Properties

Label 686.2.a.b.1.2
Level $686$
Weight $2$
Character 686.1
Self dual yes
Analytic conductor $5.478$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [686,2,Mod(1,686)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("686.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(686, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 686 = 2 \cdot 7^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 686.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.47773757866\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.24698\) of defining polynomial
Character \(\chi\) \(=\) 686.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +0.445042 q^{3} +1.00000 q^{4} -3.04892 q^{5} -0.445042 q^{6} -1.00000 q^{8} -2.80194 q^{9} +3.04892 q^{10} -4.40581 q^{11} +0.445042 q^{12} +5.71379 q^{13} -1.35690 q^{15} +1.00000 q^{16} +7.54288 q^{17} +2.80194 q^{18} +1.39612 q^{19} -3.04892 q^{20} +4.40581 q^{22} +7.18598 q^{23} -0.445042 q^{24} +4.29590 q^{25} -5.71379 q^{26} -2.58211 q^{27} -0.692021 q^{29} +1.35690 q^{30} +7.13706 q^{31} -1.00000 q^{32} -1.96077 q^{33} -7.54288 q^{34} -2.80194 q^{36} +1.66487 q^{37} -1.39612 q^{38} +2.54288 q^{39} +3.04892 q^{40} +0.506041 q^{41} +0.850855 q^{43} -4.40581 q^{44} +8.54288 q^{45} -7.18598 q^{46} +0.158834 q^{47} +0.445042 q^{48} -4.29590 q^{50} +3.35690 q^{51} +5.71379 q^{52} -6.41119 q^{53} +2.58211 q^{54} +13.4330 q^{55} +0.621334 q^{57} +0.692021 q^{58} -10.9269 q^{59} -1.35690 q^{60} +5.70410 q^{61} -7.13706 q^{62} +1.00000 q^{64} -17.4209 q^{65} +1.96077 q^{66} +10.9390 q^{67} +7.54288 q^{68} +3.19806 q^{69} +6.18060 q^{71} +2.80194 q^{72} +1.54527 q^{73} -1.66487 q^{74} +1.91185 q^{75} +1.39612 q^{76} -2.54288 q^{78} -7.84117 q^{79} -3.04892 q^{80} +7.25667 q^{81} -0.506041 q^{82} +3.21313 q^{83} -22.9976 q^{85} -0.850855 q^{86} -0.307979 q^{87} +4.40581 q^{88} +13.9487 q^{89} -8.54288 q^{90} +7.18598 q^{92} +3.17629 q^{93} -0.158834 q^{94} -4.25667 q^{95} -0.445042 q^{96} +1.55496 q^{97} +12.3448 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + q^{3} + 3 q^{4} - q^{6} - 3 q^{8} - 4 q^{9} + q^{12} + 9 q^{13} + 3 q^{16} + 4 q^{17} + 4 q^{18} + 13 q^{19} + 7 q^{23} - q^{24} - q^{25} - 9 q^{26} - 2 q^{27} + 3 q^{29} + 16 q^{31}+ \cdots + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0.445042 0.256945 0.128473 0.991713i \(-0.458993\pi\)
0.128473 + 0.991713i \(0.458993\pi\)
\(4\) 1.00000 0.500000
\(5\) −3.04892 −1.36352 −0.681759 0.731577i \(-0.738785\pi\)
−0.681759 + 0.731577i \(0.738785\pi\)
\(6\) −0.445042 −0.181688
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) −2.80194 −0.933979
\(10\) 3.04892 0.964152
\(11\) −4.40581 −1.32840 −0.664201 0.747554i \(-0.731228\pi\)
−0.664201 + 0.747554i \(0.731228\pi\)
\(12\) 0.445042 0.128473
\(13\) 5.71379 1.58472 0.792360 0.610053i \(-0.208852\pi\)
0.792360 + 0.610053i \(0.208852\pi\)
\(14\) 0 0
\(15\) −1.35690 −0.350349
\(16\) 1.00000 0.250000
\(17\) 7.54288 1.82942 0.914708 0.404115i \(-0.132420\pi\)
0.914708 + 0.404115i \(0.132420\pi\)
\(18\) 2.80194 0.660423
\(19\) 1.39612 0.320293 0.160146 0.987093i \(-0.448803\pi\)
0.160146 + 0.987093i \(0.448803\pi\)
\(20\) −3.04892 −0.681759
\(21\) 0 0
\(22\) 4.40581 0.939323
\(23\) 7.18598 1.49838 0.749190 0.662355i \(-0.230443\pi\)
0.749190 + 0.662355i \(0.230443\pi\)
\(24\) −0.445042 −0.0908438
\(25\) 4.29590 0.859179
\(26\) −5.71379 −1.12057
\(27\) −2.58211 −0.496926
\(28\) 0 0
\(29\) −0.692021 −0.128505 −0.0642526 0.997934i \(-0.520466\pi\)
−0.0642526 + 0.997934i \(0.520466\pi\)
\(30\) 1.35690 0.247734
\(31\) 7.13706 1.28185 0.640927 0.767602i \(-0.278550\pi\)
0.640927 + 0.767602i \(0.278550\pi\)
\(32\) −1.00000 −0.176777
\(33\) −1.96077 −0.341326
\(34\) −7.54288 −1.29359
\(35\) 0 0
\(36\) −2.80194 −0.466990
\(37\) 1.66487 0.273704 0.136852 0.990592i \(-0.456302\pi\)
0.136852 + 0.990592i \(0.456302\pi\)
\(38\) −1.39612 −0.226481
\(39\) 2.54288 0.407186
\(40\) 3.04892 0.482076
\(41\) 0.506041 0.0790303 0.0395151 0.999219i \(-0.487419\pi\)
0.0395151 + 0.999219i \(0.487419\pi\)
\(42\) 0 0
\(43\) 0.850855 0.129754 0.0648771 0.997893i \(-0.479334\pi\)
0.0648771 + 0.997893i \(0.479334\pi\)
\(44\) −4.40581 −0.664201
\(45\) 8.54288 1.27350
\(46\) −7.18598 −1.05952
\(47\) 0.158834 0.0231683 0.0115841 0.999933i \(-0.496313\pi\)
0.0115841 + 0.999933i \(0.496313\pi\)
\(48\) 0.445042 0.0642363
\(49\) 0 0
\(50\) −4.29590 −0.607532
\(51\) 3.35690 0.470059
\(52\) 5.71379 0.792360
\(53\) −6.41119 −0.880645 −0.440322 0.897840i \(-0.645136\pi\)
−0.440322 + 0.897840i \(0.645136\pi\)
\(54\) 2.58211 0.351380
\(55\) 13.4330 1.81130
\(56\) 0 0
\(57\) 0.621334 0.0822977
\(58\) 0.692021 0.0908669
\(59\) −10.9269 −1.42256 −0.711282 0.702907i \(-0.751885\pi\)
−0.711282 + 0.702907i \(0.751885\pi\)
\(60\) −1.35690 −0.175175
\(61\) 5.70410 0.730336 0.365168 0.930942i \(-0.381012\pi\)
0.365168 + 0.930942i \(0.381012\pi\)
\(62\) −7.13706 −0.906408
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −17.4209 −2.16079
\(66\) 1.96077 0.241354
\(67\) 10.9390 1.33641 0.668206 0.743976i \(-0.267063\pi\)
0.668206 + 0.743976i \(0.267063\pi\)
\(68\) 7.54288 0.914708
\(69\) 3.19806 0.385001
\(70\) 0 0
\(71\) 6.18060 0.733503 0.366751 0.930319i \(-0.380470\pi\)
0.366751 + 0.930319i \(0.380470\pi\)
\(72\) 2.80194 0.330212
\(73\) 1.54527 0.180860 0.0904301 0.995903i \(-0.471176\pi\)
0.0904301 + 0.995903i \(0.471176\pi\)
\(74\) −1.66487 −0.193538
\(75\) 1.91185 0.220762
\(76\) 1.39612 0.160146
\(77\) 0 0
\(78\) −2.54288 −0.287924
\(79\) −7.84117 −0.882200 −0.441100 0.897458i \(-0.645412\pi\)
−0.441100 + 0.897458i \(0.645412\pi\)
\(80\) −3.04892 −0.340879
\(81\) 7.25667 0.806296
\(82\) −0.506041 −0.0558829
\(83\) 3.21313 0.352687 0.176343 0.984329i \(-0.443573\pi\)
0.176343 + 0.984329i \(0.443573\pi\)
\(84\) 0 0
\(85\) −22.9976 −2.49444
\(86\) −0.850855 −0.0917501
\(87\) −0.307979 −0.0330188
\(88\) 4.40581 0.469661
\(89\) 13.9487 1.47856 0.739279 0.673399i \(-0.235166\pi\)
0.739279 + 0.673399i \(0.235166\pi\)
\(90\) −8.54288 −0.900498
\(91\) 0 0
\(92\) 7.18598 0.749190
\(93\) 3.17629 0.329366
\(94\) −0.158834 −0.0163824
\(95\) −4.25667 −0.436725
\(96\) −0.445042 −0.0454219
\(97\) 1.55496 0.157882 0.0789410 0.996879i \(-0.474846\pi\)
0.0789410 + 0.996879i \(0.474846\pi\)
\(98\) 0 0
\(99\) 12.3448 1.24070
\(100\) 4.29590 0.429590
\(101\) −5.00969 −0.498483 −0.249241 0.968441i \(-0.580181\pi\)
−0.249241 + 0.968441i \(0.580181\pi\)
\(102\) −3.35690 −0.332382
\(103\) −2.89546 −0.285298 −0.142649 0.989773i \(-0.545562\pi\)
−0.142649 + 0.989773i \(0.545562\pi\)
\(104\) −5.71379 −0.560283
\(105\) 0 0
\(106\) 6.41119 0.622710
\(107\) 9.99330 0.966088 0.483044 0.875596i \(-0.339531\pi\)
0.483044 + 0.875596i \(0.339531\pi\)
\(108\) −2.58211 −0.248463
\(109\) −14.6015 −1.39857 −0.699284 0.714844i \(-0.746498\pi\)
−0.699284 + 0.714844i \(0.746498\pi\)
\(110\) −13.4330 −1.28078
\(111\) 0.740939 0.0703268
\(112\) 0 0
\(113\) 16.5405 1.55600 0.777999 0.628266i \(-0.216235\pi\)
0.777999 + 0.628266i \(0.216235\pi\)
\(114\) −0.621334 −0.0581932
\(115\) −21.9095 −2.04307
\(116\) −0.692021 −0.0642526
\(117\) −16.0097 −1.48010
\(118\) 10.9269 1.00590
\(119\) 0 0
\(120\) 1.35690 0.123867
\(121\) 8.41119 0.764654
\(122\) −5.70410 −0.516425
\(123\) 0.225209 0.0203064
\(124\) 7.13706 0.640927
\(125\) 2.14675 0.192011
\(126\) 0 0
\(127\) −6.32304 −0.561079 −0.280540 0.959842i \(-0.590513\pi\)
−0.280540 + 0.959842i \(0.590513\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0.378666 0.0333397
\(130\) 17.4209 1.52791
\(131\) 6.41550 0.560525 0.280263 0.959923i \(-0.409578\pi\)
0.280263 + 0.959923i \(0.409578\pi\)
\(132\) −1.96077 −0.170663
\(133\) 0 0
\(134\) −10.9390 −0.944986
\(135\) 7.87263 0.677568
\(136\) −7.54288 −0.646796
\(137\) −2.21014 −0.188825 −0.0944127 0.995533i \(-0.530097\pi\)
−0.0944127 + 0.995533i \(0.530097\pi\)
\(138\) −3.19806 −0.272237
\(139\) 14.5579 1.23479 0.617394 0.786654i \(-0.288188\pi\)
0.617394 + 0.786654i \(0.288188\pi\)
\(140\) 0 0
\(141\) 0.0706876 0.00595297
\(142\) −6.18060 −0.518665
\(143\) −25.1739 −2.10515
\(144\) −2.80194 −0.233495
\(145\) 2.10992 0.175219
\(146\) −1.54527 −0.127887
\(147\) 0 0
\(148\) 1.66487 0.136852
\(149\) 10.0532 0.823593 0.411796 0.911276i \(-0.364902\pi\)
0.411796 + 0.911276i \(0.364902\pi\)
\(150\) −1.91185 −0.156102
\(151\) −4.67994 −0.380848 −0.190424 0.981702i \(-0.560986\pi\)
−0.190424 + 0.981702i \(0.560986\pi\)
\(152\) −1.39612 −0.113241
\(153\) −21.1347 −1.70864
\(154\) 0 0
\(155\) −21.7603 −1.74783
\(156\) 2.54288 0.203593
\(157\) 13.0030 1.03775 0.518876 0.854850i \(-0.326351\pi\)
0.518876 + 0.854850i \(0.326351\pi\)
\(158\) 7.84117 0.623810
\(159\) −2.85325 −0.226277
\(160\) 3.04892 0.241038
\(161\) 0 0
\(162\) −7.25667 −0.570138
\(163\) −19.1226 −1.49780 −0.748898 0.662685i \(-0.769417\pi\)
−0.748898 + 0.662685i \(0.769417\pi\)
\(164\) 0.506041 0.0395151
\(165\) 5.97823 0.465405
\(166\) −3.21313 −0.249387
\(167\) −22.3177 −1.72699 −0.863496 0.504355i \(-0.831730\pi\)
−0.863496 + 0.504355i \(0.831730\pi\)
\(168\) 0 0
\(169\) 19.6474 1.51134
\(170\) 22.9976 1.76384
\(171\) −3.91185 −0.299147
\(172\) 0.850855 0.0648771
\(173\) −1.95108 −0.148338 −0.0741690 0.997246i \(-0.523630\pi\)
−0.0741690 + 0.997246i \(0.523630\pi\)
\(174\) 0.307979 0.0233478
\(175\) 0 0
\(176\) −4.40581 −0.332101
\(177\) −4.86294 −0.365521
\(178\) −13.9487 −1.04550
\(179\) 1.78448 0.133378 0.0666891 0.997774i \(-0.478756\pi\)
0.0666891 + 0.997774i \(0.478756\pi\)
\(180\) 8.54288 0.636748
\(181\) 10.3394 0.768524 0.384262 0.923224i \(-0.374456\pi\)
0.384262 + 0.923224i \(0.374456\pi\)
\(182\) 0 0
\(183\) 2.53856 0.187656
\(184\) −7.18598 −0.529758
\(185\) −5.07606 −0.373200
\(186\) −3.17629 −0.232897
\(187\) −33.2325 −2.43020
\(188\) 0.158834 0.0115841
\(189\) 0 0
\(190\) 4.25667 0.308811
\(191\) −20.1468 −1.45777 −0.728884 0.684637i \(-0.759961\pi\)
−0.728884 + 0.684637i \(0.759961\pi\)
\(192\) 0.445042 0.0321181
\(193\) −13.9172 −1.00178 −0.500892 0.865510i \(-0.666995\pi\)
−0.500892 + 0.865510i \(0.666995\pi\)
\(194\) −1.55496 −0.111639
\(195\) −7.75302 −0.555205
\(196\) 0 0
\(197\) 4.08815 0.291268 0.145634 0.989339i \(-0.453478\pi\)
0.145634 + 0.989339i \(0.453478\pi\)
\(198\) −12.3448 −0.877308
\(199\) −8.45473 −0.599340 −0.299670 0.954043i \(-0.596877\pi\)
−0.299670 + 0.954043i \(0.596877\pi\)
\(200\) −4.29590 −0.303766
\(201\) 4.86831 0.343384
\(202\) 5.00969 0.352480
\(203\) 0 0
\(204\) 3.35690 0.235030
\(205\) −1.54288 −0.107759
\(206\) 2.89546 0.201736
\(207\) −20.1347 −1.39946
\(208\) 5.71379 0.396180
\(209\) −6.15106 −0.425478
\(210\) 0 0
\(211\) 4.04221 0.278277 0.139139 0.990273i \(-0.455567\pi\)
0.139139 + 0.990273i \(0.455567\pi\)
\(212\) −6.41119 −0.440322
\(213\) 2.75063 0.188470
\(214\) −9.99330 −0.683128
\(215\) −2.59419 −0.176922
\(216\) 2.58211 0.175690
\(217\) 0 0
\(218\) 14.6015 0.988937
\(219\) 0.687710 0.0464711
\(220\) 13.4330 0.905650
\(221\) 43.0984 2.89911
\(222\) −0.740939 −0.0497286
\(223\) 2.87800 0.192725 0.0963626 0.995346i \(-0.469279\pi\)
0.0963626 + 0.995346i \(0.469279\pi\)
\(224\) 0 0
\(225\) −12.0368 −0.802456
\(226\) −16.5405 −1.10026
\(227\) −25.1250 −1.66760 −0.833802 0.552064i \(-0.813840\pi\)
−0.833802 + 0.552064i \(0.813840\pi\)
\(228\) 0.621334 0.0411488
\(229\) −5.87800 −0.388429 −0.194215 0.980959i \(-0.562216\pi\)
−0.194215 + 0.980959i \(0.562216\pi\)
\(230\) 21.9095 1.44467
\(231\) 0 0
\(232\) 0.692021 0.0454334
\(233\) 17.7506 1.16288 0.581441 0.813588i \(-0.302489\pi\)
0.581441 + 0.813588i \(0.302489\pi\)
\(234\) 16.0097 1.04659
\(235\) −0.484271 −0.0315903
\(236\) −10.9269 −0.711282
\(237\) −3.48965 −0.226677
\(238\) 0 0
\(239\) −10.7681 −0.696530 −0.348265 0.937396i \(-0.613229\pi\)
−0.348265 + 0.937396i \(0.613229\pi\)
\(240\) −1.35690 −0.0875873
\(241\) 18.7899 1.21036 0.605181 0.796088i \(-0.293101\pi\)
0.605181 + 0.796088i \(0.293101\pi\)
\(242\) −8.41119 −0.540692
\(243\) 10.9758 0.704100
\(244\) 5.70410 0.365168
\(245\) 0 0
\(246\) −0.225209 −0.0143588
\(247\) 7.97716 0.507575
\(248\) −7.13706 −0.453204
\(249\) 1.42998 0.0906211
\(250\) −2.14675 −0.135773
\(251\) −2.76271 −0.174381 −0.0871903 0.996192i \(-0.527789\pi\)
−0.0871903 + 0.996192i \(0.527789\pi\)
\(252\) 0 0
\(253\) −31.6601 −1.99045
\(254\) 6.32304 0.396743
\(255\) −10.2349 −0.640934
\(256\) 1.00000 0.0625000
\(257\) 2.89546 0.180614 0.0903069 0.995914i \(-0.471215\pi\)
0.0903069 + 0.995914i \(0.471215\pi\)
\(258\) −0.378666 −0.0235747
\(259\) 0 0
\(260\) −17.4209 −1.08040
\(261\) 1.93900 0.120021
\(262\) −6.41550 −0.396351
\(263\) 20.0519 1.23645 0.618227 0.786000i \(-0.287851\pi\)
0.618227 + 0.786000i \(0.287851\pi\)
\(264\) 1.96077 0.120677
\(265\) 19.5472 1.20077
\(266\) 0 0
\(267\) 6.20775 0.379908
\(268\) 10.9390 0.668206
\(269\) 17.5961 1.07285 0.536427 0.843947i \(-0.319774\pi\)
0.536427 + 0.843947i \(0.319774\pi\)
\(270\) −7.87263 −0.479113
\(271\) 14.3787 0.873442 0.436721 0.899597i \(-0.356140\pi\)
0.436721 + 0.899597i \(0.356140\pi\)
\(272\) 7.54288 0.457354
\(273\) 0 0
\(274\) 2.21014 0.133520
\(275\) −18.9269 −1.14134
\(276\) 3.19806 0.192501
\(277\) 3.95407 0.237577 0.118788 0.992920i \(-0.462099\pi\)
0.118788 + 0.992920i \(0.462099\pi\)
\(278\) −14.5579 −0.873127
\(279\) −19.9976 −1.19723
\(280\) 0 0
\(281\) 9.94438 0.593232 0.296616 0.954997i \(-0.404142\pi\)
0.296616 + 0.954997i \(0.404142\pi\)
\(282\) −0.0706876 −0.00420939
\(283\) 21.0054 1.24864 0.624320 0.781169i \(-0.285376\pi\)
0.624320 + 0.781169i \(0.285376\pi\)
\(284\) 6.18060 0.366751
\(285\) −1.89440 −0.112214
\(286\) 25.1739 1.48856
\(287\) 0 0
\(288\) 2.80194 0.165106
\(289\) 39.8950 2.34676
\(290\) −2.10992 −0.123899
\(291\) 0.692021 0.0405670
\(292\) 1.54527 0.0904301
\(293\) −18.7972 −1.09814 −0.549071 0.835776i \(-0.685018\pi\)
−0.549071 + 0.835776i \(0.685018\pi\)
\(294\) 0 0
\(295\) 33.3153 1.93969
\(296\) −1.66487 −0.0967689
\(297\) 11.3763 0.660118
\(298\) −10.0532 −0.582368
\(299\) 41.0592 2.37451
\(300\) 1.91185 0.110381
\(301\) 0 0
\(302\) 4.67994 0.269300
\(303\) −2.22952 −0.128083
\(304\) 1.39612 0.0800732
\(305\) −17.3913 −0.995825
\(306\) 21.1347 1.20819
\(307\) −13.4601 −0.768209 −0.384104 0.923290i \(-0.625490\pi\)
−0.384104 + 0.923290i \(0.625490\pi\)
\(308\) 0 0
\(309\) −1.28860 −0.0733060
\(310\) 21.7603 1.23590
\(311\) 20.7966 1.17926 0.589632 0.807672i \(-0.299273\pi\)
0.589632 + 0.807672i \(0.299273\pi\)
\(312\) −2.54288 −0.143962
\(313\) 25.8931 1.46356 0.731781 0.681539i \(-0.238689\pi\)
0.731781 + 0.681539i \(0.238689\pi\)
\(314\) −13.0030 −0.733801
\(315\) 0 0
\(316\) −7.84117 −0.441100
\(317\) −7.51573 −0.422125 −0.211063 0.977473i \(-0.567692\pi\)
−0.211063 + 0.977473i \(0.567692\pi\)
\(318\) 2.85325 0.160002
\(319\) 3.04892 0.170707
\(320\) −3.04892 −0.170440
\(321\) 4.44743 0.248232
\(322\) 0 0
\(323\) 10.5308 0.585949
\(324\) 7.25667 0.403148
\(325\) 24.5459 1.36156
\(326\) 19.1226 1.05910
\(327\) −6.49827 −0.359355
\(328\) −0.506041 −0.0279414
\(329\) 0 0
\(330\) −5.97823 −0.329091
\(331\) 16.9148 0.929724 0.464862 0.885383i \(-0.346104\pi\)
0.464862 + 0.885383i \(0.346104\pi\)
\(332\) 3.21313 0.176343
\(333\) −4.66487 −0.255634
\(334\) 22.3177 1.22117
\(335\) −33.3521 −1.82222
\(336\) 0 0
\(337\) 20.6722 1.12608 0.563042 0.826428i \(-0.309631\pi\)
0.563042 + 0.826428i \(0.309631\pi\)
\(338\) −19.6474 −1.06868
\(339\) 7.36121 0.399806
\(340\) −22.9976 −1.24722
\(341\) −31.4446 −1.70282
\(342\) 3.91185 0.211529
\(343\) 0 0
\(344\) −0.850855 −0.0458750
\(345\) −9.75063 −0.524956
\(346\) 1.95108 0.104891
\(347\) −14.3599 −0.770879 −0.385439 0.922733i \(-0.625950\pi\)
−0.385439 + 0.922733i \(0.625950\pi\)
\(348\) −0.307979 −0.0165094
\(349\) −4.80731 −0.257330 −0.128665 0.991688i \(-0.541069\pi\)
−0.128665 + 0.991688i \(0.541069\pi\)
\(350\) 0 0
\(351\) −14.7536 −0.787490
\(352\) 4.40581 0.234831
\(353\) 29.1239 1.55011 0.775055 0.631894i \(-0.217722\pi\)
0.775055 + 0.631894i \(0.217722\pi\)
\(354\) 4.86294 0.258462
\(355\) −18.8442 −1.00014
\(356\) 13.9487 0.739279
\(357\) 0 0
\(358\) −1.78448 −0.0943127
\(359\) −9.98361 −0.526915 −0.263457 0.964671i \(-0.584863\pi\)
−0.263457 + 0.964671i \(0.584863\pi\)
\(360\) −8.54288 −0.450249
\(361\) −17.0508 −0.897412
\(362\) −10.3394 −0.543429
\(363\) 3.74333 0.196474
\(364\) 0 0
\(365\) −4.71140 −0.246606
\(366\) −2.53856 −0.132693
\(367\) −23.6160 −1.23274 −0.616371 0.787456i \(-0.711398\pi\)
−0.616371 + 0.787456i \(0.711398\pi\)
\(368\) 7.18598 0.374595
\(369\) −1.41789 −0.0738127
\(370\) 5.07606 0.263892
\(371\) 0 0
\(372\) 3.17629 0.164683
\(373\) −26.3980 −1.36684 −0.683419 0.730026i \(-0.739508\pi\)
−0.683419 + 0.730026i \(0.739508\pi\)
\(374\) 33.2325 1.71841
\(375\) 0.955395 0.0493364
\(376\) −0.158834 −0.00819122
\(377\) −3.95407 −0.203645
\(378\) 0 0
\(379\) −26.3913 −1.35563 −0.677816 0.735232i \(-0.737073\pi\)
−0.677816 + 0.735232i \(0.737073\pi\)
\(380\) −4.25667 −0.218362
\(381\) −2.81402 −0.144167
\(382\) 20.1468 1.03080
\(383\) 28.9081 1.47714 0.738568 0.674179i \(-0.235502\pi\)
0.738568 + 0.674179i \(0.235502\pi\)
\(384\) −0.445042 −0.0227109
\(385\) 0 0
\(386\) 13.9172 0.708368
\(387\) −2.38404 −0.121188
\(388\) 1.55496 0.0789410
\(389\) 3.46250 0.175556 0.0877779 0.996140i \(-0.472023\pi\)
0.0877779 + 0.996140i \(0.472023\pi\)
\(390\) 7.75302 0.392589
\(391\) 54.2030 2.74116
\(392\) 0 0
\(393\) 2.85517 0.144024
\(394\) −4.08815 −0.205958
\(395\) 23.9071 1.20290
\(396\) 12.3448 0.620350
\(397\) −38.2368 −1.91905 −0.959525 0.281622i \(-0.909128\pi\)
−0.959525 + 0.281622i \(0.909128\pi\)
\(398\) 8.45473 0.423797
\(399\) 0 0
\(400\) 4.29590 0.214795
\(401\) 9.49934 0.474374 0.237187 0.971464i \(-0.423775\pi\)
0.237187 + 0.971464i \(0.423775\pi\)
\(402\) −4.86831 −0.242809
\(403\) 40.7797 2.03138
\(404\) −5.00969 −0.249241
\(405\) −22.1250 −1.09940
\(406\) 0 0
\(407\) −7.33513 −0.363589
\(408\) −3.35690 −0.166191
\(409\) 9.25906 0.457831 0.228916 0.973446i \(-0.426482\pi\)
0.228916 + 0.973446i \(0.426482\pi\)
\(410\) 1.54288 0.0761972
\(411\) −0.983607 −0.0485177
\(412\) −2.89546 −0.142649
\(413\) 0 0
\(414\) 20.1347 0.989565
\(415\) −9.79656 −0.480894
\(416\) −5.71379 −0.280142
\(417\) 6.47889 0.317273
\(418\) 6.15106 0.300858
\(419\) −26.8310 −1.31078 −0.655390 0.755291i \(-0.727496\pi\)
−0.655390 + 0.755291i \(0.727496\pi\)
\(420\) 0 0
\(421\) 14.7560 0.719164 0.359582 0.933114i \(-0.382919\pi\)
0.359582 + 0.933114i \(0.382919\pi\)
\(422\) −4.04221 −0.196772
\(423\) −0.445042 −0.0216387
\(424\) 6.41119 0.311355
\(425\) 32.4034 1.57180
\(426\) −2.75063 −0.133268
\(427\) 0 0
\(428\) 9.99330 0.483044
\(429\) −11.2034 −0.540907
\(430\) 2.59419 0.125103
\(431\) −31.8582 −1.53455 −0.767277 0.641316i \(-0.778389\pi\)
−0.767277 + 0.641316i \(0.778389\pi\)
\(432\) −2.58211 −0.124232
\(433\) −16.0194 −0.769842 −0.384921 0.922949i \(-0.625771\pi\)
−0.384921 + 0.922949i \(0.625771\pi\)
\(434\) 0 0
\(435\) 0.939001 0.0450217
\(436\) −14.6015 −0.699284
\(437\) 10.0325 0.479921
\(438\) −0.687710 −0.0328600
\(439\) 2.35690 0.112489 0.0562443 0.998417i \(-0.482087\pi\)
0.0562443 + 0.998417i \(0.482087\pi\)
\(440\) −13.4330 −0.640391
\(441\) 0 0
\(442\) −43.0984 −2.04998
\(443\) 13.1830 0.626343 0.313172 0.949697i \(-0.398609\pi\)
0.313172 + 0.949697i \(0.398609\pi\)
\(444\) 0.740939 0.0351634
\(445\) −42.5284 −2.01604
\(446\) −2.87800 −0.136277
\(447\) 4.47411 0.211618
\(448\) 0 0
\(449\) −15.3448 −0.724167 −0.362083 0.932146i \(-0.617934\pi\)
−0.362083 + 0.932146i \(0.617934\pi\)
\(450\) 12.0368 0.567422
\(451\) −2.22952 −0.104984
\(452\) 16.5405 0.777999
\(453\) −2.08277 −0.0978570
\(454\) 25.1250 1.17917
\(455\) 0 0
\(456\) −0.621334 −0.0290966
\(457\) −22.8159 −1.06728 −0.533642 0.845710i \(-0.679177\pi\)
−0.533642 + 0.845710i \(0.679177\pi\)
\(458\) 5.87800 0.274661
\(459\) −19.4765 −0.909085
\(460\) −21.9095 −1.02153
\(461\) −0.440730 −0.0205268 −0.0102634 0.999947i \(-0.503267\pi\)
−0.0102634 + 0.999947i \(0.503267\pi\)
\(462\) 0 0
\(463\) −25.5133 −1.18571 −0.592853 0.805311i \(-0.701998\pi\)
−0.592853 + 0.805311i \(0.701998\pi\)
\(464\) −0.692021 −0.0321263
\(465\) −9.68425 −0.449096
\(466\) −17.7506 −0.822282
\(467\) −21.4101 −0.990742 −0.495371 0.868681i \(-0.664968\pi\)
−0.495371 + 0.868681i \(0.664968\pi\)
\(468\) −16.0097 −0.740048
\(469\) 0 0
\(470\) 0.484271 0.0223377
\(471\) 5.78687 0.266645
\(472\) 10.9269 0.502952
\(473\) −3.74871 −0.172366
\(474\) 3.48965 0.160285
\(475\) 5.99761 0.275189
\(476\) 0 0
\(477\) 17.9638 0.822504
\(478\) 10.7681 0.492521
\(479\) −32.6437 −1.49153 −0.745764 0.666210i \(-0.767915\pi\)
−0.745764 + 0.666210i \(0.767915\pi\)
\(480\) 1.35690 0.0619335
\(481\) 9.51275 0.433744
\(482\) −18.7899 −0.855854
\(483\) 0 0
\(484\) 8.41119 0.382327
\(485\) −4.74094 −0.215275
\(486\) −10.9758 −0.497874
\(487\) 41.4010 1.87606 0.938030 0.346555i \(-0.112648\pi\)
0.938030 + 0.346555i \(0.112648\pi\)
\(488\) −5.70410 −0.258213
\(489\) −8.51035 −0.384851
\(490\) 0 0
\(491\) 1.97046 0.0889256 0.0444628 0.999011i \(-0.485842\pi\)
0.0444628 + 0.999011i \(0.485842\pi\)
\(492\) 0.225209 0.0101532
\(493\) −5.21983 −0.235089
\(494\) −7.97716 −0.358910
\(495\) −37.6383 −1.69172
\(496\) 7.13706 0.320464
\(497\) 0 0
\(498\) −1.42998 −0.0640788
\(499\) 4.32006 0.193392 0.0966962 0.995314i \(-0.469172\pi\)
0.0966962 + 0.995314i \(0.469172\pi\)
\(500\) 2.14675 0.0960057
\(501\) −9.93230 −0.443742
\(502\) 2.76271 0.123306
\(503\) 29.8649 1.33161 0.665804 0.746127i \(-0.268089\pi\)
0.665804 + 0.746127i \(0.268089\pi\)
\(504\) 0 0
\(505\) 15.2741 0.679690
\(506\) 31.6601 1.40746
\(507\) 8.74392 0.388331
\(508\) −6.32304 −0.280540
\(509\) 37.9017 1.67996 0.839981 0.542615i \(-0.182566\pi\)
0.839981 + 0.542615i \(0.182566\pi\)
\(510\) 10.2349 0.453209
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) −3.60494 −0.159162
\(514\) −2.89546 −0.127713
\(515\) 8.82802 0.389009
\(516\) 0.378666 0.0166698
\(517\) −0.699791 −0.0307768
\(518\) 0 0
\(519\) −0.868313 −0.0381147
\(520\) 17.4209 0.763956
\(521\) 4.97823 0.218100 0.109050 0.994036i \(-0.465219\pi\)
0.109050 + 0.994036i \(0.465219\pi\)
\(522\) −1.93900 −0.0848678
\(523\) −16.8810 −0.738154 −0.369077 0.929399i \(-0.620326\pi\)
−0.369077 + 0.929399i \(0.620326\pi\)
\(524\) 6.41550 0.280263
\(525\) 0 0
\(526\) −20.0519 −0.874304
\(527\) 53.8340 2.34505
\(528\) −1.96077 −0.0853316
\(529\) 28.6383 1.24514
\(530\) −19.5472 −0.849076
\(531\) 30.6165 1.32865
\(532\) 0 0
\(533\) 2.89141 0.125241
\(534\) −6.20775 −0.268636
\(535\) −30.4687 −1.31728
\(536\) −10.9390 −0.472493
\(537\) 0.794168 0.0342709
\(538\) −17.5961 −0.758622
\(539\) 0 0
\(540\) 7.87263 0.338784
\(541\) −11.3720 −0.488919 −0.244459 0.969660i \(-0.578610\pi\)
−0.244459 + 0.969660i \(0.578610\pi\)
\(542\) −14.3787 −0.617617
\(543\) 4.60148 0.197469
\(544\) −7.54288 −0.323398
\(545\) 44.5187 1.90697
\(546\) 0 0
\(547\) 20.8528 0.891600 0.445800 0.895133i \(-0.352919\pi\)
0.445800 + 0.895133i \(0.352919\pi\)
\(548\) −2.21014 −0.0944127
\(549\) −15.9825 −0.682118
\(550\) 18.9269 0.807047
\(551\) −0.966148 −0.0411593
\(552\) −3.19806 −0.136119
\(553\) 0 0
\(554\) −3.95407 −0.167992
\(555\) −2.25906 −0.0958918
\(556\) 14.5579 0.617394
\(557\) 22.1672 0.939254 0.469627 0.882865i \(-0.344388\pi\)
0.469627 + 0.882865i \(0.344388\pi\)
\(558\) 19.9976 0.846566
\(559\) 4.86161 0.205624
\(560\) 0 0
\(561\) −14.7899 −0.624428
\(562\) −9.94438 −0.419478
\(563\) 19.0358 0.802262 0.401131 0.916021i \(-0.368617\pi\)
0.401131 + 0.916021i \(0.368617\pi\)
\(564\) 0.0706876 0.00297649
\(565\) −50.4306 −2.12163
\(566\) −21.0054 −0.882922
\(567\) 0 0
\(568\) −6.18060 −0.259332
\(569\) 16.4209 0.688399 0.344200 0.938897i \(-0.388150\pi\)
0.344200 + 0.938897i \(0.388150\pi\)
\(570\) 1.89440 0.0793475
\(571\) −27.0726 −1.13295 −0.566477 0.824078i \(-0.691694\pi\)
−0.566477 + 0.824078i \(0.691694\pi\)
\(572\) −25.1739 −1.05257
\(573\) −8.96615 −0.374566
\(574\) 0 0
\(575\) 30.8702 1.28738
\(576\) −2.80194 −0.116747
\(577\) −10.1056 −0.420702 −0.210351 0.977626i \(-0.567461\pi\)
−0.210351 + 0.977626i \(0.567461\pi\)
\(578\) −39.8950 −1.65941
\(579\) −6.19375 −0.257403
\(580\) 2.10992 0.0876095
\(581\) 0 0
\(582\) −0.692021 −0.0286852
\(583\) 28.2465 1.16985
\(584\) −1.54527 −0.0639437
\(585\) 48.8122 2.01814
\(586\) 18.7972 0.776503
\(587\) −10.4964 −0.433231 −0.216615 0.976257i \(-0.569502\pi\)
−0.216615 + 0.976257i \(0.569502\pi\)
\(588\) 0 0
\(589\) 9.96423 0.410569
\(590\) −33.3153 −1.37157
\(591\) 1.81940 0.0748400
\(592\) 1.66487 0.0684259
\(593\) 16.0218 0.657935 0.328968 0.944341i \(-0.393299\pi\)
0.328968 + 0.944341i \(0.393299\pi\)
\(594\) −11.3763 −0.466774
\(595\) 0 0
\(596\) 10.0532 0.411796
\(597\) −3.76271 −0.153997
\(598\) −41.0592 −1.67904
\(599\) −27.7356 −1.13324 −0.566622 0.823978i \(-0.691750\pi\)
−0.566622 + 0.823978i \(0.691750\pi\)
\(600\) −1.91185 −0.0780511
\(601\) 11.7885 0.480864 0.240432 0.970666i \(-0.422711\pi\)
0.240432 + 0.970666i \(0.422711\pi\)
\(602\) 0 0
\(603\) −30.6504 −1.24818
\(604\) −4.67994 −0.190424
\(605\) −25.6450 −1.04262
\(606\) 2.22952 0.0905681
\(607\) −26.7875 −1.08727 −0.543635 0.839322i \(-0.682952\pi\)
−0.543635 + 0.839322i \(0.682952\pi\)
\(608\) −1.39612 −0.0566203
\(609\) 0 0
\(610\) 17.3913 0.704155
\(611\) 0.907542 0.0367152
\(612\) −21.1347 −0.854318
\(613\) −3.90276 −0.157631 −0.0788154 0.996889i \(-0.525114\pi\)
−0.0788154 + 0.996889i \(0.525114\pi\)
\(614\) 13.4601 0.543206
\(615\) −0.686645 −0.0276882
\(616\) 0 0
\(617\) −45.5883 −1.83532 −0.917659 0.397370i \(-0.869923\pi\)
−0.917659 + 0.397370i \(0.869923\pi\)
\(618\) 1.28860 0.0518351
\(619\) −45.7434 −1.83858 −0.919292 0.393576i \(-0.871238\pi\)
−0.919292 + 0.393576i \(0.871238\pi\)
\(620\) −21.7603 −0.873915
\(621\) −18.5550 −0.744585
\(622\) −20.7966 −0.833866
\(623\) 0 0
\(624\) 2.54288 0.101797
\(625\) −28.0248 −1.12099
\(626\) −25.8931 −1.03490
\(627\) −2.73748 −0.109324
\(628\) 13.0030 0.518876
\(629\) 12.5579 0.500718
\(630\) 0 0
\(631\) −19.4832 −0.775614 −0.387807 0.921741i \(-0.626767\pi\)
−0.387807 + 0.921741i \(0.626767\pi\)
\(632\) 7.84117 0.311905
\(633\) 1.79895 0.0715020
\(634\) 7.51573 0.298488
\(635\) 19.2784 0.765041
\(636\) −2.85325 −0.113139
\(637\) 0 0
\(638\) −3.04892 −0.120708
\(639\) −17.3177 −0.685076
\(640\) 3.04892 0.120519
\(641\) 3.11231 0.122929 0.0614644 0.998109i \(-0.480423\pi\)
0.0614644 + 0.998109i \(0.480423\pi\)
\(642\) −4.44743 −0.175526
\(643\) −19.4644 −0.767602 −0.383801 0.923416i \(-0.625385\pi\)
−0.383801 + 0.923416i \(0.625385\pi\)
\(644\) 0 0
\(645\) −1.15452 −0.0454592
\(646\) −10.5308 −0.414329
\(647\) 13.0084 0.511411 0.255706 0.966755i \(-0.417692\pi\)
0.255706 + 0.966755i \(0.417692\pi\)
\(648\) −7.25667 −0.285069
\(649\) 48.1420 1.88974
\(650\) −24.5459 −0.962768
\(651\) 0 0
\(652\) −19.1226 −0.748898
\(653\) 27.9571 1.09404 0.547022 0.837118i \(-0.315761\pi\)
0.547022 + 0.837118i \(0.315761\pi\)
\(654\) 6.49827 0.254103
\(655\) −19.5603 −0.764286
\(656\) 0.506041 0.0197576
\(657\) −4.32975 −0.168920
\(658\) 0 0
\(659\) −12.3655 −0.481692 −0.240846 0.970563i \(-0.577425\pi\)
−0.240846 + 0.970563i \(0.577425\pi\)
\(660\) 5.97823 0.232702
\(661\) −29.6233 −1.15221 −0.576105 0.817375i \(-0.695428\pi\)
−0.576105 + 0.817375i \(0.695428\pi\)
\(662\) −16.9148 −0.657414
\(663\) 19.1806 0.744913
\(664\) −3.21313 −0.124694
\(665\) 0 0
\(666\) 4.66487 0.180760
\(667\) −4.97285 −0.192550
\(668\) −22.3177 −0.863496
\(669\) 1.28083 0.0495198
\(670\) 33.3521 1.28850
\(671\) −25.1312 −0.970180
\(672\) 0 0
\(673\) 29.6528 1.14303 0.571516 0.820591i \(-0.306356\pi\)
0.571516 + 0.820591i \(0.306356\pi\)
\(674\) −20.6722 −0.796262
\(675\) −11.0925 −0.426949
\(676\) 19.6474 0.755670
\(677\) −19.0868 −0.733566 −0.366783 0.930307i \(-0.619541\pi\)
−0.366783 + 0.930307i \(0.619541\pi\)
\(678\) −7.36121 −0.282705
\(679\) 0 0
\(680\) 22.9976 0.881918
\(681\) −11.1817 −0.428482
\(682\) 31.4446 1.20407
\(683\) 8.31336 0.318102 0.159051 0.987270i \(-0.449157\pi\)
0.159051 + 0.987270i \(0.449157\pi\)
\(684\) −3.91185 −0.149573
\(685\) 6.73855 0.257467
\(686\) 0 0
\(687\) −2.61596 −0.0998050
\(688\) 0.850855 0.0324385
\(689\) −36.6322 −1.39558
\(690\) 9.75063 0.371200
\(691\) 42.4868 1.61627 0.808137 0.588995i \(-0.200476\pi\)
0.808137 + 0.588995i \(0.200476\pi\)
\(692\) −1.95108 −0.0741690
\(693\) 0 0
\(694\) 14.3599 0.545094
\(695\) −44.3860 −1.68366
\(696\) 0.307979 0.0116739
\(697\) 3.81700 0.144579
\(698\) 4.80731 0.181960
\(699\) 7.89977 0.298797
\(700\) 0 0
\(701\) 14.7356 0.556554 0.278277 0.960501i \(-0.410237\pi\)
0.278277 + 0.960501i \(0.410237\pi\)
\(702\) 14.7536 0.556839
\(703\) 2.32437 0.0876653
\(704\) −4.40581 −0.166050
\(705\) −0.215521 −0.00811698
\(706\) −29.1239 −1.09609
\(707\) 0 0
\(708\) −4.86294 −0.182760
\(709\) −44.8732 −1.68525 −0.842625 0.538502i \(-0.818991\pi\)
−0.842625 + 0.538502i \(0.818991\pi\)
\(710\) 18.8442 0.707208
\(711\) 21.9705 0.823957
\(712\) −13.9487 −0.522749
\(713\) 51.2868 1.92071
\(714\) 0 0
\(715\) 76.7531 2.87040
\(716\) 1.78448 0.0666891
\(717\) −4.79225 −0.178970
\(718\) 9.98361 0.372585
\(719\) 0.0639828 0.00238616 0.00119308 0.999999i \(-0.499620\pi\)
0.00119308 + 0.999999i \(0.499620\pi\)
\(720\) 8.54288 0.318374
\(721\) 0 0
\(722\) 17.0508 0.634566
\(723\) 8.36227 0.310996
\(724\) 10.3394 0.384262
\(725\) −2.97285 −0.110409
\(726\) −3.74333 −0.138928
\(727\) 9.80625 0.363694 0.181847 0.983327i \(-0.441792\pi\)
0.181847 + 0.983327i \(0.441792\pi\)
\(728\) 0 0
\(729\) −16.8853 −0.625381
\(730\) 4.71140 0.174377
\(731\) 6.41789 0.237374
\(732\) 2.53856 0.0938281
\(733\) −2.92692 −0.108108 −0.0540541 0.998538i \(-0.517214\pi\)
−0.0540541 + 0.998538i \(0.517214\pi\)
\(734\) 23.6160 0.871681
\(735\) 0 0
\(736\) −7.18598 −0.264879
\(737\) −48.1952 −1.77529
\(738\) 1.41789 0.0521934
\(739\) 46.3116 1.70360 0.851799 0.523869i \(-0.175512\pi\)
0.851799 + 0.523869i \(0.175512\pi\)
\(740\) −5.07606 −0.186600
\(741\) 3.55017 0.130419
\(742\) 0 0
\(743\) 20.6692 0.758279 0.379139 0.925340i \(-0.376220\pi\)
0.379139 + 0.925340i \(0.376220\pi\)
\(744\) −3.17629 −0.116449
\(745\) −30.6515 −1.12298
\(746\) 26.3980 0.966501
\(747\) −9.00298 −0.329402
\(748\) −33.2325 −1.21510
\(749\) 0 0
\(750\) −0.955395 −0.0348861
\(751\) 26.2185 0.956727 0.478363 0.878162i \(-0.341230\pi\)
0.478363 + 0.878162i \(0.341230\pi\)
\(752\) 0.158834 0.00579207
\(753\) −1.22952 −0.0448062
\(754\) 3.95407 0.143999
\(755\) 14.2687 0.519293
\(756\) 0 0
\(757\) −10.5603 −0.383822 −0.191911 0.981412i \(-0.561468\pi\)
−0.191911 + 0.981412i \(0.561468\pi\)
\(758\) 26.3913 0.958577
\(759\) −14.0901 −0.511437
\(760\) 4.25667 0.154406
\(761\) 40.4819 1.46747 0.733733 0.679437i \(-0.237776\pi\)
0.733733 + 0.679437i \(0.237776\pi\)
\(762\) 2.81402 0.101941
\(763\) 0 0
\(764\) −20.1468 −0.728884
\(765\) 64.4379 2.32976
\(766\) −28.9081 −1.04449
\(767\) −62.4341 −2.25437
\(768\) 0.445042 0.0160591
\(769\) 23.8670 0.860666 0.430333 0.902670i \(-0.358396\pi\)
0.430333 + 0.902670i \(0.358396\pi\)
\(770\) 0 0
\(771\) 1.28860 0.0464078
\(772\) −13.9172 −0.500892
\(773\) 27.8297 1.00096 0.500482 0.865747i \(-0.333156\pi\)
0.500482 + 0.865747i \(0.333156\pi\)
\(774\) 2.38404 0.0856927
\(775\) 30.6601 1.10134
\(776\) −1.55496 −0.0558197
\(777\) 0 0
\(778\) −3.46250 −0.124137
\(779\) 0.706496 0.0253128
\(780\) −7.75302 −0.277603
\(781\) −27.2306 −0.974387
\(782\) −54.2030 −1.93829
\(783\) 1.78687 0.0638576
\(784\) 0 0
\(785\) −39.6450 −1.41499
\(786\) −2.85517 −0.101840
\(787\) −3.91617 −0.139596 −0.0697981 0.997561i \(-0.522236\pi\)
−0.0697981 + 0.997561i \(0.522236\pi\)
\(788\) 4.08815 0.145634
\(789\) 8.92394 0.317701
\(790\) −23.9071 −0.850575
\(791\) 0 0
\(792\) −12.3448 −0.438654
\(793\) 32.5921 1.15738
\(794\) 38.2368 1.35697
\(795\) 8.69932 0.308533
\(796\) −8.45473 −0.299670
\(797\) 10.3110 0.365233 0.182617 0.983184i \(-0.441543\pi\)
0.182617 + 0.983184i \(0.441543\pi\)
\(798\) 0 0
\(799\) 1.19806 0.0423844
\(800\) −4.29590 −0.151883
\(801\) −39.0834 −1.38094
\(802\) −9.49934 −0.335433
\(803\) −6.80817 −0.240255
\(804\) 4.86831 0.171692
\(805\) 0 0
\(806\) −40.7797 −1.43640
\(807\) 7.83100 0.275664
\(808\) 5.00969 0.176240
\(809\) −39.5200 −1.38945 −0.694725 0.719275i \(-0.744474\pi\)
−0.694725 + 0.719275i \(0.744474\pi\)
\(810\) 22.1250 0.777393
\(811\) 27.8769 0.978892 0.489446 0.872034i \(-0.337199\pi\)
0.489446 + 0.872034i \(0.337199\pi\)
\(812\) 0 0
\(813\) 6.39911 0.224427
\(814\) 7.33513 0.257096
\(815\) 58.3032 2.04227
\(816\) 3.35690 0.117515
\(817\) 1.18790 0.0415593
\(818\) −9.25906 −0.323735
\(819\) 0 0
\(820\) −1.54288 −0.0538796
\(821\) 6.76032 0.235937 0.117968 0.993017i \(-0.462362\pi\)
0.117968 + 0.993017i \(0.462362\pi\)
\(822\) 0.983607 0.0343072
\(823\) −4.70901 −0.164146 −0.0820728 0.996626i \(-0.526154\pi\)
−0.0820728 + 0.996626i \(0.526154\pi\)
\(824\) 2.89546 0.100868
\(825\) −8.42327 −0.293261
\(826\) 0 0
\(827\) −23.4010 −0.813733 −0.406867 0.913488i \(-0.633379\pi\)
−0.406867 + 0.913488i \(0.633379\pi\)
\(828\) −20.1347 −0.699728
\(829\) −18.6746 −0.648594 −0.324297 0.945955i \(-0.605128\pi\)
−0.324297 + 0.945955i \(0.605128\pi\)
\(830\) 9.79656 0.340044
\(831\) 1.75973 0.0610442
\(832\) 5.71379 0.198090
\(833\) 0 0
\(834\) −6.47889 −0.224346
\(835\) 68.0447 2.35478
\(836\) −6.15106 −0.212739
\(837\) −18.4286 −0.636987
\(838\) 26.8310 0.926862
\(839\) −21.0334 −0.726153 −0.363076 0.931759i \(-0.618274\pi\)
−0.363076 + 0.931759i \(0.618274\pi\)
\(840\) 0 0
\(841\) −28.5211 −0.983486
\(842\) −14.7560 −0.508525
\(843\) 4.42566 0.152428
\(844\) 4.04221 0.139139
\(845\) −59.9033 −2.06074
\(846\) 0.445042 0.0153009
\(847\) 0 0
\(848\) −6.41119 −0.220161
\(849\) 9.34827 0.320832
\(850\) −32.4034 −1.11143
\(851\) 11.9638 0.410112
\(852\) 2.75063 0.0942349
\(853\) −5.53750 −0.189600 −0.0948002 0.995496i \(-0.530221\pi\)
−0.0948002 + 0.995496i \(0.530221\pi\)
\(854\) 0 0
\(855\) 11.9269 0.407892
\(856\) −9.99330 −0.341564
\(857\) 29.8955 1.02121 0.510605 0.859816i \(-0.329422\pi\)
0.510605 + 0.859816i \(0.329422\pi\)
\(858\) 11.2034 0.382479
\(859\) 33.5603 1.14506 0.572532 0.819882i \(-0.305961\pi\)
0.572532 + 0.819882i \(0.305961\pi\)
\(860\) −2.59419 −0.0884610
\(861\) 0 0
\(862\) 31.8582 1.08509
\(863\) −31.6980 −1.07901 −0.539506 0.841982i \(-0.681389\pi\)
−0.539506 + 0.841982i \(0.681389\pi\)
\(864\) 2.58211 0.0878450
\(865\) 5.94869 0.202262
\(866\) 16.0194 0.544361
\(867\) 17.7549 0.602989
\(868\) 0 0
\(869\) 34.5467 1.17192
\(870\) −0.939001 −0.0318351
\(871\) 62.5032 2.11784
\(872\) 14.6015 0.494469
\(873\) −4.35690 −0.147459
\(874\) −10.0325 −0.339355
\(875\) 0 0
\(876\) 0.687710 0.0232356
\(877\) 39.4644 1.33262 0.666309 0.745675i \(-0.267873\pi\)
0.666309 + 0.745675i \(0.267873\pi\)
\(878\) −2.35690 −0.0795414
\(879\) −8.36552 −0.282162
\(880\) 13.4330 0.452825
\(881\) −7.31634 −0.246494 −0.123247 0.992376i \(-0.539331\pi\)
−0.123247 + 0.992376i \(0.539331\pi\)
\(882\) 0 0
\(883\) −44.8321 −1.50872 −0.754360 0.656461i \(-0.772052\pi\)
−0.754360 + 0.656461i \(0.772052\pi\)
\(884\) 43.0984 1.44956
\(885\) 14.8267 0.498394
\(886\) −13.1830 −0.442891
\(887\) −23.0790 −0.774919 −0.387459 0.921887i \(-0.626647\pi\)
−0.387459 + 0.921887i \(0.626647\pi\)
\(888\) −0.740939 −0.0248643
\(889\) 0 0
\(890\) 42.5284 1.42556
\(891\) −31.9715 −1.07109
\(892\) 2.87800 0.0963626
\(893\) 0.221751 0.00742063
\(894\) −4.47411 −0.149637
\(895\) −5.44073 −0.181864
\(896\) 0 0
\(897\) 18.2731 0.610120
\(898\) 15.3448 0.512063
\(899\) −4.93900 −0.164725
\(900\) −12.0368 −0.401228
\(901\) −48.3588 −1.61107
\(902\) 2.22952 0.0742349
\(903\) 0 0
\(904\) −16.5405 −0.550128
\(905\) −31.5241 −1.04790
\(906\) 2.08277 0.0691954
\(907\) −44.6031 −1.48102 −0.740511 0.672044i \(-0.765417\pi\)
−0.740511 + 0.672044i \(0.765417\pi\)
\(908\) −25.1250 −0.833802
\(909\) 14.0368 0.465572
\(910\) 0 0
\(911\) 7.19460 0.238368 0.119184 0.992872i \(-0.461972\pi\)
0.119184 + 0.992872i \(0.461972\pi\)
\(912\) 0.621334 0.0205744
\(913\) −14.1564 −0.468510
\(914\) 22.8159 0.754684
\(915\) −7.73987 −0.255872
\(916\) −5.87800 −0.194215
\(917\) 0 0
\(918\) 19.4765 0.642820
\(919\) −45.6469 −1.50575 −0.752877 0.658161i \(-0.771334\pi\)
−0.752877 + 0.658161i \(0.771334\pi\)
\(920\) 21.9095 0.722334
\(921\) −5.99031 −0.197387
\(922\) 0.440730 0.0145147
\(923\) 35.3147 1.16240
\(924\) 0 0
\(925\) 7.15213 0.235161
\(926\) 25.5133 0.838420
\(927\) 8.11290 0.266463
\(928\) 0.692021 0.0227167
\(929\) 54.6631 1.79344 0.896719 0.442601i \(-0.145944\pi\)
0.896719 + 0.442601i \(0.145944\pi\)
\(930\) 9.68425 0.317559
\(931\) 0 0
\(932\) 17.7506 0.581441
\(933\) 9.25534 0.303006
\(934\) 21.4101 0.700561
\(935\) 101.323 3.31362
\(936\) 16.0097 0.523293
\(937\) −49.8316 −1.62793 −0.813964 0.580916i \(-0.802695\pi\)
−0.813964 + 0.580916i \(0.802695\pi\)
\(938\) 0 0
\(939\) 11.5235 0.376055
\(940\) −0.484271 −0.0157952
\(941\) −25.0086 −0.815258 −0.407629 0.913148i \(-0.633644\pi\)
−0.407629 + 0.913148i \(0.633644\pi\)
\(942\) −5.78687 −0.188546
\(943\) 3.63640 0.118417
\(944\) −10.9269 −0.355641
\(945\) 0 0
\(946\) 3.74871 0.121881
\(947\) −9.35796 −0.304093 −0.152046 0.988373i \(-0.548586\pi\)
−0.152046 + 0.988373i \(0.548586\pi\)
\(948\) −3.48965 −0.113338
\(949\) 8.82935 0.286613
\(950\) −5.99761 −0.194588
\(951\) −3.34481 −0.108463
\(952\) 0 0
\(953\) −32.2411 −1.04439 −0.522196 0.852825i \(-0.674887\pi\)
−0.522196 + 0.852825i \(0.674887\pi\)
\(954\) −17.9638 −0.581598
\(955\) 61.4258 1.98769
\(956\) −10.7681 −0.348265
\(957\) 1.35690 0.0438622
\(958\) 32.6437 1.05467
\(959\) 0 0
\(960\) −1.35690 −0.0437936
\(961\) 19.9377 0.643151
\(962\) −9.51275 −0.306703
\(963\) −28.0006 −0.902306
\(964\) 18.7899 0.605181
\(965\) 42.4325 1.36595
\(966\) 0 0
\(967\) −51.8859 −1.66854 −0.834269 0.551358i \(-0.814110\pi\)
−0.834269 + 0.551358i \(0.814110\pi\)
\(968\) −8.41119 −0.270346
\(969\) 4.68664 0.150557
\(970\) 4.74094 0.152222
\(971\) −31.1976 −1.00118 −0.500589 0.865685i \(-0.666883\pi\)
−0.500589 + 0.865685i \(0.666883\pi\)
\(972\) 10.9758 0.352050
\(973\) 0 0
\(974\) −41.4010 −1.32657
\(975\) 10.9239 0.349846
\(976\) 5.70410 0.182584
\(977\) 9.30367 0.297651 0.148825 0.988863i \(-0.452451\pi\)
0.148825 + 0.988863i \(0.452451\pi\)
\(978\) 8.51035 0.272131
\(979\) −61.4553 −1.96412
\(980\) 0 0
\(981\) 40.9124 1.30623
\(982\) −1.97046 −0.0628799
\(983\) 30.5109 0.973148 0.486574 0.873639i \(-0.338246\pi\)
0.486574 + 0.873639i \(0.338246\pi\)
\(984\) −0.225209 −0.00717941
\(985\) −12.4644 −0.397149
\(986\) 5.21983 0.166233
\(987\) 0 0
\(988\) 7.97716 0.253787
\(989\) 6.11423 0.194421
\(990\) 37.6383 1.19622
\(991\) 50.5609 1.60612 0.803060 0.595898i \(-0.203204\pi\)
0.803060 + 0.595898i \(0.203204\pi\)
\(992\) −7.13706 −0.226602
\(993\) 7.52781 0.238888
\(994\) 0 0
\(995\) 25.7778 0.817210
\(996\) 1.42998 0.0453105
\(997\) 34.0907 1.07966 0.539831 0.841773i \(-0.318488\pi\)
0.539831 + 0.841773i \(0.318488\pi\)
\(998\) −4.32006 −0.136749
\(999\) −4.29888 −0.136011
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 686.2.a.b.1.2 yes 3
3.2 odd 2 6174.2.a.l.1.3 3
4.3 odd 2 5488.2.a.b.1.2 3
7.2 even 3 686.2.c.c.361.2 6
7.3 odd 6 686.2.c.d.667.2 6
7.4 even 3 686.2.c.c.667.2 6
7.5 odd 6 686.2.c.d.361.2 6
7.6 odd 2 686.2.a.a.1.2 3
21.20 even 2 6174.2.a.k.1.1 3
28.27 even 2 5488.2.a.e.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
686.2.a.a.1.2 3 7.6 odd 2
686.2.a.b.1.2 yes 3 1.1 even 1 trivial
686.2.c.c.361.2 6 7.2 even 3
686.2.c.c.667.2 6 7.4 even 3
686.2.c.d.361.2 6 7.5 odd 6
686.2.c.d.667.2 6 7.3 odd 6
5488.2.a.b.1.2 3 4.3 odd 2
5488.2.a.e.1.2 3 28.27 even 2
6174.2.a.k.1.1 3 21.20 even 2
6174.2.a.l.1.3 3 3.2 odd 2