Properties

Label 6897.2.a.bc.1.4
Level $6897$
Weight $2$
Character 6897.1
Self dual yes
Analytic conductor $55.073$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6897,2,Mod(1,6897)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6897.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6897, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6897 = 3 \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6897.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-1,-8,9,-2,1,-6,-6,8,-3,0,-9,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.0728222741\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 12x^{6} + 9x^{5} + 40x^{4} - 22x^{3} - 28x^{2} + 12x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.267052\) of defining polynomial
Character \(\chi\) \(=\) 6897.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.267052 q^{2} -1.00000 q^{3} -1.92868 q^{4} +3.50077 q^{5} +0.267052 q^{6} -4.33946 q^{7} +1.04916 q^{8} +1.00000 q^{9} -0.934889 q^{10} +1.92868 q^{12} -0.267052 q^{13} +1.15886 q^{14} -3.50077 q^{15} +3.57718 q^{16} -5.99455 q^{17} -0.267052 q^{18} +1.00000 q^{19} -6.75188 q^{20} +4.33946 q^{21} +6.72739 q^{23} -1.04916 q^{24} +7.25539 q^{25} +0.0713170 q^{26} -1.00000 q^{27} +8.36944 q^{28} -1.85653 q^{29} +0.934889 q^{30} -5.19887 q^{31} -3.05362 q^{32} +1.60086 q^{34} -15.1914 q^{35} -1.92868 q^{36} +8.06741 q^{37} -0.267052 q^{38} +0.267052 q^{39} +3.67288 q^{40} +10.8939 q^{41} -1.15886 q^{42} -9.05466 q^{43} +3.50077 q^{45} -1.79657 q^{46} -5.43596 q^{47} -3.57718 q^{48} +11.8309 q^{49} -1.93757 q^{50} +5.99455 q^{51} +0.515059 q^{52} -5.54849 q^{53} +0.267052 q^{54} -4.55280 q^{56} -1.00000 q^{57} +0.495790 q^{58} +9.45890 q^{59} +6.75188 q^{60} -1.15697 q^{61} +1.38837 q^{62} -4.33946 q^{63} -6.33889 q^{64} -0.934889 q^{65} +2.53651 q^{67} +11.5616 q^{68} -6.72739 q^{69} +4.05691 q^{70} +8.03442 q^{71} +1.04916 q^{72} -5.93529 q^{73} -2.15442 q^{74} -7.25539 q^{75} -1.92868 q^{76} -0.0713170 q^{78} +8.04694 q^{79} +12.5229 q^{80} +1.00000 q^{81} -2.90923 q^{82} -5.90959 q^{83} -8.36944 q^{84} -20.9855 q^{85} +2.41807 q^{86} +1.85653 q^{87} +7.54793 q^{89} -0.934889 q^{90} +1.15886 q^{91} -12.9750 q^{92} +5.19887 q^{93} +1.45169 q^{94} +3.50077 q^{95} +3.05362 q^{96} -18.5499 q^{97} -3.15947 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} - 8 q^{3} + 9 q^{4} - 2 q^{5} + q^{6} - 6 q^{7} - 6 q^{8} + 8 q^{9} - 3 q^{10} - 9 q^{12} - q^{13} + 7 q^{14} + 2 q^{15} + 23 q^{16} - 15 q^{17} - q^{18} + 8 q^{19} - 4 q^{20} + 6 q^{21}+ \cdots - 55 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.267052 −0.188835 −0.0944173 0.995533i \(-0.530099\pi\)
−0.0944173 + 0.995533i \(0.530099\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.92868 −0.964341
\(5\) 3.50077 1.56559 0.782796 0.622278i \(-0.213793\pi\)
0.782796 + 0.622278i \(0.213793\pi\)
\(6\) 0.267052 0.109024
\(7\) −4.33946 −1.64016 −0.820080 0.572249i \(-0.806071\pi\)
−0.820080 + 0.572249i \(0.806071\pi\)
\(8\) 1.04916 0.370936
\(9\) 1.00000 0.333333
\(10\) −0.934889 −0.295638
\(11\) 0 0
\(12\) 1.92868 0.556763
\(13\) −0.267052 −0.0740670 −0.0370335 0.999314i \(-0.511791\pi\)
−0.0370335 + 0.999314i \(0.511791\pi\)
\(14\) 1.15886 0.309719
\(15\) −3.50077 −0.903895
\(16\) 3.57718 0.894296
\(17\) −5.99455 −1.45389 −0.726946 0.686695i \(-0.759061\pi\)
−0.726946 + 0.686695i \(0.759061\pi\)
\(18\) −0.267052 −0.0629449
\(19\) 1.00000 0.229416
\(20\) −6.75188 −1.50977
\(21\) 4.33946 0.946947
\(22\) 0 0
\(23\) 6.72739 1.40276 0.701379 0.712788i \(-0.252568\pi\)
0.701379 + 0.712788i \(0.252568\pi\)
\(24\) −1.04916 −0.214160
\(25\) 7.25539 1.45108
\(26\) 0.0713170 0.0139864
\(27\) −1.00000 −0.192450
\(28\) 8.36944 1.58167
\(29\) −1.85653 −0.344749 −0.172374 0.985032i \(-0.555144\pi\)
−0.172374 + 0.985032i \(0.555144\pi\)
\(30\) 0.934889 0.170687
\(31\) −5.19887 −0.933745 −0.466872 0.884325i \(-0.654619\pi\)
−0.466872 + 0.884325i \(0.654619\pi\)
\(32\) −3.05362 −0.539810
\(33\) 0 0
\(34\) 1.60086 0.274545
\(35\) −15.1914 −2.56782
\(36\) −1.92868 −0.321447
\(37\) 8.06741 1.32627 0.663137 0.748498i \(-0.269225\pi\)
0.663137 + 0.748498i \(0.269225\pi\)
\(38\) −0.267052 −0.0433216
\(39\) 0.267052 0.0427626
\(40\) 3.67288 0.580734
\(41\) 10.8939 1.70133 0.850667 0.525705i \(-0.176198\pi\)
0.850667 + 0.525705i \(0.176198\pi\)
\(42\) −1.15886 −0.178816
\(43\) −9.05466 −1.38082 −0.690412 0.723417i \(-0.742571\pi\)
−0.690412 + 0.723417i \(0.742571\pi\)
\(44\) 0 0
\(45\) 3.50077 0.521864
\(46\) −1.79657 −0.264889
\(47\) −5.43596 −0.792917 −0.396458 0.918053i \(-0.629761\pi\)
−0.396458 + 0.918053i \(0.629761\pi\)
\(48\) −3.57718 −0.516322
\(49\) 11.8309 1.69013
\(50\) −1.93757 −0.274014
\(51\) 5.99455 0.839405
\(52\) 0.515059 0.0714259
\(53\) −5.54849 −0.762144 −0.381072 0.924545i \(-0.624445\pi\)
−0.381072 + 0.924545i \(0.624445\pi\)
\(54\) 0.267052 0.0363412
\(55\) 0 0
\(56\) −4.55280 −0.608394
\(57\) −1.00000 −0.132453
\(58\) 0.495790 0.0651005
\(59\) 9.45890 1.23144 0.615722 0.787964i \(-0.288865\pi\)
0.615722 + 0.787964i \(0.288865\pi\)
\(60\) 6.75188 0.871664
\(61\) −1.15697 −0.148135 −0.0740675 0.997253i \(-0.523598\pi\)
−0.0740675 + 0.997253i \(0.523598\pi\)
\(62\) 1.38837 0.176323
\(63\) −4.33946 −0.546720
\(64\) −6.33889 −0.792361
\(65\) −0.934889 −0.115959
\(66\) 0 0
\(67\) 2.53651 0.309883 0.154942 0.987924i \(-0.450481\pi\)
0.154942 + 0.987924i \(0.450481\pi\)
\(68\) 11.5616 1.40205
\(69\) −6.72739 −0.809883
\(70\) 4.05691 0.484894
\(71\) 8.03442 0.953510 0.476755 0.879036i \(-0.341813\pi\)
0.476755 + 0.879036i \(0.341813\pi\)
\(72\) 1.04916 0.123645
\(73\) −5.93529 −0.694673 −0.347337 0.937741i \(-0.612914\pi\)
−0.347337 + 0.937741i \(0.612914\pi\)
\(74\) −2.15442 −0.250446
\(75\) −7.25539 −0.837781
\(76\) −1.92868 −0.221235
\(77\) 0 0
\(78\) −0.0713170 −0.00807506
\(79\) 8.04694 0.905351 0.452676 0.891675i \(-0.350470\pi\)
0.452676 + 0.891675i \(0.350470\pi\)
\(80\) 12.5229 1.40010
\(81\) 1.00000 0.111111
\(82\) −2.90923 −0.321271
\(83\) −5.90959 −0.648661 −0.324331 0.945944i \(-0.605139\pi\)
−0.324331 + 0.945944i \(0.605139\pi\)
\(84\) −8.36944 −0.913180
\(85\) −20.9855 −2.27620
\(86\) 2.41807 0.260747
\(87\) 1.85653 0.199041
\(88\) 0 0
\(89\) 7.54793 0.800079 0.400040 0.916498i \(-0.368996\pi\)
0.400040 + 0.916498i \(0.368996\pi\)
\(90\) −0.934889 −0.0985460
\(91\) 1.15886 0.121482
\(92\) −12.9750 −1.35274
\(93\) 5.19887 0.539098
\(94\) 1.45169 0.149730
\(95\) 3.50077 0.359171
\(96\) 3.05362 0.311659
\(97\) −18.5499 −1.88346 −0.941730 0.336369i \(-0.890801\pi\)
−0.941730 + 0.336369i \(0.890801\pi\)
\(98\) −3.15947 −0.319154
\(99\) 0 0
\(100\) −13.9934 −1.39934
\(101\) 11.8791 1.18201 0.591005 0.806668i \(-0.298731\pi\)
0.591005 + 0.806668i \(0.298731\pi\)
\(102\) −1.60086 −0.158509
\(103\) −17.4360 −1.71802 −0.859011 0.511958i \(-0.828920\pi\)
−0.859011 + 0.511958i \(0.828920\pi\)
\(104\) −0.280182 −0.0274741
\(105\) 15.1914 1.48253
\(106\) 1.48174 0.143919
\(107\) −2.12558 −0.205487 −0.102744 0.994708i \(-0.532762\pi\)
−0.102744 + 0.994708i \(0.532762\pi\)
\(108\) 1.92868 0.185588
\(109\) 10.4849 1.00427 0.502135 0.864789i \(-0.332548\pi\)
0.502135 + 0.864789i \(0.332548\pi\)
\(110\) 0 0
\(111\) −8.06741 −0.765724
\(112\) −15.5230 −1.46679
\(113\) 8.34370 0.784909 0.392454 0.919771i \(-0.371626\pi\)
0.392454 + 0.919771i \(0.371626\pi\)
\(114\) 0.267052 0.0250118
\(115\) 23.5511 2.19615
\(116\) 3.58065 0.332455
\(117\) −0.267052 −0.0246890
\(118\) −2.52602 −0.232539
\(119\) 26.0131 2.38462
\(120\) −3.67288 −0.335287
\(121\) 0 0
\(122\) 0.308972 0.0279730
\(123\) −10.8939 −0.982266
\(124\) 10.0270 0.900449
\(125\) 7.89562 0.706206
\(126\) 1.15886 0.103240
\(127\) −16.1705 −1.43490 −0.717451 0.696609i \(-0.754691\pi\)
−0.717451 + 0.696609i \(0.754691\pi\)
\(128\) 7.80007 0.689435
\(129\) 9.05466 0.797219
\(130\) 0.249664 0.0218970
\(131\) 16.2061 1.41593 0.707967 0.706245i \(-0.249613\pi\)
0.707967 + 0.706245i \(0.249613\pi\)
\(132\) 0 0
\(133\) −4.33946 −0.376279
\(134\) −0.677380 −0.0585167
\(135\) −3.50077 −0.301298
\(136\) −6.28927 −0.539300
\(137\) −13.3427 −1.13994 −0.569970 0.821665i \(-0.693045\pi\)
−0.569970 + 0.821665i \(0.693045\pi\)
\(138\) 1.79657 0.152934
\(139\) −10.9931 −0.932420 −0.466210 0.884674i \(-0.654381\pi\)
−0.466210 + 0.884674i \(0.654381\pi\)
\(140\) 29.2995 2.47626
\(141\) 5.43596 0.457791
\(142\) −2.14561 −0.180056
\(143\) 0 0
\(144\) 3.57718 0.298099
\(145\) −6.49928 −0.539736
\(146\) 1.58503 0.131178
\(147\) −11.8309 −0.975795
\(148\) −15.5595 −1.27898
\(149\) −2.31790 −0.189890 −0.0949448 0.995483i \(-0.530267\pi\)
−0.0949448 + 0.995483i \(0.530267\pi\)
\(150\) 1.93757 0.158202
\(151\) −5.58536 −0.454530 −0.227265 0.973833i \(-0.572978\pi\)
−0.227265 + 0.973833i \(0.572978\pi\)
\(152\) 1.04916 0.0850985
\(153\) −5.99455 −0.484631
\(154\) 0 0
\(155\) −18.2001 −1.46186
\(156\) −0.515059 −0.0412378
\(157\) 4.46648 0.356464 0.178232 0.983989i \(-0.442962\pi\)
0.178232 + 0.983989i \(0.442962\pi\)
\(158\) −2.14895 −0.170962
\(159\) 5.54849 0.440024
\(160\) −10.6900 −0.845122
\(161\) −29.1932 −2.30075
\(162\) −0.267052 −0.0209816
\(163\) −14.7741 −1.15720 −0.578598 0.815613i \(-0.696400\pi\)
−0.578598 + 0.815613i \(0.696400\pi\)
\(164\) −21.0108 −1.64067
\(165\) 0 0
\(166\) 1.57817 0.122490
\(167\) 8.42779 0.652162 0.326081 0.945342i \(-0.394272\pi\)
0.326081 + 0.945342i \(0.394272\pi\)
\(168\) 4.55280 0.351256
\(169\) −12.9287 −0.994514
\(170\) 5.60424 0.429826
\(171\) 1.00000 0.0764719
\(172\) 17.4636 1.33159
\(173\) 1.00425 0.0763515 0.0381758 0.999271i \(-0.487845\pi\)
0.0381758 + 0.999271i \(0.487845\pi\)
\(174\) −0.495790 −0.0375858
\(175\) −31.4845 −2.38000
\(176\) 0 0
\(177\) −9.45890 −0.710974
\(178\) −2.01569 −0.151083
\(179\) −12.4522 −0.930724 −0.465362 0.885120i \(-0.654076\pi\)
−0.465362 + 0.885120i \(0.654076\pi\)
\(180\) −6.75188 −0.503255
\(181\) −13.8256 −1.02765 −0.513824 0.857896i \(-0.671772\pi\)
−0.513824 + 0.857896i \(0.671772\pi\)
\(182\) −0.309477 −0.0229400
\(183\) 1.15697 0.0855258
\(184\) 7.05814 0.520333
\(185\) 28.2421 2.07640
\(186\) −1.38837 −0.101800
\(187\) 0 0
\(188\) 10.4842 0.764642
\(189\) 4.33946 0.315649
\(190\) −0.934889 −0.0678240
\(191\) −17.8558 −1.29200 −0.646002 0.763336i \(-0.723560\pi\)
−0.646002 + 0.763336i \(0.723560\pi\)
\(192\) 6.33889 0.457470
\(193\) 25.8076 1.85767 0.928835 0.370493i \(-0.120811\pi\)
0.928835 + 0.370493i \(0.120811\pi\)
\(194\) 4.95380 0.355662
\(195\) 0.934889 0.0669488
\(196\) −22.8180 −1.62986
\(197\) 6.93992 0.494449 0.247224 0.968958i \(-0.420482\pi\)
0.247224 + 0.968958i \(0.420482\pi\)
\(198\) 0 0
\(199\) 17.3605 1.23065 0.615325 0.788274i \(-0.289025\pi\)
0.615325 + 0.788274i \(0.289025\pi\)
\(200\) 7.61210 0.538257
\(201\) −2.53651 −0.178911
\(202\) −3.17233 −0.223205
\(203\) 8.05632 0.565443
\(204\) −11.5616 −0.809473
\(205\) 38.1369 2.66360
\(206\) 4.65633 0.324422
\(207\) 6.72739 0.467586
\(208\) −0.955296 −0.0662378
\(209\) 0 0
\(210\) −4.05691 −0.279954
\(211\) −14.4749 −0.996494 −0.498247 0.867035i \(-0.666023\pi\)
−0.498247 + 0.867035i \(0.666023\pi\)
\(212\) 10.7013 0.734967
\(213\) −8.03442 −0.550510
\(214\) 0.567640 0.0388031
\(215\) −31.6983 −2.16181
\(216\) −1.04916 −0.0713866
\(217\) 22.5603 1.53149
\(218\) −2.80001 −0.189641
\(219\) 5.93529 0.401070
\(220\) 0 0
\(221\) 1.60086 0.107685
\(222\) 2.15442 0.144595
\(223\) −4.53976 −0.304005 −0.152002 0.988380i \(-0.548572\pi\)
−0.152002 + 0.988380i \(0.548572\pi\)
\(224\) 13.2511 0.885374
\(225\) 7.25539 0.483693
\(226\) −2.22820 −0.148218
\(227\) −4.69587 −0.311676 −0.155838 0.987783i \(-0.549808\pi\)
−0.155838 + 0.987783i \(0.549808\pi\)
\(228\) 1.92868 0.127730
\(229\) 16.3432 1.07999 0.539995 0.841668i \(-0.318426\pi\)
0.539995 + 0.841668i \(0.318426\pi\)
\(230\) −6.28937 −0.414709
\(231\) 0 0
\(232\) −1.94780 −0.127880
\(233\) 29.6495 1.94240 0.971201 0.238261i \(-0.0765772\pi\)
0.971201 + 0.238261i \(0.0765772\pi\)
\(234\) 0.0713170 0.00466214
\(235\) −19.0301 −1.24138
\(236\) −18.2432 −1.18753
\(237\) −8.04694 −0.522705
\(238\) −6.94686 −0.450298
\(239\) 5.32010 0.344129 0.172064 0.985086i \(-0.444956\pi\)
0.172064 + 0.985086i \(0.444956\pi\)
\(240\) −12.5229 −0.808350
\(241\) −20.1099 −1.29539 −0.647695 0.761900i \(-0.724267\pi\)
−0.647695 + 0.761900i \(0.724267\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 2.23143 0.142853
\(245\) 41.4172 2.64605
\(246\) 2.90923 0.185486
\(247\) −0.267052 −0.0169921
\(248\) −5.45447 −0.346359
\(249\) 5.90959 0.374505
\(250\) −2.10854 −0.133356
\(251\) 19.7230 1.24490 0.622452 0.782658i \(-0.286137\pi\)
0.622452 + 0.782658i \(0.286137\pi\)
\(252\) 8.36944 0.527225
\(253\) 0 0
\(254\) 4.31838 0.270959
\(255\) 20.9855 1.31417
\(256\) 10.5948 0.662172
\(257\) 0.715435 0.0446276 0.0223138 0.999751i \(-0.492897\pi\)
0.0223138 + 0.999751i \(0.492897\pi\)
\(258\) −2.41807 −0.150542
\(259\) −35.0082 −2.17530
\(260\) 1.80311 0.111824
\(261\) −1.85653 −0.114916
\(262\) −4.32788 −0.267377
\(263\) −4.21464 −0.259886 −0.129943 0.991521i \(-0.541479\pi\)
−0.129943 + 0.991521i \(0.541479\pi\)
\(264\) 0 0
\(265\) −19.4240 −1.19321
\(266\) 1.15886 0.0710544
\(267\) −7.54793 −0.461926
\(268\) −4.89212 −0.298834
\(269\) 13.5913 0.828674 0.414337 0.910123i \(-0.364013\pi\)
0.414337 + 0.910123i \(0.364013\pi\)
\(270\) 0.934889 0.0568956
\(271\) −8.12563 −0.493597 −0.246798 0.969067i \(-0.579379\pi\)
−0.246798 + 0.969067i \(0.579379\pi\)
\(272\) −21.4436 −1.30021
\(273\) −1.15886 −0.0701376
\(274\) 3.56319 0.215260
\(275\) 0 0
\(276\) 12.9750 0.781004
\(277\) −14.4741 −0.869667 −0.434833 0.900511i \(-0.643193\pi\)
−0.434833 + 0.900511i \(0.643193\pi\)
\(278\) 2.93573 0.176073
\(279\) −5.19887 −0.311248
\(280\) −15.9383 −0.952497
\(281\) −20.2636 −1.20882 −0.604412 0.796672i \(-0.706592\pi\)
−0.604412 + 0.796672i \(0.706592\pi\)
\(282\) −1.45169 −0.0864467
\(283\) −22.9360 −1.36341 −0.681703 0.731629i \(-0.738760\pi\)
−0.681703 + 0.731629i \(0.738760\pi\)
\(284\) −15.4959 −0.919510
\(285\) −3.50077 −0.207368
\(286\) 0 0
\(287\) −47.2734 −2.79046
\(288\) −3.05362 −0.179937
\(289\) 18.9346 1.11380
\(290\) 1.73565 0.101921
\(291\) 18.5499 1.08742
\(292\) 11.4473 0.669902
\(293\) −2.65708 −0.155229 −0.0776143 0.996983i \(-0.524730\pi\)
−0.0776143 + 0.996983i \(0.524730\pi\)
\(294\) 3.15947 0.184264
\(295\) 33.1134 1.92794
\(296\) 8.46404 0.491962
\(297\) 0 0
\(298\) 0.619000 0.0358577
\(299\) −1.79657 −0.103898
\(300\) 13.9934 0.807907
\(301\) 39.2923 2.26477
\(302\) 1.49158 0.0858311
\(303\) −11.8791 −0.682434
\(304\) 3.57718 0.205166
\(305\) −4.05029 −0.231919
\(306\) 1.60086 0.0915150
\(307\) −2.72869 −0.155735 −0.0778673 0.996964i \(-0.524811\pi\)
−0.0778673 + 0.996964i \(0.524811\pi\)
\(308\) 0 0
\(309\) 17.4360 0.991900
\(310\) 4.86037 0.276050
\(311\) −34.2024 −1.93944 −0.969721 0.244214i \(-0.921470\pi\)
−0.969721 + 0.244214i \(0.921470\pi\)
\(312\) 0.280182 0.0158622
\(313\) 0.308011 0.0174098 0.00870490 0.999962i \(-0.497229\pi\)
0.00870490 + 0.999962i \(0.497229\pi\)
\(314\) −1.19278 −0.0673127
\(315\) −15.1914 −0.855941
\(316\) −15.5200 −0.873068
\(317\) 6.89031 0.386998 0.193499 0.981100i \(-0.438016\pi\)
0.193499 + 0.981100i \(0.438016\pi\)
\(318\) −1.48174 −0.0830918
\(319\) 0 0
\(320\) −22.1910 −1.24051
\(321\) 2.12558 0.118638
\(322\) 7.79612 0.434461
\(323\) −5.99455 −0.333546
\(324\) −1.92868 −0.107149
\(325\) −1.93757 −0.107477
\(326\) 3.94545 0.218518
\(327\) −10.4849 −0.579816
\(328\) 11.4294 0.631085
\(329\) 23.5891 1.30051
\(330\) 0 0
\(331\) −12.4542 −0.684547 −0.342274 0.939600i \(-0.611197\pi\)
−0.342274 + 0.939600i \(0.611197\pi\)
\(332\) 11.3977 0.625531
\(333\) 8.06741 0.442091
\(334\) −2.25066 −0.123151
\(335\) 8.87972 0.485151
\(336\) 15.5230 0.846851
\(337\) 8.79181 0.478920 0.239460 0.970906i \(-0.423030\pi\)
0.239460 + 0.970906i \(0.423030\pi\)
\(338\) 3.45264 0.187799
\(339\) −8.34370 −0.453167
\(340\) 40.4745 2.19504
\(341\) 0 0
\(342\) −0.267052 −0.0144405
\(343\) −20.9634 −1.13192
\(344\) −9.49983 −0.512197
\(345\) −23.5511 −1.26795
\(346\) −0.268187 −0.0144178
\(347\) −7.07490 −0.379801 −0.189900 0.981803i \(-0.560816\pi\)
−0.189900 + 0.981803i \(0.560816\pi\)
\(348\) −3.58065 −0.191943
\(349\) 0.331115 0.0177242 0.00886208 0.999961i \(-0.497179\pi\)
0.00886208 + 0.999961i \(0.497179\pi\)
\(350\) 8.40800 0.449427
\(351\) 0.267052 0.0142542
\(352\) 0 0
\(353\) −27.1334 −1.44417 −0.722083 0.691806i \(-0.756815\pi\)
−0.722083 + 0.691806i \(0.756815\pi\)
\(354\) 2.52602 0.134257
\(355\) 28.1267 1.49281
\(356\) −14.5576 −0.771550
\(357\) −26.0131 −1.37676
\(358\) 3.32540 0.175753
\(359\) −26.7863 −1.41373 −0.706864 0.707350i \(-0.749891\pi\)
−0.706864 + 0.707350i \(0.749891\pi\)
\(360\) 3.67288 0.193578
\(361\) 1.00000 0.0526316
\(362\) 3.69216 0.194055
\(363\) 0 0
\(364\) −2.23508 −0.117150
\(365\) −20.7781 −1.08757
\(366\) −0.308972 −0.0161502
\(367\) 1.26596 0.0660825 0.0330412 0.999454i \(-0.489481\pi\)
0.0330412 + 0.999454i \(0.489481\pi\)
\(368\) 24.0651 1.25448
\(369\) 10.8939 0.567111
\(370\) −7.54213 −0.392097
\(371\) 24.0774 1.25004
\(372\) −10.0270 −0.519874
\(373\) −19.4350 −1.00630 −0.503152 0.864198i \(-0.667827\pi\)
−0.503152 + 0.864198i \(0.667827\pi\)
\(374\) 0 0
\(375\) −7.89562 −0.407728
\(376\) −5.70322 −0.294121
\(377\) 0.495790 0.0255345
\(378\) −1.15886 −0.0596055
\(379\) −29.2353 −1.50172 −0.750859 0.660462i \(-0.770360\pi\)
−0.750859 + 0.660462i \(0.770360\pi\)
\(380\) −6.75188 −0.346364
\(381\) 16.1705 0.828441
\(382\) 4.76845 0.243975
\(383\) 13.2862 0.678893 0.339446 0.940625i \(-0.389760\pi\)
0.339446 + 0.940625i \(0.389760\pi\)
\(384\) −7.80007 −0.398045
\(385\) 0 0
\(386\) −6.89198 −0.350792
\(387\) −9.05466 −0.460274
\(388\) 35.7769 1.81630
\(389\) −20.9644 −1.06294 −0.531468 0.847078i \(-0.678360\pi\)
−0.531468 + 0.847078i \(0.678360\pi\)
\(390\) −0.249664 −0.0126423
\(391\) −40.3277 −2.03946
\(392\) 12.4125 0.626928
\(393\) −16.2061 −0.817490
\(394\) −1.85332 −0.0933690
\(395\) 28.1705 1.41741
\(396\) 0 0
\(397\) −34.4498 −1.72898 −0.864492 0.502647i \(-0.832360\pi\)
−0.864492 + 0.502647i \(0.832360\pi\)
\(398\) −4.63615 −0.232389
\(399\) 4.33946 0.217245
\(400\) 25.9539 1.29769
\(401\) −18.8837 −0.943009 −0.471505 0.881864i \(-0.656289\pi\)
−0.471505 + 0.881864i \(0.656289\pi\)
\(402\) 0.677380 0.0337846
\(403\) 1.38837 0.0691597
\(404\) −22.9109 −1.13986
\(405\) 3.50077 0.173955
\(406\) −2.15146 −0.106775
\(407\) 0 0
\(408\) 6.28927 0.311365
\(409\) −29.6809 −1.46763 −0.733813 0.679352i \(-0.762261\pi\)
−0.733813 + 0.679352i \(0.762261\pi\)
\(410\) −10.1845 −0.502979
\(411\) 13.3427 0.658145
\(412\) 33.6285 1.65676
\(413\) −41.0465 −2.01977
\(414\) −1.79657 −0.0882964
\(415\) −20.6881 −1.01554
\(416\) 0.815478 0.0399821
\(417\) 10.9931 0.538333
\(418\) 0 0
\(419\) 13.0696 0.638492 0.319246 0.947672i \(-0.396570\pi\)
0.319246 + 0.947672i \(0.396570\pi\)
\(420\) −29.2995 −1.42967
\(421\) −26.5423 −1.29359 −0.646795 0.762663i \(-0.723891\pi\)
−0.646795 + 0.762663i \(0.723891\pi\)
\(422\) 3.86556 0.188173
\(423\) −5.43596 −0.264306
\(424\) −5.82128 −0.282706
\(425\) −43.4928 −2.10971
\(426\) 2.14561 0.103955
\(427\) 5.02063 0.242965
\(428\) 4.09956 0.198160
\(429\) 0 0
\(430\) 8.46511 0.408224
\(431\) −14.6053 −0.703512 −0.351756 0.936092i \(-0.614415\pi\)
−0.351756 + 0.936092i \(0.614415\pi\)
\(432\) −3.57718 −0.172107
\(433\) −8.58401 −0.412521 −0.206261 0.978497i \(-0.566129\pi\)
−0.206261 + 0.978497i \(0.566129\pi\)
\(434\) −6.02478 −0.289199
\(435\) 6.49928 0.311617
\(436\) −20.2220 −0.968459
\(437\) 6.72739 0.321815
\(438\) −1.58503 −0.0757358
\(439\) −11.5667 −0.552048 −0.276024 0.961151i \(-0.589017\pi\)
−0.276024 + 0.961151i \(0.589017\pi\)
\(440\) 0 0
\(441\) 11.8309 0.563376
\(442\) −0.427513 −0.0203347
\(443\) 37.5962 1.78625 0.893125 0.449809i \(-0.148508\pi\)
0.893125 + 0.449809i \(0.148508\pi\)
\(444\) 15.5595 0.738420
\(445\) 26.4236 1.25260
\(446\) 1.21235 0.0574066
\(447\) 2.31790 0.109633
\(448\) 27.5073 1.29960
\(449\) 27.5753 1.30136 0.650680 0.759352i \(-0.274484\pi\)
0.650680 + 0.759352i \(0.274484\pi\)
\(450\) −1.93757 −0.0913380
\(451\) 0 0
\(452\) −16.0923 −0.756920
\(453\) 5.58536 0.262423
\(454\) 1.25404 0.0588551
\(455\) 4.05691 0.190191
\(456\) −1.04916 −0.0491316
\(457\) 12.1594 0.568795 0.284397 0.958706i \(-0.408206\pi\)
0.284397 + 0.958706i \(0.408206\pi\)
\(458\) −4.36450 −0.203940
\(459\) 5.99455 0.279802
\(460\) −45.4225 −2.11784
\(461\) −34.1168 −1.58898 −0.794488 0.607279i \(-0.792261\pi\)
−0.794488 + 0.607279i \(0.792261\pi\)
\(462\) 0 0
\(463\) 38.7312 1.79999 0.899996 0.435898i \(-0.143569\pi\)
0.899996 + 0.435898i \(0.143569\pi\)
\(464\) −6.64114 −0.308307
\(465\) 18.2001 0.844007
\(466\) −7.91797 −0.366793
\(467\) −20.1371 −0.931832 −0.465916 0.884829i \(-0.654275\pi\)
−0.465916 + 0.884829i \(0.654275\pi\)
\(468\) 0.515059 0.0238086
\(469\) −11.0071 −0.508259
\(470\) 5.08202 0.234416
\(471\) −4.46648 −0.205805
\(472\) 9.92394 0.456786
\(473\) 0 0
\(474\) 2.14895 0.0987047
\(475\) 7.25539 0.332900
\(476\) −50.1710 −2.29958
\(477\) −5.54849 −0.254048
\(478\) −1.42075 −0.0649835
\(479\) −14.7177 −0.672467 −0.336234 0.941779i \(-0.609153\pi\)
−0.336234 + 0.941779i \(0.609153\pi\)
\(480\) 10.6900 0.487931
\(481\) −2.15442 −0.0982331
\(482\) 5.37039 0.244614
\(483\) 29.1932 1.32834
\(484\) 0 0
\(485\) −64.9391 −2.94873
\(486\) 0.267052 0.0121137
\(487\) −33.3368 −1.51064 −0.755318 0.655359i \(-0.772518\pi\)
−0.755318 + 0.655359i \(0.772518\pi\)
\(488\) −1.21385 −0.0549486
\(489\) 14.7741 0.668107
\(490\) −11.0606 −0.499666
\(491\) −3.67946 −0.166052 −0.0830259 0.996547i \(-0.526458\pi\)
−0.0830259 + 0.996547i \(0.526458\pi\)
\(492\) 21.0108 0.947240
\(493\) 11.1290 0.501227
\(494\) 0.0713170 0.00320870
\(495\) 0 0
\(496\) −18.5973 −0.835044
\(497\) −34.8650 −1.56391
\(498\) −1.57817 −0.0707195
\(499\) −20.5391 −0.919454 −0.459727 0.888060i \(-0.652053\pi\)
−0.459727 + 0.888060i \(0.652053\pi\)
\(500\) −15.2281 −0.681023
\(501\) −8.42779 −0.376526
\(502\) −5.26707 −0.235081
\(503\) −6.16314 −0.274801 −0.137400 0.990516i \(-0.543875\pi\)
−0.137400 + 0.990516i \(0.543875\pi\)
\(504\) −4.55280 −0.202798
\(505\) 41.5859 1.85055
\(506\) 0 0
\(507\) 12.9287 0.574183
\(508\) 31.1878 1.38373
\(509\) 22.3506 0.990671 0.495336 0.868702i \(-0.335045\pi\)
0.495336 + 0.868702i \(0.335045\pi\)
\(510\) −5.60424 −0.248160
\(511\) 25.7559 1.13938
\(512\) −18.4295 −0.814476
\(513\) −1.00000 −0.0441511
\(514\) −0.191059 −0.00842724
\(515\) −61.0395 −2.68972
\(516\) −17.4636 −0.768791
\(517\) 0 0
\(518\) 9.34902 0.410772
\(519\) −1.00425 −0.0440816
\(520\) −0.980853 −0.0430132
\(521\) 15.0243 0.658225 0.329112 0.944291i \(-0.393251\pi\)
0.329112 + 0.944291i \(0.393251\pi\)
\(522\) 0.495790 0.0217002
\(523\) −33.1908 −1.45133 −0.725665 0.688048i \(-0.758468\pi\)
−0.725665 + 0.688048i \(0.758468\pi\)
\(524\) −31.2564 −1.36544
\(525\) 31.4845 1.37410
\(526\) 1.12553 0.0490754
\(527\) 31.1649 1.35756
\(528\) 0 0
\(529\) 22.2578 0.967732
\(530\) 5.18723 0.225319
\(531\) 9.45890 0.410481
\(532\) 8.36944 0.362861
\(533\) −2.90923 −0.126013
\(534\) 2.01569 0.0872276
\(535\) −7.44115 −0.321709
\(536\) 2.66121 0.114947
\(537\) 12.4522 0.537354
\(538\) −3.62958 −0.156482
\(539\) 0 0
\(540\) 6.75188 0.290555
\(541\) 44.0971 1.89588 0.947942 0.318443i \(-0.103160\pi\)
0.947942 + 0.318443i \(0.103160\pi\)
\(542\) 2.16997 0.0932081
\(543\) 13.8256 0.593313
\(544\) 18.3051 0.784825
\(545\) 36.7052 1.57228
\(546\) 0.309477 0.0132444
\(547\) 16.5107 0.705946 0.352973 0.935634i \(-0.385171\pi\)
0.352973 + 0.935634i \(0.385171\pi\)
\(548\) 25.7338 1.09929
\(549\) −1.15697 −0.0493784
\(550\) 0 0
\(551\) −1.85653 −0.0790908
\(552\) −7.05814 −0.300414
\(553\) −34.9193 −1.48492
\(554\) 3.86535 0.164223
\(555\) −28.2421 −1.19881
\(556\) 21.2022 0.899171
\(557\) −6.37629 −0.270172 −0.135086 0.990834i \(-0.543131\pi\)
−0.135086 + 0.990834i \(0.543131\pi\)
\(558\) 1.38837 0.0587744
\(559\) 2.41807 0.102273
\(560\) −54.3426 −2.29639
\(561\) 0 0
\(562\) 5.41144 0.228268
\(563\) 10.8744 0.458300 0.229150 0.973391i \(-0.426405\pi\)
0.229150 + 0.973391i \(0.426405\pi\)
\(564\) −10.4842 −0.441466
\(565\) 29.2094 1.22885
\(566\) 6.12513 0.257458
\(567\) −4.33946 −0.182240
\(568\) 8.42943 0.353691
\(569\) −6.78459 −0.284425 −0.142212 0.989836i \(-0.545422\pi\)
−0.142212 + 0.989836i \(0.545422\pi\)
\(570\) 0.934889 0.0391582
\(571\) −32.5219 −1.36100 −0.680500 0.732749i \(-0.738237\pi\)
−0.680500 + 0.732749i \(0.738237\pi\)
\(572\) 0 0
\(573\) 17.8558 0.745938
\(574\) 12.6245 0.526936
\(575\) 48.8099 2.03551
\(576\) −6.33889 −0.264120
\(577\) 9.80306 0.408107 0.204053 0.978960i \(-0.434588\pi\)
0.204053 + 0.978960i \(0.434588\pi\)
\(578\) −5.05653 −0.210324
\(579\) −25.8076 −1.07253
\(580\) 12.5350 0.520490
\(581\) 25.6444 1.06391
\(582\) −4.95380 −0.205342
\(583\) 0 0
\(584\) −6.22709 −0.257679
\(585\) −0.934889 −0.0386529
\(586\) 0.709581 0.0293125
\(587\) 0.207231 0.00855334 0.00427667 0.999991i \(-0.498639\pi\)
0.00427667 + 0.999991i \(0.498639\pi\)
\(588\) 22.8180 0.941000
\(589\) −5.19887 −0.214216
\(590\) −8.84302 −0.364061
\(591\) −6.93992 −0.285470
\(592\) 28.8586 1.18608
\(593\) −14.2272 −0.584240 −0.292120 0.956382i \(-0.594361\pi\)
−0.292120 + 0.956382i \(0.594361\pi\)
\(594\) 0 0
\(595\) 91.0658 3.73334
\(596\) 4.47049 0.183118
\(597\) −17.3605 −0.710516
\(598\) 0.479778 0.0196196
\(599\) −4.27608 −0.174716 −0.0873579 0.996177i \(-0.527842\pi\)
−0.0873579 + 0.996177i \(0.527842\pi\)
\(600\) −7.61210 −0.310763
\(601\) −38.2289 −1.55939 −0.779696 0.626159i \(-0.784626\pi\)
−0.779696 + 0.626159i \(0.784626\pi\)
\(602\) −10.4931 −0.427667
\(603\) 2.53651 0.103294
\(604\) 10.7724 0.438323
\(605\) 0 0
\(606\) 3.17233 0.128867
\(607\) −45.0362 −1.82796 −0.913982 0.405754i \(-0.867009\pi\)
−0.913982 + 0.405754i \(0.867009\pi\)
\(608\) −3.05362 −0.123841
\(609\) −8.05632 −0.326459
\(610\) 1.08164 0.0437944
\(611\) 1.45169 0.0587290
\(612\) 11.5616 0.467349
\(613\) 14.8215 0.598633 0.299316 0.954154i \(-0.403241\pi\)
0.299316 + 0.954154i \(0.403241\pi\)
\(614\) 0.728703 0.0294081
\(615\) −38.1369 −1.53783
\(616\) 0 0
\(617\) 6.22743 0.250707 0.125353 0.992112i \(-0.459994\pi\)
0.125353 + 0.992112i \(0.459994\pi\)
\(618\) −4.65633 −0.187305
\(619\) 10.2682 0.412712 0.206356 0.978477i \(-0.433839\pi\)
0.206356 + 0.978477i \(0.433839\pi\)
\(620\) 35.1021 1.40974
\(621\) −6.72739 −0.269961
\(622\) 9.13385 0.366234
\(623\) −32.7539 −1.31226
\(624\) 0.955296 0.0382424
\(625\) −8.63622 −0.345449
\(626\) −0.0822551 −0.00328757
\(627\) 0 0
\(628\) −8.61442 −0.343753
\(629\) −48.3605 −1.92826
\(630\) 4.05691 0.161631
\(631\) −7.49717 −0.298458 −0.149229 0.988803i \(-0.547679\pi\)
−0.149229 + 0.988803i \(0.547679\pi\)
\(632\) 8.44256 0.335827
\(633\) 14.4749 0.575326
\(634\) −1.84007 −0.0730786
\(635\) −56.6093 −2.24647
\(636\) −10.7013 −0.424333
\(637\) −3.15947 −0.125183
\(638\) 0 0
\(639\) 8.03442 0.317837
\(640\) 27.3062 1.07937
\(641\) −22.7799 −0.899753 −0.449877 0.893091i \(-0.648532\pi\)
−0.449877 + 0.893091i \(0.648532\pi\)
\(642\) −0.567640 −0.0224030
\(643\) 12.8646 0.507331 0.253665 0.967292i \(-0.418364\pi\)
0.253665 + 0.967292i \(0.418364\pi\)
\(644\) 56.3045 2.21871
\(645\) 31.6983 1.24812
\(646\) 1.60086 0.0629849
\(647\) −20.9538 −0.823777 −0.411889 0.911234i \(-0.635131\pi\)
−0.411889 + 0.911234i \(0.635131\pi\)
\(648\) 1.04916 0.0412151
\(649\) 0 0
\(650\) 0.517433 0.0202954
\(651\) −22.5603 −0.884207
\(652\) 28.4945 1.11593
\(653\) 6.09467 0.238503 0.119251 0.992864i \(-0.461951\pi\)
0.119251 + 0.992864i \(0.461951\pi\)
\(654\) 2.80001 0.109489
\(655\) 56.7339 2.21678
\(656\) 38.9693 1.52150
\(657\) −5.93529 −0.231558
\(658\) −6.29953 −0.245581
\(659\) 31.3776 1.22230 0.611149 0.791515i \(-0.290707\pi\)
0.611149 + 0.791515i \(0.290707\pi\)
\(660\) 0 0
\(661\) 3.92352 0.152607 0.0763036 0.997085i \(-0.475688\pi\)
0.0763036 + 0.997085i \(0.475688\pi\)
\(662\) 3.32594 0.129266
\(663\) −1.60086 −0.0621722
\(664\) −6.20013 −0.240612
\(665\) −15.1914 −0.589099
\(666\) −2.15442 −0.0834821
\(667\) −12.4896 −0.483599
\(668\) −16.2545 −0.628907
\(669\) 4.53976 0.175517
\(670\) −2.37135 −0.0916133
\(671\) 0 0
\(672\) −13.2511 −0.511171
\(673\) 10.1222 0.390182 0.195091 0.980785i \(-0.437500\pi\)
0.195091 + 0.980785i \(0.437500\pi\)
\(674\) −2.34787 −0.0904367
\(675\) −7.25539 −0.279260
\(676\) 24.9353 0.959051
\(677\) 13.5448 0.520568 0.260284 0.965532i \(-0.416184\pi\)
0.260284 + 0.965532i \(0.416184\pi\)
\(678\) 2.22820 0.0855737
\(679\) 80.4966 3.08918
\(680\) −22.0173 −0.844324
\(681\) 4.69587 0.179946
\(682\) 0 0
\(683\) 30.4131 1.16373 0.581863 0.813287i \(-0.302324\pi\)
0.581863 + 0.813287i \(0.302324\pi\)
\(684\) −1.92868 −0.0737450
\(685\) −46.7096 −1.78468
\(686\) 5.59833 0.213745
\(687\) −16.3432 −0.623533
\(688\) −32.3902 −1.23486
\(689\) 1.48174 0.0564497
\(690\) 6.28937 0.239432
\(691\) −44.3096 −1.68562 −0.842809 0.538213i \(-0.819100\pi\)
−0.842809 + 0.538213i \(0.819100\pi\)
\(692\) −1.93688 −0.0736290
\(693\) 0 0
\(694\) 1.88937 0.0717195
\(695\) −38.4842 −1.45979
\(696\) 1.94780 0.0738313
\(697\) −65.3037 −2.47356
\(698\) −0.0884250 −0.00334693
\(699\) −29.6495 −1.12145
\(700\) 60.7236 2.29514
\(701\) −40.8688 −1.54359 −0.771797 0.635870i \(-0.780642\pi\)
−0.771797 + 0.635870i \(0.780642\pi\)
\(702\) −0.0713170 −0.00269169
\(703\) 8.06741 0.304268
\(704\) 0 0
\(705\) 19.0301 0.716713
\(706\) 7.24605 0.272709
\(707\) −51.5487 −1.93869
\(708\) 18.2432 0.685622
\(709\) 7.33348 0.275415 0.137707 0.990473i \(-0.456027\pi\)
0.137707 + 0.990473i \(0.456027\pi\)
\(710\) −7.51129 −0.281894
\(711\) 8.04694 0.301784
\(712\) 7.91902 0.296778
\(713\) −34.9749 −1.30982
\(714\) 6.94686 0.259980
\(715\) 0 0
\(716\) 24.0164 0.897536
\(717\) −5.32010 −0.198683
\(718\) 7.15335 0.266961
\(719\) −1.12757 −0.0420512 −0.0210256 0.999779i \(-0.506693\pi\)
−0.0210256 + 0.999779i \(0.506693\pi\)
\(720\) 12.5229 0.466701
\(721\) 75.6628 2.81783
\(722\) −0.267052 −0.00993866
\(723\) 20.1099 0.747894
\(724\) 26.6652 0.991004
\(725\) −13.4698 −0.500257
\(726\) 0 0
\(727\) −16.7692 −0.621934 −0.310967 0.950421i \(-0.600653\pi\)
−0.310967 + 0.950421i \(0.600653\pi\)
\(728\) 1.21584 0.0450619
\(729\) 1.00000 0.0370370
\(730\) 5.54884 0.205372
\(731\) 54.2786 2.00757
\(732\) −2.23143 −0.0824761
\(733\) 39.0705 1.44310 0.721551 0.692362i \(-0.243430\pi\)
0.721551 + 0.692362i \(0.243430\pi\)
\(734\) −0.338077 −0.0124787
\(735\) −41.4172 −1.52770
\(736\) −20.5429 −0.757223
\(737\) 0 0
\(738\) −2.90923 −0.107090
\(739\) 30.6693 1.12819 0.564094 0.825711i \(-0.309226\pi\)
0.564094 + 0.825711i \(0.309226\pi\)
\(740\) −54.4701 −2.00236
\(741\) 0.267052 0.00981042
\(742\) −6.42994 −0.236051
\(743\) −45.1549 −1.65657 −0.828286 0.560306i \(-0.810684\pi\)
−0.828286 + 0.560306i \(0.810684\pi\)
\(744\) 5.45447 0.199971
\(745\) −8.11443 −0.297290
\(746\) 5.19016 0.190025
\(747\) −5.90959 −0.216220
\(748\) 0 0
\(749\) 9.22384 0.337032
\(750\) 2.10854 0.0769932
\(751\) 17.3991 0.634902 0.317451 0.948275i \(-0.397173\pi\)
0.317451 + 0.948275i \(0.397173\pi\)
\(752\) −19.4454 −0.709102
\(753\) −19.7230 −0.718745
\(754\) −0.132402 −0.00482180
\(755\) −19.5531 −0.711609
\(756\) −8.36944 −0.304393
\(757\) 15.9807 0.580827 0.290414 0.956901i \(-0.406207\pi\)
0.290414 + 0.956901i \(0.406207\pi\)
\(758\) 7.80737 0.283576
\(759\) 0 0
\(760\) 3.67288 0.133229
\(761\) −40.9778 −1.48544 −0.742721 0.669601i \(-0.766465\pi\)
−0.742721 + 0.669601i \(0.766465\pi\)
\(762\) −4.31838 −0.156438
\(763\) −45.4987 −1.64716
\(764\) 34.4383 1.24593
\(765\) −20.9855 −0.758734
\(766\) −3.54811 −0.128198
\(767\) −2.52602 −0.0912094
\(768\) −10.5948 −0.382305
\(769\) −22.3231 −0.804991 −0.402496 0.915422i \(-0.631857\pi\)
−0.402496 + 0.915422i \(0.631857\pi\)
\(770\) 0 0
\(771\) −0.715435 −0.0257658
\(772\) −49.7747 −1.79143
\(773\) −47.2234 −1.69851 −0.849253 0.527986i \(-0.822947\pi\)
−0.849253 + 0.527986i \(0.822947\pi\)
\(774\) 2.41807 0.0869157
\(775\) −37.7199 −1.35494
\(776\) −19.4619 −0.698643
\(777\) 35.0082 1.25591
\(778\) 5.59859 0.200719
\(779\) 10.8939 0.390313
\(780\) −1.80311 −0.0645615
\(781\) 0 0
\(782\) 10.7696 0.385120
\(783\) 1.85653 0.0663469
\(784\) 42.3213 1.51147
\(785\) 15.6361 0.558077
\(786\) 4.32788 0.154370
\(787\) 39.1052 1.39395 0.696975 0.717095i \(-0.254529\pi\)
0.696975 + 0.717095i \(0.254529\pi\)
\(788\) −13.3849 −0.476817
\(789\) 4.21464 0.150045
\(790\) −7.52299 −0.267656
\(791\) −36.2071 −1.28738
\(792\) 0 0
\(793\) 0.308972 0.0109719
\(794\) 9.19989 0.326492
\(795\) 19.4240 0.688898
\(796\) −33.4828 −1.18677
\(797\) −21.3798 −0.757310 −0.378655 0.925538i \(-0.623613\pi\)
−0.378655 + 0.925538i \(0.623613\pi\)
\(798\) −1.15886 −0.0410233
\(799\) 32.5861 1.15281
\(800\) −22.1553 −0.783306
\(801\) 7.54793 0.266693
\(802\) 5.04295 0.178073
\(803\) 0 0
\(804\) 4.89212 0.172532
\(805\) −102.199 −3.60204
\(806\) −0.370768 −0.0130597
\(807\) −13.5913 −0.478435
\(808\) 12.4631 0.438450
\(809\) 55.5057 1.95148 0.975738 0.218940i \(-0.0702600\pi\)
0.975738 + 0.218940i \(0.0702600\pi\)
\(810\) −0.934889 −0.0328487
\(811\) −50.0379 −1.75707 −0.878534 0.477681i \(-0.841478\pi\)
−0.878534 + 0.477681i \(0.841478\pi\)
\(812\) −15.5381 −0.545280
\(813\) 8.12563 0.284978
\(814\) 0 0
\(815\) −51.7207 −1.81170
\(816\) 21.4436 0.750676
\(817\) −9.05466 −0.316783
\(818\) 7.92635 0.277138
\(819\) 1.15886 0.0404939
\(820\) −73.5540 −2.56862
\(821\) −7.66181 −0.267399 −0.133699 0.991022i \(-0.542686\pi\)
−0.133699 + 0.991022i \(0.542686\pi\)
\(822\) −3.56319 −0.124280
\(823\) 32.3144 1.12641 0.563205 0.826317i \(-0.309568\pi\)
0.563205 + 0.826317i \(0.309568\pi\)
\(824\) −18.2932 −0.637275
\(825\) 0 0
\(826\) 10.9616 0.381402
\(827\) 12.5102 0.435021 0.217510 0.976058i \(-0.430206\pi\)
0.217510 + 0.976058i \(0.430206\pi\)
\(828\) −12.9750 −0.450913
\(829\) −20.0992 −0.698073 −0.349036 0.937109i \(-0.613491\pi\)
−0.349036 + 0.937109i \(0.613491\pi\)
\(830\) 5.52481 0.191769
\(831\) 14.4741 0.502102
\(832\) 1.69282 0.0586878
\(833\) −70.9208 −2.45726
\(834\) −2.93573 −0.101656
\(835\) 29.5038 1.02102
\(836\) 0 0
\(837\) 5.19887 0.179699
\(838\) −3.49027 −0.120569
\(839\) 54.7318 1.88955 0.944775 0.327719i \(-0.106280\pi\)
0.944775 + 0.327719i \(0.106280\pi\)
\(840\) 15.9383 0.549924
\(841\) −25.5533 −0.881148
\(842\) 7.08818 0.244275
\(843\) 20.2636 0.697915
\(844\) 27.9175 0.960960
\(845\) −45.2604 −1.55700
\(846\) 1.45169 0.0499100
\(847\) 0 0
\(848\) −19.8480 −0.681582
\(849\) 22.9360 0.787163
\(850\) 11.6149 0.398386
\(851\) 54.2726 1.86044
\(852\) 15.4959 0.530879
\(853\) 0.512388 0.0175438 0.00877192 0.999962i \(-0.497208\pi\)
0.00877192 + 0.999962i \(0.497208\pi\)
\(854\) −1.34077 −0.0458803
\(855\) 3.50077 0.119724
\(856\) −2.23008 −0.0762225
\(857\) −3.46441 −0.118342 −0.0591710 0.998248i \(-0.518846\pi\)
−0.0591710 + 0.998248i \(0.518846\pi\)
\(858\) 0 0
\(859\) −26.9736 −0.920329 −0.460164 0.887834i \(-0.652210\pi\)
−0.460164 + 0.887834i \(0.652210\pi\)
\(860\) 61.1360 2.08472
\(861\) 47.2734 1.61107
\(862\) 3.90038 0.132847
\(863\) 2.01950 0.0687446 0.0343723 0.999409i \(-0.489057\pi\)
0.0343723 + 0.999409i \(0.489057\pi\)
\(864\) 3.05362 0.103886
\(865\) 3.51564 0.119535
\(866\) 2.29238 0.0778983
\(867\) −18.9346 −0.643053
\(868\) −43.5116 −1.47688
\(869\) 0 0
\(870\) −1.73565 −0.0588440
\(871\) −0.677380 −0.0229521
\(872\) 11.0004 0.372520
\(873\) −18.5499 −0.627820
\(874\) −1.79657 −0.0607698
\(875\) −34.2627 −1.15829
\(876\) −11.4473 −0.386768
\(877\) −15.7654 −0.532359 −0.266179 0.963923i \(-0.585761\pi\)
−0.266179 + 0.963923i \(0.585761\pi\)
\(878\) 3.08892 0.104246
\(879\) 2.65708 0.0896213
\(880\) 0 0
\(881\) 17.3866 0.585771 0.292885 0.956148i \(-0.405385\pi\)
0.292885 + 0.956148i \(0.405385\pi\)
\(882\) −3.15947 −0.106385
\(883\) −10.7650 −0.362273 −0.181136 0.983458i \(-0.557978\pi\)
−0.181136 + 0.983458i \(0.557978\pi\)
\(884\) −3.08755 −0.103846
\(885\) −33.1134 −1.11310
\(886\) −10.0402 −0.337306
\(887\) −46.8270 −1.57230 −0.786149 0.618037i \(-0.787928\pi\)
−0.786149 + 0.618037i \(0.787928\pi\)
\(888\) −8.46404 −0.284034
\(889\) 70.1713 2.35347
\(890\) −7.05648 −0.236534
\(891\) 0 0
\(892\) 8.75575 0.293164
\(893\) −5.43596 −0.181908
\(894\) −0.619000 −0.0207025
\(895\) −43.5925 −1.45713
\(896\) −33.8480 −1.13078
\(897\) 1.79657 0.0599856
\(898\) −7.36406 −0.245742
\(899\) 9.65185 0.321907
\(900\) −13.9934 −0.466445
\(901\) 33.2607 1.10807
\(902\) 0 0
\(903\) −39.2923 −1.30757
\(904\) 8.75391 0.291151
\(905\) −48.4002 −1.60888
\(906\) −1.49158 −0.0495546
\(907\) −57.0332 −1.89376 −0.946878 0.321593i \(-0.895782\pi\)
−0.946878 + 0.321593i \(0.895782\pi\)
\(908\) 9.05684 0.300562
\(909\) 11.8791 0.394004
\(910\) −1.08341 −0.0359146
\(911\) 31.9365 1.05810 0.529052 0.848589i \(-0.322548\pi\)
0.529052 + 0.848589i \(0.322548\pi\)
\(912\) −3.57718 −0.118452
\(913\) 0 0
\(914\) −3.24721 −0.107408
\(915\) 4.05029 0.133899
\(916\) −31.5209 −1.04148
\(917\) −70.3257 −2.32236
\(918\) −1.60086 −0.0528362
\(919\) 9.03651 0.298087 0.149043 0.988831i \(-0.452381\pi\)
0.149043 + 0.988831i \(0.452381\pi\)
\(920\) 24.7089 0.814630
\(921\) 2.72869 0.0899134
\(922\) 9.11097 0.300054
\(923\) −2.14561 −0.0706237
\(924\) 0 0
\(925\) 58.5322 1.92453
\(926\) −10.3433 −0.339901
\(927\) −17.4360 −0.572674
\(928\) 5.66914 0.186099
\(929\) −40.4462 −1.32700 −0.663498 0.748178i \(-0.730929\pi\)
−0.663498 + 0.748178i \(0.730929\pi\)
\(930\) −4.86037 −0.159378
\(931\) 11.8309 0.387742
\(932\) −57.1845 −1.87314
\(933\) 34.2024 1.11974
\(934\) 5.37765 0.175962
\(935\) 0 0
\(936\) −0.280182 −0.00915803
\(937\) 29.7273 0.971147 0.485574 0.874196i \(-0.338611\pi\)
0.485574 + 0.874196i \(0.338611\pi\)
\(938\) 2.93946 0.0959768
\(939\) −0.308011 −0.0100516
\(940\) 36.7029 1.19712
\(941\) 55.2813 1.80212 0.901059 0.433697i \(-0.142791\pi\)
0.901059 + 0.433697i \(0.142791\pi\)
\(942\) 1.19278 0.0388630
\(943\) 73.2872 2.38656
\(944\) 33.8362 1.10128
\(945\) 15.1914 0.494178
\(946\) 0 0
\(947\) −30.1999 −0.981365 −0.490683 0.871338i \(-0.663253\pi\)
−0.490683 + 0.871338i \(0.663253\pi\)
\(948\) 15.5200 0.504066
\(949\) 1.58503 0.0514524
\(950\) −1.93757 −0.0628631
\(951\) −6.89031 −0.223433
\(952\) 27.2920 0.884539
\(953\) −28.5729 −0.925566 −0.462783 0.886472i \(-0.653149\pi\)
−0.462783 + 0.886472i \(0.653149\pi\)
\(954\) 1.48174 0.0479731
\(955\) −62.5092 −2.02275
\(956\) −10.2608 −0.331858
\(957\) 0 0
\(958\) 3.93039 0.126985
\(959\) 57.8999 1.86968
\(960\) 22.1910 0.716211
\(961\) −3.97174 −0.128121
\(962\) 0.575343 0.0185498
\(963\) −2.12558 −0.0684957
\(964\) 38.7855 1.24920
\(965\) 90.3464 2.90835
\(966\) −7.79612 −0.250836
\(967\) 42.3751 1.36269 0.681345 0.731963i \(-0.261395\pi\)
0.681345 + 0.731963i \(0.261395\pi\)
\(968\) 0 0
\(969\) 5.99455 0.192573
\(970\) 17.3421 0.556822
\(971\) −23.0528 −0.739799 −0.369899 0.929072i \(-0.620608\pi\)
−0.369899 + 0.929072i \(0.620608\pi\)
\(972\) 1.92868 0.0618625
\(973\) 47.7040 1.52932
\(974\) 8.90268 0.285260
\(975\) 1.93757 0.0620519
\(976\) −4.13870 −0.132477
\(977\) 4.93602 0.157917 0.0789586 0.996878i \(-0.474840\pi\)
0.0789586 + 0.996878i \(0.474840\pi\)
\(978\) −3.94545 −0.126162
\(979\) 0 0
\(980\) −79.8807 −2.55169
\(981\) 10.4849 0.334757
\(982\) 0.982609 0.0313563
\(983\) 48.1403 1.53544 0.767718 0.640787i \(-0.221392\pi\)
0.767718 + 0.640787i \(0.221392\pi\)
\(984\) −11.4294 −0.364357
\(985\) 24.2951 0.774105
\(986\) −2.97204 −0.0946490
\(987\) −23.5891 −0.750850
\(988\) 0.515059 0.0163862
\(989\) −60.9143 −1.93696
\(990\) 0 0
\(991\) 36.5026 1.15954 0.579771 0.814780i \(-0.303142\pi\)
0.579771 + 0.814780i \(0.303142\pi\)
\(992\) 15.8754 0.504044
\(993\) 12.4542 0.395224
\(994\) 9.31079 0.295320
\(995\) 60.7750 1.92670
\(996\) −11.3977 −0.361151
\(997\) −5.85519 −0.185436 −0.0927179 0.995692i \(-0.529555\pi\)
−0.0927179 + 0.995692i \(0.529555\pi\)
\(998\) 5.48501 0.173625
\(999\) −8.06741 −0.255241
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6897.2.a.bc.1.4 8
11.10 odd 2 6897.2.a.bd.1.5 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6897.2.a.bc.1.4 8 1.1 even 1 trivial
6897.2.a.bd.1.5 yes 8 11.10 odd 2