Properties

Label 5488.2.a.e.1.2
Level $5488$
Weight $2$
Character 5488.1
Self dual yes
Analytic conductor $43.822$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5488,2,Mod(1,5488)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5488.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5488, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5488 = 2^{4} \cdot 7^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5488.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,1,0,0,0,0,0,-4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.8219006293\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 686)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.445042\) of defining polynomial
Character \(\chi\) \(=\) 5488.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.445042 q^{3} +3.04892 q^{5} -2.80194 q^{9} +4.40581 q^{11} -5.71379 q^{13} +1.35690 q^{15} -7.54288 q^{17} +1.39612 q^{19} -7.18598 q^{23} +4.29590 q^{25} -2.58211 q^{27} -0.692021 q^{29} +7.13706 q^{31} +1.96077 q^{33} +1.66487 q^{37} -2.54288 q^{39} -0.506041 q^{41} -0.850855 q^{43} -8.54288 q^{45} +0.158834 q^{47} -3.35690 q^{51} -6.41119 q^{53} +13.4330 q^{55} +0.621334 q^{57} -10.9269 q^{59} -5.70410 q^{61} -17.4209 q^{65} -10.9390 q^{67} -3.19806 q^{69} -6.18060 q^{71} -1.54527 q^{73} +1.91185 q^{75} +7.84117 q^{79} +7.25667 q^{81} +3.21313 q^{83} -22.9976 q^{85} -0.307979 q^{87} -13.9487 q^{89} +3.17629 q^{93} +4.25667 q^{95} -1.55496 q^{97} -12.3448 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{3} - 4 q^{9} - 9 q^{13} - 4 q^{17} + 13 q^{19} - 7 q^{23} - q^{25} - 2 q^{27} + 3 q^{29} + 16 q^{31} - 7 q^{33} + 6 q^{37} + 11 q^{39} - 11 q^{41} + 11 q^{43} - 7 q^{45} - 8 q^{47} - 6 q^{51}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.445042 0.256945 0.128473 0.991713i \(-0.458993\pi\)
0.128473 + 0.991713i \(0.458993\pi\)
\(4\) 0 0
\(5\) 3.04892 1.36352 0.681759 0.731577i \(-0.261215\pi\)
0.681759 + 0.731577i \(0.261215\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.80194 −0.933979
\(10\) 0 0
\(11\) 4.40581 1.32840 0.664201 0.747554i \(-0.268772\pi\)
0.664201 + 0.747554i \(0.268772\pi\)
\(12\) 0 0
\(13\) −5.71379 −1.58472 −0.792360 0.610053i \(-0.791148\pi\)
−0.792360 + 0.610053i \(0.791148\pi\)
\(14\) 0 0
\(15\) 1.35690 0.350349
\(16\) 0 0
\(17\) −7.54288 −1.82942 −0.914708 0.404115i \(-0.867580\pi\)
−0.914708 + 0.404115i \(0.867580\pi\)
\(18\) 0 0
\(19\) 1.39612 0.320293 0.160146 0.987093i \(-0.448803\pi\)
0.160146 + 0.987093i \(0.448803\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.18598 −1.49838 −0.749190 0.662355i \(-0.769557\pi\)
−0.749190 + 0.662355i \(0.769557\pi\)
\(24\) 0 0
\(25\) 4.29590 0.859179
\(26\) 0 0
\(27\) −2.58211 −0.496926
\(28\) 0 0
\(29\) −0.692021 −0.128505 −0.0642526 0.997934i \(-0.520466\pi\)
−0.0642526 + 0.997934i \(0.520466\pi\)
\(30\) 0 0
\(31\) 7.13706 1.28185 0.640927 0.767602i \(-0.278550\pi\)
0.640927 + 0.767602i \(0.278550\pi\)
\(32\) 0 0
\(33\) 1.96077 0.341326
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.66487 0.273704 0.136852 0.990592i \(-0.456302\pi\)
0.136852 + 0.990592i \(0.456302\pi\)
\(38\) 0 0
\(39\) −2.54288 −0.407186
\(40\) 0 0
\(41\) −0.506041 −0.0790303 −0.0395151 0.999219i \(-0.512581\pi\)
−0.0395151 + 0.999219i \(0.512581\pi\)
\(42\) 0 0
\(43\) −0.850855 −0.129754 −0.0648771 0.997893i \(-0.520666\pi\)
−0.0648771 + 0.997893i \(0.520666\pi\)
\(44\) 0 0
\(45\) −8.54288 −1.27350
\(46\) 0 0
\(47\) 0.158834 0.0231683 0.0115841 0.999933i \(-0.496313\pi\)
0.0115841 + 0.999933i \(0.496313\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −3.35690 −0.470059
\(52\) 0 0
\(53\) −6.41119 −0.880645 −0.440322 0.897840i \(-0.645136\pi\)
−0.440322 + 0.897840i \(0.645136\pi\)
\(54\) 0 0
\(55\) 13.4330 1.81130
\(56\) 0 0
\(57\) 0.621334 0.0822977
\(58\) 0 0
\(59\) −10.9269 −1.42256 −0.711282 0.702907i \(-0.751885\pi\)
−0.711282 + 0.702907i \(0.751885\pi\)
\(60\) 0 0
\(61\) −5.70410 −0.730336 −0.365168 0.930942i \(-0.618988\pi\)
−0.365168 + 0.930942i \(0.618988\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −17.4209 −2.16079
\(66\) 0 0
\(67\) −10.9390 −1.33641 −0.668206 0.743976i \(-0.732937\pi\)
−0.668206 + 0.743976i \(0.732937\pi\)
\(68\) 0 0
\(69\) −3.19806 −0.385001
\(70\) 0 0
\(71\) −6.18060 −0.733503 −0.366751 0.930319i \(-0.619530\pi\)
−0.366751 + 0.930319i \(0.619530\pi\)
\(72\) 0 0
\(73\) −1.54527 −0.180860 −0.0904301 0.995903i \(-0.528824\pi\)
−0.0904301 + 0.995903i \(0.528824\pi\)
\(74\) 0 0
\(75\) 1.91185 0.220762
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 7.84117 0.882200 0.441100 0.897458i \(-0.354588\pi\)
0.441100 + 0.897458i \(0.354588\pi\)
\(80\) 0 0
\(81\) 7.25667 0.806296
\(82\) 0 0
\(83\) 3.21313 0.352687 0.176343 0.984329i \(-0.443573\pi\)
0.176343 + 0.984329i \(0.443573\pi\)
\(84\) 0 0
\(85\) −22.9976 −2.49444
\(86\) 0 0
\(87\) −0.307979 −0.0330188
\(88\) 0 0
\(89\) −13.9487 −1.47856 −0.739279 0.673399i \(-0.764834\pi\)
−0.739279 + 0.673399i \(0.764834\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 3.17629 0.329366
\(94\) 0 0
\(95\) 4.25667 0.436725
\(96\) 0 0
\(97\) −1.55496 −0.157882 −0.0789410 0.996879i \(-0.525154\pi\)
−0.0789410 + 0.996879i \(0.525154\pi\)
\(98\) 0 0
\(99\) −12.3448 −1.24070
\(100\) 0 0
\(101\) 5.00969 0.498483 0.249241 0.968441i \(-0.419819\pi\)
0.249241 + 0.968441i \(0.419819\pi\)
\(102\) 0 0
\(103\) −2.89546 −0.285298 −0.142649 0.989773i \(-0.545562\pi\)
−0.142649 + 0.989773i \(0.545562\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.99330 −0.966088 −0.483044 0.875596i \(-0.660469\pi\)
−0.483044 + 0.875596i \(0.660469\pi\)
\(108\) 0 0
\(109\) −14.6015 −1.39857 −0.699284 0.714844i \(-0.746498\pi\)
−0.699284 + 0.714844i \(0.746498\pi\)
\(110\) 0 0
\(111\) 0.740939 0.0703268
\(112\) 0 0
\(113\) 16.5405 1.55600 0.777999 0.628266i \(-0.216235\pi\)
0.777999 + 0.628266i \(0.216235\pi\)
\(114\) 0 0
\(115\) −21.9095 −2.04307
\(116\) 0 0
\(117\) 16.0097 1.48010
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 8.41119 0.764654
\(122\) 0 0
\(123\) −0.225209 −0.0203064
\(124\) 0 0
\(125\) −2.14675 −0.192011
\(126\) 0 0
\(127\) 6.32304 0.561079 0.280540 0.959842i \(-0.409487\pi\)
0.280540 + 0.959842i \(0.409487\pi\)
\(128\) 0 0
\(129\) −0.378666 −0.0333397
\(130\) 0 0
\(131\) 6.41550 0.560525 0.280263 0.959923i \(-0.409578\pi\)
0.280263 + 0.959923i \(0.409578\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −7.87263 −0.677568
\(136\) 0 0
\(137\) −2.21014 −0.188825 −0.0944127 0.995533i \(-0.530097\pi\)
−0.0944127 + 0.995533i \(0.530097\pi\)
\(138\) 0 0
\(139\) 14.5579 1.23479 0.617394 0.786654i \(-0.288188\pi\)
0.617394 + 0.786654i \(0.288188\pi\)
\(140\) 0 0
\(141\) 0.0706876 0.00595297
\(142\) 0 0
\(143\) −25.1739 −2.10515
\(144\) 0 0
\(145\) −2.10992 −0.175219
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 10.0532 0.823593 0.411796 0.911276i \(-0.364902\pi\)
0.411796 + 0.911276i \(0.364902\pi\)
\(150\) 0 0
\(151\) 4.67994 0.380848 0.190424 0.981702i \(-0.439014\pi\)
0.190424 + 0.981702i \(0.439014\pi\)
\(152\) 0 0
\(153\) 21.1347 1.70864
\(154\) 0 0
\(155\) 21.7603 1.74783
\(156\) 0 0
\(157\) −13.0030 −1.03775 −0.518876 0.854850i \(-0.673649\pi\)
−0.518876 + 0.854850i \(0.673649\pi\)
\(158\) 0 0
\(159\) −2.85325 −0.226277
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 19.1226 1.49780 0.748898 0.662685i \(-0.230583\pi\)
0.748898 + 0.662685i \(0.230583\pi\)
\(164\) 0 0
\(165\) 5.97823 0.465405
\(166\) 0 0
\(167\) −22.3177 −1.72699 −0.863496 0.504355i \(-0.831730\pi\)
−0.863496 + 0.504355i \(0.831730\pi\)
\(168\) 0 0
\(169\) 19.6474 1.51134
\(170\) 0 0
\(171\) −3.91185 −0.299147
\(172\) 0 0
\(173\) 1.95108 0.148338 0.0741690 0.997246i \(-0.476370\pi\)
0.0741690 + 0.997246i \(0.476370\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −4.86294 −0.365521
\(178\) 0 0
\(179\) −1.78448 −0.133378 −0.0666891 0.997774i \(-0.521244\pi\)
−0.0666891 + 0.997774i \(0.521244\pi\)
\(180\) 0 0
\(181\) −10.3394 −0.768524 −0.384262 0.923224i \(-0.625544\pi\)
−0.384262 + 0.923224i \(0.625544\pi\)
\(182\) 0 0
\(183\) −2.53856 −0.187656
\(184\) 0 0
\(185\) 5.07606 0.373200
\(186\) 0 0
\(187\) −33.2325 −2.43020
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 20.1468 1.45777 0.728884 0.684637i \(-0.240039\pi\)
0.728884 + 0.684637i \(0.240039\pi\)
\(192\) 0 0
\(193\) −13.9172 −1.00178 −0.500892 0.865510i \(-0.666995\pi\)
−0.500892 + 0.865510i \(0.666995\pi\)
\(194\) 0 0
\(195\) −7.75302 −0.555205
\(196\) 0 0
\(197\) 4.08815 0.291268 0.145634 0.989339i \(-0.453478\pi\)
0.145634 + 0.989339i \(0.453478\pi\)
\(198\) 0 0
\(199\) −8.45473 −0.599340 −0.299670 0.954043i \(-0.596877\pi\)
−0.299670 + 0.954043i \(0.596877\pi\)
\(200\) 0 0
\(201\) −4.86831 −0.343384
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1.54288 −0.107759
\(206\) 0 0
\(207\) 20.1347 1.39946
\(208\) 0 0
\(209\) 6.15106 0.425478
\(210\) 0 0
\(211\) −4.04221 −0.278277 −0.139139 0.990273i \(-0.544433\pi\)
−0.139139 + 0.990273i \(0.544433\pi\)
\(212\) 0 0
\(213\) −2.75063 −0.188470
\(214\) 0 0
\(215\) −2.59419 −0.176922
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −0.687710 −0.0464711
\(220\) 0 0
\(221\) 43.0984 2.89911
\(222\) 0 0
\(223\) 2.87800 0.192725 0.0963626 0.995346i \(-0.469279\pi\)
0.0963626 + 0.995346i \(0.469279\pi\)
\(224\) 0 0
\(225\) −12.0368 −0.802456
\(226\) 0 0
\(227\) −25.1250 −1.66760 −0.833802 0.552064i \(-0.813840\pi\)
−0.833802 + 0.552064i \(0.813840\pi\)
\(228\) 0 0
\(229\) 5.87800 0.388429 0.194215 0.980959i \(-0.437784\pi\)
0.194215 + 0.980959i \(0.437784\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 17.7506 1.16288 0.581441 0.813588i \(-0.302489\pi\)
0.581441 + 0.813588i \(0.302489\pi\)
\(234\) 0 0
\(235\) 0.484271 0.0315903
\(236\) 0 0
\(237\) 3.48965 0.226677
\(238\) 0 0
\(239\) 10.7681 0.696530 0.348265 0.937396i \(-0.386771\pi\)
0.348265 + 0.937396i \(0.386771\pi\)
\(240\) 0 0
\(241\) −18.7899 −1.21036 −0.605181 0.796088i \(-0.706899\pi\)
−0.605181 + 0.796088i \(0.706899\pi\)
\(242\) 0 0
\(243\) 10.9758 0.704100
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −7.97716 −0.507575
\(248\) 0 0
\(249\) 1.42998 0.0906211
\(250\) 0 0
\(251\) −2.76271 −0.174381 −0.0871903 0.996192i \(-0.527789\pi\)
−0.0871903 + 0.996192i \(0.527789\pi\)
\(252\) 0 0
\(253\) −31.6601 −1.99045
\(254\) 0 0
\(255\) −10.2349 −0.640934
\(256\) 0 0
\(257\) −2.89546 −0.180614 −0.0903069 0.995914i \(-0.528785\pi\)
−0.0903069 + 0.995914i \(0.528785\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 1.93900 0.120021
\(262\) 0 0
\(263\) −20.0519 −1.23645 −0.618227 0.786000i \(-0.712149\pi\)
−0.618227 + 0.786000i \(0.712149\pi\)
\(264\) 0 0
\(265\) −19.5472 −1.20077
\(266\) 0 0
\(267\) −6.20775 −0.379908
\(268\) 0 0
\(269\) −17.5961 −1.07285 −0.536427 0.843947i \(-0.680226\pi\)
−0.536427 + 0.843947i \(0.680226\pi\)
\(270\) 0 0
\(271\) 14.3787 0.873442 0.436721 0.899597i \(-0.356140\pi\)
0.436721 + 0.899597i \(0.356140\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 18.9269 1.14134
\(276\) 0 0
\(277\) 3.95407 0.237577 0.118788 0.992920i \(-0.462099\pi\)
0.118788 + 0.992920i \(0.462099\pi\)
\(278\) 0 0
\(279\) −19.9976 −1.19723
\(280\) 0 0
\(281\) 9.94438 0.593232 0.296616 0.954997i \(-0.404142\pi\)
0.296616 + 0.954997i \(0.404142\pi\)
\(282\) 0 0
\(283\) 21.0054 1.24864 0.624320 0.781169i \(-0.285376\pi\)
0.624320 + 0.781169i \(0.285376\pi\)
\(284\) 0 0
\(285\) 1.89440 0.112214
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 39.8950 2.34676
\(290\) 0 0
\(291\) −0.692021 −0.0405670
\(292\) 0 0
\(293\) 18.7972 1.09814 0.549071 0.835776i \(-0.314982\pi\)
0.549071 + 0.835776i \(0.314982\pi\)
\(294\) 0 0
\(295\) −33.3153 −1.93969
\(296\) 0 0
\(297\) −11.3763 −0.660118
\(298\) 0 0
\(299\) 41.0592 2.37451
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 2.22952 0.128083
\(304\) 0 0
\(305\) −17.3913 −0.995825
\(306\) 0 0
\(307\) −13.4601 −0.768209 −0.384104 0.923290i \(-0.625490\pi\)
−0.384104 + 0.923290i \(0.625490\pi\)
\(308\) 0 0
\(309\) −1.28860 −0.0733060
\(310\) 0 0
\(311\) 20.7966 1.17926 0.589632 0.807672i \(-0.299273\pi\)
0.589632 + 0.807672i \(0.299273\pi\)
\(312\) 0 0
\(313\) −25.8931 −1.46356 −0.731781 0.681539i \(-0.761311\pi\)
−0.731781 + 0.681539i \(0.761311\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7.51573 −0.422125 −0.211063 0.977473i \(-0.567692\pi\)
−0.211063 + 0.977473i \(0.567692\pi\)
\(318\) 0 0
\(319\) −3.04892 −0.170707
\(320\) 0 0
\(321\) −4.44743 −0.248232
\(322\) 0 0
\(323\) −10.5308 −0.585949
\(324\) 0 0
\(325\) −24.5459 −1.36156
\(326\) 0 0
\(327\) −6.49827 −0.359355
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −16.9148 −0.929724 −0.464862 0.885383i \(-0.653896\pi\)
−0.464862 + 0.885383i \(0.653896\pi\)
\(332\) 0 0
\(333\) −4.66487 −0.255634
\(334\) 0 0
\(335\) −33.3521 −1.82222
\(336\) 0 0
\(337\) 20.6722 1.12608 0.563042 0.826428i \(-0.309631\pi\)
0.563042 + 0.826428i \(0.309631\pi\)
\(338\) 0 0
\(339\) 7.36121 0.399806
\(340\) 0 0
\(341\) 31.4446 1.70282
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −9.75063 −0.524956
\(346\) 0 0
\(347\) 14.3599 0.770879 0.385439 0.922733i \(-0.374050\pi\)
0.385439 + 0.922733i \(0.374050\pi\)
\(348\) 0 0
\(349\) 4.80731 0.257330 0.128665 0.991688i \(-0.458931\pi\)
0.128665 + 0.991688i \(0.458931\pi\)
\(350\) 0 0
\(351\) 14.7536 0.787490
\(352\) 0 0
\(353\) −29.1239 −1.55011 −0.775055 0.631894i \(-0.782278\pi\)
−0.775055 + 0.631894i \(0.782278\pi\)
\(354\) 0 0
\(355\) −18.8442 −1.00014
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.98361 0.526915 0.263457 0.964671i \(-0.415137\pi\)
0.263457 + 0.964671i \(0.415137\pi\)
\(360\) 0 0
\(361\) −17.0508 −0.897412
\(362\) 0 0
\(363\) 3.74333 0.196474
\(364\) 0 0
\(365\) −4.71140 −0.246606
\(366\) 0 0
\(367\) −23.6160 −1.23274 −0.616371 0.787456i \(-0.711398\pi\)
−0.616371 + 0.787456i \(0.711398\pi\)
\(368\) 0 0
\(369\) 1.41789 0.0738127
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −26.3980 −1.36684 −0.683419 0.730026i \(-0.739508\pi\)
−0.683419 + 0.730026i \(0.739508\pi\)
\(374\) 0 0
\(375\) −0.955395 −0.0493364
\(376\) 0 0
\(377\) 3.95407 0.203645
\(378\) 0 0
\(379\) 26.3913 1.35563 0.677816 0.735232i \(-0.262927\pi\)
0.677816 + 0.735232i \(0.262927\pi\)
\(380\) 0 0
\(381\) 2.81402 0.144167
\(382\) 0 0
\(383\) 28.9081 1.47714 0.738568 0.674179i \(-0.235502\pi\)
0.738568 + 0.674179i \(0.235502\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.38404 0.121188
\(388\) 0 0
\(389\) 3.46250 0.175556 0.0877779 0.996140i \(-0.472023\pi\)
0.0877779 + 0.996140i \(0.472023\pi\)
\(390\) 0 0
\(391\) 54.2030 2.74116
\(392\) 0 0
\(393\) 2.85517 0.144024
\(394\) 0 0
\(395\) 23.9071 1.20290
\(396\) 0 0
\(397\) 38.2368 1.91905 0.959525 0.281622i \(-0.0908724\pi\)
0.959525 + 0.281622i \(0.0908724\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9.49934 0.474374 0.237187 0.971464i \(-0.423775\pi\)
0.237187 + 0.971464i \(0.423775\pi\)
\(402\) 0 0
\(403\) −40.7797 −2.03138
\(404\) 0 0
\(405\) 22.1250 1.09940
\(406\) 0 0
\(407\) 7.33513 0.363589
\(408\) 0 0
\(409\) −9.25906 −0.457831 −0.228916 0.973446i \(-0.573518\pi\)
−0.228916 + 0.973446i \(0.573518\pi\)
\(410\) 0 0
\(411\) −0.983607 −0.0485177
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 9.79656 0.480894
\(416\) 0 0
\(417\) 6.47889 0.317273
\(418\) 0 0
\(419\) −26.8310 −1.31078 −0.655390 0.755291i \(-0.727496\pi\)
−0.655390 + 0.755291i \(0.727496\pi\)
\(420\) 0 0
\(421\) 14.7560 0.719164 0.359582 0.933114i \(-0.382919\pi\)
0.359582 + 0.933114i \(0.382919\pi\)
\(422\) 0 0
\(423\) −0.445042 −0.0216387
\(424\) 0 0
\(425\) −32.4034 −1.57180
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −11.2034 −0.540907
\(430\) 0 0
\(431\) 31.8582 1.53455 0.767277 0.641316i \(-0.221611\pi\)
0.767277 + 0.641316i \(0.221611\pi\)
\(432\) 0 0
\(433\) 16.0194 0.769842 0.384921 0.922949i \(-0.374229\pi\)
0.384921 + 0.922949i \(0.374229\pi\)
\(434\) 0 0
\(435\) −0.939001 −0.0450217
\(436\) 0 0
\(437\) −10.0325 −0.479921
\(438\) 0 0
\(439\) 2.35690 0.112489 0.0562443 0.998417i \(-0.482087\pi\)
0.0562443 + 0.998417i \(0.482087\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −13.1830 −0.626343 −0.313172 0.949697i \(-0.601391\pi\)
−0.313172 + 0.949697i \(0.601391\pi\)
\(444\) 0 0
\(445\) −42.5284 −2.01604
\(446\) 0 0
\(447\) 4.47411 0.211618
\(448\) 0 0
\(449\) −15.3448 −0.724167 −0.362083 0.932146i \(-0.617934\pi\)
−0.362083 + 0.932146i \(0.617934\pi\)
\(450\) 0 0
\(451\) −2.22952 −0.104984
\(452\) 0 0
\(453\) 2.08277 0.0978570
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −22.8159 −1.06728 −0.533642 0.845710i \(-0.679177\pi\)
−0.533642 + 0.845710i \(0.679177\pi\)
\(458\) 0 0
\(459\) 19.4765 0.909085
\(460\) 0 0
\(461\) 0.440730 0.0205268 0.0102634 0.999947i \(-0.496733\pi\)
0.0102634 + 0.999947i \(0.496733\pi\)
\(462\) 0 0
\(463\) 25.5133 1.18571 0.592853 0.805311i \(-0.298002\pi\)
0.592853 + 0.805311i \(0.298002\pi\)
\(464\) 0 0
\(465\) 9.68425 0.449096
\(466\) 0 0
\(467\) −21.4101 −0.990742 −0.495371 0.868681i \(-0.664968\pi\)
−0.495371 + 0.868681i \(0.664968\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −5.78687 −0.266645
\(472\) 0 0
\(473\) −3.74871 −0.172366
\(474\) 0 0
\(475\) 5.99761 0.275189
\(476\) 0 0
\(477\) 17.9638 0.822504
\(478\) 0 0
\(479\) −32.6437 −1.49153 −0.745764 0.666210i \(-0.767915\pi\)
−0.745764 + 0.666210i \(0.767915\pi\)
\(480\) 0 0
\(481\) −9.51275 −0.433744
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.74094 −0.215275
\(486\) 0 0
\(487\) −41.4010 −1.87606 −0.938030 0.346555i \(-0.887352\pi\)
−0.938030 + 0.346555i \(0.887352\pi\)
\(488\) 0 0
\(489\) 8.51035 0.384851
\(490\) 0 0
\(491\) −1.97046 −0.0889256 −0.0444628 0.999011i \(-0.514158\pi\)
−0.0444628 + 0.999011i \(0.514158\pi\)
\(492\) 0 0
\(493\) 5.21983 0.235089
\(494\) 0 0
\(495\) −37.6383 −1.69172
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −4.32006 −0.193392 −0.0966962 0.995314i \(-0.530828\pi\)
−0.0966962 + 0.995314i \(0.530828\pi\)
\(500\) 0 0
\(501\) −9.93230 −0.443742
\(502\) 0 0
\(503\) 29.8649 1.33161 0.665804 0.746127i \(-0.268089\pi\)
0.665804 + 0.746127i \(0.268089\pi\)
\(504\) 0 0
\(505\) 15.2741 0.679690
\(506\) 0 0
\(507\) 8.74392 0.388331
\(508\) 0 0
\(509\) −37.9017 −1.67996 −0.839981 0.542615i \(-0.817434\pi\)
−0.839981 + 0.542615i \(0.817434\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −3.60494 −0.159162
\(514\) 0 0
\(515\) −8.82802 −0.389009
\(516\) 0 0
\(517\) 0.699791 0.0307768
\(518\) 0 0
\(519\) 0.868313 0.0381147
\(520\) 0 0
\(521\) −4.97823 −0.218100 −0.109050 0.994036i \(-0.534781\pi\)
−0.109050 + 0.994036i \(0.534781\pi\)
\(522\) 0 0
\(523\) −16.8810 −0.738154 −0.369077 0.929399i \(-0.620326\pi\)
−0.369077 + 0.929399i \(0.620326\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −53.8340 −2.34505
\(528\) 0 0
\(529\) 28.6383 1.24514
\(530\) 0 0
\(531\) 30.6165 1.32865
\(532\) 0 0
\(533\) 2.89141 0.125241
\(534\) 0 0
\(535\) −30.4687 −1.31728
\(536\) 0 0
\(537\) −0.794168 −0.0342709
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −11.3720 −0.488919 −0.244459 0.969660i \(-0.578610\pi\)
−0.244459 + 0.969660i \(0.578610\pi\)
\(542\) 0 0
\(543\) −4.60148 −0.197469
\(544\) 0 0
\(545\) −44.5187 −1.90697
\(546\) 0 0
\(547\) −20.8528 −0.891600 −0.445800 0.895133i \(-0.647081\pi\)
−0.445800 + 0.895133i \(0.647081\pi\)
\(548\) 0 0
\(549\) 15.9825 0.682118
\(550\) 0 0
\(551\) −0.966148 −0.0411593
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 2.25906 0.0958918
\(556\) 0 0
\(557\) 22.1672 0.939254 0.469627 0.882865i \(-0.344388\pi\)
0.469627 + 0.882865i \(0.344388\pi\)
\(558\) 0 0
\(559\) 4.86161 0.205624
\(560\) 0 0
\(561\) −14.7899 −0.624428
\(562\) 0 0
\(563\) 19.0358 0.802262 0.401131 0.916021i \(-0.368617\pi\)
0.401131 + 0.916021i \(0.368617\pi\)
\(564\) 0 0
\(565\) 50.4306 2.12163
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 16.4209 0.688399 0.344200 0.938897i \(-0.388150\pi\)
0.344200 + 0.938897i \(0.388150\pi\)
\(570\) 0 0
\(571\) 27.0726 1.13295 0.566477 0.824078i \(-0.308306\pi\)
0.566477 + 0.824078i \(0.308306\pi\)
\(572\) 0 0
\(573\) 8.96615 0.374566
\(574\) 0 0
\(575\) −30.8702 −1.28738
\(576\) 0 0
\(577\) 10.1056 0.420702 0.210351 0.977626i \(-0.432539\pi\)
0.210351 + 0.977626i \(0.432539\pi\)
\(578\) 0 0
\(579\) −6.19375 −0.257403
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −28.2465 −1.16985
\(584\) 0 0
\(585\) 48.8122 2.01814
\(586\) 0 0
\(587\) −10.4964 −0.433231 −0.216615 0.976257i \(-0.569502\pi\)
−0.216615 + 0.976257i \(0.569502\pi\)
\(588\) 0 0
\(589\) 9.96423 0.410569
\(590\) 0 0
\(591\) 1.81940 0.0748400
\(592\) 0 0
\(593\) −16.0218 −0.657935 −0.328968 0.944341i \(-0.606701\pi\)
−0.328968 + 0.944341i \(0.606701\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −3.76271 −0.153997
\(598\) 0 0
\(599\) 27.7356 1.13324 0.566622 0.823978i \(-0.308250\pi\)
0.566622 + 0.823978i \(0.308250\pi\)
\(600\) 0 0
\(601\) −11.7885 −0.480864 −0.240432 0.970666i \(-0.577289\pi\)
−0.240432 + 0.970666i \(0.577289\pi\)
\(602\) 0 0
\(603\) 30.6504 1.24818
\(604\) 0 0
\(605\) 25.6450 1.04262
\(606\) 0 0
\(607\) −26.7875 −1.08727 −0.543635 0.839322i \(-0.682952\pi\)
−0.543635 + 0.839322i \(0.682952\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.907542 −0.0367152
\(612\) 0 0
\(613\) −3.90276 −0.157631 −0.0788154 0.996889i \(-0.525114\pi\)
−0.0788154 + 0.996889i \(0.525114\pi\)
\(614\) 0 0
\(615\) −0.686645 −0.0276882
\(616\) 0 0
\(617\) −45.5883 −1.83532 −0.917659 0.397370i \(-0.869923\pi\)
−0.917659 + 0.397370i \(0.869923\pi\)
\(618\) 0 0
\(619\) −45.7434 −1.83858 −0.919292 0.393576i \(-0.871238\pi\)
−0.919292 + 0.393576i \(0.871238\pi\)
\(620\) 0 0
\(621\) 18.5550 0.744585
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −28.0248 −1.12099
\(626\) 0 0
\(627\) 2.73748 0.109324
\(628\) 0 0
\(629\) −12.5579 −0.500718
\(630\) 0 0
\(631\) 19.4832 0.775614 0.387807 0.921741i \(-0.373233\pi\)
0.387807 + 0.921741i \(0.373233\pi\)
\(632\) 0 0
\(633\) −1.79895 −0.0715020
\(634\) 0 0
\(635\) 19.2784 0.765041
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 17.3177 0.685076
\(640\) 0 0
\(641\) 3.11231 0.122929 0.0614644 0.998109i \(-0.480423\pi\)
0.0614644 + 0.998109i \(0.480423\pi\)
\(642\) 0 0
\(643\) −19.4644 −0.767602 −0.383801 0.923416i \(-0.625385\pi\)
−0.383801 + 0.923416i \(0.625385\pi\)
\(644\) 0 0
\(645\) −1.15452 −0.0454592
\(646\) 0 0
\(647\) 13.0084 0.511411 0.255706 0.966755i \(-0.417692\pi\)
0.255706 + 0.966755i \(0.417692\pi\)
\(648\) 0 0
\(649\) −48.1420 −1.88974
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 27.9571 1.09404 0.547022 0.837118i \(-0.315761\pi\)
0.547022 + 0.837118i \(0.315761\pi\)
\(654\) 0 0
\(655\) 19.5603 0.764286
\(656\) 0 0
\(657\) 4.32975 0.168920
\(658\) 0 0
\(659\) 12.3655 0.481692 0.240846 0.970563i \(-0.422575\pi\)
0.240846 + 0.970563i \(0.422575\pi\)
\(660\) 0 0
\(661\) 29.6233 1.15221 0.576105 0.817375i \(-0.304572\pi\)
0.576105 + 0.817375i \(0.304572\pi\)
\(662\) 0 0
\(663\) 19.1806 0.744913
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 4.97285 0.192550
\(668\) 0 0
\(669\) 1.28083 0.0495198
\(670\) 0 0
\(671\) −25.1312 −0.970180
\(672\) 0 0
\(673\) 29.6528 1.14303 0.571516 0.820591i \(-0.306356\pi\)
0.571516 + 0.820591i \(0.306356\pi\)
\(674\) 0 0
\(675\) −11.0925 −0.426949
\(676\) 0 0
\(677\) 19.0868 0.733566 0.366783 0.930307i \(-0.380459\pi\)
0.366783 + 0.930307i \(0.380459\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −11.1817 −0.428482
\(682\) 0 0
\(683\) −8.31336 −0.318102 −0.159051 0.987270i \(-0.550843\pi\)
−0.159051 + 0.987270i \(0.550843\pi\)
\(684\) 0 0
\(685\) −6.73855 −0.257467
\(686\) 0 0
\(687\) 2.61596 0.0998050
\(688\) 0 0
\(689\) 36.6322 1.39558
\(690\) 0 0
\(691\) 42.4868 1.61627 0.808137 0.588995i \(-0.200476\pi\)
0.808137 + 0.588995i \(0.200476\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 44.3860 1.68366
\(696\) 0 0
\(697\) 3.81700 0.144579
\(698\) 0 0
\(699\) 7.89977 0.298797
\(700\) 0 0
\(701\) 14.7356 0.556554 0.278277 0.960501i \(-0.410237\pi\)
0.278277 + 0.960501i \(0.410237\pi\)
\(702\) 0 0
\(703\) 2.32437 0.0876653
\(704\) 0 0
\(705\) 0.215521 0.00811698
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −44.8732 −1.68525 −0.842625 0.538502i \(-0.818991\pi\)
−0.842625 + 0.538502i \(0.818991\pi\)
\(710\) 0 0
\(711\) −21.9705 −0.823957
\(712\) 0 0
\(713\) −51.2868 −1.92071
\(714\) 0 0
\(715\) −76.7531 −2.87040
\(716\) 0 0
\(717\) 4.79225 0.178970
\(718\) 0 0
\(719\) 0.0639828 0.00238616 0.00119308 0.999999i \(-0.499620\pi\)
0.00119308 + 0.999999i \(0.499620\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −8.36227 −0.310996
\(724\) 0 0
\(725\) −2.97285 −0.110409
\(726\) 0 0
\(727\) 9.80625 0.363694 0.181847 0.983327i \(-0.441792\pi\)
0.181847 + 0.983327i \(0.441792\pi\)
\(728\) 0 0
\(729\) −16.8853 −0.625381
\(730\) 0 0
\(731\) 6.41789 0.237374
\(732\) 0 0
\(733\) 2.92692 0.108108 0.0540541 0.998538i \(-0.482786\pi\)
0.0540541 + 0.998538i \(0.482786\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −48.1952 −1.77529
\(738\) 0 0
\(739\) −46.3116 −1.70360 −0.851799 0.523869i \(-0.824488\pi\)
−0.851799 + 0.523869i \(0.824488\pi\)
\(740\) 0 0
\(741\) −3.55017 −0.130419
\(742\) 0 0
\(743\) −20.6692 −0.758279 −0.379139 0.925340i \(-0.623780\pi\)
−0.379139 + 0.925340i \(0.623780\pi\)
\(744\) 0 0
\(745\) 30.6515 1.12298
\(746\) 0 0
\(747\) −9.00298 −0.329402
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −26.2185 −0.956727 −0.478363 0.878162i \(-0.658770\pi\)
−0.478363 + 0.878162i \(0.658770\pi\)
\(752\) 0 0
\(753\) −1.22952 −0.0448062
\(754\) 0 0
\(755\) 14.2687 0.519293
\(756\) 0 0
\(757\) −10.5603 −0.383822 −0.191911 0.981412i \(-0.561468\pi\)
−0.191911 + 0.981412i \(0.561468\pi\)
\(758\) 0 0
\(759\) −14.0901 −0.511437
\(760\) 0 0
\(761\) −40.4819 −1.46747 −0.733733 0.679437i \(-0.762224\pi\)
−0.733733 + 0.679437i \(0.762224\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 64.4379 2.32976
\(766\) 0 0
\(767\) 62.4341 2.25437
\(768\) 0 0
\(769\) −23.8670 −0.860666 −0.430333 0.902670i \(-0.641604\pi\)
−0.430333 + 0.902670i \(0.641604\pi\)
\(770\) 0 0
\(771\) −1.28860 −0.0464078
\(772\) 0 0
\(773\) −27.8297 −1.00096 −0.500482 0.865747i \(-0.666844\pi\)
−0.500482 + 0.865747i \(0.666844\pi\)
\(774\) 0 0
\(775\) 30.6601 1.10134
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.706496 −0.0253128
\(780\) 0 0
\(781\) −27.2306 −0.974387
\(782\) 0 0
\(783\) 1.78687 0.0638576
\(784\) 0 0
\(785\) −39.6450 −1.41499
\(786\) 0 0
\(787\) −3.91617 −0.139596 −0.0697981 0.997561i \(-0.522236\pi\)
−0.0697981 + 0.997561i \(0.522236\pi\)
\(788\) 0 0
\(789\) −8.92394 −0.317701
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 32.5921 1.15738
\(794\) 0 0
\(795\) −8.69932 −0.308533
\(796\) 0 0
\(797\) −10.3110 −0.365233 −0.182617 0.983184i \(-0.558457\pi\)
−0.182617 + 0.983184i \(0.558457\pi\)
\(798\) 0 0
\(799\) −1.19806 −0.0423844
\(800\) 0 0
\(801\) 39.0834 1.38094
\(802\) 0 0
\(803\) −6.80817 −0.240255
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −7.83100 −0.275664
\(808\) 0 0
\(809\) −39.5200 −1.38945 −0.694725 0.719275i \(-0.744474\pi\)
−0.694725 + 0.719275i \(0.744474\pi\)
\(810\) 0 0
\(811\) 27.8769 0.978892 0.489446 0.872034i \(-0.337199\pi\)
0.489446 + 0.872034i \(0.337199\pi\)
\(812\) 0 0
\(813\) 6.39911 0.224427
\(814\) 0 0
\(815\) 58.3032 2.04227
\(816\) 0 0
\(817\) −1.18790 −0.0415593
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 6.76032 0.235937 0.117968 0.993017i \(-0.462362\pi\)
0.117968 + 0.993017i \(0.462362\pi\)
\(822\) 0 0
\(823\) 4.70901 0.164146 0.0820728 0.996626i \(-0.473846\pi\)
0.0820728 + 0.996626i \(0.473846\pi\)
\(824\) 0 0
\(825\) 8.42327 0.293261
\(826\) 0 0
\(827\) 23.4010 0.813733 0.406867 0.913488i \(-0.366621\pi\)
0.406867 + 0.913488i \(0.366621\pi\)
\(828\) 0 0
\(829\) 18.6746 0.648594 0.324297 0.945955i \(-0.394872\pi\)
0.324297 + 0.945955i \(0.394872\pi\)
\(830\) 0 0
\(831\) 1.75973 0.0610442
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −68.0447 −2.35478
\(836\) 0 0
\(837\) −18.4286 −0.636987
\(838\) 0 0
\(839\) −21.0334 −0.726153 −0.363076 0.931759i \(-0.618274\pi\)
−0.363076 + 0.931759i \(0.618274\pi\)
\(840\) 0 0
\(841\) −28.5211 −0.983486
\(842\) 0 0
\(843\) 4.42566 0.152428
\(844\) 0 0
\(845\) 59.9033 2.06074
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 9.34827 0.320832
\(850\) 0 0
\(851\) −11.9638 −0.410112
\(852\) 0 0
\(853\) 5.53750 0.189600 0.0948002 0.995496i \(-0.469779\pi\)
0.0948002 + 0.995496i \(0.469779\pi\)
\(854\) 0 0
\(855\) −11.9269 −0.407892
\(856\) 0 0
\(857\) −29.8955 −1.02121 −0.510605 0.859816i \(-0.670578\pi\)
−0.510605 + 0.859816i \(0.670578\pi\)
\(858\) 0 0
\(859\) 33.5603 1.14506 0.572532 0.819882i \(-0.305961\pi\)
0.572532 + 0.819882i \(0.305961\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 31.6980 1.07901 0.539506 0.841982i \(-0.318611\pi\)
0.539506 + 0.841982i \(0.318611\pi\)
\(864\) 0 0
\(865\) 5.94869 0.202262
\(866\) 0 0
\(867\) 17.7549 0.602989
\(868\) 0 0
\(869\) 34.5467 1.17192
\(870\) 0 0
\(871\) 62.5032 2.11784
\(872\) 0 0
\(873\) 4.35690 0.147459
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 39.4644 1.33262 0.666309 0.745675i \(-0.267873\pi\)
0.666309 + 0.745675i \(0.267873\pi\)
\(878\) 0 0
\(879\) 8.36552 0.282162
\(880\) 0 0
\(881\) 7.31634 0.246494 0.123247 0.992376i \(-0.460669\pi\)
0.123247 + 0.992376i \(0.460669\pi\)
\(882\) 0 0
\(883\) 44.8321 1.50872 0.754360 0.656461i \(-0.227948\pi\)
0.754360 + 0.656461i \(0.227948\pi\)
\(884\) 0 0
\(885\) −14.8267 −0.498394
\(886\) 0 0
\(887\) −23.0790 −0.774919 −0.387459 0.921887i \(-0.626647\pi\)
−0.387459 + 0.921887i \(0.626647\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 31.9715 1.07109
\(892\) 0 0
\(893\) 0.221751 0.00742063
\(894\) 0 0
\(895\) −5.44073 −0.181864
\(896\) 0 0
\(897\) 18.2731 0.610120
\(898\) 0 0
\(899\) −4.93900 −0.164725
\(900\) 0 0
\(901\) 48.3588 1.61107
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −31.5241 −1.04790
\(906\) 0 0
\(907\) 44.6031 1.48102 0.740511 0.672044i \(-0.234583\pi\)
0.740511 + 0.672044i \(0.234583\pi\)
\(908\) 0 0
\(909\) −14.0368 −0.465572
\(910\) 0 0
\(911\) −7.19460 −0.238368 −0.119184 0.992872i \(-0.538028\pi\)
−0.119184 + 0.992872i \(0.538028\pi\)
\(912\) 0 0
\(913\) 14.1564 0.468510
\(914\) 0 0
\(915\) −7.73987 −0.255872
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 45.6469 1.50575 0.752877 0.658161i \(-0.228666\pi\)
0.752877 + 0.658161i \(0.228666\pi\)
\(920\) 0 0
\(921\) −5.99031 −0.197387
\(922\) 0 0
\(923\) 35.3147 1.16240
\(924\) 0 0
\(925\) 7.15213 0.235161
\(926\) 0 0
\(927\) 8.11290 0.266463
\(928\) 0 0
\(929\) −54.6631 −1.79344 −0.896719 0.442601i \(-0.854056\pi\)
−0.896719 + 0.442601i \(0.854056\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 9.25534 0.303006
\(934\) 0 0
\(935\) −101.323 −3.31362
\(936\) 0 0
\(937\) 49.8316 1.62793 0.813964 0.580916i \(-0.197305\pi\)
0.813964 + 0.580916i \(0.197305\pi\)
\(938\) 0 0
\(939\) −11.5235 −0.376055
\(940\) 0 0
\(941\) 25.0086 0.815258 0.407629 0.913148i \(-0.366356\pi\)
0.407629 + 0.913148i \(0.366356\pi\)
\(942\) 0 0
\(943\) 3.63640 0.118417
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 9.35796 0.304093 0.152046 0.988373i \(-0.451414\pi\)
0.152046 + 0.988373i \(0.451414\pi\)
\(948\) 0 0
\(949\) 8.82935 0.286613
\(950\) 0 0
\(951\) −3.34481 −0.108463
\(952\) 0 0
\(953\) −32.2411 −1.04439 −0.522196 0.852825i \(-0.674887\pi\)
−0.522196 + 0.852825i \(0.674887\pi\)
\(954\) 0 0
\(955\) 61.4258 1.98769
\(956\) 0 0
\(957\) −1.35690 −0.0438622
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 19.9377 0.643151
\(962\) 0 0
\(963\) 28.0006 0.902306
\(964\) 0 0
\(965\) −42.4325 −1.36595
\(966\) 0 0
\(967\) 51.8859 1.66854 0.834269 0.551358i \(-0.185890\pi\)
0.834269 + 0.551358i \(0.185890\pi\)
\(968\) 0 0
\(969\) −4.68664 −0.150557
\(970\) 0 0
\(971\) −31.1976 −1.00118 −0.500589 0.865685i \(-0.666883\pi\)
−0.500589 + 0.865685i \(0.666883\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −10.9239 −0.349846
\(976\) 0 0
\(977\) 9.30367 0.297651 0.148825 0.988863i \(-0.452451\pi\)
0.148825 + 0.988863i \(0.452451\pi\)
\(978\) 0 0
\(979\) −61.4553 −1.96412
\(980\) 0 0
\(981\) 40.9124 1.30623
\(982\) 0 0
\(983\) 30.5109 0.973148 0.486574 0.873639i \(-0.338246\pi\)
0.486574 + 0.873639i \(0.338246\pi\)
\(984\) 0 0
\(985\) 12.4644 0.397149
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 6.11423 0.194421
\(990\) 0 0
\(991\) −50.5609 −1.60612 −0.803060 0.595898i \(-0.796796\pi\)
−0.803060 + 0.595898i \(0.796796\pi\)
\(992\) 0 0
\(993\) −7.52781 −0.238888
\(994\) 0 0
\(995\) −25.7778 −0.817210
\(996\) 0 0
\(997\) −34.0907 −1.07966 −0.539831 0.841773i \(-0.681512\pi\)
−0.539831 + 0.841773i \(0.681512\pi\)
\(998\) 0 0
\(999\) −4.29888 −0.136011
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5488.2.a.e.1.2 3
4.3 odd 2 686.2.a.a.1.2 3
7.6 odd 2 5488.2.a.b.1.2 3
12.11 even 2 6174.2.a.k.1.1 3
28.3 even 6 686.2.c.c.667.2 6
28.11 odd 6 686.2.c.d.667.2 6
28.19 even 6 686.2.c.c.361.2 6
28.23 odd 6 686.2.c.d.361.2 6
28.27 even 2 686.2.a.b.1.2 yes 3
84.83 odd 2 6174.2.a.l.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
686.2.a.a.1.2 3 4.3 odd 2
686.2.a.b.1.2 yes 3 28.27 even 2
686.2.c.c.361.2 6 28.19 even 6
686.2.c.c.667.2 6 28.3 even 6
686.2.c.d.361.2 6 28.23 odd 6
686.2.c.d.667.2 6 28.11 odd 6
5488.2.a.b.1.2 3 7.6 odd 2
5488.2.a.e.1.2 3 1.1 even 1 trivial
6174.2.a.k.1.1 3 12.11 even 2
6174.2.a.l.1.3 3 84.83 odd 2