(836\) 0 0
\(837\) −8.46230 −0.292500
\(838\) −5.42266 −0.187323
\(839\) −30.6144 −1.05693 −0.528463 0.848956i \(-0.677231\pi\)
−0.528463 + 0.848956i \(0.677231\pi\)
\(840\) −30.5979 −1.05573
\(841\) −18.7318 −0.645923
\(842\) −31.3568 −1.08063
\(843\) −0.0430852 −0.00148393
\(844\) −24.1285 −0.830537
\(845\) 34.0532 1.17147
\(846\) −0.306364 −0.0105330
\(847\) 0 0
\(848\) 2.53273 0.0869743
\(849\) −7.00399 −0.240376
\(850\) −15.8283 −0.542907
\(851\) 9.98079 0.342137
\(852\) 4.57546 0.156753
\(853\) 34.1278 1.16851 0.584256 0.811569i \(-0.301386\pi\)
0.584256 + 0.811569i \(0.301386\pi\)
\(854\) −13.6243 −0.466213
\(855\) −2.82062 −0.0964632
\(856\) −23.4738 −0.802317
\(857\) 37.8821 1.29403 0.647014 0.762478i \(-0.276018\pi\)
0.647014 + 0.762478i \(0.276018\pi\)
\(858\) 0 0
\(859\) −29.2307 −0.997339 −0.498670 0.866792i \(-0.666178\pi\)
−0.498670 + 0.866792i \(0.666178\pi\)
\(860\) −5.13736 −0.175183
\(861\) −25.4606 −0.867694
\(862\) −1.42688 −0.0485997
\(863\) 20.7378 0.705923 0.352961 0.935638i \(-0.385175\pi\)
0.352961 + 0.935638i \(0.385175\pi\)
\(864\) −5.24075 −0.178294
\(865\) 2.89842 0.0985491
\(866\) −31.2138 −1.06069
\(867\) −13.9308 −0.473116
\(868\) −33.2899 −1.12993
\(869\) 0 0
\(870\) 8.70246 0.295041
\(871\) 7.37343 0.249839
\(872\) −36.1214 −1.22323
\(873\) −12.7065 −0.430050
\(874\) −2.31414 −0.0782769
\(875\) 21.1392 0.714635
\(876\) −3.09063 −0.104423
\(877\) −16.4969 −0.557060 −0.278530 0.960428i \(-0.589847\pi\)
−0.278530 + 0.960428i \(0.589847\pi\)
\(878\) −7.84513 −0.264760
\(879\) 12.0346 0.405916
\(880\) 0 0
\(881\) 5.40244 0.182013 0.0910065 0.995850i \(-0.470992\pi\)
0.0910065 + 0.995850i \(0.470992\pi\)
\(882\) 6.20310 0.208869
\(883\) 43.9467 1.47892 0.739462 0.673198i \(-0.235080\pi\)
0.739462 + 0.673198i \(0.235080\pi\)
\(884\) 5.74551 0.193242
\(885\) −16.7614 −0.563428
\(886\) −36.3866 −1.22243
\(887\) 46.7913 1.57110 0.785549 0.618799i \(-0.212381\pi\)
0.785549 + 0.618799i \(0.212381\pi\)
\(888\) −12.2866 −0.412311
\(889\) −66.0120 −2.21397
\(890\) 41.2755 1.38356
\(891\) 0 0
\(892\) 19.8197 0.663612
\(893\) −0.318191 −0.0106479
\(894\) 21.4601 0.717735
\(895\) 6.33463 0.211743
\(896\) −15.6544 −0.522977
\(897\) 2.31414 0.0772668
\(898\) 25.9454 0.865810
\(899\) 27.1166 0.904391
\(900\) −3.17156 −0.105719
\(901\) 20.0413 0.667673
\(902\) 0 0
\(903\) 6.22377 0.207114
\(904\) −22.9697 −0.763962
\(905\) −10.4395 −0.347022
\(906\) −16.0804 −0.534235
\(907\) 47.4163 1.57443 0.787217 0.616676i \(-0.211521\pi\)
0.787217 + 0.616676i \(0.211521\pi\)
\(908\) 4.48689 0.148903
\(909\) −1.93582 −0.0642072
\(910\) −9.58705 −0.317808
\(911\) 26.9259 0.892095 0.446047 0.895009i \(-0.352831\pi\)
0.446047 + 0.895009i \(0.352831\pi\)
\(912\) 0.702842 0.0232734
\(913\) 0 0
\(914\) −11.4181 −0.377677
\(915\) −10.8860 −0.359879
\(916\) 7.16735 0.236816
\(917\) −11.3509 −0.374841
\(918\) 5.35483 0.176736
\(919\) 56.1649 1.85271 0.926354 0.376654i \(-0.122925\pi\)
0.926354 + 0.376654i \(0.122925\pi\)
\(920\) −20.0581 −0.661297
\(921\) 29.7991 0.981913
\(922\) −23.0015 −0.757514
\(923\) 4.10583 0.135145
\(924\) 0 0
\(925\) −12.2748 −0.403594
\(926\) 8.50771 0.279581
\(927\) −16.3279 −0.536280
\(928\) 16.7935 0.551274
\(929\) 44.1496 1.44850 0.724250 0.689537i \(-0.242186\pi\)
0.724250 + 0.689537i \(0.242186\pi\)
\(930\) 22.9817 0.753600
\(931\) 6.44257 0.211147
\(932\) 22.9341 0.751232
\(933\) −30.6144 −1.00227
\(934\) −8.28355 −0.271046
\(935\) 0 0
\(936\) −2.84876 −0.0931146
\(937\) −51.9659 −1.69765 −0.848827 0.528671i \(-0.822690\pi\)
−0.848827 + 0.528671i \(0.822690\pi\)
\(938\) 27.0340 0.882692
\(939\) 30.5627 0.997377
\(940\) −0.962977 −0.0314088
\(941\) 23.8467 0.777380 0.388690 0.921369i \(-0.372928\pi\)
0.388690 + 0.921369i \(0.372928\pi\)
\(942\) 5.58202 0.181872
\(943\) −16.6904 −0.543514
\(944\) 4.17661 0.135937
\(945\) 10.3416 0.336411
\(946\) 0 0
\(947\) 49.8973 1.62145 0.810723 0.585430i \(-0.199074\pi\)
0.810723 + 0.585430i \(0.199074\pi\)
\(948\) 17.3516 0.563554
\(949\) −2.77341 −0.0900287
\(950\) 2.84603 0.0923374
\(951\) −0.811942 −0.0263290
\(952\) 60.3314 1.95535
\(953\) −4.68705 −0.151829 −0.0759143 0.997114i \(-0.524188\pi\)
−0.0759143 + 0.997114i \(0.524188\pi\)
\(954\) −3.46961 −0.112333
\(955\) 34.6509 1.12128
\(956\) 30.0017 0.970325
\(957\) 0 0
\(958\) −1.77338 −0.0572953
\(959\) −60.9056 −1.96674
\(960\) 18.1976 0.587326
\(961\) 40.6104 1.31001
\(962\) −3.84968 −0.124119
\(963\) 7.93372 0.255661
\(964\) −7.99745 −0.257581
\(965\) 18.9212 0.609094
\(966\) 8.48458 0.272987
\(967\) −14.2175 −0.457202 −0.228601 0.973520i \(-0.573415\pi\)
−0.228601 + 0.973520i \(0.573415\pi\)
\(968\) 0 0
\(969\) 5.56155 0.178663
\(970\) 34.5081 1.10799
\(971\) 7.45842 0.239352 0.119676 0.992813i \(-0.461814\pi\)
0.119676 + 0.992813i \(0.461814\pi\)
\(972\) 1.07296 0.0344152
\(973\) 60.3867 1.93591
\(974\) 37.2998 1.19516
\(975\) −2.84603 −0.0911459
\(976\) 2.71257 0.0868271
\(977\) 36.3774 1.16382 0.581908 0.813255i \(-0.302306\pi\)
0.581908 + 0.813255i \(0.302306\pi\)
\(978\) 5.85128 0.187103
\(979\) 0 0
\(980\) 19.4979 0.622836
\(981\) 12.2084 0.389784
\(982\) 22.5649 0.720073
\(983\) 32.5920 1.03952 0.519761 0.854312i \(-0.326021\pi\)
0.519761 + 0.854312i \(0.326021\pi\)
\(984\) 20.5463 0.654991
\(985\) −26.4932 −0.844145
\(986\) −17.1590 −0.546455
\(987\) 1.16662 0.0371339
\(988\) −1.03308 −0.0328665
\(989\) 4.07992 0.129734
\(990\) 0 0
\(991\) −20.3347 −0.645954 −0.322977 0.946407i \(-0.604684\pi\)
−0.322977 + 0.946407i \(0.604684\pi\)
\(992\) 44.3488 1.40808
\(993\) −18.0577 −0.573044
\(994\) 15.0537 0.477473
\(995\) 0.343076 0.0108762
\(996\) 13.1227 0.415809
\(997\) 46.4927 1.47244 0.736219 0.676744i \(-0.236609\pi\)
0.736219 + 0.676744i \(0.236609\pi\)
\(998\) −12.1642 −0.385052
\(999\) 4.15265 0.131384
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6897.2.a.bc.1.6 8
11.10 odd 2 6897.2.a.bd.1.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6897.2.a.bc.1.6 8 1.1 even 1 trivial
6897.2.a.bd.1.3 yes 8 11.10 odd 2