Properties

Label 6897.2.a.ba.1.7
Level $6897$
Weight $2$
Character 6897.1
Self dual yes
Analytic conductor $55.073$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6897,2,Mod(1,6897)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6897.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6897, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6897 = 3 \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6897.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,2,-7,6,-2,-2,6,12,7,-6,0,-6,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.0728222741\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 8x^{5} + 12x^{4} + 21x^{3} - 14x^{2} - 19x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(2.53474\) of defining polynomial
Character \(\chi\) \(=\) 6897.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.53474 q^{2} -1.00000 q^{3} +4.42489 q^{4} -1.92344 q^{5} -2.53474 q^{6} -3.31812 q^{7} +6.14646 q^{8} +1.00000 q^{9} -4.87540 q^{10} -4.42489 q^{12} +2.37848 q^{13} -8.41057 q^{14} +1.92344 q^{15} +6.72988 q^{16} +0.204137 q^{17} +2.53474 q^{18} +1.00000 q^{19} -8.51100 q^{20} +3.31812 q^{21} -1.65771 q^{23} -6.14646 q^{24} -1.30039 q^{25} +6.02882 q^{26} -1.00000 q^{27} -14.6823 q^{28} +1.12757 q^{29} +4.87540 q^{30} +8.50443 q^{31} +4.76556 q^{32} +0.517434 q^{34} +6.38220 q^{35} +4.42489 q^{36} +5.13064 q^{37} +2.53474 q^{38} -2.37848 q^{39} -11.8223 q^{40} +5.48072 q^{41} +8.41057 q^{42} -4.47173 q^{43} -1.92344 q^{45} -4.20186 q^{46} -8.54180 q^{47} -6.72988 q^{48} +4.00993 q^{49} -3.29616 q^{50} -0.204137 q^{51} +10.5245 q^{52} +8.38239 q^{53} -2.53474 q^{54} -20.3947 q^{56} -1.00000 q^{57} +2.85810 q^{58} +5.15021 q^{59} +8.51100 q^{60} -1.45119 q^{61} +21.5565 q^{62} -3.31812 q^{63} -1.38033 q^{64} -4.57485 q^{65} +5.76760 q^{67} +0.903285 q^{68} +1.65771 q^{69} +16.1772 q^{70} +8.08303 q^{71} +6.14646 q^{72} +12.6433 q^{73} +13.0048 q^{74} +1.30039 q^{75} +4.42489 q^{76} -6.02882 q^{78} +4.05754 q^{79} -12.9445 q^{80} +1.00000 q^{81} +13.8922 q^{82} +17.4366 q^{83} +14.6823 q^{84} -0.392645 q^{85} -11.3347 q^{86} -1.12757 q^{87} -3.36049 q^{89} -4.87540 q^{90} -7.89209 q^{91} -7.33520 q^{92} -8.50443 q^{93} -21.6512 q^{94} -1.92344 q^{95} -4.76556 q^{96} -17.0429 q^{97} +10.1641 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 2 q^{2} - 7 q^{3} + 6 q^{4} - 2 q^{5} - 2 q^{6} + 6 q^{7} + 12 q^{8} + 7 q^{9} - 6 q^{10} - 6 q^{12} + q^{13} - 4 q^{14} + 2 q^{15} + 5 q^{17} + 2 q^{18} + 7 q^{19} + 10 q^{20} - 6 q^{21} + 2 q^{23}+ \cdots + 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.53474 1.79233 0.896165 0.443721i \(-0.146342\pi\)
0.896165 + 0.443721i \(0.146342\pi\)
\(3\) −1.00000 −0.577350
\(4\) 4.42489 2.21245
\(5\) −1.92344 −0.860187 −0.430093 0.902784i \(-0.641519\pi\)
−0.430093 + 0.902784i \(0.641519\pi\)
\(6\) −2.53474 −1.03480
\(7\) −3.31812 −1.25413 −0.627066 0.778966i \(-0.715744\pi\)
−0.627066 + 0.778966i \(0.715744\pi\)
\(8\) 6.14646 2.17310
\(9\) 1.00000 0.333333
\(10\) −4.87540 −1.54174
\(11\) 0 0
\(12\) −4.42489 −1.27736
\(13\) 2.37848 0.659672 0.329836 0.944038i \(-0.393007\pi\)
0.329836 + 0.944038i \(0.393007\pi\)
\(14\) −8.41057 −2.24782
\(15\) 1.92344 0.496629
\(16\) 6.72988 1.68247
\(17\) 0.204137 0.0495105 0.0247553 0.999694i \(-0.492119\pi\)
0.0247553 + 0.999694i \(0.492119\pi\)
\(18\) 2.53474 0.597443
\(19\) 1.00000 0.229416
\(20\) −8.51100 −1.90312
\(21\) 3.31812 0.724074
\(22\) 0 0
\(23\) −1.65771 −0.345657 −0.172828 0.984952i \(-0.555291\pi\)
−0.172828 + 0.984952i \(0.555291\pi\)
\(24\) −6.14646 −1.25464
\(25\) −1.30039 −0.260079
\(26\) 6.02882 1.18235
\(27\) −1.00000 −0.192450
\(28\) −14.6823 −2.77470
\(29\) 1.12757 0.209385 0.104693 0.994505i \(-0.466614\pi\)
0.104693 + 0.994505i \(0.466614\pi\)
\(30\) 4.87540 0.890123
\(31\) 8.50443 1.52744 0.763721 0.645547i \(-0.223370\pi\)
0.763721 + 0.645547i \(0.223370\pi\)
\(32\) 4.76556 0.842440
\(33\) 0 0
\(34\) 0.517434 0.0887392
\(35\) 6.38220 1.07879
\(36\) 4.42489 0.737482
\(37\) 5.13064 0.843471 0.421736 0.906719i \(-0.361421\pi\)
0.421736 + 0.906719i \(0.361421\pi\)
\(38\) 2.53474 0.411189
\(39\) −2.37848 −0.380862
\(40\) −11.8223 −1.86927
\(41\) 5.48072 0.855944 0.427972 0.903792i \(-0.359228\pi\)
0.427972 + 0.903792i \(0.359228\pi\)
\(42\) 8.41057 1.29778
\(43\) −4.47173 −0.681932 −0.340966 0.940076i \(-0.610754\pi\)
−0.340966 + 0.940076i \(0.610754\pi\)
\(44\) 0 0
\(45\) −1.92344 −0.286729
\(46\) −4.20186 −0.619531
\(47\) −8.54180 −1.24595 −0.622975 0.782242i \(-0.714076\pi\)
−0.622975 + 0.782242i \(0.714076\pi\)
\(48\) −6.72988 −0.971375
\(49\) 4.00993 0.572848
\(50\) −3.29616 −0.466147
\(51\) −0.204137 −0.0285849
\(52\) 10.5245 1.45949
\(53\) 8.38239 1.15141 0.575705 0.817657i \(-0.304728\pi\)
0.575705 + 0.817657i \(0.304728\pi\)
\(54\) −2.53474 −0.344934
\(55\) 0 0
\(56\) −20.3947 −2.72536
\(57\) −1.00000 −0.132453
\(58\) 2.85810 0.375287
\(59\) 5.15021 0.670500 0.335250 0.942129i \(-0.391179\pi\)
0.335250 + 0.942129i \(0.391179\pi\)
\(60\) 8.51100 1.09876
\(61\) −1.45119 −0.185805 −0.0929026 0.995675i \(-0.529615\pi\)
−0.0929026 + 0.995675i \(0.529615\pi\)
\(62\) 21.5565 2.73768
\(63\) −3.31812 −0.418044
\(64\) −1.38033 −0.172541
\(65\) −4.57485 −0.567441
\(66\) 0 0
\(67\) 5.76760 0.704625 0.352313 0.935882i \(-0.385395\pi\)
0.352313 + 0.935882i \(0.385395\pi\)
\(68\) 0.903285 0.109539
\(69\) 1.65771 0.199565
\(70\) 16.1772 1.93354
\(71\) 8.08303 0.959279 0.479640 0.877466i \(-0.340767\pi\)
0.479640 + 0.877466i \(0.340767\pi\)
\(72\) 6.14646 0.724368
\(73\) 12.6433 1.47979 0.739893 0.672725i \(-0.234876\pi\)
0.739893 + 0.672725i \(0.234876\pi\)
\(74\) 13.0048 1.51178
\(75\) 1.30039 0.150157
\(76\) 4.42489 0.507570
\(77\) 0 0
\(78\) −6.02882 −0.682630
\(79\) 4.05754 0.456509 0.228255 0.973601i \(-0.426698\pi\)
0.228255 + 0.973601i \(0.426698\pi\)
\(80\) −12.9445 −1.44724
\(81\) 1.00000 0.111111
\(82\) 13.8922 1.53413
\(83\) 17.4366 1.91392 0.956958 0.290226i \(-0.0937305\pi\)
0.956958 + 0.290226i \(0.0937305\pi\)
\(84\) 14.6823 1.60197
\(85\) −0.392645 −0.0425883
\(86\) −11.3347 −1.22225
\(87\) −1.12757 −0.120889
\(88\) 0 0
\(89\) −3.36049 −0.356211 −0.178105 0.984011i \(-0.556997\pi\)
−0.178105 + 0.984011i \(0.556997\pi\)
\(90\) −4.87540 −0.513913
\(91\) −7.89209 −0.827316
\(92\) −7.33520 −0.764747
\(93\) −8.50443 −0.881869
\(94\) −21.6512 −2.23315
\(95\) −1.92344 −0.197340
\(96\) −4.76556 −0.486383
\(97\) −17.0429 −1.73044 −0.865220 0.501393i \(-0.832821\pi\)
−0.865220 + 0.501393i \(0.832821\pi\)
\(98\) 10.1641 1.02673
\(99\) 0 0
\(100\) −5.75410 −0.575410
\(101\) −4.72280 −0.469936 −0.234968 0.972003i \(-0.575499\pi\)
−0.234968 + 0.972003i \(0.575499\pi\)
\(102\) −0.517434 −0.0512336
\(103\) 15.6721 1.54422 0.772110 0.635488i \(-0.219201\pi\)
0.772110 + 0.635488i \(0.219201\pi\)
\(104\) 14.6192 1.43353
\(105\) −6.38220 −0.622838
\(106\) 21.2472 2.06371
\(107\) 13.6773 1.32223 0.661115 0.750285i \(-0.270084\pi\)
0.661115 + 0.750285i \(0.270084\pi\)
\(108\) −4.42489 −0.425785
\(109\) −1.52679 −0.146240 −0.0731200 0.997323i \(-0.523296\pi\)
−0.0731200 + 0.997323i \(0.523296\pi\)
\(110\) 0 0
\(111\) −5.13064 −0.486978
\(112\) −22.3306 −2.11004
\(113\) 7.96153 0.748958 0.374479 0.927235i \(-0.377822\pi\)
0.374479 + 0.927235i \(0.377822\pi\)
\(114\) −2.53474 −0.237400
\(115\) 3.18850 0.297329
\(116\) 4.98939 0.463253
\(117\) 2.37848 0.219891
\(118\) 13.0544 1.20176
\(119\) −0.677352 −0.0620928
\(120\) 11.8223 1.07923
\(121\) 0 0
\(122\) −3.67837 −0.333024
\(123\) −5.48072 −0.494180
\(124\) 37.6312 3.37938
\(125\) 12.1184 1.08390
\(126\) −8.41057 −0.749273
\(127\) −6.44545 −0.571942 −0.285971 0.958238i \(-0.592316\pi\)
−0.285971 + 0.958238i \(0.592316\pi\)
\(128\) −13.0299 −1.15169
\(129\) 4.47173 0.393714
\(130\) −11.5961 −1.01704
\(131\) 13.1752 1.15112 0.575561 0.817759i \(-0.304784\pi\)
0.575561 + 0.817759i \(0.304784\pi\)
\(132\) 0 0
\(133\) −3.31812 −0.287718
\(134\) 14.6194 1.26292
\(135\) 1.92344 0.165543
\(136\) 1.25472 0.107591
\(137\) −3.81690 −0.326100 −0.163050 0.986618i \(-0.552133\pi\)
−0.163050 + 0.986618i \(0.552133\pi\)
\(138\) 4.20186 0.357686
\(139\) 13.2851 1.12683 0.563414 0.826175i \(-0.309488\pi\)
0.563414 + 0.826175i \(0.309488\pi\)
\(140\) 28.2405 2.38676
\(141\) 8.54180 0.719349
\(142\) 20.4884 1.71934
\(143\) 0 0
\(144\) 6.72988 0.560824
\(145\) −2.16881 −0.180110
\(146\) 32.0474 2.65226
\(147\) −4.00993 −0.330734
\(148\) 22.7025 1.86613
\(149\) −1.62183 −0.132866 −0.0664328 0.997791i \(-0.521162\pi\)
−0.0664328 + 0.997791i \(0.521162\pi\)
\(150\) 3.29616 0.269130
\(151\) −20.4540 −1.66453 −0.832263 0.554382i \(-0.812955\pi\)
−0.832263 + 0.554382i \(0.812955\pi\)
\(152\) 6.14646 0.498544
\(153\) 0.204137 0.0165035
\(154\) 0 0
\(155\) −16.3577 −1.31388
\(156\) −10.5245 −0.842636
\(157\) 4.12547 0.329248 0.164624 0.986356i \(-0.447359\pi\)
0.164624 + 0.986356i \(0.447359\pi\)
\(158\) 10.2848 0.818215
\(159\) −8.38239 −0.664767
\(160\) −9.16625 −0.724656
\(161\) 5.50049 0.433499
\(162\) 2.53474 0.199148
\(163\) 11.9021 0.932244 0.466122 0.884721i \(-0.345651\pi\)
0.466122 + 0.884721i \(0.345651\pi\)
\(164\) 24.2516 1.89373
\(165\) 0 0
\(166\) 44.1972 3.43037
\(167\) 20.2408 1.56628 0.783142 0.621843i \(-0.213616\pi\)
0.783142 + 0.621843i \(0.213616\pi\)
\(168\) 20.3947 1.57349
\(169\) −7.34283 −0.564833
\(170\) −0.995251 −0.0763323
\(171\) 1.00000 0.0764719
\(172\) −19.7869 −1.50874
\(173\) −2.33910 −0.177839 −0.0889193 0.996039i \(-0.528341\pi\)
−0.0889193 + 0.996039i \(0.528341\pi\)
\(174\) −2.85810 −0.216672
\(175\) 4.31487 0.326173
\(176\) 0 0
\(177\) −5.15021 −0.387114
\(178\) −8.51795 −0.638447
\(179\) 5.91659 0.442227 0.221113 0.975248i \(-0.429031\pi\)
0.221113 + 0.975248i \(0.429031\pi\)
\(180\) −8.51100 −0.634372
\(181\) −24.6664 −1.83344 −0.916720 0.399529i \(-0.869174\pi\)
−0.916720 + 0.399529i \(0.869174\pi\)
\(182\) −20.0044 −1.48282
\(183\) 1.45119 0.107275
\(184\) −10.1891 −0.751148
\(185\) −9.86845 −0.725543
\(186\) −21.5565 −1.58060
\(187\) 0 0
\(188\) −37.7965 −2.75660
\(189\) 3.31812 0.241358
\(190\) −4.87540 −0.353699
\(191\) 9.22647 0.667604 0.333802 0.942643i \(-0.391668\pi\)
0.333802 + 0.942643i \(0.391668\pi\)
\(192\) 1.38033 0.0996166
\(193\) 21.7223 1.56360 0.781801 0.623528i \(-0.214301\pi\)
0.781801 + 0.623528i \(0.214301\pi\)
\(194\) −43.1992 −3.10152
\(195\) 4.57485 0.327612
\(196\) 17.7435 1.26739
\(197\) 0.898238 0.0639968 0.0319984 0.999488i \(-0.489813\pi\)
0.0319984 + 0.999488i \(0.489813\pi\)
\(198\) 0 0
\(199\) 4.88142 0.346035 0.173018 0.984919i \(-0.444648\pi\)
0.173018 + 0.984919i \(0.444648\pi\)
\(200\) −7.99282 −0.565178
\(201\) −5.76760 −0.406815
\(202\) −11.9711 −0.842280
\(203\) −3.74143 −0.262597
\(204\) −0.903285 −0.0632426
\(205\) −10.5418 −0.736272
\(206\) 39.7247 2.76775
\(207\) −1.65771 −0.115219
\(208\) 16.0069 1.10988
\(209\) 0 0
\(210\) −16.1772 −1.11633
\(211\) −25.6524 −1.76598 −0.882992 0.469389i \(-0.844474\pi\)
−0.882992 + 0.469389i \(0.844474\pi\)
\(212\) 37.0912 2.54743
\(213\) −8.08303 −0.553840
\(214\) 34.6682 2.36987
\(215\) 8.60108 0.586589
\(216\) −6.14646 −0.418214
\(217\) −28.2187 −1.91561
\(218\) −3.87001 −0.262110
\(219\) −12.6433 −0.854354
\(220\) 0 0
\(221\) 0.485536 0.0326607
\(222\) −13.0048 −0.872826
\(223\) 21.5751 1.44478 0.722389 0.691486i \(-0.243044\pi\)
0.722389 + 0.691486i \(0.243044\pi\)
\(224\) −15.8127 −1.05653
\(225\) −1.30039 −0.0866929
\(226\) 20.1804 1.34238
\(227\) −28.5013 −1.89170 −0.945849 0.324608i \(-0.894768\pi\)
−0.945849 + 0.324608i \(0.894768\pi\)
\(228\) −4.42489 −0.293046
\(229\) 13.6556 0.902390 0.451195 0.892425i \(-0.350998\pi\)
0.451195 + 0.892425i \(0.350998\pi\)
\(230\) 8.08202 0.532912
\(231\) 0 0
\(232\) 6.93059 0.455015
\(233\) 11.2396 0.736329 0.368165 0.929761i \(-0.379986\pi\)
0.368165 + 0.929761i \(0.379986\pi\)
\(234\) 6.02882 0.394116
\(235\) 16.4296 1.07175
\(236\) 22.7891 1.48345
\(237\) −4.05754 −0.263566
\(238\) −1.71691 −0.111291
\(239\) −11.5540 −0.747369 −0.373685 0.927556i \(-0.621906\pi\)
−0.373685 + 0.927556i \(0.621906\pi\)
\(240\) 12.9445 0.835564
\(241\) 14.5771 0.938993 0.469496 0.882934i \(-0.344435\pi\)
0.469496 + 0.882934i \(0.344435\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) −6.42134 −0.411084
\(245\) −7.71285 −0.492756
\(246\) −13.8922 −0.885733
\(247\) 2.37848 0.151339
\(248\) 52.2722 3.31929
\(249\) −17.4366 −1.10500
\(250\) 30.7170 1.94271
\(251\) −7.05787 −0.445489 −0.222744 0.974877i \(-0.571501\pi\)
−0.222744 + 0.974877i \(0.571501\pi\)
\(252\) −14.6823 −0.924900
\(253\) 0 0
\(254\) −16.3375 −1.02511
\(255\) 0.392645 0.0245884
\(256\) −30.2667 −1.89167
\(257\) −21.7061 −1.35399 −0.676995 0.735987i \(-0.736718\pi\)
−0.676995 + 0.735987i \(0.736718\pi\)
\(258\) 11.3347 0.705665
\(259\) −17.0241 −1.05782
\(260\) −20.2432 −1.25543
\(261\) 1.12757 0.0697950
\(262\) 33.3956 2.06319
\(263\) −7.47167 −0.460723 −0.230362 0.973105i \(-0.573991\pi\)
−0.230362 + 0.973105i \(0.573991\pi\)
\(264\) 0 0
\(265\) −16.1230 −0.990428
\(266\) −8.41057 −0.515685
\(267\) 3.36049 0.205658
\(268\) 25.5210 1.55894
\(269\) 26.0700 1.58952 0.794759 0.606925i \(-0.207597\pi\)
0.794759 + 0.606925i \(0.207597\pi\)
\(270\) 4.87540 0.296708
\(271\) 22.4290 1.36247 0.681234 0.732066i \(-0.261444\pi\)
0.681234 + 0.732066i \(0.261444\pi\)
\(272\) 1.37382 0.0833000
\(273\) 7.89209 0.477651
\(274\) −9.67484 −0.584479
\(275\) 0 0
\(276\) 7.33520 0.441527
\(277\) 6.53588 0.392703 0.196351 0.980534i \(-0.437091\pi\)
0.196351 + 0.980534i \(0.437091\pi\)
\(278\) 33.6742 2.01965
\(279\) 8.50443 0.509147
\(280\) 39.2279 2.34432
\(281\) −12.5012 −0.745758 −0.372879 0.927880i \(-0.621629\pi\)
−0.372879 + 0.927880i \(0.621629\pi\)
\(282\) 21.6512 1.28931
\(283\) 8.56414 0.509085 0.254543 0.967062i \(-0.418075\pi\)
0.254543 + 0.967062i \(0.418075\pi\)
\(284\) 35.7665 2.12235
\(285\) 1.92344 0.113935
\(286\) 0 0
\(287\) −18.1857 −1.07347
\(288\) 4.76556 0.280813
\(289\) −16.9583 −0.997549
\(290\) −5.49738 −0.322817
\(291\) 17.0429 0.999070
\(292\) 55.9452 3.27394
\(293\) −12.2494 −0.715620 −0.357810 0.933794i \(-0.616476\pi\)
−0.357810 + 0.933794i \(0.616476\pi\)
\(294\) −10.1641 −0.592784
\(295\) −9.90610 −0.576756
\(296\) 31.5353 1.83295
\(297\) 0 0
\(298\) −4.11092 −0.238139
\(299\) −3.94284 −0.228020
\(300\) 5.75410 0.332213
\(301\) 14.8377 0.855233
\(302\) −51.8456 −2.98338
\(303\) 4.72280 0.271318
\(304\) 6.72988 0.385985
\(305\) 2.79126 0.159827
\(306\) 0.517434 0.0295797
\(307\) 3.88709 0.221848 0.110924 0.993829i \(-0.464619\pi\)
0.110924 + 0.993829i \(0.464619\pi\)
\(308\) 0 0
\(309\) −15.6721 −0.891556
\(310\) −41.4626 −2.35491
\(311\) −1.32432 −0.0750953 −0.0375476 0.999295i \(-0.511955\pi\)
−0.0375476 + 0.999295i \(0.511955\pi\)
\(312\) −14.6192 −0.827652
\(313\) −27.2169 −1.53839 −0.769195 0.639014i \(-0.779342\pi\)
−0.769195 + 0.639014i \(0.779342\pi\)
\(314\) 10.4570 0.590122
\(315\) 6.38220 0.359596
\(316\) 17.9542 1.01000
\(317\) −34.5074 −1.93813 −0.969064 0.246808i \(-0.920618\pi\)
−0.969064 + 0.246808i \(0.920618\pi\)
\(318\) −21.2472 −1.19148
\(319\) 0 0
\(320\) 2.65497 0.148417
\(321\) −13.6773 −0.763390
\(322\) 13.9423 0.776974
\(323\) 0.204137 0.0113585
\(324\) 4.42489 0.245827
\(325\) −3.09296 −0.171567
\(326\) 30.1687 1.67089
\(327\) 1.52679 0.0844317
\(328\) 33.6870 1.86006
\(329\) 28.3427 1.56259
\(330\) 0 0
\(331\) 22.3412 1.22798 0.613992 0.789312i \(-0.289563\pi\)
0.613992 + 0.789312i \(0.289563\pi\)
\(332\) 77.1551 4.23444
\(333\) 5.13064 0.281157
\(334\) 51.3052 2.80730
\(335\) −11.0936 −0.606109
\(336\) 22.3306 1.21823
\(337\) 7.06395 0.384798 0.192399 0.981317i \(-0.438373\pi\)
0.192399 + 0.981317i \(0.438373\pi\)
\(338\) −18.6121 −1.01237
\(339\) −7.96153 −0.432411
\(340\) −1.73741 −0.0942243
\(341\) 0 0
\(342\) 2.53474 0.137063
\(343\) 9.92141 0.535706
\(344\) −27.4853 −1.48191
\(345\) −3.18850 −0.171663
\(346\) −5.92900 −0.318745
\(347\) 16.3256 0.876403 0.438202 0.898877i \(-0.355616\pi\)
0.438202 + 0.898877i \(0.355616\pi\)
\(348\) −4.98939 −0.267459
\(349\) −26.9640 −1.44335 −0.721674 0.692233i \(-0.756627\pi\)
−0.721674 + 0.692233i \(0.756627\pi\)
\(350\) 10.9370 0.584610
\(351\) −2.37848 −0.126954
\(352\) 0 0
\(353\) −14.1278 −0.751947 −0.375974 0.926630i \(-0.622692\pi\)
−0.375974 + 0.926630i \(0.622692\pi\)
\(354\) −13.0544 −0.693835
\(355\) −15.5472 −0.825159
\(356\) −14.8698 −0.788097
\(357\) 0.677352 0.0358493
\(358\) 14.9970 0.792616
\(359\) −19.0050 −1.00304 −0.501522 0.865145i \(-0.667226\pi\)
−0.501522 + 0.865145i \(0.667226\pi\)
\(360\) −11.8223 −0.623091
\(361\) 1.00000 0.0526316
\(362\) −62.5229 −3.28613
\(363\) 0 0
\(364\) −34.9216 −1.83039
\(365\) −24.3186 −1.27289
\(366\) 3.67837 0.192272
\(367\) 14.7495 0.769920 0.384960 0.922933i \(-0.374215\pi\)
0.384960 + 0.922933i \(0.374215\pi\)
\(368\) −11.1562 −0.581558
\(369\) 5.48072 0.285315
\(370\) −25.0139 −1.30041
\(371\) −27.8138 −1.44402
\(372\) −37.6312 −1.95109
\(373\) −0.505843 −0.0261916 −0.0130958 0.999914i \(-0.504169\pi\)
−0.0130958 + 0.999914i \(0.504169\pi\)
\(374\) 0 0
\(375\) −12.1184 −0.625792
\(376\) −52.5019 −2.70758
\(377\) 2.68191 0.138125
\(378\) 8.41057 0.432593
\(379\) −29.1936 −1.49957 −0.749786 0.661680i \(-0.769844\pi\)
−0.749786 + 0.661680i \(0.769844\pi\)
\(380\) −8.51100 −0.436605
\(381\) 6.44545 0.330211
\(382\) 23.3867 1.19657
\(383\) 6.99648 0.357503 0.178752 0.983894i \(-0.442794\pi\)
0.178752 + 0.983894i \(0.442794\pi\)
\(384\) 13.0299 0.664929
\(385\) 0 0
\(386\) 55.0602 2.80249
\(387\) −4.47173 −0.227311
\(388\) −75.4128 −3.82850
\(389\) 31.5975 1.60206 0.801028 0.598627i \(-0.204287\pi\)
0.801028 + 0.598627i \(0.204287\pi\)
\(390\) 11.5961 0.587189
\(391\) −0.338401 −0.0171137
\(392\) 24.6469 1.24486
\(393\) −13.1752 −0.664601
\(394\) 2.27680 0.114703
\(395\) −7.80442 −0.392683
\(396\) 0 0
\(397\) −0.451857 −0.0226781 −0.0113390 0.999936i \(-0.503609\pi\)
−0.0113390 + 0.999936i \(0.503609\pi\)
\(398\) 12.3731 0.620209
\(399\) 3.31812 0.166114
\(400\) −8.75150 −0.437575
\(401\) −8.42479 −0.420714 −0.210357 0.977625i \(-0.567463\pi\)
−0.210357 + 0.977625i \(0.567463\pi\)
\(402\) −14.6194 −0.729147
\(403\) 20.2276 1.00761
\(404\) −20.8979 −1.03971
\(405\) −1.92344 −0.0955763
\(406\) −9.48353 −0.470660
\(407\) 0 0
\(408\) −1.25472 −0.0621180
\(409\) −32.5480 −1.60939 −0.804697 0.593685i \(-0.797673\pi\)
−0.804697 + 0.593685i \(0.797673\pi\)
\(410\) −26.7207 −1.31964
\(411\) 3.81690 0.188274
\(412\) 69.3475 3.41651
\(413\) −17.0890 −0.840896
\(414\) −4.20186 −0.206510
\(415\) −33.5382 −1.64633
\(416\) 11.3348 0.555734
\(417\) −13.2851 −0.650574
\(418\) 0 0
\(419\) 16.6499 0.813398 0.406699 0.913562i \(-0.366680\pi\)
0.406699 + 0.913562i \(0.366680\pi\)
\(420\) −28.2405 −1.37800
\(421\) −8.88468 −0.433013 −0.216506 0.976281i \(-0.569466\pi\)
−0.216506 + 0.976281i \(0.569466\pi\)
\(422\) −65.0221 −3.16522
\(423\) −8.54180 −0.415317
\(424\) 51.5221 2.50213
\(425\) −0.265459 −0.0128766
\(426\) −20.4884 −0.992664
\(427\) 4.81521 0.233024
\(428\) 60.5204 2.92536
\(429\) 0 0
\(430\) 21.8015 1.05136
\(431\) −12.3273 −0.593783 −0.296892 0.954911i \(-0.595950\pi\)
−0.296892 + 0.954911i \(0.595950\pi\)
\(432\) −6.72988 −0.323792
\(433\) 1.56520 0.0752187 0.0376093 0.999293i \(-0.488026\pi\)
0.0376093 + 0.999293i \(0.488026\pi\)
\(434\) −71.5271 −3.43341
\(435\) 2.16881 0.103987
\(436\) −6.75588 −0.323548
\(437\) −1.65771 −0.0792991
\(438\) −32.0474 −1.53128
\(439\) 8.81832 0.420875 0.210438 0.977607i \(-0.432511\pi\)
0.210438 + 0.977607i \(0.432511\pi\)
\(440\) 0 0
\(441\) 4.00993 0.190949
\(442\) 1.23071 0.0585387
\(443\) 5.79732 0.275439 0.137720 0.990471i \(-0.456023\pi\)
0.137720 + 0.990471i \(0.456023\pi\)
\(444\) −22.7025 −1.07741
\(445\) 6.46368 0.306408
\(446\) 54.6873 2.58952
\(447\) 1.62183 0.0767100
\(448\) 4.58010 0.216389
\(449\) −0.352416 −0.0166316 −0.00831578 0.999965i \(-0.502647\pi\)
−0.00831578 + 0.999965i \(0.502647\pi\)
\(450\) −3.29616 −0.155382
\(451\) 0 0
\(452\) 35.2289 1.65703
\(453\) 20.4540 0.961014
\(454\) −72.2433 −3.39055
\(455\) 15.1799 0.711646
\(456\) −6.14646 −0.287834
\(457\) 0.290406 0.0135846 0.00679231 0.999977i \(-0.497838\pi\)
0.00679231 + 0.999977i \(0.497838\pi\)
\(458\) 34.6134 1.61738
\(459\) −0.204137 −0.00952831
\(460\) 14.1088 0.657825
\(461\) 29.0862 1.35468 0.677339 0.735671i \(-0.263133\pi\)
0.677339 + 0.735671i \(0.263133\pi\)
\(462\) 0 0
\(463\) 0.641382 0.0298075 0.0149038 0.999889i \(-0.495256\pi\)
0.0149038 + 0.999889i \(0.495256\pi\)
\(464\) 7.58844 0.352284
\(465\) 16.3577 0.758572
\(466\) 28.4894 1.31974
\(467\) 18.2106 0.842686 0.421343 0.906901i \(-0.361559\pi\)
0.421343 + 0.906901i \(0.361559\pi\)
\(468\) 10.5245 0.486496
\(469\) −19.1376 −0.883693
\(470\) 41.6447 1.92093
\(471\) −4.12547 −0.190092
\(472\) 31.6556 1.45707
\(473\) 0 0
\(474\) −10.2848 −0.472397
\(475\) −1.30039 −0.0596662
\(476\) −2.99721 −0.137377
\(477\) 8.38239 0.383803
\(478\) −29.2865 −1.33953
\(479\) 5.96494 0.272545 0.136273 0.990671i \(-0.456488\pi\)
0.136273 + 0.990671i \(0.456488\pi\)
\(480\) 9.16625 0.418380
\(481\) 12.2031 0.556414
\(482\) 36.9491 1.68298
\(483\) −5.50049 −0.250281
\(484\) 0 0
\(485\) 32.7808 1.48850
\(486\) −2.53474 −0.114978
\(487\) −29.5886 −1.34079 −0.670394 0.742005i \(-0.733875\pi\)
−0.670394 + 0.742005i \(0.733875\pi\)
\(488\) −8.91966 −0.403774
\(489\) −11.9021 −0.538231
\(490\) −19.5500 −0.883181
\(491\) −8.93065 −0.403035 −0.201517 0.979485i \(-0.564587\pi\)
−0.201517 + 0.979485i \(0.564587\pi\)
\(492\) −24.2516 −1.09335
\(493\) 0.230180 0.0103668
\(494\) 6.02882 0.271250
\(495\) 0 0
\(496\) 57.2338 2.56988
\(497\) −26.8205 −1.20306
\(498\) −44.1972 −1.98052
\(499\) −27.3756 −1.22550 −0.612750 0.790277i \(-0.709937\pi\)
−0.612750 + 0.790277i \(0.709937\pi\)
\(500\) 53.6226 2.39808
\(501\) −20.2408 −0.904294
\(502\) −17.8898 −0.798462
\(503\) −13.2472 −0.590664 −0.295332 0.955395i \(-0.595430\pi\)
−0.295332 + 0.955395i \(0.595430\pi\)
\(504\) −20.3947 −0.908453
\(505\) 9.08400 0.404233
\(506\) 0 0
\(507\) 7.34283 0.326107
\(508\) −28.5204 −1.26539
\(509\) 27.7018 1.22786 0.613930 0.789360i \(-0.289588\pi\)
0.613930 + 0.789360i \(0.289588\pi\)
\(510\) 0.995251 0.0440705
\(511\) −41.9520 −1.85585
\(512\) −50.6583 −2.23880
\(513\) −1.00000 −0.0441511
\(514\) −55.0193 −2.42680
\(515\) −30.1443 −1.32832
\(516\) 19.7869 0.871070
\(517\) 0 0
\(518\) −43.1516 −1.89597
\(519\) 2.33910 0.102675
\(520\) −28.1192 −1.23311
\(521\) −36.1146 −1.58221 −0.791105 0.611681i \(-0.790494\pi\)
−0.791105 + 0.611681i \(0.790494\pi\)
\(522\) 2.85810 0.125096
\(523\) 8.16148 0.356877 0.178438 0.983951i \(-0.442896\pi\)
0.178438 + 0.983951i \(0.442896\pi\)
\(524\) 58.2988 2.54680
\(525\) −4.31487 −0.188316
\(526\) −18.9387 −0.825768
\(527\) 1.73607 0.0756244
\(528\) 0 0
\(529\) −20.2520 −0.880521
\(530\) −40.8676 −1.77517
\(531\) 5.15021 0.223500
\(532\) −14.6823 −0.636560
\(533\) 13.0358 0.564642
\(534\) 8.51795 0.368608
\(535\) −26.3073 −1.13736
\(536\) 35.4504 1.53122
\(537\) −5.91659 −0.255320
\(538\) 66.0807 2.84894
\(539\) 0 0
\(540\) 8.51100 0.366255
\(541\) 30.1687 1.29706 0.648528 0.761191i \(-0.275385\pi\)
0.648528 + 0.761191i \(0.275385\pi\)
\(542\) 56.8517 2.44199
\(543\) 24.6664 1.05854
\(544\) 0.972828 0.0417096
\(545\) 2.93668 0.125794
\(546\) 20.0044 0.856108
\(547\) −12.8476 −0.549323 −0.274661 0.961541i \(-0.588566\pi\)
−0.274661 + 0.961541i \(0.588566\pi\)
\(548\) −16.8894 −0.721479
\(549\) −1.45119 −0.0619351
\(550\) 0 0
\(551\) 1.12757 0.0480362
\(552\) 10.1891 0.433676
\(553\) −13.4634 −0.572523
\(554\) 16.5667 0.703853
\(555\) 9.86845 0.418892
\(556\) 58.7851 2.49304
\(557\) −1.81968 −0.0771022 −0.0385511 0.999257i \(-0.512274\pi\)
−0.0385511 + 0.999257i \(0.512274\pi\)
\(558\) 21.5565 0.912559
\(559\) −10.6359 −0.449851
\(560\) 42.9514 1.81503
\(561\) 0 0
\(562\) −31.6872 −1.33664
\(563\) 43.8640 1.84865 0.924324 0.381608i \(-0.124630\pi\)
0.924324 + 0.381608i \(0.124630\pi\)
\(564\) 37.7965 1.59152
\(565\) −15.3135 −0.644243
\(566\) 21.7078 0.912448
\(567\) −3.31812 −0.139348
\(568\) 49.6820 2.08461
\(569\) −44.3888 −1.86088 −0.930438 0.366450i \(-0.880573\pi\)
−0.930438 + 0.366450i \(0.880573\pi\)
\(570\) 4.87540 0.204208
\(571\) −11.4927 −0.480956 −0.240478 0.970655i \(-0.577304\pi\)
−0.240478 + 0.970655i \(0.577304\pi\)
\(572\) 0 0
\(573\) −9.22647 −0.385441
\(574\) −46.0959 −1.92401
\(575\) 2.15568 0.0898980
\(576\) −1.38033 −0.0575137
\(577\) −11.4614 −0.477143 −0.238572 0.971125i \(-0.576679\pi\)
−0.238572 + 0.971125i \(0.576679\pi\)
\(578\) −42.9849 −1.78794
\(579\) −21.7223 −0.902746
\(580\) −9.59677 −0.398484
\(581\) −57.8568 −2.40030
\(582\) 43.1992 1.79066
\(583\) 0 0
\(584\) 77.7115 3.21573
\(585\) −4.57485 −0.189147
\(586\) −31.0491 −1.28263
\(587\) 47.0909 1.94365 0.971824 0.235709i \(-0.0757411\pi\)
0.971824 + 0.235709i \(0.0757411\pi\)
\(588\) −17.7435 −0.731730
\(589\) 8.50443 0.350419
\(590\) −25.1094 −1.03374
\(591\) −0.898238 −0.0369486
\(592\) 34.5286 1.41912
\(593\) 33.6175 1.38051 0.690253 0.723568i \(-0.257499\pi\)
0.690253 + 0.723568i \(0.257499\pi\)
\(594\) 0 0
\(595\) 1.30284 0.0534114
\(596\) −7.17643 −0.293958
\(597\) −4.88142 −0.199783
\(598\) −9.99405 −0.408687
\(599\) −31.2271 −1.27590 −0.637952 0.770076i \(-0.720218\pi\)
−0.637952 + 0.770076i \(0.720218\pi\)
\(600\) 7.99282 0.326306
\(601\) 34.8825 1.42289 0.711444 0.702743i \(-0.248041\pi\)
0.711444 + 0.702743i \(0.248041\pi\)
\(602\) 37.6098 1.53286
\(603\) 5.76760 0.234875
\(604\) −90.5069 −3.68267
\(605\) 0 0
\(606\) 11.9711 0.486291
\(607\) 42.4971 1.72491 0.862453 0.506138i \(-0.168927\pi\)
0.862453 + 0.506138i \(0.168927\pi\)
\(608\) 4.76556 0.193269
\(609\) 3.74143 0.151610
\(610\) 7.07512 0.286463
\(611\) −20.3165 −0.821918
\(612\) 0.903285 0.0365131
\(613\) −19.8708 −0.802573 −0.401287 0.915953i \(-0.631437\pi\)
−0.401287 + 0.915953i \(0.631437\pi\)
\(614\) 9.85275 0.397625
\(615\) 10.5418 0.425087
\(616\) 0 0
\(617\) 35.8003 1.44126 0.720632 0.693317i \(-0.243852\pi\)
0.720632 + 0.693317i \(0.243852\pi\)
\(618\) −39.7247 −1.59796
\(619\) −38.3015 −1.53947 −0.769733 0.638366i \(-0.779611\pi\)
−0.769733 + 0.638366i \(0.779611\pi\)
\(620\) −72.3812 −2.90690
\(621\) 1.65771 0.0665217
\(622\) −3.35680 −0.134595
\(623\) 11.1505 0.446735
\(624\) −16.0069 −0.640789
\(625\) −16.8070 −0.672280
\(626\) −68.9877 −2.75730
\(627\) 0 0
\(628\) 18.2548 0.728444
\(629\) 1.04735 0.0417607
\(630\) 16.1772 0.644515
\(631\) −13.1847 −0.524874 −0.262437 0.964949i \(-0.584526\pi\)
−0.262437 + 0.964949i \(0.584526\pi\)
\(632\) 24.9395 0.992042
\(633\) 25.6524 1.01959
\(634\) −87.4672 −3.47377
\(635\) 12.3974 0.491977
\(636\) −37.0912 −1.47076
\(637\) 9.53755 0.377891
\(638\) 0 0
\(639\) 8.08303 0.319760
\(640\) 25.0622 0.990669
\(641\) −4.22177 −0.166750 −0.0833749 0.996518i \(-0.526570\pi\)
−0.0833749 + 0.996518i \(0.526570\pi\)
\(642\) −34.6682 −1.36825
\(643\) −28.5440 −1.12566 −0.562832 0.826571i \(-0.690288\pi\)
−0.562832 + 0.826571i \(0.690288\pi\)
\(644\) 24.3391 0.959094
\(645\) −8.60108 −0.338667
\(646\) 0.517434 0.0203582
\(647\) −7.99104 −0.314160 −0.157080 0.987586i \(-0.550208\pi\)
−0.157080 + 0.987586i \(0.550208\pi\)
\(648\) 6.14646 0.241456
\(649\) 0 0
\(650\) −7.83984 −0.307504
\(651\) 28.2187 1.10598
\(652\) 52.6655 2.06254
\(653\) −0.607074 −0.0237567 −0.0118783 0.999929i \(-0.503781\pi\)
−0.0118783 + 0.999929i \(0.503781\pi\)
\(654\) 3.87001 0.151329
\(655\) −25.3416 −0.990180
\(656\) 36.8846 1.44010
\(657\) 12.6433 0.493262
\(658\) 71.8414 2.80067
\(659\) −27.4217 −1.06820 −0.534099 0.845422i \(-0.679349\pi\)
−0.534099 + 0.845422i \(0.679349\pi\)
\(660\) 0 0
\(661\) −1.01032 −0.0392970 −0.0196485 0.999807i \(-0.506255\pi\)
−0.0196485 + 0.999807i \(0.506255\pi\)
\(662\) 56.6291 2.20095
\(663\) −0.485536 −0.0188567
\(664\) 107.173 4.15914
\(665\) 6.38220 0.247491
\(666\) 13.0048 0.503926
\(667\) −1.86919 −0.0723754
\(668\) 89.5635 3.46532
\(669\) −21.5751 −0.834143
\(670\) −28.1194 −1.08635
\(671\) 0 0
\(672\) 15.8127 0.609988
\(673\) 11.3802 0.438674 0.219337 0.975649i \(-0.429611\pi\)
0.219337 + 0.975649i \(0.429611\pi\)
\(674\) 17.9053 0.689685
\(675\) 1.30039 0.0500522
\(676\) −32.4912 −1.24966
\(677\) 41.9674 1.61294 0.806469 0.591276i \(-0.201376\pi\)
0.806469 + 0.591276i \(0.201376\pi\)
\(678\) −20.1804 −0.775023
\(679\) 56.5503 2.17020
\(680\) −2.41338 −0.0925488
\(681\) 28.5013 1.09217
\(682\) 0 0
\(683\) −51.6706 −1.97712 −0.988560 0.150831i \(-0.951805\pi\)
−0.988560 + 0.150831i \(0.951805\pi\)
\(684\) 4.42489 0.169190
\(685\) 7.34157 0.280507
\(686\) 25.1482 0.960161
\(687\) −13.6556 −0.520995
\(688\) −30.0942 −1.14733
\(689\) 19.9374 0.759553
\(690\) −8.08202 −0.307677
\(691\) −23.3632 −0.888779 −0.444390 0.895834i \(-0.646579\pi\)
−0.444390 + 0.895834i \(0.646579\pi\)
\(692\) −10.3503 −0.393458
\(693\) 0 0
\(694\) 41.3811 1.57080
\(695\) −25.5530 −0.969282
\(696\) −6.93059 −0.262703
\(697\) 1.11882 0.0423783
\(698\) −68.3466 −2.58696
\(699\) −11.2396 −0.425120
\(700\) 19.0928 0.721641
\(701\) 24.7481 0.934723 0.467361 0.884066i \(-0.345205\pi\)
0.467361 + 0.884066i \(0.345205\pi\)
\(702\) −6.02882 −0.227543
\(703\) 5.13064 0.193506
\(704\) 0 0
\(705\) −16.4296 −0.618775
\(706\) −35.8103 −1.34774
\(707\) 15.6708 0.589362
\(708\) −22.7891 −0.856468
\(709\) 12.0601 0.452927 0.226464 0.974020i \(-0.427284\pi\)
0.226464 + 0.974020i \(0.427284\pi\)
\(710\) −39.4080 −1.47896
\(711\) 4.05754 0.152170
\(712\) −20.6551 −0.774083
\(713\) −14.0979 −0.527971
\(714\) 1.71691 0.0642537
\(715\) 0 0
\(716\) 26.1803 0.978402
\(717\) 11.5540 0.431494
\(718\) −48.1726 −1.79778
\(719\) 47.2054 1.76047 0.880233 0.474542i \(-0.157386\pi\)
0.880233 + 0.474542i \(0.157386\pi\)
\(720\) −12.9445 −0.482413
\(721\) −52.0020 −1.93666
\(722\) 2.53474 0.0943331
\(723\) −14.5771 −0.542128
\(724\) −109.146 −4.05639
\(725\) −1.46629 −0.0544566
\(726\) 0 0
\(727\) 11.3041 0.419247 0.209623 0.977782i \(-0.432776\pi\)
0.209623 + 0.977782i \(0.432776\pi\)
\(728\) −48.5084 −1.79784
\(729\) 1.00000 0.0370370
\(730\) −61.6411 −2.28144
\(731\) −0.912846 −0.0337628
\(732\) 6.42134 0.237339
\(733\) 12.1202 0.447671 0.223836 0.974627i \(-0.428142\pi\)
0.223836 + 0.974627i \(0.428142\pi\)
\(734\) 37.3862 1.37995
\(735\) 7.71285 0.284493
\(736\) −7.89993 −0.291195
\(737\) 0 0
\(738\) 13.8922 0.511378
\(739\) −2.99221 −0.110070 −0.0550351 0.998484i \(-0.517527\pi\)
−0.0550351 + 0.998484i \(0.517527\pi\)
\(740\) −43.6668 −1.60522
\(741\) −2.37848 −0.0873757
\(742\) −70.5007 −2.58816
\(743\) 25.7045 0.943007 0.471503 0.881864i \(-0.343711\pi\)
0.471503 + 0.881864i \(0.343711\pi\)
\(744\) −52.2722 −1.91639
\(745\) 3.11949 0.114289
\(746\) −1.28218 −0.0469439
\(747\) 17.4366 0.637972
\(748\) 0 0
\(749\) −45.3828 −1.65825
\(750\) −30.7170 −1.12163
\(751\) −5.09324 −0.185855 −0.0929275 0.995673i \(-0.529622\pi\)
−0.0929275 + 0.995673i \(0.529622\pi\)
\(752\) −57.4853 −2.09627
\(753\) 7.05787 0.257203
\(754\) 6.79794 0.247566
\(755\) 39.3420 1.43180
\(756\) 14.6823 0.533991
\(757\) −52.9352 −1.92396 −0.961981 0.273118i \(-0.911945\pi\)
−0.961981 + 0.273118i \(0.911945\pi\)
\(758\) −73.9980 −2.68773
\(759\) 0 0
\(760\) −11.8223 −0.428841
\(761\) −30.9096 −1.12047 −0.560236 0.828333i \(-0.689290\pi\)
−0.560236 + 0.828333i \(0.689290\pi\)
\(762\) 16.3375 0.591846
\(763\) 5.06608 0.183404
\(764\) 40.8261 1.47704
\(765\) −0.392645 −0.0141961
\(766\) 17.7342 0.640764
\(767\) 12.2497 0.442310
\(768\) 30.2667 1.09215
\(769\) −9.46378 −0.341273 −0.170636 0.985334i \(-0.554582\pi\)
−0.170636 + 0.985334i \(0.554582\pi\)
\(770\) 0 0
\(771\) 21.7061 0.781727
\(772\) 96.1186 3.45939
\(773\) −0.267329 −0.00961517 −0.00480758 0.999988i \(-0.501530\pi\)
−0.00480758 + 0.999988i \(0.501530\pi\)
\(774\) −11.3347 −0.407416
\(775\) −11.0591 −0.397255
\(776\) −104.753 −3.76042
\(777\) 17.0241 0.610735
\(778\) 80.0913 2.87141
\(779\) 5.48072 0.196367
\(780\) 20.2432 0.724824
\(781\) 0 0
\(782\) −0.857757 −0.0306733
\(783\) −1.12757 −0.0402962
\(784\) 26.9864 0.963799
\(785\) −7.93508 −0.283215
\(786\) −33.3956 −1.19118
\(787\) −21.5186 −0.767054 −0.383527 0.923530i \(-0.625291\pi\)
−0.383527 + 0.923530i \(0.625291\pi\)
\(788\) 3.97461 0.141589
\(789\) 7.47167 0.265999
\(790\) −19.7822 −0.703818
\(791\) −26.4173 −0.939292
\(792\) 0 0
\(793\) −3.45162 −0.122570
\(794\) −1.14534 −0.0406466
\(795\) 16.1230 0.571824
\(796\) 21.5998 0.765584
\(797\) −9.55923 −0.338605 −0.169303 0.985564i \(-0.554152\pi\)
−0.169303 + 0.985564i \(0.554152\pi\)
\(798\) 8.41057 0.297731
\(799\) −1.74370 −0.0616876
\(800\) −6.19710 −0.219101
\(801\) −3.36049 −0.118737
\(802\) −21.3546 −0.754059
\(803\) 0 0
\(804\) −25.5210 −0.900057
\(805\) −10.5798 −0.372890
\(806\) 51.2717 1.80597
\(807\) −26.0700 −0.917709
\(808\) −29.0285 −1.02122
\(809\) 14.5330 0.510953 0.255476 0.966815i \(-0.417768\pi\)
0.255476 + 0.966815i \(0.417768\pi\)
\(810\) −4.87540 −0.171304
\(811\) 27.4722 0.964679 0.482339 0.875984i \(-0.339787\pi\)
0.482339 + 0.875984i \(0.339787\pi\)
\(812\) −16.5554 −0.580981
\(813\) −22.4290 −0.786621
\(814\) 0 0
\(815\) −22.8929 −0.801904
\(816\) −1.37382 −0.0480933
\(817\) −4.47173 −0.156446
\(818\) −82.5006 −2.88457
\(819\) −7.89209 −0.275772
\(820\) −46.6464 −1.62896
\(821\) 18.1080 0.631974 0.315987 0.948763i \(-0.397664\pi\)
0.315987 + 0.948763i \(0.397664\pi\)
\(822\) 9.67484 0.337449
\(823\) 17.8968 0.623842 0.311921 0.950108i \(-0.399028\pi\)
0.311921 + 0.950108i \(0.399028\pi\)
\(824\) 96.3282 3.35575
\(825\) 0 0
\(826\) −43.3162 −1.50716
\(827\) 39.5793 1.37631 0.688153 0.725565i \(-0.258422\pi\)
0.688153 + 0.725565i \(0.258422\pi\)
\(828\) −7.33520 −0.254916
\(829\) −37.7530 −1.31122 −0.655609 0.755101i \(-0.727588\pi\)
−0.655609 + 0.755101i \(0.727588\pi\)
\(830\) −85.0105 −2.95076
\(831\) −6.53588 −0.226727
\(832\) −3.28308 −0.113820
\(833\) 0.818576 0.0283620
\(834\) −33.6742 −1.16604
\(835\) −38.9320 −1.34730
\(836\) 0 0
\(837\) −8.50443 −0.293956
\(838\) 42.2030 1.45788
\(839\) −39.2603 −1.35542 −0.677709 0.735331i \(-0.737027\pi\)
−0.677709 + 0.735331i \(0.737027\pi\)
\(840\) −39.2279 −1.35349
\(841\) −27.7286 −0.956158
\(842\) −22.5203 −0.776102
\(843\) 12.5012 0.430564
\(844\) −113.509 −3.90714
\(845\) 14.1235 0.485862
\(846\) −21.6512 −0.744384
\(847\) 0 0
\(848\) 56.4125 1.93721
\(849\) −8.56414 −0.293920
\(850\) −0.672868 −0.0230792
\(851\) −8.50512 −0.291552
\(852\) −35.7665 −1.22534
\(853\) −9.19860 −0.314954 −0.157477 0.987523i \(-0.550336\pi\)
−0.157477 + 0.987523i \(0.550336\pi\)
\(854\) 12.2053 0.417656
\(855\) −1.92344 −0.0657801
\(856\) 84.0667 2.87334
\(857\) 32.5470 1.11178 0.555892 0.831255i \(-0.312377\pi\)
0.555892 + 0.831255i \(0.312377\pi\)
\(858\) 0 0
\(859\) 18.4471 0.629405 0.314703 0.949190i \(-0.398095\pi\)
0.314703 + 0.949190i \(0.398095\pi\)
\(860\) 38.0589 1.29780
\(861\) 18.1857 0.619767
\(862\) −31.2464 −1.06426
\(863\) 4.27006 0.145354 0.0726772 0.997356i \(-0.476846\pi\)
0.0726772 + 0.997356i \(0.476846\pi\)
\(864\) −4.76556 −0.162128
\(865\) 4.49911 0.152974
\(866\) 3.96737 0.134817
\(867\) 16.9583 0.575935
\(868\) −124.865 −4.23819
\(869\) 0 0
\(870\) 5.49738 0.186378
\(871\) 13.7181 0.464821
\(872\) −9.38436 −0.317795
\(873\) −17.0429 −0.576813
\(874\) −4.20186 −0.142130
\(875\) −40.2103 −1.35936
\(876\) −55.9452 −1.89021
\(877\) 8.12092 0.274224 0.137112 0.990556i \(-0.456218\pi\)
0.137112 + 0.990556i \(0.456218\pi\)
\(878\) 22.3521 0.754347
\(879\) 12.2494 0.413163
\(880\) 0 0
\(881\) −32.3928 −1.09134 −0.545670 0.838000i \(-0.683725\pi\)
−0.545670 + 0.838000i \(0.683725\pi\)
\(882\) 10.1641 0.342244
\(883\) −30.0730 −1.01204 −0.506018 0.862523i \(-0.668883\pi\)
−0.506018 + 0.862523i \(0.668883\pi\)
\(884\) 2.14845 0.0722600
\(885\) 9.90610 0.332990
\(886\) 14.6947 0.493678
\(887\) −1.67977 −0.0564011 −0.0282006 0.999602i \(-0.508978\pi\)
−0.0282006 + 0.999602i \(0.508978\pi\)
\(888\) −31.5353 −1.05825
\(889\) 21.3868 0.717290
\(890\) 16.3837 0.549184
\(891\) 0 0
\(892\) 95.4677 3.19649
\(893\) −8.54180 −0.285840
\(894\) 4.11092 0.137490
\(895\) −11.3802 −0.380397
\(896\) 43.2348 1.44437
\(897\) 3.94284 0.131647
\(898\) −0.893283 −0.0298092
\(899\) 9.58937 0.319823
\(900\) −5.75410 −0.191803
\(901\) 1.71116 0.0570069
\(902\) 0 0
\(903\) −14.8377 −0.493769
\(904\) 48.9352 1.62756
\(905\) 47.4443 1.57710
\(906\) 51.8456 1.72245
\(907\) 22.5438 0.748554 0.374277 0.927317i \(-0.377891\pi\)
0.374277 + 0.927317i \(0.377891\pi\)
\(908\) −126.115 −4.18528
\(909\) −4.72280 −0.156645
\(910\) 38.4771 1.27550
\(911\) −55.1249 −1.82637 −0.913184 0.407547i \(-0.866384\pi\)
−0.913184 + 0.407547i \(0.866384\pi\)
\(912\) −6.72988 −0.222849
\(913\) 0 0
\(914\) 0.736103 0.0243481
\(915\) −2.79126 −0.0922763
\(916\) 60.4247 1.99649
\(917\) −43.7169 −1.44366
\(918\) −0.517434 −0.0170779
\(919\) 2.64135 0.0871302 0.0435651 0.999051i \(-0.486128\pi\)
0.0435651 + 0.999051i \(0.486128\pi\)
\(920\) 19.5980 0.646128
\(921\) −3.88709 −0.128084
\(922\) 73.7258 2.42803
\(923\) 19.2253 0.632809
\(924\) 0 0
\(925\) −6.67185 −0.219369
\(926\) 1.62573 0.0534249
\(927\) 15.6721 0.514740
\(928\) 5.37352 0.176394
\(929\) 8.09079 0.265450 0.132725 0.991153i \(-0.457627\pi\)
0.132725 + 0.991153i \(0.457627\pi\)
\(930\) 41.4626 1.35961
\(931\) 4.00993 0.131420
\(932\) 49.7339 1.62909
\(933\) 1.32432 0.0433563
\(934\) 46.1591 1.51037
\(935\) 0 0
\(936\) 14.6192 0.477845
\(937\) −11.2602 −0.367856 −0.183928 0.982940i \(-0.558881\pi\)
−0.183928 + 0.982940i \(0.558881\pi\)
\(938\) −48.5088 −1.58387
\(939\) 27.2169 0.888190
\(940\) 72.6992 2.37119
\(941\) −25.9678 −0.846527 −0.423264 0.906007i \(-0.639116\pi\)
−0.423264 + 0.906007i \(0.639116\pi\)
\(942\) −10.4570 −0.340707
\(943\) −9.08545 −0.295863
\(944\) 34.6603 1.12810
\(945\) −6.38220 −0.207613
\(946\) 0 0
\(947\) 15.2346 0.495057 0.247528 0.968881i \(-0.420382\pi\)
0.247528 + 0.968881i \(0.420382\pi\)
\(948\) −17.9542 −0.583125
\(949\) 30.0718 0.976172
\(950\) −3.29616 −0.106941
\(951\) 34.5074 1.11898
\(952\) −4.16332 −0.134934
\(953\) 35.5911 1.15291 0.576454 0.817130i \(-0.304436\pi\)
0.576454 + 0.817130i \(0.304436\pi\)
\(954\) 21.2472 0.687902
\(955\) −17.7465 −0.574264
\(956\) −51.1254 −1.65351
\(957\) 0 0
\(958\) 15.1196 0.488491
\(959\) 12.6649 0.408973
\(960\) −2.65497 −0.0856889
\(961\) 41.3254 1.33308
\(962\) 30.9317 0.997278
\(963\) 13.6773 0.440743
\(964\) 64.5020 2.07747
\(965\) −41.7814 −1.34499
\(966\) −13.9423 −0.448586
\(967\) 26.6658 0.857513 0.428756 0.903420i \(-0.358952\pi\)
0.428756 + 0.903420i \(0.358952\pi\)
\(968\) 0 0
\(969\) −0.204137 −0.00655783
\(970\) 83.0908 2.66789
\(971\) −0.383507 −0.0123073 −0.00615366 0.999981i \(-0.501959\pi\)
−0.00615366 + 0.999981i \(0.501959\pi\)
\(972\) −4.42489 −0.141928
\(973\) −44.0816 −1.41319
\(974\) −74.9994 −2.40314
\(975\) 3.09296 0.0990540
\(976\) −9.76631 −0.312612
\(977\) −9.15129 −0.292776 −0.146388 0.989227i \(-0.546765\pi\)
−0.146388 + 0.989227i \(0.546765\pi\)
\(978\) −30.1687 −0.964688
\(979\) 0 0
\(980\) −34.1285 −1.09020
\(981\) −1.52679 −0.0487467
\(982\) −22.6369 −0.722371
\(983\) −37.4856 −1.19560 −0.597802 0.801644i \(-0.703959\pi\)
−0.597802 + 0.801644i \(0.703959\pi\)
\(984\) −33.6870 −1.07390
\(985\) −1.72770 −0.0550492
\(986\) 0.583445 0.0185807
\(987\) −28.3427 −0.902159
\(988\) 10.5245 0.334830
\(989\) 7.41284 0.235715
\(990\) 0 0
\(991\) 49.4486 1.57079 0.785393 0.618998i \(-0.212461\pi\)
0.785393 + 0.618998i \(0.212461\pi\)
\(992\) 40.5284 1.28678
\(993\) −22.3412 −0.708977
\(994\) −67.9829 −2.15629
\(995\) −9.38911 −0.297655
\(996\) −77.1551 −2.44475
\(997\) 47.1446 1.49308 0.746542 0.665339i \(-0.231713\pi\)
0.746542 + 0.665339i \(0.231713\pi\)
\(998\) −69.3899 −2.19650
\(999\) −5.13064 −0.162326
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6897.2.a.ba.1.7 yes 7
11.10 odd 2 6897.2.a.z.1.1 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6897.2.a.z.1.1 7 11.10 odd 2
6897.2.a.ba.1.7 yes 7 1.1 even 1 trivial