Properties

Label 6897.2.a.bc.1.3
Level $6897$
Weight $2$
Character 6897.1
Self dual yes
Analytic conductor $55.073$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6897,2,Mod(1,6897)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6897.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6897, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6897 = 3 \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6897.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-1,-8,9,-2,1,-6,-6,8,-3,0,-9,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.0728222741\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 12x^{6} + 9x^{5} + 40x^{4} - 22x^{3} - 28x^{2} + 12x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.07029\) of defining polynomial
Character \(\chi\) \(=\) 6897.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.07029 q^{2} -1.00000 q^{3} -0.854469 q^{4} -4.21558 q^{5} +1.07029 q^{6} -3.04581 q^{7} +3.05512 q^{8} +1.00000 q^{9} +4.51192 q^{10} +0.854469 q^{12} -1.07029 q^{13} +3.25991 q^{14} +4.21558 q^{15} -1.56095 q^{16} -6.33447 q^{17} -1.07029 q^{18} +1.00000 q^{19} +3.60209 q^{20} +3.04581 q^{21} -7.29424 q^{23} -3.05512 q^{24} +12.7712 q^{25} +1.14553 q^{26} -1.00000 q^{27} +2.60255 q^{28} -1.89962 q^{29} -4.51192 q^{30} -9.84443 q^{31} -4.43957 q^{32} +6.77975 q^{34} +12.8399 q^{35} -0.854469 q^{36} -5.95117 q^{37} -1.07029 q^{38} +1.07029 q^{39} -12.8791 q^{40} +0.672341 q^{41} -3.25991 q^{42} +11.5029 q^{43} -4.21558 q^{45} +7.80698 q^{46} +6.95445 q^{47} +1.56095 q^{48} +2.27694 q^{49} -13.6689 q^{50} +6.33447 q^{51} +0.914534 q^{52} -4.85314 q^{53} +1.07029 q^{54} -9.30532 q^{56} -1.00000 q^{57} +2.03315 q^{58} -0.840641 q^{59} -3.60209 q^{60} +10.8024 q^{61} +10.5364 q^{62} -3.04581 q^{63} +7.87355 q^{64} +4.51192 q^{65} -8.73056 q^{67} +5.41261 q^{68} +7.29424 q^{69} -13.7424 q^{70} +14.1862 q^{71} +3.05512 q^{72} +9.15644 q^{73} +6.36950 q^{74} -12.7712 q^{75} -0.854469 q^{76} -1.14553 q^{78} -15.0178 q^{79} +6.58030 q^{80} +1.00000 q^{81} -0.719603 q^{82} +5.58016 q^{83} -2.60255 q^{84} +26.7035 q^{85} -12.3115 q^{86} +1.89962 q^{87} +5.06617 q^{89} +4.51192 q^{90} +3.25991 q^{91} +6.23270 q^{92} +9.84443 q^{93} -7.44331 q^{94} -4.21558 q^{95} +4.43957 q^{96} +13.7339 q^{97} -2.43700 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} - 8 q^{3} + 9 q^{4} - 2 q^{5} + q^{6} - 6 q^{7} - 6 q^{8} + 8 q^{9} - 3 q^{10} - 9 q^{12} - q^{13} + 7 q^{14} + 2 q^{15} + 23 q^{16} - 15 q^{17} - q^{18} + 8 q^{19} - 4 q^{20} + 6 q^{21}+ \cdots - 55 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.07029 −0.756813 −0.378406 0.925640i \(-0.623528\pi\)
−0.378406 + 0.925640i \(0.623528\pi\)
\(3\) −1.00000 −0.577350
\(4\) −0.854469 −0.427234
\(5\) −4.21558 −1.88527 −0.942633 0.333830i \(-0.891659\pi\)
−0.942633 + 0.333830i \(0.891659\pi\)
\(6\) 1.07029 0.436946
\(7\) −3.04581 −1.15121 −0.575603 0.817729i \(-0.695233\pi\)
−0.575603 + 0.817729i \(0.695233\pi\)
\(8\) 3.05512 1.08015
\(9\) 1.00000 0.333333
\(10\) 4.51192 1.42679
\(11\) 0 0
\(12\) 0.854469 0.246664
\(13\) −1.07029 −0.296846 −0.148423 0.988924i \(-0.547420\pi\)
−0.148423 + 0.988924i \(0.547420\pi\)
\(14\) 3.25991 0.871248
\(15\) 4.21558 1.08846
\(16\) −1.56095 −0.390236
\(17\) −6.33447 −1.53633 −0.768167 0.640249i \(-0.778831\pi\)
−0.768167 + 0.640249i \(0.778831\pi\)
\(18\) −1.07029 −0.252271
\(19\) 1.00000 0.229416
\(20\) 3.60209 0.805451
\(21\) 3.04581 0.664650
\(22\) 0 0
\(23\) −7.29424 −1.52095 −0.760477 0.649365i \(-0.775035\pi\)
−0.760477 + 0.649365i \(0.775035\pi\)
\(24\) −3.05512 −0.623624
\(25\) 12.7712 2.55423
\(26\) 1.14553 0.224657
\(27\) −1.00000 −0.192450
\(28\) 2.60255 0.491835
\(29\) −1.89962 −0.352751 −0.176375 0.984323i \(-0.556437\pi\)
−0.176375 + 0.984323i \(0.556437\pi\)
\(30\) −4.51192 −0.823760
\(31\) −9.84443 −1.76811 −0.884056 0.467380i \(-0.845198\pi\)
−0.884056 + 0.467380i \(0.845198\pi\)
\(32\) −4.43957 −0.784813
\(33\) 0 0
\(34\) 6.77975 1.16272
\(35\) 12.8399 2.17033
\(36\) −0.854469 −0.142411
\(37\) −5.95117 −0.978366 −0.489183 0.872181i \(-0.662705\pi\)
−0.489183 + 0.872181i \(0.662705\pi\)
\(38\) −1.07029 −0.173625
\(39\) 1.07029 0.171384
\(40\) −12.8791 −2.03637
\(41\) 0.672341 0.105002 0.0525010 0.998621i \(-0.483281\pi\)
0.0525010 + 0.998621i \(0.483281\pi\)
\(42\) −3.25991 −0.503015
\(43\) 11.5029 1.75418 0.877091 0.480324i \(-0.159481\pi\)
0.877091 + 0.480324i \(0.159481\pi\)
\(44\) 0 0
\(45\) −4.21558 −0.628422
\(46\) 7.80698 1.15108
\(47\) 6.95445 1.01441 0.507206 0.861825i \(-0.330678\pi\)
0.507206 + 0.861825i \(0.330678\pi\)
\(48\) 1.56095 0.225303
\(49\) 2.27694 0.325277
\(50\) −13.6689 −1.93307
\(51\) 6.33447 0.887003
\(52\) 0.914534 0.126823
\(53\) −4.85314 −0.666630 −0.333315 0.942816i \(-0.608167\pi\)
−0.333315 + 0.942816i \(0.608167\pi\)
\(54\) 1.07029 0.145649
\(55\) 0 0
\(56\) −9.30532 −1.24348
\(57\) −1.00000 −0.132453
\(58\) 2.03315 0.266966
\(59\) −0.840641 −0.109442 −0.0547211 0.998502i \(-0.517427\pi\)
−0.0547211 + 0.998502i \(0.517427\pi\)
\(60\) −3.60209 −0.465027
\(61\) 10.8024 1.38311 0.691554 0.722325i \(-0.256926\pi\)
0.691554 + 0.722325i \(0.256926\pi\)
\(62\) 10.5364 1.33813
\(63\) −3.04581 −0.383736
\(64\) 7.87355 0.984193
\(65\) 4.51192 0.559635
\(66\) 0 0
\(67\) −8.73056 −1.06661 −0.533304 0.845924i \(-0.679050\pi\)
−0.533304 + 0.845924i \(0.679050\pi\)
\(68\) 5.41261 0.656375
\(69\) 7.29424 0.878123
\(70\) −13.7424 −1.64253
\(71\) 14.1862 1.68359 0.841793 0.539800i \(-0.181500\pi\)
0.841793 + 0.539800i \(0.181500\pi\)
\(72\) 3.05512 0.360050
\(73\) 9.15644 1.07168 0.535840 0.844320i \(-0.319995\pi\)
0.535840 + 0.844320i \(0.319995\pi\)
\(74\) 6.36950 0.740440
\(75\) −12.7712 −1.47469
\(76\) −0.854469 −0.0980143
\(77\) 0 0
\(78\) −1.14553 −0.129706
\(79\) −15.0178 −1.68964 −0.844819 0.535052i \(-0.820292\pi\)
−0.844819 + 0.535052i \(0.820292\pi\)
\(80\) 6.58030 0.735700
\(81\) 1.00000 0.111111
\(82\) −0.719603 −0.0794669
\(83\) 5.58016 0.612502 0.306251 0.951951i \(-0.400925\pi\)
0.306251 + 0.951951i \(0.400925\pi\)
\(84\) −2.60255 −0.283961
\(85\) 26.7035 2.89640
\(86\) −12.3115 −1.32759
\(87\) 1.89962 0.203661
\(88\) 0 0
\(89\) 5.06617 0.537013 0.268506 0.963278i \(-0.413470\pi\)
0.268506 + 0.963278i \(0.413470\pi\)
\(90\) 4.51192 0.475598
\(91\) 3.25991 0.341732
\(92\) 6.23270 0.649804
\(93\) 9.84443 1.02082
\(94\) −7.44331 −0.767719
\(95\) −4.21558 −0.432510
\(96\) 4.43957 0.453112
\(97\) 13.7339 1.39447 0.697233 0.716844i \(-0.254414\pi\)
0.697233 + 0.716844i \(0.254414\pi\)
\(98\) −2.43700 −0.246174
\(99\) 0 0
\(100\) −10.9126 −1.09126
\(101\) −10.3717 −1.03202 −0.516010 0.856583i \(-0.672583\pi\)
−0.516010 + 0.856583i \(0.672583\pi\)
\(102\) −6.77975 −0.671296
\(103\) 9.72187 0.957924 0.478962 0.877836i \(-0.341013\pi\)
0.478962 + 0.877836i \(0.341013\pi\)
\(104\) −3.26988 −0.320638
\(105\) −12.8399 −1.25304
\(106\) 5.19429 0.504514
\(107\) −13.6762 −1.32213 −0.661066 0.750328i \(-0.729896\pi\)
−0.661066 + 0.750328i \(0.729896\pi\)
\(108\) 0.854469 0.0822213
\(109\) 12.7021 1.21664 0.608320 0.793692i \(-0.291844\pi\)
0.608320 + 0.793692i \(0.291844\pi\)
\(110\) 0 0
\(111\) 5.95117 0.564860
\(112\) 4.75434 0.449243
\(113\) 10.8536 1.02102 0.510511 0.859871i \(-0.329456\pi\)
0.510511 + 0.859871i \(0.329456\pi\)
\(114\) 1.07029 0.100242
\(115\) 30.7495 2.86740
\(116\) 1.62317 0.150707
\(117\) −1.07029 −0.0989488
\(118\) 0.899734 0.0828272
\(119\) 19.2936 1.76864
\(120\) 12.8791 1.17570
\(121\) 0 0
\(122\) −11.5618 −1.04675
\(123\) −0.672341 −0.0606230
\(124\) 8.41176 0.755398
\(125\) −32.7600 −2.93014
\(126\) 3.25991 0.290416
\(127\) 6.04791 0.536665 0.268333 0.963326i \(-0.413527\pi\)
0.268333 + 0.963326i \(0.413527\pi\)
\(128\) 0.452133 0.0399633
\(129\) −11.5029 −1.01278
\(130\) −4.82908 −0.423539
\(131\) 8.86309 0.774372 0.387186 0.922002i \(-0.373447\pi\)
0.387186 + 0.922002i \(0.373447\pi\)
\(132\) 0 0
\(133\) −3.04581 −0.264105
\(134\) 9.34427 0.807222
\(135\) 4.21558 0.362820
\(136\) −19.3526 −1.65947
\(137\) 3.19996 0.273391 0.136695 0.990613i \(-0.456352\pi\)
0.136695 + 0.990613i \(0.456352\pi\)
\(138\) −7.80698 −0.664575
\(139\) −2.57273 −0.218216 −0.109108 0.994030i \(-0.534799\pi\)
−0.109108 + 0.994030i \(0.534799\pi\)
\(140\) −10.9713 −0.927240
\(141\) −6.95445 −0.585671
\(142\) −15.1834 −1.27416
\(143\) 0 0
\(144\) −1.56095 −0.130079
\(145\) 8.00801 0.665029
\(146\) −9.80009 −0.811061
\(147\) −2.27694 −0.187799
\(148\) 5.08509 0.417991
\(149\) 4.85084 0.397396 0.198698 0.980061i \(-0.436329\pi\)
0.198698 + 0.980061i \(0.436329\pi\)
\(150\) 13.6689 1.11606
\(151\) −2.02828 −0.165059 −0.0825296 0.996589i \(-0.526300\pi\)
−0.0825296 + 0.996589i \(0.526300\pi\)
\(152\) 3.05512 0.247803
\(153\) −6.33447 −0.512112
\(154\) 0 0
\(155\) 41.5000 3.33336
\(156\) −0.914534 −0.0732213
\(157\) −4.22450 −0.337152 −0.168576 0.985689i \(-0.553917\pi\)
−0.168576 + 0.985689i \(0.553917\pi\)
\(158\) 16.0735 1.27874
\(159\) 4.85314 0.384879
\(160\) 18.7154 1.47958
\(161\) 22.2168 1.75093
\(162\) −1.07029 −0.0840903
\(163\) 18.7353 1.46746 0.733730 0.679441i \(-0.237778\pi\)
0.733730 + 0.679441i \(0.237778\pi\)
\(164\) −0.574495 −0.0448605
\(165\) 0 0
\(166\) −5.97241 −0.463549
\(167\) −12.6973 −0.982547 −0.491273 0.871005i \(-0.663468\pi\)
−0.491273 + 0.871005i \(0.663468\pi\)
\(168\) 9.30532 0.717921
\(169\) −11.8545 −0.911882
\(170\) −28.5806 −2.19203
\(171\) 1.00000 0.0764719
\(172\) −9.82891 −0.749447
\(173\) −6.92230 −0.526293 −0.263146 0.964756i \(-0.584760\pi\)
−0.263146 + 0.964756i \(0.584760\pi\)
\(174\) −2.03315 −0.154133
\(175\) −38.8985 −2.94045
\(176\) 0 0
\(177\) 0.840641 0.0631865
\(178\) −5.42229 −0.406418
\(179\) 12.0605 0.901442 0.450721 0.892665i \(-0.351167\pi\)
0.450721 + 0.892665i \(0.351167\pi\)
\(180\) 3.60209 0.268484
\(181\) −5.60525 −0.416635 −0.208317 0.978061i \(-0.566799\pi\)
−0.208317 + 0.978061i \(0.566799\pi\)
\(182\) −3.48907 −0.258627
\(183\) −10.8024 −0.798538
\(184\) −22.2848 −1.64286
\(185\) 25.0876 1.84448
\(186\) −10.5364 −0.772570
\(187\) 0 0
\(188\) −5.94236 −0.433391
\(189\) 3.04581 0.221550
\(190\) 4.51192 0.327329
\(191\) 22.6045 1.63560 0.817802 0.575499i \(-0.195192\pi\)
0.817802 + 0.575499i \(0.195192\pi\)
\(192\) −7.87355 −0.568224
\(193\) −1.49251 −0.107433 −0.0537166 0.998556i \(-0.517107\pi\)
−0.0537166 + 0.998556i \(0.517107\pi\)
\(194\) −14.6993 −1.05535
\(195\) −4.51192 −0.323105
\(196\) −1.94557 −0.138970
\(197\) −13.0698 −0.931187 −0.465594 0.884999i \(-0.654159\pi\)
−0.465594 + 0.884999i \(0.654159\pi\)
\(198\) 0 0
\(199\) −7.70873 −0.546458 −0.273229 0.961949i \(-0.588092\pi\)
−0.273229 + 0.961949i \(0.588092\pi\)
\(200\) 39.0175 2.75895
\(201\) 8.73056 0.615806
\(202\) 11.1007 0.781046
\(203\) 5.78588 0.406089
\(204\) −5.41261 −0.378958
\(205\) −2.83431 −0.197957
\(206\) −10.4053 −0.724969
\(207\) −7.29424 −0.506984
\(208\) 1.67067 0.115840
\(209\) 0 0
\(210\) 13.7424 0.948318
\(211\) 16.0870 1.10748 0.553739 0.832690i \(-0.313201\pi\)
0.553739 + 0.832690i \(0.313201\pi\)
\(212\) 4.14685 0.284807
\(213\) −14.1862 −0.972019
\(214\) 14.6376 1.00061
\(215\) −48.4916 −3.30710
\(216\) −3.05512 −0.207875
\(217\) 29.9842 2.03546
\(218\) −13.5950 −0.920769
\(219\) −9.15644 −0.618735
\(220\) 0 0
\(221\) 6.77975 0.456056
\(222\) −6.36950 −0.427493
\(223\) 2.12052 0.142000 0.0710001 0.997476i \(-0.477381\pi\)
0.0710001 + 0.997476i \(0.477381\pi\)
\(224\) 13.5221 0.903482
\(225\) 12.7712 0.851410
\(226\) −11.6166 −0.772723
\(227\) −11.4989 −0.763212 −0.381606 0.924325i \(-0.624629\pi\)
−0.381606 + 0.924325i \(0.624629\pi\)
\(228\) 0.854469 0.0565886
\(229\) 21.9950 1.45347 0.726737 0.686916i \(-0.241036\pi\)
0.726737 + 0.686916i \(0.241036\pi\)
\(230\) −32.9110 −2.17009
\(231\) 0 0
\(232\) −5.80358 −0.381023
\(233\) −0.990018 −0.0648582 −0.0324291 0.999474i \(-0.510324\pi\)
−0.0324291 + 0.999474i \(0.510324\pi\)
\(234\) 1.14553 0.0748857
\(235\) −29.3171 −1.91244
\(236\) 0.718302 0.0467575
\(237\) 15.0178 0.975513
\(238\) −20.6498 −1.33853
\(239\) 11.6106 0.751029 0.375515 0.926816i \(-0.377466\pi\)
0.375515 + 0.926816i \(0.377466\pi\)
\(240\) −6.58030 −0.424756
\(241\) 11.0505 0.711826 0.355913 0.934519i \(-0.384170\pi\)
0.355913 + 0.934519i \(0.384170\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) −9.23033 −0.590911
\(245\) −9.59863 −0.613234
\(246\) 0.719603 0.0458802
\(247\) −1.07029 −0.0681012
\(248\) −30.0760 −1.90983
\(249\) −5.58016 −0.353628
\(250\) 35.0628 2.21757
\(251\) −12.2910 −0.775800 −0.387900 0.921701i \(-0.626799\pi\)
−0.387900 + 0.921701i \(0.626799\pi\)
\(252\) 2.60255 0.163945
\(253\) 0 0
\(254\) −6.47305 −0.406155
\(255\) −26.7035 −1.67224
\(256\) −16.2310 −1.01444
\(257\) −16.8226 −1.04937 −0.524683 0.851298i \(-0.675816\pi\)
−0.524683 + 0.851298i \(0.675816\pi\)
\(258\) 12.3115 0.766483
\(259\) 18.1261 1.12630
\(260\) −3.85529 −0.239095
\(261\) −1.89962 −0.117584
\(262\) −9.48612 −0.586055
\(263\) −11.3136 −0.697629 −0.348814 0.937192i \(-0.613416\pi\)
−0.348814 + 0.937192i \(0.613416\pi\)
\(264\) 0 0
\(265\) 20.4588 1.25677
\(266\) 3.25991 0.199878
\(267\) −5.06617 −0.310044
\(268\) 7.45999 0.455691
\(269\) 9.25786 0.564462 0.282231 0.959347i \(-0.408926\pi\)
0.282231 + 0.959347i \(0.408926\pi\)
\(270\) −4.51192 −0.274587
\(271\) 9.51383 0.577924 0.288962 0.957341i \(-0.406690\pi\)
0.288962 + 0.957341i \(0.406690\pi\)
\(272\) 9.88777 0.599534
\(273\) −3.25991 −0.197299
\(274\) −3.42490 −0.206906
\(275\) 0 0
\(276\) −6.23270 −0.375164
\(277\) −20.8566 −1.25315 −0.626577 0.779359i \(-0.715545\pi\)
−0.626577 + 0.779359i \(0.715545\pi\)
\(278\) 2.75358 0.165149
\(279\) −9.84443 −0.589371
\(280\) 39.2273 2.34428
\(281\) 10.5486 0.629274 0.314637 0.949212i \(-0.398117\pi\)
0.314637 + 0.949212i \(0.398117\pi\)
\(282\) 7.44331 0.443243
\(283\) −5.03751 −0.299449 −0.149725 0.988728i \(-0.547839\pi\)
−0.149725 + 0.988728i \(0.547839\pi\)
\(284\) −12.1216 −0.719286
\(285\) 4.21558 0.249710
\(286\) 0 0
\(287\) −2.04782 −0.120879
\(288\) −4.43957 −0.261604
\(289\) 23.1255 1.36033
\(290\) −8.57093 −0.503303
\(291\) −13.7339 −0.805096
\(292\) −7.82389 −0.457859
\(293\) −24.4532 −1.42857 −0.714286 0.699854i \(-0.753249\pi\)
−0.714286 + 0.699854i \(0.753249\pi\)
\(294\) 2.43700 0.142129
\(295\) 3.54379 0.206328
\(296\) −18.1815 −1.05678
\(297\) 0 0
\(298\) −5.19182 −0.300754
\(299\) 7.80698 0.451490
\(300\) 10.9126 0.630036
\(301\) −35.0357 −2.01943
\(302\) 2.17086 0.124919
\(303\) 10.3717 0.595837
\(304\) −1.56095 −0.0895264
\(305\) −45.5385 −2.60753
\(306\) 6.77975 0.387573
\(307\) −6.17580 −0.352472 −0.176236 0.984348i \(-0.556392\pi\)
−0.176236 + 0.984348i \(0.556392\pi\)
\(308\) 0 0
\(309\) −9.72187 −0.553058
\(310\) −44.4173 −2.52273
\(311\) −0.839114 −0.0475818 −0.0237909 0.999717i \(-0.507574\pi\)
−0.0237909 + 0.999717i \(0.507574\pi\)
\(312\) 3.26988 0.185121
\(313\) 6.34941 0.358890 0.179445 0.983768i \(-0.442570\pi\)
0.179445 + 0.983768i \(0.442570\pi\)
\(314\) 4.52146 0.255161
\(315\) 12.8399 0.723444
\(316\) 12.8323 0.721871
\(317\) −7.62744 −0.428400 −0.214200 0.976790i \(-0.568714\pi\)
−0.214200 + 0.976790i \(0.568714\pi\)
\(318\) −5.19429 −0.291281
\(319\) 0 0
\(320\) −33.1916 −1.85547
\(321\) 13.6762 0.763333
\(322\) −23.7786 −1.32513
\(323\) −6.33447 −0.352459
\(324\) −0.854469 −0.0474705
\(325\) −13.6689 −0.758214
\(326\) −20.0523 −1.11059
\(327\) −12.7021 −0.702428
\(328\) 2.05409 0.113418
\(329\) −21.1819 −1.16780
\(330\) 0 0
\(331\) 11.7060 0.643419 0.321710 0.946838i \(-0.395742\pi\)
0.321710 + 0.946838i \(0.395742\pi\)
\(332\) −4.76807 −0.261682
\(333\) −5.95117 −0.326122
\(334\) 13.5899 0.743604
\(335\) 36.8044 2.01084
\(336\) −4.75434 −0.259370
\(337\) 24.5905 1.33953 0.669766 0.742572i \(-0.266394\pi\)
0.669766 + 0.742572i \(0.266394\pi\)
\(338\) 12.6878 0.690124
\(339\) −10.8536 −0.589488
\(340\) −22.8173 −1.23744
\(341\) 0 0
\(342\) −1.07029 −0.0578749
\(343\) 14.3855 0.776746
\(344\) 35.1429 1.89478
\(345\) −30.7495 −1.65550
\(346\) 7.40890 0.398305
\(347\) −22.0875 −1.18572 −0.592859 0.805306i \(-0.702001\pi\)
−0.592859 + 0.805306i \(0.702001\pi\)
\(348\) −1.62317 −0.0870109
\(349\) 9.93617 0.531871 0.265935 0.963991i \(-0.414319\pi\)
0.265935 + 0.963991i \(0.414319\pi\)
\(350\) 41.6328 2.22537
\(351\) 1.07029 0.0571281
\(352\) 0 0
\(353\) −25.5724 −1.36108 −0.680541 0.732710i \(-0.738255\pi\)
−0.680541 + 0.732710i \(0.738255\pi\)
\(354\) −0.899734 −0.0478203
\(355\) −59.8029 −3.17401
\(356\) −4.32888 −0.229430
\(357\) −19.2936 −1.02112
\(358\) −12.9083 −0.682223
\(359\) −25.3784 −1.33942 −0.669710 0.742623i \(-0.733582\pi\)
−0.669710 + 0.742623i \(0.733582\pi\)
\(360\) −12.8791 −0.678790
\(361\) 1.00000 0.0526316
\(362\) 5.99927 0.315315
\(363\) 0 0
\(364\) −2.78549 −0.145999
\(365\) −38.5997 −2.02040
\(366\) 11.5618 0.604343
\(367\) 10.0040 0.522202 0.261101 0.965311i \(-0.415914\pi\)
0.261101 + 0.965311i \(0.415914\pi\)
\(368\) 11.3859 0.593531
\(369\) 0.672341 0.0350007
\(370\) −26.8512 −1.39593
\(371\) 14.7817 0.767429
\(372\) −8.41176 −0.436130
\(373\) 6.36741 0.329692 0.164846 0.986319i \(-0.447287\pi\)
0.164846 + 0.986319i \(0.447287\pi\)
\(374\) 0 0
\(375\) 32.7600 1.69172
\(376\) 21.2467 1.09572
\(377\) 2.03315 0.104713
\(378\) −3.25991 −0.167672
\(379\) −27.4995 −1.41255 −0.706277 0.707936i \(-0.749626\pi\)
−0.706277 + 0.707936i \(0.749626\pi\)
\(380\) 3.60209 0.184783
\(381\) −6.04791 −0.309844
\(382\) −24.1935 −1.23785
\(383\) −16.3072 −0.833261 −0.416630 0.909076i \(-0.636789\pi\)
−0.416630 + 0.909076i \(0.636789\pi\)
\(384\) −0.452133 −0.0230728
\(385\) 0 0
\(386\) 1.59743 0.0813069
\(387\) 11.5029 0.584728
\(388\) −11.7352 −0.595764
\(389\) 14.6918 0.744904 0.372452 0.928051i \(-0.378517\pi\)
0.372452 + 0.928051i \(0.378517\pi\)
\(390\) 4.82908 0.244530
\(391\) 46.2051 2.33669
\(392\) 6.95633 0.351348
\(393\) −8.86309 −0.447084
\(394\) 13.9886 0.704734
\(395\) 63.3089 3.18542
\(396\) 0 0
\(397\) −1.46425 −0.0734887 −0.0367443 0.999325i \(-0.511699\pi\)
−0.0367443 + 0.999325i \(0.511699\pi\)
\(398\) 8.25062 0.413566
\(399\) 3.04581 0.152481
\(400\) −19.9351 −0.996754
\(401\) −10.5825 −0.528466 −0.264233 0.964459i \(-0.585119\pi\)
−0.264233 + 0.964459i \(0.585119\pi\)
\(402\) −9.34427 −0.466050
\(403\) 10.5364 0.524858
\(404\) 8.86227 0.440914
\(405\) −4.21558 −0.209474
\(406\) −6.19260 −0.307333
\(407\) 0 0
\(408\) 19.3526 0.958096
\(409\) −30.8444 −1.52516 −0.762578 0.646896i \(-0.776067\pi\)
−0.762578 + 0.646896i \(0.776067\pi\)
\(410\) 3.03355 0.149816
\(411\) −3.19996 −0.157842
\(412\) −8.30703 −0.409258
\(413\) 2.56043 0.125991
\(414\) 7.80698 0.383692
\(415\) −23.5236 −1.15473
\(416\) 4.75165 0.232969
\(417\) 2.57273 0.125987
\(418\) 0 0
\(419\) 4.42597 0.216223 0.108112 0.994139i \(-0.465520\pi\)
0.108112 + 0.994139i \(0.465520\pi\)
\(420\) 10.9713 0.535342
\(421\) 33.2729 1.62162 0.810812 0.585306i \(-0.199026\pi\)
0.810812 + 0.585306i \(0.199026\pi\)
\(422\) −17.2179 −0.838154
\(423\) 6.95445 0.338137
\(424\) −14.8269 −0.720060
\(425\) −80.8985 −3.92415
\(426\) 15.1834 0.735637
\(427\) −32.9021 −1.59224
\(428\) 11.6859 0.564860
\(429\) 0 0
\(430\) 51.9004 2.50286
\(431\) −28.3120 −1.36374 −0.681871 0.731472i \(-0.738833\pi\)
−0.681871 + 0.731472i \(0.738833\pi\)
\(432\) 1.56095 0.0751010
\(433\) −2.67693 −0.128645 −0.0643225 0.997929i \(-0.520489\pi\)
−0.0643225 + 0.997929i \(0.520489\pi\)
\(434\) −32.0920 −1.54046
\(435\) −8.00801 −0.383955
\(436\) −10.8535 −0.519791
\(437\) −7.29424 −0.348931
\(438\) 9.80009 0.468266
\(439\) −11.1827 −0.533722 −0.266861 0.963735i \(-0.585986\pi\)
−0.266861 + 0.963735i \(0.585986\pi\)
\(440\) 0 0
\(441\) 2.27694 0.108426
\(442\) −7.25634 −0.345149
\(443\) −22.2122 −1.05533 −0.527667 0.849451i \(-0.676933\pi\)
−0.527667 + 0.849451i \(0.676933\pi\)
\(444\) −5.08509 −0.241327
\(445\) −21.3569 −1.01241
\(446\) −2.26958 −0.107468
\(447\) −4.85084 −0.229437
\(448\) −23.9813 −1.13301
\(449\) −25.0743 −1.18333 −0.591666 0.806183i \(-0.701529\pi\)
−0.591666 + 0.806183i \(0.701529\pi\)
\(450\) −13.6689 −0.644358
\(451\) 0 0
\(452\) −9.27408 −0.436216
\(453\) 2.02828 0.0952970
\(454\) 12.3073 0.577608
\(455\) −13.7424 −0.644255
\(456\) −3.05512 −0.143069
\(457\) 4.68423 0.219119 0.109560 0.993980i \(-0.465056\pi\)
0.109560 + 0.993980i \(0.465056\pi\)
\(458\) −23.5412 −1.10001
\(459\) 6.33447 0.295668
\(460\) −26.2745 −1.22505
\(461\) −25.4417 −1.18494 −0.592468 0.805594i \(-0.701846\pi\)
−0.592468 + 0.805594i \(0.701846\pi\)
\(462\) 0 0
\(463\) 3.94757 0.183459 0.0917295 0.995784i \(-0.470760\pi\)
0.0917295 + 0.995784i \(0.470760\pi\)
\(464\) 2.96520 0.137656
\(465\) −41.5000 −1.92452
\(466\) 1.05961 0.0490855
\(467\) 21.1481 0.978617 0.489309 0.872111i \(-0.337249\pi\)
0.489309 + 0.872111i \(0.337249\pi\)
\(468\) 0.914534 0.0422743
\(469\) 26.5916 1.22789
\(470\) 31.3779 1.44736
\(471\) 4.22450 0.194655
\(472\) −2.56826 −0.118214
\(473\) 0 0
\(474\) −16.0735 −0.738281
\(475\) 12.7712 0.585981
\(476\) −16.4858 −0.755623
\(477\) −4.85314 −0.222210
\(478\) −12.4268 −0.568388
\(479\) −19.6529 −0.897963 −0.448982 0.893541i \(-0.648213\pi\)
−0.448982 + 0.893541i \(0.648213\pi\)
\(480\) −18.7154 −0.854237
\(481\) 6.36950 0.290424
\(482\) −11.8273 −0.538719
\(483\) −22.2168 −1.01090
\(484\) 0 0
\(485\) −57.8964 −2.62894
\(486\) 1.07029 0.0485496
\(487\) 20.3848 0.923723 0.461862 0.886952i \(-0.347182\pi\)
0.461862 + 0.886952i \(0.347182\pi\)
\(488\) 33.0027 1.49396
\(489\) −18.7353 −0.847238
\(490\) 10.2734 0.464103
\(491\) 23.0605 1.04070 0.520352 0.853952i \(-0.325801\pi\)
0.520352 + 0.853952i \(0.325801\pi\)
\(492\) 0.574495 0.0259002
\(493\) 12.0331 0.541943
\(494\) 1.14553 0.0515399
\(495\) 0 0
\(496\) 15.3666 0.689982
\(497\) −43.2083 −1.93816
\(498\) 5.97241 0.267630
\(499\) 32.5621 1.45768 0.728840 0.684684i \(-0.240060\pi\)
0.728840 + 0.684684i \(0.240060\pi\)
\(500\) 27.9924 1.25186
\(501\) 12.6973 0.567274
\(502\) 13.1550 0.587136
\(503\) −17.4466 −0.777904 −0.388952 0.921258i \(-0.627163\pi\)
−0.388952 + 0.921258i \(0.627163\pi\)
\(504\) −9.30532 −0.414492
\(505\) 43.7227 1.94563
\(506\) 0 0
\(507\) 11.8545 0.526475
\(508\) −5.16775 −0.229282
\(509\) 42.7689 1.89570 0.947849 0.318719i \(-0.103253\pi\)
0.947849 + 0.318719i \(0.103253\pi\)
\(510\) 28.5806 1.26557
\(511\) −27.8887 −1.23373
\(512\) 16.4677 0.727776
\(513\) −1.00000 −0.0441511
\(514\) 18.0052 0.794173
\(515\) −40.9834 −1.80594
\(516\) 9.82891 0.432693
\(517\) 0 0
\(518\) −19.4003 −0.852399
\(519\) 6.92230 0.303855
\(520\) 13.7845 0.604489
\(521\) 32.6794 1.43171 0.715856 0.698248i \(-0.246037\pi\)
0.715856 + 0.698248i \(0.246037\pi\)
\(522\) 2.03315 0.0889887
\(523\) −14.0045 −0.612372 −0.306186 0.951972i \(-0.599053\pi\)
−0.306186 + 0.951972i \(0.599053\pi\)
\(524\) −7.57324 −0.330838
\(525\) 38.8985 1.69767
\(526\) 12.1089 0.527974
\(527\) 62.3593 2.71641
\(528\) 0 0
\(529\) 30.2059 1.31330
\(530\) −21.8970 −0.951143
\(531\) −0.840641 −0.0364807
\(532\) 2.60255 0.112835
\(533\) −0.719603 −0.0311695
\(534\) 5.42229 0.234646
\(535\) 57.6533 2.49257
\(536\) −26.6729 −1.15210
\(537\) −12.0605 −0.520448
\(538\) −9.90864 −0.427192
\(539\) 0 0
\(540\) −3.60209 −0.155009
\(541\) −25.3730 −1.09087 −0.545435 0.838153i \(-0.683635\pi\)
−0.545435 + 0.838153i \(0.683635\pi\)
\(542\) −10.1826 −0.437380
\(543\) 5.60525 0.240544
\(544\) 28.1224 1.20574
\(545\) −53.5468 −2.29369
\(546\) 3.48907 0.149318
\(547\) −11.0470 −0.472336 −0.236168 0.971712i \(-0.575892\pi\)
−0.236168 + 0.971712i \(0.575892\pi\)
\(548\) −2.73426 −0.116802
\(549\) 10.8024 0.461036
\(550\) 0 0
\(551\) −1.89962 −0.0809266
\(552\) 22.2848 0.948504
\(553\) 45.7414 1.94512
\(554\) 22.3228 0.948403
\(555\) −25.0876 −1.06491
\(556\) 2.19832 0.0932294
\(557\) 6.40282 0.271296 0.135648 0.990757i \(-0.456688\pi\)
0.135648 + 0.990757i \(0.456688\pi\)
\(558\) 10.5364 0.446043
\(559\) −12.3115 −0.520723
\(560\) −20.0423 −0.846943
\(561\) 0 0
\(562\) −11.2901 −0.476242
\(563\) 6.70403 0.282541 0.141271 0.989971i \(-0.454881\pi\)
0.141271 + 0.989971i \(0.454881\pi\)
\(564\) 5.94236 0.250219
\(565\) −45.7543 −1.92490
\(566\) 5.39163 0.226627
\(567\) −3.04581 −0.127912
\(568\) 43.3405 1.81853
\(569\) 10.1066 0.423693 0.211846 0.977303i \(-0.432052\pi\)
0.211846 + 0.977303i \(0.432052\pi\)
\(570\) −4.51192 −0.188983
\(571\) 1.04160 0.0435898 0.0217949 0.999762i \(-0.493062\pi\)
0.0217949 + 0.999762i \(0.493062\pi\)
\(572\) 0 0
\(573\) −22.6045 −0.944317
\(574\) 2.19177 0.0914828
\(575\) −93.1558 −3.88487
\(576\) 7.87355 0.328064
\(577\) 18.2008 0.757711 0.378855 0.925456i \(-0.376318\pi\)
0.378855 + 0.925456i \(0.376318\pi\)
\(578\) −24.7511 −1.02951
\(579\) 1.49251 0.0620266
\(580\) −6.84260 −0.284123
\(581\) −16.9961 −0.705116
\(582\) 14.6993 0.609307
\(583\) 0 0
\(584\) 27.9740 1.15757
\(585\) 4.51192 0.186545
\(586\) 26.1722 1.08116
\(587\) −13.6535 −0.563539 −0.281770 0.959482i \(-0.590921\pi\)
−0.281770 + 0.959482i \(0.590921\pi\)
\(588\) 1.94557 0.0802341
\(589\) −9.84443 −0.405633
\(590\) −3.79291 −0.156151
\(591\) 13.0698 0.537621
\(592\) 9.28945 0.381794
\(593\) 39.7578 1.63266 0.816329 0.577588i \(-0.196006\pi\)
0.816329 + 0.577588i \(0.196006\pi\)
\(594\) 0 0
\(595\) −81.3337 −3.33436
\(596\) −4.14489 −0.169781
\(597\) 7.70873 0.315498
\(598\) −8.35578 −0.341693
\(599\) −1.67283 −0.0683502 −0.0341751 0.999416i \(-0.510880\pi\)
−0.0341751 + 0.999416i \(0.510880\pi\)
\(600\) −39.0175 −1.59288
\(601\) −30.8491 −1.25836 −0.629180 0.777260i \(-0.716609\pi\)
−0.629180 + 0.777260i \(0.716609\pi\)
\(602\) 37.4986 1.52833
\(603\) −8.73056 −0.355536
\(604\) 1.73310 0.0705190
\(605\) 0 0
\(606\) −11.1007 −0.450937
\(607\) −17.2206 −0.698963 −0.349481 0.936943i \(-0.613642\pi\)
−0.349481 + 0.936943i \(0.613642\pi\)
\(608\) −4.43957 −0.180049
\(609\) −5.78588 −0.234456
\(610\) 48.7396 1.97341
\(611\) −7.44331 −0.301124
\(612\) 5.41261 0.218792
\(613\) 27.9892 1.13047 0.565236 0.824929i \(-0.308785\pi\)
0.565236 + 0.824929i \(0.308785\pi\)
\(614\) 6.60993 0.266755
\(615\) 2.83431 0.114290
\(616\) 0 0
\(617\) −29.8719 −1.20260 −0.601299 0.799024i \(-0.705350\pi\)
−0.601299 + 0.799024i \(0.705350\pi\)
\(618\) 10.4053 0.418561
\(619\) 37.8137 1.51986 0.759931 0.650004i \(-0.225233\pi\)
0.759931 + 0.650004i \(0.225233\pi\)
\(620\) −35.4605 −1.42413
\(621\) 7.29424 0.292708
\(622\) 0.898099 0.0360105
\(623\) −15.4306 −0.618212
\(624\) −1.67067 −0.0668804
\(625\) 74.2466 2.96986
\(626\) −6.79575 −0.271613
\(627\) 0 0
\(628\) 3.60971 0.144043
\(629\) 37.6975 1.50310
\(630\) −13.7424 −0.547512
\(631\) 48.7418 1.94038 0.970190 0.242347i \(-0.0779171\pi\)
0.970190 + 0.242347i \(0.0779171\pi\)
\(632\) −45.8813 −1.82506
\(633\) −16.0870 −0.639403
\(634\) 8.16361 0.324219
\(635\) −25.4955 −1.01176
\(636\) −4.14685 −0.164433
\(637\) −2.43700 −0.0965573
\(638\) 0 0
\(639\) 14.1862 0.561196
\(640\) −1.90600 −0.0753414
\(641\) 1.00552 0.0397158 0.0198579 0.999803i \(-0.493679\pi\)
0.0198579 + 0.999803i \(0.493679\pi\)
\(642\) −14.6376 −0.577700
\(643\) 38.7682 1.52887 0.764435 0.644701i \(-0.223018\pi\)
0.764435 + 0.644701i \(0.223018\pi\)
\(644\) −18.9836 −0.748058
\(645\) 48.4916 1.90936
\(646\) 6.77975 0.266746
\(647\) 28.7318 1.12956 0.564782 0.825240i \(-0.308960\pi\)
0.564782 + 0.825240i \(0.308960\pi\)
\(648\) 3.05512 0.120017
\(649\) 0 0
\(650\) 14.6298 0.573826
\(651\) −29.9842 −1.17518
\(652\) −16.0087 −0.626949
\(653\) 12.4522 0.487291 0.243646 0.969864i \(-0.421657\pi\)
0.243646 + 0.969864i \(0.421657\pi\)
\(654\) 13.5950 0.531606
\(655\) −37.3631 −1.45990
\(656\) −1.04949 −0.0409756
\(657\) 9.15644 0.357227
\(658\) 22.6709 0.883804
\(659\) 25.5435 0.995035 0.497518 0.867454i \(-0.334245\pi\)
0.497518 + 0.867454i \(0.334245\pi\)
\(660\) 0 0
\(661\) 1.69425 0.0658987 0.0329493 0.999457i \(-0.489510\pi\)
0.0329493 + 0.999457i \(0.489510\pi\)
\(662\) −12.5289 −0.486948
\(663\) −6.77975 −0.263304
\(664\) 17.0481 0.661593
\(665\) 12.8399 0.497908
\(666\) 6.36950 0.246813
\(667\) 13.8563 0.536517
\(668\) 10.8494 0.419778
\(669\) −2.12052 −0.0819839
\(670\) −39.3916 −1.52183
\(671\) 0 0
\(672\) −13.5221 −0.521626
\(673\) 27.1021 1.04471 0.522354 0.852729i \(-0.325054\pi\)
0.522354 + 0.852729i \(0.325054\pi\)
\(674\) −26.3191 −1.01378
\(675\) −12.7712 −0.491562
\(676\) 10.1293 0.389587
\(677\) −10.9519 −0.420914 −0.210457 0.977603i \(-0.567495\pi\)
−0.210457 + 0.977603i \(0.567495\pi\)
\(678\) 11.6166 0.446132
\(679\) −41.8308 −1.60532
\(680\) 81.5825 3.12855
\(681\) 11.4989 0.440640
\(682\) 0 0
\(683\) −3.69762 −0.141485 −0.0707427 0.997495i \(-0.522537\pi\)
−0.0707427 + 0.997495i \(0.522537\pi\)
\(684\) −0.854469 −0.0326714
\(685\) −13.4897 −0.515415
\(686\) −15.3968 −0.587851
\(687\) −21.9950 −0.839163
\(688\) −17.9555 −0.684546
\(689\) 5.19429 0.197887
\(690\) 32.9110 1.25290
\(691\) 27.3492 1.04041 0.520206 0.854041i \(-0.325855\pi\)
0.520206 + 0.854041i \(0.325855\pi\)
\(692\) 5.91489 0.224850
\(693\) 0 0
\(694\) 23.6401 0.897367
\(695\) 10.8456 0.411396
\(696\) 5.80358 0.219984
\(697\) −4.25893 −0.161318
\(698\) −10.6346 −0.402527
\(699\) 0.990018 0.0374459
\(700\) 33.2375 1.25626
\(701\) 35.5698 1.34345 0.671727 0.740799i \(-0.265553\pi\)
0.671727 + 0.740799i \(0.265553\pi\)
\(702\) −1.14553 −0.0432353
\(703\) −5.95117 −0.224453
\(704\) 0 0
\(705\) 29.3171 1.10415
\(706\) 27.3700 1.03008
\(707\) 31.5901 1.18807
\(708\) −0.718302 −0.0269954
\(709\) 40.0327 1.50346 0.751730 0.659471i \(-0.229219\pi\)
0.751730 + 0.659471i \(0.229219\pi\)
\(710\) 64.0068 2.40213
\(711\) −15.0178 −0.563213
\(712\) 15.4778 0.580054
\(713\) 71.8076 2.68922
\(714\) 20.6498 0.772800
\(715\) 0 0
\(716\) −10.3053 −0.385127
\(717\) −11.6106 −0.433607
\(718\) 27.1624 1.01369
\(719\) −9.35452 −0.348865 −0.174432 0.984669i \(-0.555809\pi\)
−0.174432 + 0.984669i \(0.555809\pi\)
\(720\) 6.58030 0.245233
\(721\) −29.6109 −1.10277
\(722\) −1.07029 −0.0398323
\(723\) −11.0505 −0.410973
\(724\) 4.78951 0.178001
\(725\) −24.2603 −0.901007
\(726\) 0 0
\(727\) −19.4936 −0.722979 −0.361489 0.932376i \(-0.617732\pi\)
−0.361489 + 0.932376i \(0.617732\pi\)
\(728\) 9.95943 0.369121
\(729\) 1.00000 0.0370370
\(730\) 41.3131 1.52907
\(731\) −72.8651 −2.69501
\(732\) 9.23033 0.341163
\(733\) 1.42990 0.0528146 0.0264073 0.999651i \(-0.491593\pi\)
0.0264073 + 0.999651i \(0.491593\pi\)
\(734\) −10.7072 −0.395209
\(735\) 9.59863 0.354051
\(736\) 32.3833 1.19366
\(737\) 0 0
\(738\) −0.719603 −0.0264890
\(739\) −36.8322 −1.35489 −0.677447 0.735572i \(-0.736914\pi\)
−0.677447 + 0.735572i \(0.736914\pi\)
\(740\) −21.4366 −0.788025
\(741\) 1.07029 0.0393183
\(742\) −15.8208 −0.580800
\(743\) 2.32178 0.0851777 0.0425889 0.999093i \(-0.486439\pi\)
0.0425889 + 0.999093i \(0.486439\pi\)
\(744\) 30.0760 1.10264
\(745\) −20.4491 −0.749197
\(746\) −6.81501 −0.249515
\(747\) 5.58016 0.204167
\(748\) 0 0
\(749\) 41.6552 1.52205
\(750\) −35.0628 −1.28031
\(751\) 12.5420 0.457663 0.228832 0.973466i \(-0.426509\pi\)
0.228832 + 0.973466i \(0.426509\pi\)
\(752\) −10.8555 −0.395860
\(753\) 12.2910 0.447909
\(754\) −2.17607 −0.0792480
\(755\) 8.55039 0.311181
\(756\) −2.60255 −0.0946537
\(757\) −39.5566 −1.43771 −0.718854 0.695161i \(-0.755333\pi\)
−0.718854 + 0.695161i \(0.755333\pi\)
\(758\) 29.4325 1.06904
\(759\) 0 0
\(760\) −12.8791 −0.467175
\(761\) −5.23236 −0.189673 −0.0948365 0.995493i \(-0.530233\pi\)
−0.0948365 + 0.995493i \(0.530233\pi\)
\(762\) 6.47305 0.234494
\(763\) −38.6881 −1.40060
\(764\) −19.3148 −0.698786
\(765\) 26.7035 0.965467
\(766\) 17.4536 0.630623
\(767\) 0.899734 0.0324875
\(768\) 16.2310 0.585686
\(769\) −15.5919 −0.562257 −0.281128 0.959670i \(-0.590709\pi\)
−0.281128 + 0.959670i \(0.590709\pi\)
\(770\) 0 0
\(771\) 16.8226 0.605852
\(772\) 1.27530 0.0458992
\(773\) −12.2154 −0.439358 −0.219679 0.975572i \(-0.570501\pi\)
−0.219679 + 0.975572i \(0.570501\pi\)
\(774\) −12.3115 −0.442529
\(775\) −125.725 −4.51617
\(776\) 41.9588 1.50623
\(777\) −18.1261 −0.650270
\(778\) −15.7246 −0.563753
\(779\) 0.672341 0.0240891
\(780\) 3.85529 0.138042
\(781\) 0 0
\(782\) −49.4531 −1.76844
\(783\) 1.89962 0.0678869
\(784\) −3.55418 −0.126935
\(785\) 17.8088 0.635622
\(786\) 9.48612 0.338359
\(787\) −14.9375 −0.532463 −0.266232 0.963909i \(-0.585779\pi\)
−0.266232 + 0.963909i \(0.585779\pi\)
\(788\) 11.1678 0.397835
\(789\) 11.3136 0.402776
\(790\) −67.7592 −2.41077
\(791\) −33.0580 −1.17541
\(792\) 0 0
\(793\) −11.5618 −0.410571
\(794\) 1.56718 0.0556172
\(795\) −20.4588 −0.725599
\(796\) 6.58687 0.233466
\(797\) 41.1159 1.45640 0.728199 0.685365i \(-0.240358\pi\)
0.728199 + 0.685365i \(0.240358\pi\)
\(798\) −3.25991 −0.115400
\(799\) −44.0528 −1.55848
\(800\) −56.6985 −2.00459
\(801\) 5.06617 0.179004
\(802\) 11.3264 0.399950
\(803\) 0 0
\(804\) −7.45999 −0.263093
\(805\) −93.6570 −3.30097
\(806\) −11.2771 −0.397219
\(807\) −9.25786 −0.325892
\(808\) −31.6867 −1.11474
\(809\) 37.6861 1.32497 0.662487 0.749074i \(-0.269501\pi\)
0.662487 + 0.749074i \(0.269501\pi\)
\(810\) 4.51192 0.158533
\(811\) −30.6436 −1.07604 −0.538021 0.842932i \(-0.680828\pi\)
−0.538021 + 0.842932i \(0.680828\pi\)
\(812\) −4.94385 −0.173495
\(813\) −9.51383 −0.333665
\(814\) 0 0
\(815\) −78.9801 −2.76655
\(816\) −9.88777 −0.346141
\(817\) 11.5029 0.402437
\(818\) 33.0126 1.15426
\(819\) 3.25991 0.113911
\(820\) 2.42183 0.0845740
\(821\) −34.1029 −1.19020 −0.595100 0.803652i \(-0.702888\pi\)
−0.595100 + 0.803652i \(0.702888\pi\)
\(822\) 3.42490 0.119457
\(823\) 31.2177 1.08818 0.544090 0.839027i \(-0.316875\pi\)
0.544090 + 0.839027i \(0.316875\pi\)
\(824\) 29.7015 1.03470
\(825\) 0 0
\(826\) −2.74042 −0.0953513
\(827\) 19.6677 0.683911 0.341956 0.939716i \(-0.388911\pi\)
0.341956 + 0.939716i \(0.388911\pi\)
\(828\) 6.23270 0.216601
\(829\) −34.5316 −1.19933 −0.599665 0.800251i \(-0.704700\pi\)
−0.599665 + 0.800251i \(0.704700\pi\)
\(830\) 25.1772 0.873914
\(831\) 20.8566 0.723509
\(832\) −8.42702 −0.292154
\(833\) −14.4232 −0.499734
\(834\) −2.75358 −0.0953487
\(835\) 53.5266 1.85236
\(836\) 0 0
\(837\) 9.84443 0.340273
\(838\) −4.73710 −0.163640
\(839\) −56.2637 −1.94244 −0.971220 0.238185i \(-0.923448\pi\)
−0.971220 + 0.238185i \(0.923448\pi\)
\(840\) −39.2273 −1.35347
\(841\) −25.3914 −0.875567
\(842\) −35.6119 −1.22727
\(843\) −10.5486 −0.363311
\(844\) −13.7459 −0.473153
\(845\) 49.9735 1.71914
\(846\) −7.44331 −0.255906
\(847\) 0 0
\(848\) 7.57548 0.260143
\(849\) 5.03751 0.172887
\(850\) 86.5853 2.96985
\(851\) 43.4092 1.48805
\(852\) 12.1216 0.415280
\(853\) −24.3569 −0.833963 −0.416981 0.908915i \(-0.636912\pi\)
−0.416981 + 0.908915i \(0.636912\pi\)
\(854\) 35.2149 1.20503
\(855\) −4.21558 −0.144170
\(856\) −41.7826 −1.42810
\(857\) −6.01678 −0.205529 −0.102765 0.994706i \(-0.532769\pi\)
−0.102765 + 0.994706i \(0.532769\pi\)
\(858\) 0 0
\(859\) 33.6877 1.14941 0.574705 0.818361i \(-0.305117\pi\)
0.574705 + 0.818361i \(0.305117\pi\)
\(860\) 41.4346 1.41291
\(861\) 2.04782 0.0697896
\(862\) 30.3022 1.03210
\(863\) −35.5089 −1.20874 −0.604368 0.796705i \(-0.706574\pi\)
−0.604368 + 0.796705i \(0.706574\pi\)
\(864\) 4.43957 0.151037
\(865\) 29.1815 0.992202
\(866\) 2.86510 0.0973602
\(867\) −23.1255 −0.785384
\(868\) −25.6206 −0.869620
\(869\) 0 0
\(870\) 8.57093 0.290582
\(871\) 9.34427 0.316619
\(872\) 38.8065 1.31415
\(873\) 13.7339 0.464822
\(874\) 7.80698 0.264075
\(875\) 99.7805 3.37320
\(876\) 7.82389 0.264345
\(877\) 24.6083 0.830963 0.415482 0.909602i \(-0.363613\pi\)
0.415482 + 0.909602i \(0.363613\pi\)
\(878\) 11.9688 0.403927
\(879\) 24.4532 0.824787
\(880\) 0 0
\(881\) −0.590267 −0.0198866 −0.00994330 0.999951i \(-0.503165\pi\)
−0.00994330 + 0.999951i \(0.503165\pi\)
\(882\) −2.43700 −0.0820579
\(883\) −41.7797 −1.40600 −0.703000 0.711190i \(-0.748156\pi\)
−0.703000 + 0.711190i \(0.748156\pi\)
\(884\) −5.79309 −0.194843
\(885\) −3.54379 −0.119123
\(886\) 23.7736 0.798691
\(887\) −41.2641 −1.38551 −0.692756 0.721172i \(-0.743604\pi\)
−0.692756 + 0.721172i \(0.743604\pi\)
\(888\) 18.1815 0.610133
\(889\) −18.4208 −0.617813
\(890\) 22.8581 0.766206
\(891\) 0 0
\(892\) −1.81192 −0.0606674
\(893\) 6.95445 0.232722
\(894\) 5.19182 0.173641
\(895\) −50.8419 −1.69946
\(896\) −1.37711 −0.0460060
\(897\) −7.80698 −0.260668
\(898\) 26.8369 0.895560
\(899\) 18.7007 0.623703
\(900\) −10.9126 −0.363752
\(901\) 30.7421 1.02417
\(902\) 0 0
\(903\) 35.0357 1.16592
\(904\) 33.1591 1.10286
\(905\) 23.6294 0.785468
\(906\) −2.17086 −0.0721220
\(907\) −28.2681 −0.938627 −0.469313 0.883032i \(-0.655499\pi\)
−0.469313 + 0.883032i \(0.655499\pi\)
\(908\) 9.82549 0.326070
\(909\) −10.3717 −0.344007
\(910\) 14.7085 0.487581
\(911\) 22.2316 0.736565 0.368283 0.929714i \(-0.379946\pi\)
0.368283 + 0.929714i \(0.379946\pi\)
\(912\) 1.56095 0.0516881
\(913\) 0 0
\(914\) −5.01351 −0.165832
\(915\) 45.5385 1.50546
\(916\) −18.7941 −0.620974
\(917\) −26.9953 −0.891462
\(918\) −6.77975 −0.223765
\(919\) −3.91472 −0.129135 −0.0645674 0.997913i \(-0.520567\pi\)
−0.0645674 + 0.997913i \(0.520567\pi\)
\(920\) 93.9434 3.09722
\(921\) 6.17580 0.203500
\(922\) 27.2301 0.896775
\(923\) −15.1834 −0.499767
\(924\) 0 0
\(925\) −76.0033 −2.49897
\(926\) −4.22506 −0.138844
\(927\) 9.72187 0.319308
\(928\) 8.43351 0.276843
\(929\) −48.0505 −1.57648 −0.788242 0.615365i \(-0.789009\pi\)
−0.788242 + 0.615365i \(0.789009\pi\)
\(930\) 44.4173 1.45650
\(931\) 2.27694 0.0746237
\(932\) 0.845939 0.0277097
\(933\) 0.839114 0.0274713
\(934\) −22.6347 −0.740630
\(935\) 0 0
\(936\) −3.26988 −0.106879
\(937\) −52.3215 −1.70927 −0.854635 0.519229i \(-0.826219\pi\)
−0.854635 + 0.519229i \(0.826219\pi\)
\(938\) −28.4608 −0.929279
\(939\) −6.34941 −0.207205
\(940\) 25.0505 0.817058
\(941\) −46.3936 −1.51239 −0.756194 0.654347i \(-0.772943\pi\)
−0.756194 + 0.654347i \(0.772943\pi\)
\(942\) −4.52146 −0.147317
\(943\) −4.90422 −0.159703
\(944\) 1.31220 0.0427083
\(945\) −12.8399 −0.417681
\(946\) 0 0
\(947\) 21.6085 0.702182 0.351091 0.936341i \(-0.385811\pi\)
0.351091 + 0.936341i \(0.385811\pi\)
\(948\) −12.8323 −0.416773
\(949\) −9.80009 −0.318124
\(950\) −13.6689 −0.443478
\(951\) 7.62744 0.247337
\(952\) 58.9443 1.91039
\(953\) 36.8365 1.19325 0.596625 0.802520i \(-0.296508\pi\)
0.596625 + 0.802520i \(0.296508\pi\)
\(954\) 5.19429 0.168171
\(955\) −95.2912 −3.08355
\(956\) −9.92092 −0.320865
\(957\) 0 0
\(958\) 21.0344 0.679590
\(959\) −9.74646 −0.314729
\(960\) 33.1916 1.07125
\(961\) 65.9129 2.12622
\(962\) −6.81725 −0.219797
\(963\) −13.6762 −0.440711
\(964\) −9.44232 −0.304117
\(965\) 6.29181 0.202540
\(966\) 23.7786 0.765063
\(967\) 9.21555 0.296352 0.148176 0.988961i \(-0.452660\pi\)
0.148176 + 0.988961i \(0.452660\pi\)
\(968\) 0 0
\(969\) 6.33447 0.203493
\(970\) 61.9662 1.98962
\(971\) −13.7384 −0.440885 −0.220442 0.975400i \(-0.570750\pi\)
−0.220442 + 0.975400i \(0.570750\pi\)
\(972\) 0.854469 0.0274071
\(973\) 7.83604 0.251212
\(974\) −21.8177 −0.699086
\(975\) 13.6689 0.437755
\(976\) −16.8620 −0.539739
\(977\) −35.6361 −1.14010 −0.570051 0.821610i \(-0.693076\pi\)
−0.570051 + 0.821610i \(0.693076\pi\)
\(978\) 20.0523 0.641201
\(979\) 0 0
\(980\) 8.20173 0.261995
\(981\) 12.7021 0.405547
\(982\) −24.6815 −0.787618
\(983\) −30.3992 −0.969583 −0.484792 0.874630i \(-0.661105\pi\)
−0.484792 + 0.874630i \(0.661105\pi\)
\(984\) −2.05409 −0.0654819
\(985\) 55.0970 1.75554
\(986\) −12.8790 −0.410150
\(987\) 21.1819 0.674228
\(988\) 0.914534 0.0290952
\(989\) −83.9052 −2.66803
\(990\) 0 0
\(991\) 9.49878 0.301739 0.150869 0.988554i \(-0.451793\pi\)
0.150869 + 0.988554i \(0.451793\pi\)
\(992\) 43.7051 1.38764
\(993\) −11.7060 −0.371478
\(994\) 46.2456 1.46682
\(995\) 32.4968 1.03022
\(996\) 4.76807 0.151082
\(997\) 7.53774 0.238723 0.119361 0.992851i \(-0.461915\pi\)
0.119361 + 0.992851i \(0.461915\pi\)
\(998\) −34.8511 −1.10319
\(999\) 5.95117 0.188287
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6897.2.a.bc.1.3 8
11.10 odd 2 6897.2.a.bd.1.6 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6897.2.a.bc.1.3 8 1.1 even 1 trivial
6897.2.a.bd.1.6 yes 8 11.10 odd 2