Properties

Label 6897.2.a.bc.1.5
Level $6897$
Weight $2$
Character 6897.1
Self dual yes
Analytic conductor $55.073$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6897,2,Mod(1,6897)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6897.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6897, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6897 = 3 \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6897.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-1,-8,9,-2,1,-6,-6,8,-3,0,-9,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.0728222741\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 12x^{6} + 9x^{5} + 40x^{4} - 22x^{3} - 28x^{2} + 12x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.118442\) of defining polynomial
Character \(\chi\) \(=\) 6897.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.118442 q^{2} -1.00000 q^{3} -1.98597 q^{4} +1.83342 q^{5} +0.118442 q^{6} +2.90053 q^{7} +0.472107 q^{8} +1.00000 q^{9} -0.217154 q^{10} +1.98597 q^{12} -0.118442 q^{13} -0.343545 q^{14} -1.83342 q^{15} +3.91603 q^{16} +3.52582 q^{17} -0.118442 q^{18} +1.00000 q^{19} -3.64113 q^{20} -2.90053 q^{21} -3.54008 q^{23} -0.472107 q^{24} -1.63856 q^{25} +0.0140285 q^{26} -1.00000 q^{27} -5.76037 q^{28} -0.0586159 q^{29} +0.217154 q^{30} -7.39303 q^{31} -1.40804 q^{32} -0.417605 q^{34} +5.31790 q^{35} -1.98597 q^{36} -4.84494 q^{37} -0.118442 q^{38} +0.118442 q^{39} +0.865571 q^{40} -9.00894 q^{41} +0.343545 q^{42} -9.93882 q^{43} +1.83342 q^{45} +0.419294 q^{46} +9.30165 q^{47} -3.91603 q^{48} +1.41309 q^{49} +0.194074 q^{50} -3.52582 q^{51} +0.235223 q^{52} -2.88129 q^{53} +0.118442 q^{54} +1.36936 q^{56} -1.00000 q^{57} +0.00694258 q^{58} -13.3060 q^{59} +3.64113 q^{60} +5.62925 q^{61} +0.875646 q^{62} +2.90053 q^{63} -7.66528 q^{64} -0.217154 q^{65} +3.37041 q^{67} -7.00217 q^{68} +3.54008 q^{69} -0.629863 q^{70} +2.37046 q^{71} +0.472107 q^{72} +10.8925 q^{73} +0.573845 q^{74} +1.63856 q^{75} -1.98597 q^{76} -0.0140285 q^{78} -10.6322 q^{79} +7.17973 q^{80} +1.00000 q^{81} +1.06704 q^{82} -11.0325 q^{83} +5.76037 q^{84} +6.46432 q^{85} +1.17717 q^{86} +0.0586159 q^{87} -11.9376 q^{89} -0.217154 q^{90} -0.343545 q^{91} +7.03049 q^{92} +7.39303 q^{93} -1.10171 q^{94} +1.83342 q^{95} +1.40804 q^{96} -2.30245 q^{97} -0.167369 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} - 8 q^{3} + 9 q^{4} - 2 q^{5} + q^{6} - 6 q^{7} - 6 q^{8} + 8 q^{9} - 3 q^{10} - 9 q^{12} - q^{13} + 7 q^{14} + 2 q^{15} + 23 q^{16} - 15 q^{17} - q^{18} + 8 q^{19} - 4 q^{20} + 6 q^{21}+ \cdots - 55 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.118442 −0.0837512 −0.0418756 0.999123i \(-0.513333\pi\)
−0.0418756 + 0.999123i \(0.513333\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.98597 −0.992986
\(5\) 1.83342 0.819932 0.409966 0.912101i \(-0.365541\pi\)
0.409966 + 0.912101i \(0.365541\pi\)
\(6\) 0.118442 0.0483538
\(7\) 2.90053 1.09630 0.548149 0.836381i \(-0.315333\pi\)
0.548149 + 0.836381i \(0.315333\pi\)
\(8\) 0.472107 0.166915
\(9\) 1.00000 0.333333
\(10\) −0.217154 −0.0686703
\(11\) 0 0
\(12\) 1.98597 0.573301
\(13\) −0.118442 −0.0328499 −0.0164250 0.999865i \(-0.505228\pi\)
−0.0164250 + 0.999865i \(0.505228\pi\)
\(14\) −0.343545 −0.0918163
\(15\) −1.83342 −0.473388
\(16\) 3.91603 0.979006
\(17\) 3.52582 0.855136 0.427568 0.903983i \(-0.359370\pi\)
0.427568 + 0.903983i \(0.359370\pi\)
\(18\) −0.118442 −0.0279171
\(19\) 1.00000 0.229416
\(20\) −3.64113 −0.814181
\(21\) −2.90053 −0.632948
\(22\) 0 0
\(23\) −3.54008 −0.738157 −0.369079 0.929398i \(-0.620327\pi\)
−0.369079 + 0.929398i \(0.620327\pi\)
\(24\) −0.472107 −0.0963684
\(25\) −1.63856 −0.327712
\(26\) 0.0140285 0.00275122
\(27\) −1.00000 −0.192450
\(28\) −5.76037 −1.08861
\(29\) −0.0586159 −0.0108847 −0.00544235 0.999985i \(-0.501732\pi\)
−0.00544235 + 0.999985i \(0.501732\pi\)
\(30\) 0.217154 0.0396468
\(31\) −7.39303 −1.32783 −0.663914 0.747809i \(-0.731106\pi\)
−0.663914 + 0.747809i \(0.731106\pi\)
\(32\) −1.40804 −0.248908
\(33\) 0 0
\(34\) −0.417605 −0.0716187
\(35\) 5.31790 0.898890
\(36\) −1.98597 −0.330995
\(37\) −4.84494 −0.796504 −0.398252 0.917276i \(-0.630383\pi\)
−0.398252 + 0.917276i \(0.630383\pi\)
\(38\) −0.118442 −0.0192138
\(39\) 0.118442 0.0189659
\(40\) 0.865571 0.136859
\(41\) −9.00894 −1.40696 −0.703480 0.710715i \(-0.748372\pi\)
−0.703480 + 0.710715i \(0.748372\pi\)
\(42\) 0.343545 0.0530101
\(43\) −9.93882 −1.51566 −0.757828 0.652455i \(-0.773739\pi\)
−0.757828 + 0.652455i \(0.773739\pi\)
\(44\) 0 0
\(45\) 1.83342 0.273311
\(46\) 0.419294 0.0618215
\(47\) 9.30165 1.35678 0.678392 0.734700i \(-0.262677\pi\)
0.678392 + 0.734700i \(0.262677\pi\)
\(48\) −3.91603 −0.565230
\(49\) 1.41309 0.201870
\(50\) 0.194074 0.0274462
\(51\) −3.52582 −0.493713
\(52\) 0.235223 0.0326195
\(53\) −2.88129 −0.395775 −0.197888 0.980225i \(-0.563408\pi\)
−0.197888 + 0.980225i \(0.563408\pi\)
\(54\) 0.118442 0.0161179
\(55\) 0 0
\(56\) 1.36936 0.182989
\(57\) −1.00000 −0.132453
\(58\) 0.00694258 0.000911606 0
\(59\) −13.3060 −1.73229 −0.866147 0.499790i \(-0.833411\pi\)
−0.866147 + 0.499790i \(0.833411\pi\)
\(60\) 3.64113 0.470067
\(61\) 5.62925 0.720752 0.360376 0.932807i \(-0.382648\pi\)
0.360376 + 0.932807i \(0.382648\pi\)
\(62\) 0.875646 0.111207
\(63\) 2.90053 0.365433
\(64\) −7.66528 −0.958160
\(65\) −0.217154 −0.0269347
\(66\) 0 0
\(67\) 3.37041 0.411761 0.205881 0.978577i \(-0.433994\pi\)
0.205881 + 0.978577i \(0.433994\pi\)
\(68\) −7.00217 −0.849138
\(69\) 3.54008 0.426175
\(70\) −0.629863 −0.0752831
\(71\) 2.37046 0.281322 0.140661 0.990058i \(-0.455077\pi\)
0.140661 + 0.990058i \(0.455077\pi\)
\(72\) 0.472107 0.0556383
\(73\) 10.8925 1.27487 0.637433 0.770505i \(-0.279996\pi\)
0.637433 + 0.770505i \(0.279996\pi\)
\(74\) 0.573845 0.0667081
\(75\) 1.63856 0.189204
\(76\) −1.98597 −0.227807
\(77\) 0 0
\(78\) −0.0140285 −0.00158842
\(79\) −10.6322 −1.19621 −0.598107 0.801416i \(-0.704080\pi\)
−0.598107 + 0.801416i \(0.704080\pi\)
\(80\) 7.17973 0.802719
\(81\) 1.00000 0.111111
\(82\) 1.06704 0.117835
\(83\) −11.0325 −1.21097 −0.605485 0.795857i \(-0.707021\pi\)
−0.605485 + 0.795857i \(0.707021\pi\)
\(84\) 5.76037 0.628508
\(85\) 6.46432 0.701154
\(86\) 1.17717 0.126938
\(87\) 0.0586159 0.00628428
\(88\) 0 0
\(89\) −11.9376 −1.26539 −0.632693 0.774403i \(-0.718050\pi\)
−0.632693 + 0.774403i \(0.718050\pi\)
\(90\) −0.217154 −0.0228901
\(91\) −0.343545 −0.0360133
\(92\) 7.03049 0.732980
\(93\) 7.39303 0.766622
\(94\) −1.10171 −0.113632
\(95\) 1.83342 0.188105
\(96\) 1.40804 0.143707
\(97\) −2.30245 −0.233778 −0.116889 0.993145i \(-0.537292\pi\)
−0.116889 + 0.993145i \(0.537292\pi\)
\(98\) −0.167369 −0.0169068
\(99\) 0 0
\(100\) 3.25413 0.325413
\(101\) 5.80306 0.577426 0.288713 0.957416i \(-0.406773\pi\)
0.288713 + 0.957416i \(0.406773\pi\)
\(102\) 0.417605 0.0413491
\(103\) 7.00302 0.690028 0.345014 0.938598i \(-0.387874\pi\)
0.345014 + 0.938598i \(0.387874\pi\)
\(104\) −0.0559173 −0.00548314
\(105\) −5.31790 −0.518974
\(106\) 0.341266 0.0331467
\(107\) 10.3108 0.996782 0.498391 0.866953i \(-0.333924\pi\)
0.498391 + 0.866953i \(0.333924\pi\)
\(108\) 1.98597 0.191100
\(109\) −9.04469 −0.866324 −0.433162 0.901316i \(-0.642602\pi\)
−0.433162 + 0.901316i \(0.642602\pi\)
\(110\) 0 0
\(111\) 4.84494 0.459862
\(112\) 11.3586 1.07328
\(113\) −12.2908 −1.15622 −0.578109 0.815960i \(-0.696209\pi\)
−0.578109 + 0.815960i \(0.696209\pi\)
\(114\) 0.118442 0.0110931
\(115\) −6.49046 −0.605239
\(116\) 0.116409 0.0108083
\(117\) −0.118442 −0.0109500
\(118\) 1.57599 0.145082
\(119\) 10.2267 0.937484
\(120\) −0.865571 −0.0790155
\(121\) 0 0
\(122\) −0.666740 −0.0603638
\(123\) 9.00894 0.812309
\(124\) 14.6824 1.31851
\(125\) −12.1713 −1.08863
\(126\) −0.343545 −0.0306054
\(127\) 4.45512 0.395328 0.197664 0.980270i \(-0.436664\pi\)
0.197664 + 0.980270i \(0.436664\pi\)
\(128\) 3.72396 0.329155
\(129\) 9.93882 0.875064
\(130\) 0.0257202 0.00225581
\(131\) 2.79790 0.244454 0.122227 0.992502i \(-0.460996\pi\)
0.122227 + 0.992502i \(0.460996\pi\)
\(132\) 0 0
\(133\) 2.90053 0.251508
\(134\) −0.399199 −0.0344855
\(135\) −1.83342 −0.157796
\(136\) 1.66456 0.142735
\(137\) 8.31687 0.710558 0.355279 0.934760i \(-0.384386\pi\)
0.355279 + 0.934760i \(0.384386\pi\)
\(138\) −0.419294 −0.0356927
\(139\) −21.0079 −1.78187 −0.890935 0.454131i \(-0.849950\pi\)
−0.890935 + 0.454131i \(0.849950\pi\)
\(140\) −10.5612 −0.892585
\(141\) −9.30165 −0.783340
\(142\) −0.280762 −0.0235610
\(143\) 0 0
\(144\) 3.91603 0.326335
\(145\) −0.107468 −0.00892470
\(146\) −1.29013 −0.106772
\(147\) −1.41309 −0.116549
\(148\) 9.62192 0.790917
\(149\) 3.65477 0.299410 0.149705 0.988731i \(-0.452168\pi\)
0.149705 + 0.988731i \(0.452168\pi\)
\(150\) −0.194074 −0.0158461
\(151\) 7.89399 0.642404 0.321202 0.947011i \(-0.395913\pi\)
0.321202 + 0.947011i \(0.395913\pi\)
\(152\) 0.472107 0.0382929
\(153\) 3.52582 0.285045
\(154\) 0 0
\(155\) −13.5546 −1.08873
\(156\) −0.235223 −0.0188329
\(157\) 12.9439 1.03304 0.516518 0.856276i \(-0.327228\pi\)
0.516518 + 0.856276i \(0.327228\pi\)
\(158\) 1.25930 0.100184
\(159\) 2.88129 0.228501
\(160\) −2.58153 −0.204087
\(161\) −10.2681 −0.809240
\(162\) −0.118442 −0.00930569
\(163\) −4.12394 −0.323012 −0.161506 0.986872i \(-0.551635\pi\)
−0.161506 + 0.986872i \(0.551635\pi\)
\(164\) 17.8915 1.39709
\(165\) 0 0
\(166\) 1.30671 0.101420
\(167\) −11.6083 −0.898274 −0.449137 0.893463i \(-0.648268\pi\)
−0.449137 + 0.893463i \(0.648268\pi\)
\(168\) −1.36936 −0.105648
\(169\) −12.9860 −0.998921
\(170\) −0.765647 −0.0587224
\(171\) 1.00000 0.0764719
\(172\) 19.7382 1.50502
\(173\) 14.3167 1.08848 0.544240 0.838929i \(-0.316818\pi\)
0.544240 + 0.838929i \(0.316818\pi\)
\(174\) −0.00694258 −0.000526316 0
\(175\) −4.75269 −0.359270
\(176\) 0 0
\(177\) 13.3060 1.00014
\(178\) 1.41392 0.105977
\(179\) 2.17541 0.162598 0.0812989 0.996690i \(-0.474093\pi\)
0.0812989 + 0.996690i \(0.474093\pi\)
\(180\) −3.64113 −0.271394
\(181\) 15.9423 1.18498 0.592491 0.805577i \(-0.298144\pi\)
0.592491 + 0.805577i \(0.298144\pi\)
\(182\) 0.0406902 0.00301616
\(183\) −5.62925 −0.416126
\(184\) −1.67129 −0.123209
\(185\) −8.88283 −0.653079
\(186\) −0.875646 −0.0642055
\(187\) 0 0
\(188\) −18.4728 −1.34727
\(189\) −2.90053 −0.210983
\(190\) −0.217154 −0.0157540
\(191\) 5.37883 0.389198 0.194599 0.980883i \(-0.437659\pi\)
0.194599 + 0.980883i \(0.437659\pi\)
\(192\) 7.66528 0.553194
\(193\) −14.7818 −1.06401 −0.532007 0.846740i \(-0.678562\pi\)
−0.532007 + 0.846740i \(0.678562\pi\)
\(194\) 0.272707 0.0195792
\(195\) 0.217154 0.0155508
\(196\) −2.80635 −0.200454
\(197\) 13.6539 0.972800 0.486400 0.873736i \(-0.338310\pi\)
0.486400 + 0.873736i \(0.338310\pi\)
\(198\) 0 0
\(199\) −7.49231 −0.531116 −0.265558 0.964095i \(-0.585556\pi\)
−0.265558 + 0.964095i \(0.585556\pi\)
\(200\) −0.773574 −0.0547000
\(201\) −3.37041 −0.237731
\(202\) −0.687326 −0.0483601
\(203\) −0.170017 −0.0119329
\(204\) 7.00217 0.490250
\(205\) −16.5172 −1.15361
\(206\) −0.829452 −0.0577906
\(207\) −3.54008 −0.246052
\(208\) −0.463822 −0.0321603
\(209\) 0 0
\(210\) 0.629863 0.0434647
\(211\) −21.4286 −1.47520 −0.737602 0.675236i \(-0.764042\pi\)
−0.737602 + 0.675236i \(0.764042\pi\)
\(212\) 5.72216 0.392999
\(213\) −2.37046 −0.162421
\(214\) −1.22123 −0.0834816
\(215\) −18.2221 −1.24273
\(216\) −0.472107 −0.0321228
\(217\) −21.4437 −1.45570
\(218\) 1.07127 0.0725557
\(219\) −10.8925 −0.736045
\(220\) 0 0
\(221\) −0.417605 −0.0280912
\(222\) −0.573845 −0.0385140
\(223\) 10.4775 0.701623 0.350812 0.936446i \(-0.385906\pi\)
0.350812 + 0.936446i \(0.385906\pi\)
\(224\) −4.08405 −0.272877
\(225\) −1.63856 −0.109237
\(226\) 1.45574 0.0968346
\(227\) −16.4746 −1.09346 −0.546728 0.837311i \(-0.684127\pi\)
−0.546728 + 0.837311i \(0.684127\pi\)
\(228\) 1.98597 0.131524
\(229\) 12.6714 0.837349 0.418675 0.908136i \(-0.362495\pi\)
0.418675 + 0.908136i \(0.362495\pi\)
\(230\) 0.768744 0.0506895
\(231\) 0 0
\(232\) −0.0276729 −0.00181682
\(233\) −8.31460 −0.544707 −0.272354 0.962197i \(-0.587802\pi\)
−0.272354 + 0.962197i \(0.587802\pi\)
\(234\) 0.0140285 0.000917073 0
\(235\) 17.0539 1.11247
\(236\) 26.4253 1.72014
\(237\) 10.6322 0.690634
\(238\) −1.21128 −0.0785154
\(239\) 5.93440 0.383865 0.191932 0.981408i \(-0.438525\pi\)
0.191932 + 0.981408i \(0.438525\pi\)
\(240\) −7.17973 −0.463450
\(241\) 5.25880 0.338749 0.169374 0.985552i \(-0.445825\pi\)
0.169374 + 0.985552i \(0.445825\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) −11.1795 −0.715696
\(245\) 2.59079 0.165519
\(246\) −1.06704 −0.0680318
\(247\) −0.118442 −0.00753629
\(248\) −3.49030 −0.221634
\(249\) 11.0325 0.699154
\(250\) 1.44159 0.0911743
\(251\) 25.4857 1.60865 0.804323 0.594193i \(-0.202528\pi\)
0.804323 + 0.594193i \(0.202528\pi\)
\(252\) −5.76037 −0.362869
\(253\) 0 0
\(254\) −0.527674 −0.0331092
\(255\) −6.46432 −0.404811
\(256\) 14.8895 0.930593
\(257\) −4.30259 −0.268388 −0.134194 0.990955i \(-0.542845\pi\)
−0.134194 + 0.990955i \(0.542845\pi\)
\(258\) −1.17717 −0.0732876
\(259\) −14.0529 −0.873205
\(260\) 0.431263 0.0267458
\(261\) −0.0586159 −0.00362823
\(262\) −0.331390 −0.0204733
\(263\) −3.76883 −0.232396 −0.116198 0.993226i \(-0.537071\pi\)
−0.116198 + 0.993226i \(0.537071\pi\)
\(264\) 0 0
\(265\) −5.28262 −0.324509
\(266\) −0.343545 −0.0210641
\(267\) 11.9376 0.730570
\(268\) −6.69354 −0.408873
\(269\) −11.5259 −0.702750 −0.351375 0.936235i \(-0.614286\pi\)
−0.351375 + 0.936235i \(0.614286\pi\)
\(270\) 0.217154 0.0132156
\(271\) −1.49560 −0.0908512 −0.0454256 0.998968i \(-0.514464\pi\)
−0.0454256 + 0.998968i \(0.514464\pi\)
\(272\) 13.8072 0.837184
\(273\) 0.343545 0.0207923
\(274\) −0.985068 −0.0595101
\(275\) 0 0
\(276\) −7.03049 −0.423186
\(277\) 1.74878 0.105074 0.0525370 0.998619i \(-0.483269\pi\)
0.0525370 + 0.998619i \(0.483269\pi\)
\(278\) 2.48822 0.149234
\(279\) −7.39303 −0.442609
\(280\) 2.51062 0.150038
\(281\) −20.6292 −1.23064 −0.615318 0.788279i \(-0.710972\pi\)
−0.615318 + 0.788279i \(0.710972\pi\)
\(282\) 1.10171 0.0656057
\(283\) −28.1002 −1.67039 −0.835193 0.549957i \(-0.814644\pi\)
−0.835193 + 0.549957i \(0.814644\pi\)
\(284\) −4.70766 −0.279348
\(285\) −1.83342 −0.108603
\(286\) 0 0
\(287\) −26.1307 −1.54245
\(288\) −1.40804 −0.0829693
\(289\) −4.56861 −0.268742
\(290\) 0.0127287 0.000747455 0
\(291\) 2.30245 0.134972
\(292\) −21.6321 −1.26592
\(293\) −8.19850 −0.478961 −0.239481 0.970901i \(-0.576977\pi\)
−0.239481 + 0.970901i \(0.576977\pi\)
\(294\) 0.167369 0.00976116
\(295\) −24.3955 −1.42036
\(296\) −2.28733 −0.132948
\(297\) 0 0
\(298\) −0.432878 −0.0250760
\(299\) 0.419294 0.0242484
\(300\) −3.25413 −0.187877
\(301\) −28.8279 −1.66161
\(302\) −0.934981 −0.0538021
\(303\) −5.80306 −0.333377
\(304\) 3.91603 0.224599
\(305\) 10.3208 0.590968
\(306\) −0.417605 −0.0238729
\(307\) −13.3073 −0.759487 −0.379744 0.925092i \(-0.623988\pi\)
−0.379744 + 0.925092i \(0.623988\pi\)
\(308\) 0 0
\(309\) −7.00302 −0.398388
\(310\) 1.60543 0.0911823
\(311\) 31.5423 1.78860 0.894299 0.447470i \(-0.147675\pi\)
0.894299 + 0.447470i \(0.147675\pi\)
\(312\) 0.0559173 0.00316569
\(313\) 6.33158 0.357882 0.178941 0.983860i \(-0.442733\pi\)
0.178941 + 0.983860i \(0.442733\pi\)
\(314\) −1.53310 −0.0865181
\(315\) 5.31790 0.299630
\(316\) 21.1152 1.18782
\(317\) 23.3234 1.30997 0.654987 0.755641i \(-0.272674\pi\)
0.654987 + 0.755641i \(0.272674\pi\)
\(318\) −0.341266 −0.0191372
\(319\) 0 0
\(320\) −14.0537 −0.785626
\(321\) −10.3108 −0.575492
\(322\) 1.21618 0.0677748
\(323\) 3.52582 0.196182
\(324\) −1.98597 −0.110332
\(325\) 0.194074 0.0107653
\(326\) 0.488448 0.0270526
\(327\) 9.04469 0.500173
\(328\) −4.25318 −0.234843
\(329\) 26.9797 1.48744
\(330\) 0 0
\(331\) 10.5241 0.578455 0.289227 0.957260i \(-0.406602\pi\)
0.289227 + 0.957260i \(0.406602\pi\)
\(332\) 21.9102 1.20248
\(333\) −4.84494 −0.265501
\(334\) 1.37491 0.0752315
\(335\) 6.17939 0.337616
\(336\) −11.3586 −0.619660
\(337\) −20.8955 −1.13825 −0.569124 0.822251i \(-0.692718\pi\)
−0.569124 + 0.822251i \(0.692718\pi\)
\(338\) 1.53809 0.0836608
\(339\) 12.2908 0.667543
\(340\) −12.8379 −0.696236
\(341\) 0 0
\(342\) −0.118442 −0.00640461
\(343\) −16.2050 −0.874989
\(344\) −4.69218 −0.252985
\(345\) 6.49046 0.349435
\(346\) −1.69570 −0.0911615
\(347\) −6.45651 −0.346603 −0.173302 0.984869i \(-0.555444\pi\)
−0.173302 + 0.984869i \(0.555444\pi\)
\(348\) −0.116409 −0.00624020
\(349\) 25.3975 1.35950 0.679748 0.733446i \(-0.262089\pi\)
0.679748 + 0.733446i \(0.262089\pi\)
\(350\) 0.562919 0.0300893
\(351\) 0.118442 0.00632197
\(352\) 0 0
\(353\) −25.5676 −1.36083 −0.680413 0.732829i \(-0.738200\pi\)
−0.680413 + 0.732829i \(0.738200\pi\)
\(354\) −1.57599 −0.0837629
\(355\) 4.34605 0.230665
\(356\) 23.7078 1.25651
\(357\) −10.2267 −0.541257
\(358\) −0.257660 −0.0136178
\(359\) −29.4298 −1.55325 −0.776624 0.629965i \(-0.783069\pi\)
−0.776624 + 0.629965i \(0.783069\pi\)
\(360\) 0.865571 0.0456196
\(361\) 1.00000 0.0526316
\(362\) −1.88824 −0.0992437
\(363\) 0 0
\(364\) 0.682271 0.0357607
\(365\) 19.9705 1.04530
\(366\) 0.666740 0.0348511
\(367\) −4.69002 −0.244817 −0.122409 0.992480i \(-0.539062\pi\)
−0.122409 + 0.992480i \(0.539062\pi\)
\(368\) −13.8630 −0.722661
\(369\) −9.00894 −0.468987
\(370\) 1.05210 0.0546961
\(371\) −8.35727 −0.433888
\(372\) −14.6824 −0.761245
\(373\) 4.85976 0.251629 0.125814 0.992054i \(-0.459846\pi\)
0.125814 + 0.992054i \(0.459846\pi\)
\(374\) 0 0
\(375\) 12.1713 0.628523
\(376\) 4.39137 0.226468
\(377\) 0.00694258 0.000357561 0
\(378\) 0.343545 0.0176700
\(379\) 6.45445 0.331543 0.165771 0.986164i \(-0.446989\pi\)
0.165771 + 0.986164i \(0.446989\pi\)
\(380\) −3.64113 −0.186786
\(381\) −4.45512 −0.228243
\(382\) −0.637079 −0.0325958
\(383\) 27.0398 1.38167 0.690835 0.723012i \(-0.257243\pi\)
0.690835 + 0.723012i \(0.257243\pi\)
\(384\) −3.72396 −0.190038
\(385\) 0 0
\(386\) 1.75078 0.0891124
\(387\) −9.93882 −0.505218
\(388\) 4.57260 0.232138
\(389\) −17.1214 −0.868089 −0.434044 0.900891i \(-0.642914\pi\)
−0.434044 + 0.900891i \(0.642914\pi\)
\(390\) −0.0257202 −0.00130239
\(391\) −12.4817 −0.631225
\(392\) 0.667128 0.0336950
\(393\) −2.79790 −0.141136
\(394\) −1.61720 −0.0814732
\(395\) −19.4933 −0.980814
\(396\) 0 0
\(397\) 21.1664 1.06231 0.531157 0.847274i \(-0.321758\pi\)
0.531157 + 0.847274i \(0.321758\pi\)
\(398\) 0.887404 0.0444816
\(399\) −2.90053 −0.145208
\(400\) −6.41664 −0.320832
\(401\) −28.6350 −1.42996 −0.714981 0.699144i \(-0.753565\pi\)
−0.714981 + 0.699144i \(0.753565\pi\)
\(402\) 0.399199 0.0199102
\(403\) 0.875646 0.0436190
\(404\) −11.5247 −0.573376
\(405\) 1.83342 0.0911035
\(406\) 0.0201372 0.000999392 0
\(407\) 0 0
\(408\) −1.66456 −0.0824081
\(409\) −3.18177 −0.157328 −0.0786641 0.996901i \(-0.525065\pi\)
−0.0786641 + 0.996901i \(0.525065\pi\)
\(410\) 1.95633 0.0966163
\(411\) −8.31687 −0.410241
\(412\) −13.9078 −0.685188
\(413\) −38.5945 −1.89911
\(414\) 0.419294 0.0206072
\(415\) −20.2272 −0.992913
\(416\) 0.166771 0.00817660
\(417\) 21.0079 1.02876
\(418\) 0 0
\(419\) −25.2231 −1.23223 −0.616114 0.787657i \(-0.711294\pi\)
−0.616114 + 0.787657i \(0.711294\pi\)
\(420\) 10.5612 0.515334
\(421\) 14.9814 0.730148 0.365074 0.930979i \(-0.381044\pi\)
0.365074 + 0.930979i \(0.381044\pi\)
\(422\) 2.53805 0.123550
\(423\) 9.30165 0.452262
\(424\) −1.36028 −0.0660608
\(425\) −5.77726 −0.280238
\(426\) 0.280762 0.0136030
\(427\) 16.3278 0.790159
\(428\) −20.4769 −0.989790
\(429\) 0 0
\(430\) 2.15826 0.104080
\(431\) 7.99053 0.384890 0.192445 0.981308i \(-0.438358\pi\)
0.192445 + 0.981308i \(0.438358\pi\)
\(432\) −3.91603 −0.188410
\(433\) 25.2031 1.21118 0.605592 0.795775i \(-0.292936\pi\)
0.605592 + 0.795775i \(0.292936\pi\)
\(434\) 2.53984 0.121916
\(435\) 0.107468 0.00515268
\(436\) 17.9625 0.860248
\(437\) −3.54008 −0.169345
\(438\) 1.29013 0.0616446
\(439\) 14.6035 0.696986 0.348493 0.937311i \(-0.386693\pi\)
0.348493 + 0.937311i \(0.386693\pi\)
\(440\) 0 0
\(441\) 1.41309 0.0672899
\(442\) 0.0494620 0.00235267
\(443\) 14.5766 0.692555 0.346277 0.938132i \(-0.387446\pi\)
0.346277 + 0.938132i \(0.387446\pi\)
\(444\) −9.62192 −0.456636
\(445\) −21.8867 −1.03753
\(446\) −1.24097 −0.0587618
\(447\) −3.65477 −0.172865
\(448\) −22.2334 −1.05043
\(449\) 38.1066 1.79836 0.899181 0.437578i \(-0.144163\pi\)
0.899181 + 0.437578i \(0.144163\pi\)
\(450\) 0.194074 0.00914875
\(451\) 0 0
\(452\) 24.4091 1.14811
\(453\) −7.89399 −0.370892
\(454\) 1.95128 0.0915782
\(455\) −0.629863 −0.0295285
\(456\) −0.472107 −0.0221084
\(457\) −13.3399 −0.624013 −0.312006 0.950080i \(-0.601001\pi\)
−0.312006 + 0.950080i \(0.601001\pi\)
\(458\) −1.50083 −0.0701290
\(459\) −3.52582 −0.164571
\(460\) 12.8899 0.600993
\(461\) −19.8340 −0.923760 −0.461880 0.886942i \(-0.652825\pi\)
−0.461880 + 0.886942i \(0.652825\pi\)
\(462\) 0 0
\(463\) −27.9282 −1.29793 −0.648966 0.760818i \(-0.724798\pi\)
−0.648966 + 0.760818i \(0.724798\pi\)
\(464\) −0.229541 −0.0106562
\(465\) 13.5546 0.628578
\(466\) 0.984798 0.0456199
\(467\) −8.57031 −0.396587 −0.198293 0.980143i \(-0.563540\pi\)
−0.198293 + 0.980143i \(0.563540\pi\)
\(468\) 0.235223 0.0108732
\(469\) 9.77599 0.451413
\(470\) −2.01989 −0.0931708
\(471\) −12.9439 −0.596424
\(472\) −6.28185 −0.289146
\(473\) 0 0
\(474\) −1.25930 −0.0578414
\(475\) −1.63856 −0.0751822
\(476\) −20.3100 −0.930909
\(477\) −2.88129 −0.131925
\(478\) −0.702883 −0.0321491
\(479\) −18.4518 −0.843085 −0.421543 0.906809i \(-0.638511\pi\)
−0.421543 + 0.906809i \(0.638511\pi\)
\(480\) 2.58153 0.117830
\(481\) 0.573845 0.0261651
\(482\) −0.622863 −0.0283706
\(483\) 10.2681 0.467215
\(484\) 0 0
\(485\) −4.22136 −0.191682
\(486\) 0.118442 0.00537264
\(487\) 2.34389 0.106212 0.0531060 0.998589i \(-0.483088\pi\)
0.0531060 + 0.998589i \(0.483088\pi\)
\(488\) 2.65761 0.120304
\(489\) 4.12394 0.186491
\(490\) −0.306858 −0.0138624
\(491\) −11.8598 −0.535226 −0.267613 0.963526i \(-0.586235\pi\)
−0.267613 + 0.963526i \(0.586235\pi\)
\(492\) −17.8915 −0.806611
\(493\) −0.206669 −0.00930789
\(494\) 0.0140285 0.000631173 0
\(495\) 0 0
\(496\) −28.9513 −1.29995
\(497\) 6.87559 0.308412
\(498\) −1.30671 −0.0585550
\(499\) −28.1695 −1.26104 −0.630521 0.776172i \(-0.717159\pi\)
−0.630521 + 0.776172i \(0.717159\pi\)
\(500\) 24.1718 1.08100
\(501\) 11.6083 0.518619
\(502\) −3.01858 −0.134726
\(503\) −27.4292 −1.22301 −0.611503 0.791242i \(-0.709435\pi\)
−0.611503 + 0.791242i \(0.709435\pi\)
\(504\) 1.36936 0.0609962
\(505\) 10.6395 0.473450
\(506\) 0 0
\(507\) 12.9860 0.576727
\(508\) −8.84775 −0.392555
\(509\) −43.8230 −1.94242 −0.971210 0.238223i \(-0.923435\pi\)
−0.971210 + 0.238223i \(0.923435\pi\)
\(510\) 0.765647 0.0339034
\(511\) 31.5939 1.39763
\(512\) −9.21147 −0.407093
\(513\) −1.00000 −0.0441511
\(514\) 0.509608 0.0224779
\(515\) 12.8395 0.565776
\(516\) −19.7382 −0.868926
\(517\) 0 0
\(518\) 1.66446 0.0731320
\(519\) −14.3167 −0.628435
\(520\) −0.102520 −0.00449580
\(521\) 5.33941 0.233924 0.116962 0.993136i \(-0.462684\pi\)
0.116962 + 0.993136i \(0.462684\pi\)
\(522\) 0.00694258 0.000303869 0
\(523\) 36.7522 1.60706 0.803530 0.595265i \(-0.202953\pi\)
0.803530 + 0.595265i \(0.202953\pi\)
\(524\) −5.55656 −0.242739
\(525\) 4.75269 0.207424
\(526\) 0.446388 0.0194635
\(527\) −26.0665 −1.13547
\(528\) 0 0
\(529\) −10.4678 −0.455124
\(530\) 0.625685 0.0271780
\(531\) −13.3060 −0.577431
\(532\) −5.76037 −0.249744
\(533\) 1.06704 0.0462185
\(534\) −1.41392 −0.0611861
\(535\) 18.9040 0.817293
\(536\) 1.59119 0.0687291
\(537\) −2.17541 −0.0938759
\(538\) 1.36516 0.0588561
\(539\) 0 0
\(540\) 3.64113 0.156689
\(541\) −9.45964 −0.406701 −0.203351 0.979106i \(-0.565183\pi\)
−0.203351 + 0.979106i \(0.565183\pi\)
\(542\) 0.177142 0.00760890
\(543\) −15.9423 −0.684150
\(544\) −4.96448 −0.212850
\(545\) −16.5828 −0.710327
\(546\) −0.0406902 −0.00174138
\(547\) 40.1673 1.71743 0.858715 0.512454i \(-0.171264\pi\)
0.858715 + 0.512454i \(0.171264\pi\)
\(548\) −16.5171 −0.705574
\(549\) 5.62925 0.240251
\(550\) 0 0
\(551\) −0.0586159 −0.00249712
\(552\) 1.67129 0.0711350
\(553\) −30.8390 −1.31141
\(554\) −0.207129 −0.00880008
\(555\) 8.88283 0.377055
\(556\) 41.7212 1.76937
\(557\) −7.44492 −0.315451 −0.157726 0.987483i \(-0.550416\pi\)
−0.157726 + 0.987483i \(0.550416\pi\)
\(558\) 0.875646 0.0370691
\(559\) 1.17717 0.0497891
\(560\) 20.8250 0.880019
\(561\) 0 0
\(562\) 2.44337 0.103067
\(563\) −9.34015 −0.393640 −0.196820 0.980440i \(-0.563061\pi\)
−0.196820 + 0.980440i \(0.563061\pi\)
\(564\) 18.4728 0.777846
\(565\) −22.5342 −0.948020
\(566\) 3.32825 0.139897
\(567\) 2.90053 0.121811
\(568\) 1.11911 0.0469568
\(569\) −31.7113 −1.32941 −0.664704 0.747107i \(-0.731442\pi\)
−0.664704 + 0.747107i \(0.731442\pi\)
\(570\) 0.217154 0.00909560
\(571\) 3.24336 0.135731 0.0678653 0.997694i \(-0.478381\pi\)
0.0678653 + 0.997694i \(0.478381\pi\)
\(572\) 0 0
\(573\) −5.37883 −0.224704
\(574\) 3.09498 0.129182
\(575\) 5.80063 0.241903
\(576\) −7.66528 −0.319387
\(577\) −16.2972 −0.678463 −0.339231 0.940703i \(-0.610167\pi\)
−0.339231 + 0.940703i \(0.610167\pi\)
\(578\) 0.541116 0.0225074
\(579\) 14.7818 0.614309
\(580\) 0.213428 0.00886210
\(581\) −32.0000 −1.32758
\(582\) −0.272707 −0.0113041
\(583\) 0 0
\(584\) 5.14241 0.212794
\(585\) −0.217154 −0.00897823
\(586\) 0.971047 0.0401136
\(587\) −34.2542 −1.41382 −0.706912 0.707301i \(-0.749912\pi\)
−0.706912 + 0.707301i \(0.749912\pi\)
\(588\) 2.80635 0.115732
\(589\) −7.39303 −0.304625
\(590\) 2.88946 0.118957
\(591\) −13.6539 −0.561646
\(592\) −18.9729 −0.779782
\(593\) −11.9214 −0.489551 −0.244776 0.969580i \(-0.578714\pi\)
−0.244776 + 0.969580i \(0.578714\pi\)
\(594\) 0 0
\(595\) 18.7500 0.768673
\(596\) −7.25827 −0.297310
\(597\) 7.49231 0.306640
\(598\) −0.0496621 −0.00203083
\(599\) −35.7926 −1.46245 −0.731223 0.682139i \(-0.761050\pi\)
−0.731223 + 0.682139i \(0.761050\pi\)
\(600\) 0.773574 0.0315810
\(601\) 19.3338 0.788642 0.394321 0.918973i \(-0.370980\pi\)
0.394321 + 0.918973i \(0.370980\pi\)
\(602\) 3.41443 0.139162
\(603\) 3.37041 0.137254
\(604\) −15.6772 −0.637898
\(605\) 0 0
\(606\) 0.687326 0.0279207
\(607\) −4.34106 −0.176198 −0.0880992 0.996112i \(-0.528079\pi\)
−0.0880992 + 0.996112i \(0.528079\pi\)
\(608\) −1.40804 −0.0571034
\(609\) 0.170017 0.00688944
\(610\) −1.22242 −0.0494942
\(611\) −1.10171 −0.0445703
\(612\) −7.00217 −0.283046
\(613\) 25.7765 1.04110 0.520552 0.853830i \(-0.325726\pi\)
0.520552 + 0.853830i \(0.325726\pi\)
\(614\) 1.57614 0.0636080
\(615\) 16.5172 0.666038
\(616\) 0 0
\(617\) 24.4016 0.982370 0.491185 0.871055i \(-0.336564\pi\)
0.491185 + 0.871055i \(0.336564\pi\)
\(618\) 0.829452 0.0333654
\(619\) −36.3458 −1.46086 −0.730431 0.682987i \(-0.760681\pi\)
−0.730431 + 0.682987i \(0.760681\pi\)
\(620\) 26.9190 1.08109
\(621\) 3.54008 0.142058
\(622\) −3.73593 −0.149797
\(623\) −34.6254 −1.38724
\(624\) 0.463822 0.0185677
\(625\) −14.1223 −0.564893
\(626\) −0.749926 −0.0299731
\(627\) 0 0
\(628\) −25.7062 −1.02579
\(629\) −17.0824 −0.681119
\(630\) −0.629863 −0.0250944
\(631\) −28.5702 −1.13736 −0.568681 0.822558i \(-0.692546\pi\)
−0.568681 + 0.822558i \(0.692546\pi\)
\(632\) −5.01952 −0.199666
\(633\) 21.4286 0.851710
\(634\) −2.76247 −0.109712
\(635\) 8.16813 0.324142
\(636\) −5.72216 −0.226898
\(637\) −0.167369 −0.00663140
\(638\) 0 0
\(639\) 2.37046 0.0937739
\(640\) 6.82760 0.269885
\(641\) −33.6278 −1.32822 −0.664108 0.747636i \(-0.731189\pi\)
−0.664108 + 0.747636i \(0.731189\pi\)
\(642\) 1.22123 0.0481981
\(643\) 33.8028 1.33305 0.666527 0.745481i \(-0.267780\pi\)
0.666527 + 0.745481i \(0.267780\pi\)
\(644\) 20.3922 0.803564
\(645\) 18.2221 0.717493
\(646\) −0.417605 −0.0164305
\(647\) 8.52256 0.335056 0.167528 0.985867i \(-0.446421\pi\)
0.167528 + 0.985867i \(0.446421\pi\)
\(648\) 0.472107 0.0185461
\(649\) 0 0
\(650\) −0.0229866 −0.000901607 0
\(651\) 21.4437 0.840446
\(652\) 8.19003 0.320746
\(653\) 25.7025 1.00582 0.502908 0.864340i \(-0.332263\pi\)
0.502908 + 0.864340i \(0.332263\pi\)
\(654\) −1.07127 −0.0418901
\(655\) 5.12974 0.200436
\(656\) −35.2792 −1.37742
\(657\) 10.8925 0.424956
\(658\) −3.19553 −0.124575
\(659\) −30.0864 −1.17200 −0.586001 0.810311i \(-0.699298\pi\)
−0.586001 + 0.810311i \(0.699298\pi\)
\(660\) 0 0
\(661\) 29.8953 1.16279 0.581396 0.813621i \(-0.302507\pi\)
0.581396 + 0.813621i \(0.302507\pi\)
\(662\) −1.24649 −0.0484463
\(663\) 0.417605 0.0162184
\(664\) −5.20850 −0.202129
\(665\) 5.31790 0.206219
\(666\) 0.573845 0.0222360
\(667\) 0.207505 0.00803461
\(668\) 23.0537 0.891973
\(669\) −10.4775 −0.405082
\(670\) −0.731900 −0.0282758
\(671\) 0 0
\(672\) 4.08405 0.157546
\(673\) −8.47423 −0.326658 −0.163329 0.986572i \(-0.552223\pi\)
−0.163329 + 0.986572i \(0.552223\pi\)
\(674\) 2.47490 0.0953297
\(675\) 1.63856 0.0630681
\(676\) 25.7898 0.991914
\(677\) −42.3588 −1.62798 −0.813991 0.580878i \(-0.802709\pi\)
−0.813991 + 0.580878i \(0.802709\pi\)
\(678\) −1.45574 −0.0559075
\(679\) −6.67833 −0.256291
\(680\) 3.05185 0.117033
\(681\) 16.4746 0.631307
\(682\) 0 0
\(683\) 9.47454 0.362533 0.181267 0.983434i \(-0.441980\pi\)
0.181267 + 0.983434i \(0.441980\pi\)
\(684\) −1.98597 −0.0759355
\(685\) 15.2483 0.582609
\(686\) 1.91936 0.0732814
\(687\) −12.6714 −0.483444
\(688\) −38.9207 −1.48384
\(689\) 0.341266 0.0130012
\(690\) −0.768744 −0.0292656
\(691\) 13.0056 0.494757 0.247379 0.968919i \(-0.420431\pi\)
0.247379 + 0.968919i \(0.420431\pi\)
\(692\) −28.4326 −1.08085
\(693\) 0 0
\(694\) 0.764722 0.0290284
\(695\) −38.5164 −1.46101
\(696\) 0.0276729 0.00104894
\(697\) −31.7639 −1.20314
\(698\) −3.00813 −0.113859
\(699\) 8.31460 0.314487
\(700\) 9.43871 0.356750
\(701\) −15.5410 −0.586976 −0.293488 0.955963i \(-0.594816\pi\)
−0.293488 + 0.955963i \(0.594816\pi\)
\(702\) −0.0140285 −0.000529472 0
\(703\) −4.84494 −0.182730
\(704\) 0 0
\(705\) −17.0539 −0.642286
\(706\) 3.02828 0.113971
\(707\) 16.8320 0.633031
\(708\) −26.4253 −0.993125
\(709\) 35.8661 1.34698 0.673490 0.739196i \(-0.264795\pi\)
0.673490 + 0.739196i \(0.264795\pi\)
\(710\) −0.514755 −0.0193184
\(711\) −10.6322 −0.398738
\(712\) −5.63583 −0.211212
\(713\) 26.1719 0.980146
\(714\) 1.21128 0.0453309
\(715\) 0 0
\(716\) −4.32030 −0.161457
\(717\) −5.93440 −0.221624
\(718\) 3.48573 0.130086
\(719\) −4.08302 −0.152271 −0.0761355 0.997097i \(-0.524258\pi\)
−0.0761355 + 0.997097i \(0.524258\pi\)
\(720\) 7.17973 0.267573
\(721\) 20.3125 0.756476
\(722\) −0.118442 −0.00440796
\(723\) −5.25880 −0.195577
\(724\) −31.6610 −1.17667
\(725\) 0.0960455 0.00356704
\(726\) 0 0
\(727\) 36.3803 1.34927 0.674635 0.738151i \(-0.264301\pi\)
0.674635 + 0.738151i \(0.264301\pi\)
\(728\) −0.162190 −0.00601116
\(729\) 1.00000 0.0370370
\(730\) −2.36535 −0.0875454
\(731\) −35.0425 −1.29609
\(732\) 11.1795 0.413208
\(733\) −22.5237 −0.831932 −0.415966 0.909380i \(-0.636557\pi\)
−0.415966 + 0.909380i \(0.636557\pi\)
\(734\) 0.555496 0.0205037
\(735\) −2.59079 −0.0955626
\(736\) 4.98456 0.183733
\(737\) 0 0
\(738\) 1.06704 0.0392782
\(739\) −28.3381 −1.04243 −0.521217 0.853424i \(-0.674522\pi\)
−0.521217 + 0.853424i \(0.674522\pi\)
\(740\) 17.6410 0.648498
\(741\) 0.118442 0.00435108
\(742\) 0.989852 0.0363386
\(743\) 6.39794 0.234718 0.117359 0.993090i \(-0.462557\pi\)
0.117359 + 0.993090i \(0.462557\pi\)
\(744\) 3.49030 0.127961
\(745\) 6.70074 0.245496
\(746\) −0.575600 −0.0210742
\(747\) −11.0325 −0.403657
\(748\) 0 0
\(749\) 29.9068 1.09277
\(750\) −1.44159 −0.0526395
\(751\) −30.5006 −1.11298 −0.556492 0.830853i \(-0.687853\pi\)
−0.556492 + 0.830853i \(0.687853\pi\)
\(752\) 36.4255 1.32830
\(753\) −25.4857 −0.928752
\(754\) −0.000822294 0 −2.99462e−5 0
\(755\) 14.4730 0.526727
\(756\) 5.76037 0.209503
\(757\) 34.6488 1.25933 0.629665 0.776866i \(-0.283192\pi\)
0.629665 + 0.776866i \(0.283192\pi\)
\(758\) −0.764478 −0.0277671
\(759\) 0 0
\(760\) 0.865571 0.0313976
\(761\) 20.3899 0.739134 0.369567 0.929204i \(-0.379506\pi\)
0.369567 + 0.929204i \(0.379506\pi\)
\(762\) 0.527674 0.0191156
\(763\) −26.2344 −0.949750
\(764\) −10.6822 −0.386468
\(765\) 6.46432 0.233718
\(766\) −3.20265 −0.115717
\(767\) 1.57599 0.0569057
\(768\) −14.8895 −0.537278
\(769\) 30.2294 1.09010 0.545050 0.838403i \(-0.316511\pi\)
0.545050 + 0.838403i \(0.316511\pi\)
\(770\) 0 0
\(771\) 4.30259 0.154954
\(772\) 29.3561 1.05655
\(773\) 20.6425 0.742459 0.371229 0.928541i \(-0.378936\pi\)
0.371229 + 0.928541i \(0.378936\pi\)
\(774\) 1.17717 0.0423126
\(775\) 12.1139 0.435145
\(776\) −1.08700 −0.0390211
\(777\) 14.0529 0.504145
\(778\) 2.02789 0.0727035
\(779\) −9.00894 −0.322779
\(780\) −0.431263 −0.0154417
\(781\) 0 0
\(782\) 1.47835 0.0528659
\(783\) 0.0586159 0.00209476
\(784\) 5.53369 0.197632
\(785\) 23.7317 0.847020
\(786\) 0.331390 0.0118203
\(787\) 6.75105 0.240649 0.120324 0.992735i \(-0.461607\pi\)
0.120324 + 0.992735i \(0.461607\pi\)
\(788\) −27.1163 −0.965977
\(789\) 3.76883 0.134174
\(790\) 2.30883 0.0821443
\(791\) −35.6498 −1.26756
\(792\) 0 0
\(793\) −0.666740 −0.0236766
\(794\) −2.50700 −0.0889700
\(795\) 5.28262 0.187355
\(796\) 14.8795 0.527390
\(797\) 32.4238 1.14851 0.574256 0.818676i \(-0.305292\pi\)
0.574256 + 0.818676i \(0.305292\pi\)
\(798\) 0.343545 0.0121614
\(799\) 32.7959 1.16024
\(800\) 2.30715 0.0815700
\(801\) −11.9376 −0.421795
\(802\) 3.39159 0.119761
\(803\) 0 0
\(804\) 6.69354 0.236063
\(805\) −18.8258 −0.663522
\(806\) −0.103713 −0.00365315
\(807\) 11.5259 0.405733
\(808\) 2.73966 0.0963810
\(809\) 29.5856 1.04018 0.520088 0.854113i \(-0.325899\pi\)
0.520088 + 0.854113i \(0.325899\pi\)
\(810\) −0.217154 −0.00763003
\(811\) −33.3643 −1.17158 −0.585789 0.810464i \(-0.699215\pi\)
−0.585789 + 0.810464i \(0.699215\pi\)
\(812\) 0.337649 0.0118492
\(813\) 1.49560 0.0524530
\(814\) 0 0
\(815\) −7.56093 −0.264848
\(816\) −13.8072 −0.483348
\(817\) −9.93882 −0.347715
\(818\) 0.376855 0.0131764
\(819\) −0.343545 −0.0120044
\(820\) 32.8027 1.14552
\(821\) 20.4307 0.713035 0.356518 0.934289i \(-0.383964\pi\)
0.356518 + 0.934289i \(0.383964\pi\)
\(822\) 0.985068 0.0343582
\(823\) −18.4284 −0.642374 −0.321187 0.947016i \(-0.604082\pi\)
−0.321187 + 0.947016i \(0.604082\pi\)
\(824\) 3.30617 0.115176
\(825\) 0 0
\(826\) 4.57121 0.159053
\(827\) −42.1448 −1.46552 −0.732760 0.680487i \(-0.761768\pi\)
−0.732760 + 0.680487i \(0.761768\pi\)
\(828\) 7.03049 0.244327
\(829\) 41.0101 1.42434 0.712170 0.702007i \(-0.247712\pi\)
0.712170 + 0.702007i \(0.247712\pi\)
\(830\) 2.39575 0.0831577
\(831\) −1.74878 −0.0606646
\(832\) 0.907892 0.0314755
\(833\) 4.98229 0.172626
\(834\) −2.48822 −0.0861601
\(835\) −21.2828 −0.736523
\(836\) 0 0
\(837\) 7.39303 0.255541
\(838\) 2.98747 0.103201
\(839\) −20.0533 −0.692316 −0.346158 0.938176i \(-0.612514\pi\)
−0.346158 + 0.938176i \(0.612514\pi\)
\(840\) −2.51062 −0.0866245
\(841\) −28.9966 −0.999882
\(842\) −1.77443 −0.0611508
\(843\) 20.6292 0.710508
\(844\) 42.5565 1.46486
\(845\) −23.8088 −0.819047
\(846\) −1.10171 −0.0378774
\(847\) 0 0
\(848\) −11.2832 −0.387467
\(849\) 28.1002 0.964398
\(850\) 0.684270 0.0234703
\(851\) 17.1515 0.587945
\(852\) 4.70766 0.161282
\(853\) −16.5563 −0.566879 −0.283439 0.958990i \(-0.591475\pi\)
−0.283439 + 0.958990i \(0.591475\pi\)
\(854\) −1.93390 −0.0661768
\(855\) 1.83342 0.0627018
\(856\) 4.86779 0.166378
\(857\) 18.1051 0.618459 0.309229 0.950987i \(-0.399929\pi\)
0.309229 + 0.950987i \(0.399929\pi\)
\(858\) 0 0
\(859\) 50.6794 1.72916 0.864580 0.502495i \(-0.167584\pi\)
0.864580 + 0.502495i \(0.167584\pi\)
\(860\) 36.1885 1.23402
\(861\) 26.1307 0.890533
\(862\) −0.946415 −0.0322350
\(863\) 34.7723 1.18366 0.591832 0.806061i \(-0.298405\pi\)
0.591832 + 0.806061i \(0.298405\pi\)
\(864\) 1.40804 0.0479023
\(865\) 26.2486 0.892480
\(866\) −2.98511 −0.101438
\(867\) 4.56861 0.155158
\(868\) 42.5866 1.44548
\(869\) 0 0
\(870\) −0.0127287 −0.000431543 0
\(871\) −0.399199 −0.0135263
\(872\) −4.27006 −0.144602
\(873\) −2.30245 −0.0779261
\(874\) 0.419294 0.0141828
\(875\) −35.3032 −1.19347
\(876\) 21.6321 0.730882
\(877\) −2.09613 −0.0707814 −0.0353907 0.999374i \(-0.511268\pi\)
−0.0353907 + 0.999374i \(0.511268\pi\)
\(878\) −1.72967 −0.0583734
\(879\) 8.19850 0.276529
\(880\) 0 0
\(881\) −20.9706 −0.706519 −0.353259 0.935525i \(-0.614927\pi\)
−0.353259 + 0.935525i \(0.614927\pi\)
\(882\) −0.167369 −0.00563561
\(883\) 55.8049 1.87798 0.938992 0.343938i \(-0.111761\pi\)
0.938992 + 0.343938i \(0.111761\pi\)
\(884\) 0.829352 0.0278941
\(885\) 24.3955 0.820047
\(886\) −1.72648 −0.0580023
\(887\) 24.9321 0.837139 0.418569 0.908185i \(-0.362532\pi\)
0.418569 + 0.908185i \(0.362532\pi\)
\(888\) 2.28733 0.0767578
\(889\) 12.9222 0.433398
\(890\) 2.59231 0.0868943
\(891\) 0 0
\(892\) −20.8080 −0.696702
\(893\) 9.30165 0.311268
\(894\) 0.432878 0.0144776
\(895\) 3.98845 0.133319
\(896\) 10.8015 0.360852
\(897\) −0.419294 −0.0139998
\(898\) −4.51342 −0.150615
\(899\) 0.433349 0.0144530
\(900\) 3.25413 0.108471
\(901\) −10.1589 −0.338442
\(902\) 0 0
\(903\) 28.8279 0.959331
\(904\) −5.80255 −0.192990
\(905\) 29.2290 0.971605
\(906\) 0.934981 0.0310627
\(907\) −10.6516 −0.353679 −0.176840 0.984240i \(-0.556587\pi\)
−0.176840 + 0.984240i \(0.556587\pi\)
\(908\) 32.7180 1.08579
\(909\) 5.80306 0.192475
\(910\) 0.0746023 0.00247304
\(911\) −16.9428 −0.561340 −0.280670 0.959804i \(-0.590557\pi\)
−0.280670 + 0.959804i \(0.590557\pi\)
\(912\) −3.91603 −0.129673
\(913\) 0 0
\(914\) 1.58000 0.0522618
\(915\) −10.3208 −0.341195
\(916\) −25.1650 −0.831476
\(917\) 8.11541 0.267995
\(918\) 0.417605 0.0137830
\(919\) 42.8514 1.41354 0.706769 0.707445i \(-0.250152\pi\)
0.706769 + 0.707445i \(0.250152\pi\)
\(920\) −3.06419 −0.101023
\(921\) 13.3073 0.438490
\(922\) 2.34918 0.0773660
\(923\) −0.280762 −0.00924139
\(924\) 0 0
\(925\) 7.93872 0.261024
\(926\) 3.30787 0.108703
\(927\) 7.00302 0.230009
\(928\) 0.0825332 0.00270929
\(929\) 40.4540 1.32725 0.663626 0.748065i \(-0.269017\pi\)
0.663626 + 0.748065i \(0.269017\pi\)
\(930\) −1.60543 −0.0526441
\(931\) 1.41309 0.0463121
\(932\) 16.5126 0.540887
\(933\) −31.5423 −1.03265
\(934\) 1.01508 0.0332146
\(935\) 0 0
\(936\) −0.0559173 −0.00182771
\(937\) 19.2679 0.629455 0.314727 0.949182i \(-0.398087\pi\)
0.314727 + 0.949182i \(0.398087\pi\)
\(938\) −1.15789 −0.0378064
\(939\) −6.33158 −0.206623
\(940\) −33.8685 −1.10467
\(941\) 0.336424 0.0109671 0.00548356 0.999985i \(-0.498255\pi\)
0.00548356 + 0.999985i \(0.498255\pi\)
\(942\) 1.53310 0.0499512
\(943\) 31.8924 1.03856
\(944\) −52.1066 −1.69593
\(945\) −5.31790 −0.172991
\(946\) 0 0
\(947\) −40.6522 −1.32102 −0.660510 0.750817i \(-0.729660\pi\)
−0.660510 + 0.750817i \(0.729660\pi\)
\(948\) −21.1152 −0.685790
\(949\) −1.29013 −0.0418793
\(950\) 0.194074 0.00629660
\(951\) −23.3234 −0.756313
\(952\) 4.82812 0.156480
\(953\) −38.5751 −1.24957 −0.624785 0.780797i \(-0.714813\pi\)
−0.624785 + 0.780797i \(0.714813\pi\)
\(954\) 0.341266 0.0110489
\(955\) 9.86166 0.319116
\(956\) −11.7856 −0.381172
\(957\) 0 0
\(958\) 2.18547 0.0706094
\(959\) 24.1234 0.778984
\(960\) 14.0537 0.453581
\(961\) 23.6570 0.763128
\(962\) −0.0679674 −0.00219136
\(963\) 10.3108 0.332261
\(964\) −10.4438 −0.336373
\(965\) −27.1012 −0.872419
\(966\) −1.21618 −0.0391298
\(967\) 48.7854 1.56883 0.784417 0.620234i \(-0.212962\pi\)
0.784417 + 0.620234i \(0.212962\pi\)
\(968\) 0 0
\(969\) −3.52582 −0.113266
\(970\) 0.499987 0.0160536
\(971\) −55.8127 −1.79111 −0.895557 0.444946i \(-0.853223\pi\)
−0.895557 + 0.444946i \(0.853223\pi\)
\(972\) 1.98597 0.0637001
\(973\) −60.9342 −1.95346
\(974\) −0.277616 −0.00889538
\(975\) −0.194074 −0.00621535
\(976\) 22.0443 0.705621
\(977\) 40.1849 1.28563 0.642815 0.766021i \(-0.277766\pi\)
0.642815 + 0.766021i \(0.277766\pi\)
\(978\) −0.488448 −0.0156188
\(979\) 0 0
\(980\) −5.14523 −0.164358
\(981\) −9.04469 −0.288775
\(982\) 1.40470 0.0448258
\(983\) 18.9467 0.604306 0.302153 0.953260i \(-0.402295\pi\)
0.302153 + 0.953260i \(0.402295\pi\)
\(984\) 4.25318 0.135586
\(985\) 25.0334 0.797630
\(986\) 0.0244783 0.000779547 0
\(987\) −26.9797 −0.858774
\(988\) 0.235223 0.00748343
\(989\) 35.1842 1.11879
\(990\) 0 0
\(991\) 19.5972 0.622525 0.311263 0.950324i \(-0.399248\pi\)
0.311263 + 0.950324i \(0.399248\pi\)
\(992\) 10.4097 0.330507
\(993\) −10.5241 −0.333971
\(994\) −0.814359 −0.0258299
\(995\) −13.7366 −0.435479
\(996\) −21.9102 −0.694250
\(997\) 0.612212 0.0193889 0.00969447 0.999953i \(-0.496914\pi\)
0.00969447 + 0.999953i \(0.496914\pi\)
\(998\) 3.33646 0.105614
\(999\) 4.84494 0.153287
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6897.2.a.bc.1.5 8
11.10 odd 2 6897.2.a.bd.1.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6897.2.a.bc.1.5 8 1.1 even 1 trivial
6897.2.a.bd.1.4 yes 8 11.10 odd 2