Properties

Label 6845.2.a.g.1.2
Level $6845$
Weight $2$
Character 6845.1
Self dual yes
Analytic conductor $54.658$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6845,2,Mod(1,6845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6845, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6845.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6845 = 5 \cdot 37^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6845.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,-1,6,-5,2,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.6576001836\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.368464.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 6x^{3} + 6x^{2} + 6x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 185)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.09027\) of defining polynomial
Character \(\chi\) \(=\) 6845.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.46516 q^{2} +0.744131 q^{3} +0.146703 q^{4} -1.00000 q^{5} -1.09027 q^{6} +3.94357 q^{7} +2.71538 q^{8} -2.44627 q^{9} +1.46516 q^{10} -4.52210 q^{11} +0.109166 q^{12} -1.36924 q^{13} -5.77797 q^{14} -0.744131 q^{15} -4.27188 q^{16} -2.29957 q^{17} +3.58418 q^{18} -4.84765 q^{19} -0.146703 q^{20} +2.93453 q^{21} +6.62562 q^{22} +4.41859 q^{23} +2.02060 q^{24} +1.00000 q^{25} +2.00616 q^{26} -4.05274 q^{27} +0.578534 q^{28} +9.55595 q^{29} +1.09027 q^{30} +4.75908 q^{31} +0.828243 q^{32} -3.36504 q^{33} +3.36924 q^{34} -3.94357 q^{35} -0.358875 q^{36} +7.10259 q^{38} -1.01889 q^{39} -2.71538 q^{40} +5.21439 q^{41} -4.29957 q^{42} +1.19485 q^{43} -0.663407 q^{44} +2.44627 q^{45} -6.47395 q^{46} +5.34785 q^{47} -3.17884 q^{48} +8.55174 q^{49} -1.46516 q^{50} -1.71118 q^{51} -0.200872 q^{52} +1.03384 q^{53} +5.93792 q^{54} +4.52210 q^{55} +10.7083 q^{56} -3.60728 q^{57} -14.0010 q^{58} -14.6197 q^{59} -0.109166 q^{60} -1.30772 q^{61} -6.97283 q^{62} -9.64703 q^{63} +7.33026 q^{64} +1.36924 q^{65} +4.93033 q^{66} +7.23975 q^{67} -0.337354 q^{68} +3.28801 q^{69} +5.77797 q^{70} +15.1787 q^{71} -6.64256 q^{72} -4.81551 q^{73} +0.744131 q^{75} -0.711165 q^{76} -17.8332 q^{77} +1.49285 q^{78} -4.64520 q^{79} +4.27188 q^{80} +4.32304 q^{81} -7.63993 q^{82} -5.89279 q^{83} +0.430505 q^{84} +2.29957 q^{85} -1.75066 q^{86} +7.11087 q^{87} -12.2792 q^{88} +10.3435 q^{89} -3.58418 q^{90} -5.39969 q^{91} +0.648221 q^{92} +3.54138 q^{93} -7.83547 q^{94} +4.84765 q^{95} +0.616321 q^{96} -6.37000 q^{97} -12.5297 q^{98} +11.0623 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{3} + 6 q^{4} - 5 q^{5} + 2 q^{6} + 7 q^{7} + 6 q^{8} + 2 q^{9} + 7 q^{11} - 2 q^{13} - 4 q^{14} + q^{15} + 8 q^{16} + 8 q^{17} + 6 q^{18} - 14 q^{19} - 6 q^{20} - 9 q^{21} - 2 q^{22} - 2 q^{23}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.46516 −1.03603 −0.518013 0.855372i \(-0.673328\pi\)
−0.518013 + 0.855372i \(0.673328\pi\)
\(3\) 0.744131 0.429624 0.214812 0.976655i \(-0.431086\pi\)
0.214812 + 0.976655i \(0.431086\pi\)
\(4\) 0.146703 0.0733516
\(5\) −1.00000 −0.447214
\(6\) −1.09027 −0.445102
\(7\) 3.94357 1.49053 0.745265 0.666769i \(-0.232323\pi\)
0.745265 + 0.666769i \(0.232323\pi\)
\(8\) 2.71538 0.960033
\(9\) −2.44627 −0.815423
\(10\) 1.46516 0.463325
\(11\) −4.52210 −1.36347 −0.681733 0.731601i \(-0.738773\pi\)
−0.681733 + 0.731601i \(0.738773\pi\)
\(12\) 0.109166 0.0315136
\(13\) −1.36924 −0.379759 −0.189879 0.981807i \(-0.560810\pi\)
−0.189879 + 0.981807i \(0.560810\pi\)
\(14\) −5.77797 −1.54423
\(15\) −0.744131 −0.192134
\(16\) −4.27188 −1.06797
\(17\) −2.29957 −0.557727 −0.278863 0.960331i \(-0.589958\pi\)
−0.278863 + 0.960331i \(0.589958\pi\)
\(18\) 3.58418 0.844800
\(19\) −4.84765 −1.11213 −0.556063 0.831140i \(-0.687689\pi\)
−0.556063 + 0.831140i \(0.687689\pi\)
\(20\) −0.146703 −0.0328038
\(21\) 2.93453 0.640367
\(22\) 6.62562 1.41259
\(23\) 4.41859 0.921339 0.460670 0.887572i \(-0.347609\pi\)
0.460670 + 0.887572i \(0.347609\pi\)
\(24\) 2.02060 0.412453
\(25\) 1.00000 0.200000
\(26\) 2.00616 0.393440
\(27\) −4.05274 −0.779949
\(28\) 0.578534 0.109333
\(29\) 9.55595 1.77449 0.887247 0.461294i \(-0.152615\pi\)
0.887247 + 0.461294i \(0.152615\pi\)
\(30\) 1.09027 0.199056
\(31\) 4.75908 0.854756 0.427378 0.904073i \(-0.359437\pi\)
0.427378 + 0.904073i \(0.359437\pi\)
\(32\) 0.828243 0.146414
\(33\) −3.36504 −0.585778
\(34\) 3.36924 0.577820
\(35\) −3.94357 −0.666585
\(36\) −0.358875 −0.0598126
\(37\) 0 0
\(38\) 7.10259 1.15219
\(39\) −1.01889 −0.163154
\(40\) −2.71538 −0.429340
\(41\) 5.21439 0.814351 0.407175 0.913350i \(-0.366514\pi\)
0.407175 + 0.913350i \(0.366514\pi\)
\(42\) −4.29957 −0.663438
\(43\) 1.19485 0.182214 0.0911068 0.995841i \(-0.470960\pi\)
0.0911068 + 0.995841i \(0.470960\pi\)
\(44\) −0.663407 −0.100012
\(45\) 2.44627 0.364668
\(46\) −6.47395 −0.954532
\(47\) 5.34785 0.780064 0.390032 0.920801i \(-0.372464\pi\)
0.390032 + 0.920801i \(0.372464\pi\)
\(48\) −3.17884 −0.458826
\(49\) 8.55174 1.22168
\(50\) −1.46516 −0.207205
\(51\) −1.71118 −0.239613
\(52\) −0.200872 −0.0278559
\(53\) 1.03384 0.142009 0.0710046 0.997476i \(-0.477380\pi\)
0.0710046 + 0.997476i \(0.477380\pi\)
\(54\) 5.93792 0.808048
\(55\) 4.52210 0.609760
\(56\) 10.7083 1.43096
\(57\) −3.60728 −0.477796
\(58\) −14.0010 −1.83842
\(59\) −14.6197 −1.90333 −0.951664 0.307143i \(-0.900627\pi\)
−0.951664 + 0.307143i \(0.900627\pi\)
\(60\) −0.109166 −0.0140933
\(61\) −1.30772 −0.167436 −0.0837179 0.996489i \(-0.526679\pi\)
−0.0837179 + 0.996489i \(0.526679\pi\)
\(62\) −6.97283 −0.885550
\(63\) −9.64703 −1.21541
\(64\) 7.33026 0.916282
\(65\) 1.36924 0.169833
\(66\) 4.93033 0.606881
\(67\) 7.23975 0.884476 0.442238 0.896898i \(-0.354185\pi\)
0.442238 + 0.896898i \(0.354185\pi\)
\(68\) −0.337354 −0.0409101
\(69\) 3.28801 0.395829
\(70\) 5.77797 0.690600
\(71\) 15.1787 1.80138 0.900692 0.434458i \(-0.143060\pi\)
0.900692 + 0.434458i \(0.143060\pi\)
\(72\) −6.64256 −0.782833
\(73\) −4.81551 −0.563613 −0.281806 0.959471i \(-0.590934\pi\)
−0.281806 + 0.959471i \(0.590934\pi\)
\(74\) 0 0
\(75\) 0.744131 0.0859248
\(76\) −0.711165 −0.0815762
\(77\) −17.8332 −2.03229
\(78\) 1.49285 0.169031
\(79\) −4.64520 −0.522626 −0.261313 0.965254i \(-0.584155\pi\)
−0.261313 + 0.965254i \(0.584155\pi\)
\(80\) 4.27188 0.477611
\(81\) 4.32304 0.480338
\(82\) −7.63993 −0.843689
\(83\) −5.89279 −0.646818 −0.323409 0.946259i \(-0.604829\pi\)
−0.323409 + 0.946259i \(0.604829\pi\)
\(84\) 0.430505 0.0469719
\(85\) 2.29957 0.249423
\(86\) −1.75066 −0.188778
\(87\) 7.11087 0.762365
\(88\) −12.2792 −1.30897
\(89\) 10.3435 1.09641 0.548205 0.836344i \(-0.315311\pi\)
0.548205 + 0.836344i \(0.315311\pi\)
\(90\) −3.58418 −0.377806
\(91\) −5.39969 −0.566042
\(92\) 0.648221 0.0675817
\(93\) 3.54138 0.367224
\(94\) −7.83547 −0.808167
\(95\) 4.84765 0.497358
\(96\) 0.616321 0.0629030
\(97\) −6.37000 −0.646776 −0.323388 0.946267i \(-0.604822\pi\)
−0.323388 + 0.946267i \(0.604822\pi\)
\(98\) −12.5297 −1.26569
\(99\) 11.0623 1.11180
\(100\) 0.146703 0.0146703
\(101\) −4.62142 −0.459848 −0.229924 0.973209i \(-0.573848\pi\)
−0.229924 + 0.973209i \(0.573848\pi\)
\(102\) 2.50715 0.248245
\(103\) −18.3734 −1.81039 −0.905193 0.425001i \(-0.860274\pi\)
−0.905193 + 0.425001i \(0.860274\pi\)
\(104\) −3.71801 −0.364581
\(105\) −2.93453 −0.286381
\(106\) −1.51475 −0.147125
\(107\) −17.8700 −1.72755 −0.863777 0.503875i \(-0.831907\pi\)
−0.863777 + 0.503875i \(0.831907\pi\)
\(108\) −0.594549 −0.0572105
\(109\) 3.03189 0.290402 0.145201 0.989402i \(-0.453617\pi\)
0.145201 + 0.989402i \(0.453617\pi\)
\(110\) −6.62562 −0.631728
\(111\) 0 0
\(112\) −16.8465 −1.59184
\(113\) 20.1901 1.89933 0.949663 0.313273i \(-0.101425\pi\)
0.949663 + 0.313273i \(0.101425\pi\)
\(114\) 5.28526 0.495010
\(115\) −4.41859 −0.412035
\(116\) 1.40189 0.130162
\(117\) 3.34953 0.309664
\(118\) 21.4203 1.97190
\(119\) −9.06850 −0.831308
\(120\) −2.02060 −0.184455
\(121\) 9.44942 0.859038
\(122\) 1.91602 0.173468
\(123\) 3.88019 0.349865
\(124\) 0.698172 0.0626977
\(125\) −1.00000 −0.0894427
\(126\) 14.1345 1.25920
\(127\) −13.5915 −1.20605 −0.603025 0.797722i \(-0.706038\pi\)
−0.603025 + 0.797722i \(0.706038\pi\)
\(128\) −12.3965 −1.09571
\(129\) 0.889128 0.0782834
\(130\) −2.00616 −0.175952
\(131\) −21.1799 −1.85049 −0.925246 0.379367i \(-0.876142\pi\)
−0.925246 + 0.379367i \(0.876142\pi\)
\(132\) −0.493661 −0.0429677
\(133\) −19.1170 −1.65766
\(134\) −10.6074 −0.916341
\(135\) 4.05274 0.348804
\(136\) −6.24420 −0.535436
\(137\) 7.17856 0.613305 0.306653 0.951821i \(-0.400791\pi\)
0.306653 + 0.951821i \(0.400791\pi\)
\(138\) −4.81747 −0.410090
\(139\) −12.9602 −1.09927 −0.549636 0.835404i \(-0.685234\pi\)
−0.549636 + 0.835404i \(0.685234\pi\)
\(140\) −0.578534 −0.0488950
\(141\) 3.97950 0.335134
\(142\) −22.2393 −1.86628
\(143\) 6.19185 0.517788
\(144\) 10.4502 0.870848
\(145\) −9.55595 −0.793578
\(146\) 7.05551 0.583918
\(147\) 6.36361 0.524862
\(148\) 0 0
\(149\) −15.8451 −1.29809 −0.649043 0.760752i \(-0.724830\pi\)
−0.649043 + 0.760752i \(0.724830\pi\)
\(150\) −1.09027 −0.0890204
\(151\) 14.2944 1.16326 0.581632 0.813452i \(-0.302414\pi\)
0.581632 + 0.813452i \(0.302414\pi\)
\(152\) −13.1632 −1.06768
\(153\) 5.62536 0.454783
\(154\) 26.1286 2.10550
\(155\) −4.75908 −0.382258
\(156\) −0.149475 −0.0119676
\(157\) −1.95398 −0.155945 −0.0779723 0.996956i \(-0.524845\pi\)
−0.0779723 + 0.996956i \(0.524845\pi\)
\(158\) 6.80597 0.541454
\(159\) 0.769314 0.0610105
\(160\) −0.828243 −0.0654784
\(161\) 17.4250 1.37328
\(162\) −6.33397 −0.497643
\(163\) −3.01431 −0.236099 −0.118049 0.993008i \(-0.537664\pi\)
−0.118049 + 0.993008i \(0.537664\pi\)
\(164\) 0.764967 0.0597339
\(165\) 3.36504 0.261968
\(166\) 8.63390 0.670120
\(167\) −4.16008 −0.321916 −0.160958 0.986961i \(-0.551458\pi\)
−0.160958 + 0.986961i \(0.551458\pi\)
\(168\) 7.96837 0.614773
\(169\) −11.1252 −0.855783
\(170\) −3.36924 −0.258409
\(171\) 11.8587 0.906854
\(172\) 0.175289 0.0133657
\(173\) −3.79279 −0.288361 −0.144180 0.989551i \(-0.546055\pi\)
−0.144180 + 0.989551i \(0.546055\pi\)
\(174\) −10.4186 −0.789831
\(175\) 3.94357 0.298106
\(176\) 19.3179 1.45614
\(177\) −10.8790 −0.817715
\(178\) −15.1549 −1.13591
\(179\) 13.0017 0.971793 0.485897 0.874016i \(-0.338493\pi\)
0.485897 + 0.874016i \(0.338493\pi\)
\(180\) 0.358875 0.0267490
\(181\) −16.6739 −1.23936 −0.619681 0.784854i \(-0.712738\pi\)
−0.619681 + 0.784854i \(0.712738\pi\)
\(182\) 7.91143 0.586434
\(183\) −0.973111 −0.0719345
\(184\) 11.9982 0.884516
\(185\) 0 0
\(186\) −5.18869 −0.380454
\(187\) 10.3989 0.760441
\(188\) 0.784546 0.0572189
\(189\) −15.9822 −1.16254
\(190\) −7.10259 −0.515276
\(191\) −8.73937 −0.632359 −0.316179 0.948699i \(-0.602400\pi\)
−0.316179 + 0.948699i \(0.602400\pi\)
\(192\) 5.45467 0.393657
\(193\) −21.6457 −1.55809 −0.779047 0.626966i \(-0.784297\pi\)
−0.779047 + 0.626966i \(0.784297\pi\)
\(194\) 9.33309 0.670077
\(195\) 1.01889 0.0729645
\(196\) 1.25457 0.0896119
\(197\) −2.60609 −0.185676 −0.0928380 0.995681i \(-0.529594\pi\)
−0.0928380 + 0.995681i \(0.529594\pi\)
\(198\) −16.2081 −1.15186
\(199\) 6.57573 0.466141 0.233071 0.972460i \(-0.425123\pi\)
0.233071 + 0.972460i \(0.425123\pi\)
\(200\) 2.71538 0.192007
\(201\) 5.38732 0.379992
\(202\) 6.77113 0.476415
\(203\) 37.6845 2.64494
\(204\) −0.251035 −0.0175760
\(205\) −5.21439 −0.364189
\(206\) 26.9200 1.87561
\(207\) −10.8091 −0.751281
\(208\) 5.84924 0.405572
\(209\) 21.9216 1.51635
\(210\) 4.29957 0.296698
\(211\) −2.00196 −0.137820 −0.0689102 0.997623i \(-0.521952\pi\)
−0.0689102 + 0.997623i \(0.521952\pi\)
\(212\) 0.151668 0.0104166
\(213\) 11.2950 0.773918
\(214\) 26.1824 1.78979
\(215\) −1.19485 −0.0814884
\(216\) −11.0047 −0.748777
\(217\) 18.7678 1.27404
\(218\) −4.44221 −0.300864
\(219\) −3.58337 −0.242142
\(220\) 0.663407 0.0447269
\(221\) 3.14866 0.211802
\(222\) 0 0
\(223\) −7.43402 −0.497819 −0.248910 0.968527i \(-0.580072\pi\)
−0.248910 + 0.968527i \(0.580072\pi\)
\(224\) 3.26623 0.218234
\(225\) −2.44627 −0.163085
\(226\) −29.5818 −1.96775
\(227\) 0.633009 0.0420143 0.0210071 0.999779i \(-0.493313\pi\)
0.0210071 + 0.999779i \(0.493313\pi\)
\(228\) −0.529200 −0.0350471
\(229\) 15.9122 1.05151 0.525754 0.850636i \(-0.323783\pi\)
0.525754 + 0.850636i \(0.323783\pi\)
\(230\) 6.47395 0.426880
\(231\) −13.2703 −0.873119
\(232\) 25.9480 1.70357
\(233\) −8.89467 −0.582709 −0.291355 0.956615i \(-0.594106\pi\)
−0.291355 + 0.956615i \(0.594106\pi\)
\(234\) −4.90761 −0.320820
\(235\) −5.34785 −0.348855
\(236\) −2.14476 −0.139612
\(237\) −3.45663 −0.224533
\(238\) 13.2868 0.861257
\(239\) 0.0826797 0.00534810 0.00267405 0.999996i \(-0.499149\pi\)
0.00267405 + 0.999996i \(0.499149\pi\)
\(240\) 3.17884 0.205193
\(241\) 19.6320 1.26461 0.632305 0.774719i \(-0.282109\pi\)
0.632305 + 0.774719i \(0.282109\pi\)
\(242\) −13.8449 −0.889987
\(243\) 15.3751 0.986314
\(244\) −0.191846 −0.0122817
\(245\) −8.55174 −0.546351
\(246\) −5.68511 −0.362469
\(247\) 6.63759 0.422340
\(248\) 12.9227 0.820594
\(249\) −4.38501 −0.277888
\(250\) 1.46516 0.0926651
\(251\) 3.16254 0.199618 0.0998089 0.995007i \(-0.468177\pi\)
0.0998089 + 0.995007i \(0.468177\pi\)
\(252\) −1.41525 −0.0891524
\(253\) −19.9813 −1.25621
\(254\) 19.9138 1.24950
\(255\) 1.71118 0.107158
\(256\) 3.50239 0.218900
\(257\) 11.7279 0.731569 0.365784 0.930700i \(-0.380801\pi\)
0.365784 + 0.930700i \(0.380801\pi\)
\(258\) −1.30272 −0.0811037
\(259\) 0 0
\(260\) 0.200872 0.0124575
\(261\) −23.3764 −1.44696
\(262\) 31.0320 1.91716
\(263\) 0.755431 0.0465819 0.0232909 0.999729i \(-0.492586\pi\)
0.0232909 + 0.999729i \(0.492586\pi\)
\(264\) −9.13736 −0.562366
\(265\) −1.03384 −0.0635084
\(266\) 28.0096 1.71738
\(267\) 7.69693 0.471044
\(268\) 1.06209 0.0648777
\(269\) 13.4542 0.820320 0.410160 0.912014i \(-0.365473\pi\)
0.410160 + 0.912014i \(0.365473\pi\)
\(270\) −5.93792 −0.361370
\(271\) 7.94268 0.482483 0.241242 0.970465i \(-0.422445\pi\)
0.241242 + 0.970465i \(0.422445\pi\)
\(272\) 9.82348 0.595636
\(273\) −4.01808 −0.243185
\(274\) −10.5178 −0.635401
\(275\) −4.52210 −0.272693
\(276\) 0.482361 0.0290347
\(277\) −6.88638 −0.413762 −0.206881 0.978366i \(-0.566331\pi\)
−0.206881 + 0.978366i \(0.566331\pi\)
\(278\) 18.9888 1.13888
\(279\) −11.6420 −0.696988
\(280\) −10.7083 −0.639943
\(281\) −16.0874 −0.959693 −0.479847 0.877352i \(-0.659308\pi\)
−0.479847 + 0.877352i \(0.659308\pi\)
\(282\) −5.83061 −0.347208
\(283\) −24.9263 −1.48172 −0.740859 0.671661i \(-0.765581\pi\)
−0.740859 + 0.671661i \(0.765581\pi\)
\(284\) 2.22677 0.132134
\(285\) 3.60728 0.213677
\(286\) −9.07206 −0.536442
\(287\) 20.5633 1.21381
\(288\) −2.02611 −0.119389
\(289\) −11.7120 −0.688941
\(290\) 14.0010 0.822168
\(291\) −4.74011 −0.277870
\(292\) −0.706450 −0.0413419
\(293\) 26.0732 1.52321 0.761607 0.648039i \(-0.224411\pi\)
0.761607 + 0.648039i \(0.224411\pi\)
\(294\) −9.32373 −0.543771
\(295\) 14.6197 0.851194
\(296\) 0 0
\(297\) 18.3269 1.06343
\(298\) 23.2157 1.34485
\(299\) −6.05011 −0.349887
\(300\) 0.109166 0.00630272
\(301\) 4.71199 0.271595
\(302\) −20.9437 −1.20517
\(303\) −3.43894 −0.197562
\(304\) 20.7086 1.18772
\(305\) 1.30772 0.0748796
\(306\) −8.24207 −0.471168
\(307\) −18.2979 −1.04432 −0.522158 0.852849i \(-0.674873\pi\)
−0.522158 + 0.852849i \(0.674873\pi\)
\(308\) −2.61619 −0.149071
\(309\) −13.6722 −0.777785
\(310\) 6.97283 0.396030
\(311\) 1.44118 0.0817216 0.0408608 0.999165i \(-0.486990\pi\)
0.0408608 + 0.999165i \(0.486990\pi\)
\(312\) −2.76669 −0.156633
\(313\) 18.5015 1.04576 0.522882 0.852405i \(-0.324857\pi\)
0.522882 + 0.852405i \(0.324857\pi\)
\(314\) 2.86290 0.161563
\(315\) 9.64703 0.543549
\(316\) −0.681465 −0.0383354
\(317\) −24.1703 −1.35754 −0.678769 0.734352i \(-0.737486\pi\)
−0.678769 + 0.734352i \(0.737486\pi\)
\(318\) −1.12717 −0.0632086
\(319\) −43.2130 −2.41946
\(320\) −7.33026 −0.409774
\(321\) −13.2976 −0.742198
\(322\) −25.5305 −1.42276
\(323\) 11.1475 0.620263
\(324\) 0.634204 0.0352336
\(325\) −1.36924 −0.0759518
\(326\) 4.41646 0.244605
\(327\) 2.25612 0.124764
\(328\) 14.1591 0.781803
\(329\) 21.0896 1.16271
\(330\) −4.93033 −0.271406
\(331\) 0.308401 0.0169513 0.00847563 0.999964i \(-0.497302\pi\)
0.00847563 + 0.999964i \(0.497302\pi\)
\(332\) −0.864491 −0.0474451
\(333\) 0 0
\(334\) 6.09519 0.333514
\(335\) −7.23975 −0.395550
\(336\) −12.5360 −0.683894
\(337\) −17.7374 −0.966219 −0.483110 0.875560i \(-0.660493\pi\)
−0.483110 + 0.875560i \(0.660493\pi\)
\(338\) 16.3002 0.886614
\(339\) 15.0241 0.815996
\(340\) 0.337354 0.0182956
\(341\) −21.5211 −1.16543
\(342\) −17.3749 −0.939525
\(343\) 6.11940 0.330417
\(344\) 3.24449 0.174931
\(345\) −3.28801 −0.177020
\(346\) 5.55706 0.298749
\(347\) −13.4103 −0.719902 −0.359951 0.932971i \(-0.617207\pi\)
−0.359951 + 0.932971i \(0.617207\pi\)
\(348\) 1.04319 0.0559207
\(349\) −18.0187 −0.964521 −0.482261 0.876028i \(-0.660184\pi\)
−0.482261 + 0.876028i \(0.660184\pi\)
\(350\) −5.77797 −0.308846
\(351\) 5.54917 0.296193
\(352\) −3.74540 −0.199631
\(353\) 16.5967 0.883355 0.441678 0.897174i \(-0.354383\pi\)
0.441678 + 0.897174i \(0.354383\pi\)
\(354\) 15.9395 0.847175
\(355\) −15.1787 −0.805604
\(356\) 1.51743 0.0804234
\(357\) −6.74815 −0.357150
\(358\) −19.0496 −1.00680
\(359\) 0.294342 0.0155348 0.00776739 0.999970i \(-0.497528\pi\)
0.00776739 + 0.999970i \(0.497528\pi\)
\(360\) 6.64256 0.350094
\(361\) 4.49968 0.236825
\(362\) 24.4300 1.28401
\(363\) 7.03160 0.369063
\(364\) −0.792152 −0.0415200
\(365\) 4.81551 0.252055
\(366\) 1.42577 0.0745260
\(367\) 23.2638 1.21436 0.607181 0.794563i \(-0.292300\pi\)
0.607181 + 0.794563i \(0.292300\pi\)
\(368\) −18.8757 −0.983964
\(369\) −12.7558 −0.664040
\(370\) 0 0
\(371\) 4.07703 0.211669
\(372\) 0.519531 0.0269364
\(373\) −37.2311 −1.92776 −0.963878 0.266345i \(-0.914184\pi\)
−0.963878 + 0.266345i \(0.914184\pi\)
\(374\) −15.2361 −0.787838
\(375\) −0.744131 −0.0384267
\(376\) 14.5215 0.748887
\(377\) −13.0844 −0.673880
\(378\) 23.4166 1.20442
\(379\) −23.0305 −1.18300 −0.591498 0.806306i \(-0.701463\pi\)
−0.591498 + 0.806306i \(0.701463\pi\)
\(380\) 0.711165 0.0364820
\(381\) −10.1138 −0.518148
\(382\) 12.8046 0.655140
\(383\) 12.8637 0.657302 0.328651 0.944451i \(-0.393406\pi\)
0.328651 + 0.944451i \(0.393406\pi\)
\(384\) −9.22462 −0.470742
\(385\) 17.8332 0.908866
\(386\) 31.7145 1.61423
\(387\) −2.92294 −0.148581
\(388\) −0.934499 −0.0474420
\(389\) 16.1194 0.817287 0.408644 0.912694i \(-0.366002\pi\)
0.408644 + 0.912694i \(0.366002\pi\)
\(390\) −1.49285 −0.0755932
\(391\) −10.1608 −0.513856
\(392\) 23.2212 1.17285
\(393\) −15.7606 −0.795016
\(394\) 3.81834 0.192365
\(395\) 4.64520 0.233725
\(396\) 1.62287 0.0815524
\(397\) −12.9491 −0.649897 −0.324948 0.945732i \(-0.605347\pi\)
−0.324948 + 0.945732i \(0.605347\pi\)
\(398\) −9.63452 −0.482935
\(399\) −14.2256 −0.712169
\(400\) −4.27188 −0.213594
\(401\) 17.2452 0.861185 0.430593 0.902546i \(-0.358305\pi\)
0.430593 + 0.902546i \(0.358305\pi\)
\(402\) −7.89330 −0.393682
\(403\) −6.51632 −0.324601
\(404\) −0.677976 −0.0337306
\(405\) −4.32304 −0.214814
\(406\) −55.2140 −2.74022
\(407\) 0 0
\(408\) −4.64650 −0.230036
\(409\) −31.2920 −1.54729 −0.773644 0.633621i \(-0.781568\pi\)
−0.773644 + 0.633621i \(0.781568\pi\)
\(410\) 7.63993 0.377309
\(411\) 5.34178 0.263491
\(412\) −2.69544 −0.132795
\(413\) −57.6539 −2.83696
\(414\) 15.8370 0.778348
\(415\) 5.89279 0.289266
\(416\) −1.13406 −0.0556020
\(417\) −9.64410 −0.472274
\(418\) −32.1187 −1.57098
\(419\) −11.8203 −0.577459 −0.288730 0.957411i \(-0.593233\pi\)
−0.288730 + 0.957411i \(0.593233\pi\)
\(420\) −0.430505 −0.0210065
\(421\) −19.1673 −0.934155 −0.467077 0.884216i \(-0.654693\pi\)
−0.467077 + 0.884216i \(0.654693\pi\)
\(422\) 2.93319 0.142786
\(423\) −13.0823 −0.636082
\(424\) 2.80728 0.136333
\(425\) −2.29957 −0.111545
\(426\) −16.5490 −0.801800
\(427\) −5.15707 −0.249568
\(428\) −2.62158 −0.126719
\(429\) 4.60754 0.222454
\(430\) 1.75066 0.0844242
\(431\) −9.78469 −0.471312 −0.235656 0.971837i \(-0.575724\pi\)
−0.235656 + 0.971837i \(0.575724\pi\)
\(432\) 17.3128 0.832963
\(433\) 35.2661 1.69478 0.847391 0.530969i \(-0.178172\pi\)
0.847391 + 0.530969i \(0.178172\pi\)
\(434\) −27.4978 −1.31994
\(435\) −7.11087 −0.340940
\(436\) 0.444787 0.0213014
\(437\) −21.4198 −1.02465
\(438\) 5.25022 0.250865
\(439\) −24.4934 −1.16901 −0.584503 0.811392i \(-0.698710\pi\)
−0.584503 + 0.811392i \(0.698710\pi\)
\(440\) 12.2792 0.585390
\(441\) −20.9199 −0.996184
\(442\) −4.61330 −0.219432
\(443\) −26.1850 −1.24409 −0.622044 0.782982i \(-0.713698\pi\)
−0.622044 + 0.782982i \(0.713698\pi\)
\(444\) 0 0
\(445\) −10.3435 −0.490330
\(446\) 10.8921 0.515754
\(447\) −11.7909 −0.557689
\(448\) 28.9074 1.36575
\(449\) −39.6969 −1.87341 −0.936705 0.350119i \(-0.886141\pi\)
−0.936705 + 0.350119i \(0.886141\pi\)
\(450\) 3.58418 0.168960
\(451\) −23.5800 −1.11034
\(452\) 2.96195 0.139319
\(453\) 10.6369 0.499766
\(454\) −0.927461 −0.0435279
\(455\) 5.39969 0.253142
\(456\) −9.79515 −0.458700
\(457\) −20.6802 −0.967380 −0.483690 0.875239i \(-0.660704\pi\)
−0.483690 + 0.875239i \(0.660704\pi\)
\(458\) −23.3140 −1.08939
\(459\) 9.31954 0.434999
\(460\) −0.648221 −0.0302234
\(461\) 5.51764 0.256982 0.128491 0.991711i \(-0.458987\pi\)
0.128491 + 0.991711i \(0.458987\pi\)
\(462\) 19.4431 0.904574
\(463\) −20.9783 −0.974944 −0.487472 0.873139i \(-0.662081\pi\)
−0.487472 + 0.873139i \(0.662081\pi\)
\(464\) −40.8219 −1.89511
\(465\) −3.54138 −0.164227
\(466\) 13.0321 0.603702
\(467\) 7.62261 0.352732 0.176366 0.984325i \(-0.443566\pi\)
0.176366 + 0.984325i \(0.443566\pi\)
\(468\) 0.491387 0.0227144
\(469\) 28.5504 1.31834
\(470\) 7.83547 0.361423
\(471\) −1.45402 −0.0669976
\(472\) −39.6982 −1.82726
\(473\) −5.40326 −0.248442
\(474\) 5.06453 0.232622
\(475\) −4.84765 −0.222425
\(476\) −1.33038 −0.0609777
\(477\) −2.52906 −0.115798
\(478\) −0.121139 −0.00554078
\(479\) −32.7445 −1.49613 −0.748067 0.663623i \(-0.769018\pi\)
−0.748067 + 0.663623i \(0.769018\pi\)
\(480\) −0.616321 −0.0281311
\(481\) 0 0
\(482\) −28.7641 −1.31017
\(483\) 12.9665 0.589995
\(484\) 1.38626 0.0630118
\(485\) 6.37000 0.289247
\(486\) −22.5271 −1.02185
\(487\) 24.3487 1.10335 0.551673 0.834061i \(-0.313990\pi\)
0.551673 + 0.834061i \(0.313990\pi\)
\(488\) −3.55095 −0.160744
\(489\) −2.24304 −0.101434
\(490\) 12.5297 0.566034
\(491\) 9.88214 0.445975 0.222987 0.974821i \(-0.428419\pi\)
0.222987 + 0.974821i \(0.428419\pi\)
\(492\) 0.569235 0.0256631
\(493\) −21.9745 −0.989683
\(494\) −9.72516 −0.437555
\(495\) −11.0623 −0.497213
\(496\) −20.3302 −0.912855
\(497\) 59.8584 2.68502
\(498\) 6.42475 0.287900
\(499\) −38.4155 −1.71971 −0.859857 0.510535i \(-0.829447\pi\)
−0.859857 + 0.510535i \(0.829447\pi\)
\(500\) −0.146703 −0.00656076
\(501\) −3.09564 −0.138303
\(502\) −4.63364 −0.206809
\(503\) 14.2482 0.635297 0.317649 0.948209i \(-0.397107\pi\)
0.317649 + 0.948209i \(0.397107\pi\)
\(504\) −26.1954 −1.16684
\(505\) 4.62142 0.205650
\(506\) 29.2759 1.30147
\(507\) −8.27859 −0.367665
\(508\) −1.99391 −0.0884657
\(509\) 28.0410 1.24290 0.621448 0.783455i \(-0.286545\pi\)
0.621448 + 0.783455i \(0.286545\pi\)
\(510\) −2.50715 −0.111019
\(511\) −18.9903 −0.840081
\(512\) 19.6614 0.868921
\(513\) 19.6462 0.867402
\(514\) −17.1833 −0.757925
\(515\) 18.3734 0.809629
\(516\) 0.130438 0.00574221
\(517\) −24.1835 −1.06359
\(518\) 0 0
\(519\) −2.82233 −0.123887
\(520\) 3.71801 0.163046
\(521\) 31.3715 1.37441 0.687204 0.726464i \(-0.258838\pi\)
0.687204 + 0.726464i \(0.258838\pi\)
\(522\) 34.2503 1.49909
\(523\) 37.1439 1.62419 0.812095 0.583525i \(-0.198327\pi\)
0.812095 + 0.583525i \(0.198327\pi\)
\(524\) −3.10715 −0.135737
\(525\) 2.93453 0.128073
\(526\) −1.10683 −0.0482601
\(527\) −10.9438 −0.476720
\(528\) 14.3750 0.625593
\(529\) −3.47608 −0.151134
\(530\) 1.51475 0.0657964
\(531\) 35.7638 1.55202
\(532\) −2.80453 −0.121592
\(533\) −7.13975 −0.309257
\(534\) −11.2773 −0.488014
\(535\) 17.8700 0.772585
\(536\) 19.6587 0.849126
\(537\) 9.67497 0.417506
\(538\) −19.7127 −0.849873
\(539\) −38.6719 −1.66571
\(540\) 0.594549 0.0255853
\(541\) 4.01732 0.172718 0.0863590 0.996264i \(-0.472477\pi\)
0.0863590 + 0.996264i \(0.472477\pi\)
\(542\) −11.6373 −0.499866
\(543\) −12.4076 −0.532460
\(544\) −1.90460 −0.0816591
\(545\) −3.03189 −0.129872
\(546\) 5.88714 0.251946
\(547\) 40.4991 1.73162 0.865809 0.500375i \(-0.166805\pi\)
0.865809 + 0.500375i \(0.166805\pi\)
\(548\) 1.05312 0.0449869
\(549\) 3.19903 0.136531
\(550\) 6.62562 0.282517
\(551\) −46.3238 −1.97346
\(552\) 8.92819 0.380009
\(553\) −18.3187 −0.778989
\(554\) 10.0897 0.428669
\(555\) 0 0
\(556\) −1.90131 −0.0806333
\(557\) −41.5078 −1.75874 −0.879370 0.476139i \(-0.842036\pi\)
−0.879370 + 0.476139i \(0.842036\pi\)
\(558\) 17.0574 0.722098
\(559\) −1.63604 −0.0691973
\(560\) 16.8465 0.711893
\(561\) 7.73812 0.326704
\(562\) 23.5707 0.994268
\(563\) −8.82377 −0.371877 −0.185939 0.982561i \(-0.559533\pi\)
−0.185939 + 0.982561i \(0.559533\pi\)
\(564\) 0.583805 0.0245826
\(565\) −20.1901 −0.849405
\(566\) 36.5212 1.53510
\(567\) 17.0482 0.715958
\(568\) 41.2161 1.72939
\(569\) 1.06707 0.0447338 0.0223669 0.999750i \(-0.492880\pi\)
0.0223669 + 0.999750i \(0.492880\pi\)
\(570\) −5.28526 −0.221375
\(571\) 3.43435 0.143723 0.0718616 0.997415i \(-0.477106\pi\)
0.0718616 + 0.997415i \(0.477106\pi\)
\(572\) 0.908363 0.0379806
\(573\) −6.50323 −0.271676
\(574\) −30.1286 −1.25754
\(575\) 4.41859 0.184268
\(576\) −17.9318 −0.747158
\(577\) −30.2801 −1.26058 −0.630289 0.776361i \(-0.717064\pi\)
−0.630289 + 0.776361i \(0.717064\pi\)
\(578\) 17.1600 0.713761
\(579\) −16.1073 −0.669395
\(580\) −1.40189 −0.0582102
\(581\) −23.2386 −0.964101
\(582\) 6.94504 0.287881
\(583\) −4.67514 −0.193625
\(584\) −13.0760 −0.541087
\(585\) −3.34953 −0.138486
\(586\) −38.2015 −1.57809
\(587\) 10.4265 0.430347 0.215173 0.976576i \(-0.430968\pi\)
0.215173 + 0.976576i \(0.430968\pi\)
\(588\) 0.933562 0.0384994
\(589\) −23.0703 −0.950597
\(590\) −21.4203 −0.881860
\(591\) −1.93927 −0.0797709
\(592\) 0 0
\(593\) 19.5382 0.802337 0.401169 0.916004i \(-0.368604\pi\)
0.401169 + 0.916004i \(0.368604\pi\)
\(594\) −26.8519 −1.10175
\(595\) 9.06850 0.371772
\(596\) −2.32453 −0.0952166
\(597\) 4.89320 0.200265
\(598\) 8.86439 0.362492
\(599\) −9.95917 −0.406921 −0.203460 0.979083i \(-0.565219\pi\)
−0.203460 + 0.979083i \(0.565219\pi\)
\(600\) 2.02060 0.0824906
\(601\) 0.201892 0.00823534 0.00411767 0.999992i \(-0.498689\pi\)
0.00411767 + 0.999992i \(0.498689\pi\)
\(602\) −6.90384 −0.281380
\(603\) −17.7104 −0.721222
\(604\) 2.09704 0.0853272
\(605\) −9.44942 −0.384174
\(606\) 5.03860 0.204679
\(607\) −33.5993 −1.36375 −0.681876 0.731468i \(-0.738836\pi\)
−0.681876 + 0.731468i \(0.738836\pi\)
\(608\) −4.01503 −0.162831
\(609\) 28.0422 1.13633
\(610\) −1.91602 −0.0775773
\(611\) −7.32249 −0.296236
\(612\) 0.825258 0.0333591
\(613\) 8.63736 0.348859 0.174430 0.984670i \(-0.444192\pi\)
0.174430 + 0.984670i \(0.444192\pi\)
\(614\) 26.8094 1.08194
\(615\) −3.88019 −0.156464
\(616\) −48.4240 −1.95106
\(617\) 8.37257 0.337067 0.168533 0.985696i \(-0.446097\pi\)
0.168533 + 0.985696i \(0.446097\pi\)
\(618\) 20.0320 0.805806
\(619\) −0.670360 −0.0269441 −0.0134720 0.999909i \(-0.504288\pi\)
−0.0134720 + 0.999909i \(0.504288\pi\)
\(620\) −0.698172 −0.0280393
\(621\) −17.9074 −0.718598
\(622\) −2.11156 −0.0846657
\(623\) 40.7904 1.63423
\(624\) 4.35260 0.174243
\(625\) 1.00000 0.0400000
\(626\) −27.1077 −1.08344
\(627\) 16.3125 0.651459
\(628\) −0.286655 −0.0114388
\(629\) 0 0
\(630\) −14.1345 −0.563131
\(631\) −15.0416 −0.598798 −0.299399 0.954128i \(-0.596786\pi\)
−0.299399 + 0.954128i \(0.596786\pi\)
\(632\) −12.6135 −0.501738
\(633\) −1.48972 −0.0592109
\(634\) 35.4134 1.40645
\(635\) 13.5915 0.539362
\(636\) 0.112861 0.00447522
\(637\) −11.7094 −0.463943
\(638\) 63.3141 2.50663
\(639\) −37.1313 −1.46889
\(640\) 12.3965 0.490015
\(641\) 18.9440 0.748241 0.374121 0.927380i \(-0.377945\pi\)
0.374121 + 0.927380i \(0.377945\pi\)
\(642\) 19.4831 0.768937
\(643\) 27.9869 1.10369 0.551847 0.833945i \(-0.313923\pi\)
0.551847 + 0.833945i \(0.313923\pi\)
\(644\) 2.55630 0.100732
\(645\) −0.889128 −0.0350094
\(646\) −16.3329 −0.642609
\(647\) −20.3334 −0.799387 −0.399694 0.916649i \(-0.630883\pi\)
−0.399694 + 0.916649i \(0.630883\pi\)
\(648\) 11.7387 0.461140
\(649\) 66.1119 2.59512
\(650\) 2.00616 0.0786881
\(651\) 13.9657 0.547358
\(652\) −0.442209 −0.0173182
\(653\) 12.5212 0.489991 0.244996 0.969524i \(-0.421213\pi\)
0.244996 + 0.969524i \(0.421213\pi\)
\(654\) −3.30558 −0.129259
\(655\) 21.1799 0.827566
\(656\) −22.2753 −0.869703
\(657\) 11.7800 0.459583
\(658\) −30.8997 −1.20460
\(659\) −10.5140 −0.409565 −0.204783 0.978807i \(-0.565649\pi\)
−0.204783 + 0.978807i \(0.565649\pi\)
\(660\) 0.493661 0.0192157
\(661\) −12.9804 −0.504880 −0.252440 0.967613i \(-0.581233\pi\)
−0.252440 + 0.967613i \(0.581233\pi\)
\(662\) −0.451858 −0.0175620
\(663\) 2.34301 0.0909951
\(664\) −16.0012 −0.620966
\(665\) 19.1170 0.741327
\(666\) 0 0
\(667\) 42.2238 1.63491
\(668\) −0.610296 −0.0236131
\(669\) −5.53188 −0.213875
\(670\) 10.6074 0.409800
\(671\) 5.91363 0.228293
\(672\) 2.43050 0.0937588
\(673\) 2.47979 0.0955890 0.0477945 0.998857i \(-0.484781\pi\)
0.0477945 + 0.998857i \(0.484781\pi\)
\(674\) 25.9882 1.00103
\(675\) −4.05274 −0.155990
\(676\) −1.63210 −0.0627730
\(677\) −23.8883 −0.918103 −0.459052 0.888410i \(-0.651811\pi\)
−0.459052 + 0.888410i \(0.651811\pi\)
\(678\) −22.0127 −0.845394
\(679\) −25.1205 −0.964038
\(680\) 6.24420 0.239454
\(681\) 0.471041 0.0180503
\(682\) 31.5319 1.20742
\(683\) 36.3338 1.39028 0.695138 0.718876i \(-0.255343\pi\)
0.695138 + 0.718876i \(0.255343\pi\)
\(684\) 1.73970 0.0665191
\(685\) −7.17856 −0.274279
\(686\) −8.96592 −0.342320
\(687\) 11.8408 0.451753
\(688\) −5.10428 −0.194599
\(689\) −1.41558 −0.0539292
\(690\) 4.81747 0.183398
\(691\) 2.36561 0.0899922 0.0449961 0.998987i \(-0.485672\pi\)
0.0449961 + 0.998987i \(0.485672\pi\)
\(692\) −0.556414 −0.0211517
\(693\) 43.6249 1.65717
\(694\) 19.6483 0.745838
\(695\) 12.9602 0.491609
\(696\) 19.3087 0.731896
\(697\) −11.9908 −0.454185
\(698\) 26.4004 0.999270
\(699\) −6.61880 −0.250346
\(700\) 0.578534 0.0218665
\(701\) 36.1238 1.36438 0.682189 0.731176i \(-0.261028\pi\)
0.682189 + 0.731176i \(0.261028\pi\)
\(702\) −8.13044 −0.306864
\(703\) 0 0
\(704\) −33.1482 −1.24932
\(705\) −3.97950 −0.149877
\(706\) −24.3169 −0.915180
\(707\) −18.2249 −0.685417
\(708\) −1.59598 −0.0599807
\(709\) −24.4167 −0.916989 −0.458495 0.888697i \(-0.651611\pi\)
−0.458495 + 0.888697i \(0.651611\pi\)
\(710\) 22.2393 0.834627
\(711\) 11.3634 0.426161
\(712\) 28.0866 1.05259
\(713\) 21.0284 0.787520
\(714\) 9.88714 0.370017
\(715\) −6.19185 −0.231562
\(716\) 1.90739 0.0712825
\(717\) 0.0615245 0.00229767
\(718\) −0.431259 −0.0160944
\(719\) −26.7224 −0.996576 −0.498288 0.867012i \(-0.666038\pi\)
−0.498288 + 0.867012i \(0.666038\pi\)
\(720\) −10.4502 −0.389455
\(721\) −72.4568 −2.69843
\(722\) −6.59276 −0.245357
\(723\) 14.6088 0.543307
\(724\) −2.44612 −0.0909092
\(725\) 9.55595 0.354899
\(726\) −10.3024 −0.382360
\(727\) −2.85449 −0.105867 −0.0529336 0.998598i \(-0.516857\pi\)
−0.0529336 + 0.998598i \(0.516857\pi\)
\(728\) −14.6622 −0.543419
\(729\) −1.52804 −0.0565940
\(730\) −7.05551 −0.261136
\(731\) −2.74765 −0.101625
\(732\) −0.142758 −0.00527650
\(733\) −23.9471 −0.884507 −0.442253 0.896890i \(-0.645821\pi\)
−0.442253 + 0.896890i \(0.645821\pi\)
\(734\) −34.0853 −1.25811
\(735\) −6.36361 −0.234725
\(736\) 3.65966 0.134897
\(737\) −32.7389 −1.20595
\(738\) 18.6893 0.687964
\(739\) 27.0438 0.994823 0.497411 0.867515i \(-0.334284\pi\)
0.497411 + 0.867515i \(0.334284\pi\)
\(740\) 0 0
\(741\) 4.93924 0.181447
\(742\) −5.97351 −0.219295
\(743\) 38.5442 1.41405 0.707026 0.707188i \(-0.250037\pi\)
0.707026 + 0.707188i \(0.250037\pi\)
\(744\) 9.61619 0.352547
\(745\) 15.8451 0.580521
\(746\) 54.5497 1.99721
\(747\) 14.4154 0.527430
\(748\) 1.52555 0.0557796
\(749\) −70.4714 −2.57497
\(750\) 1.09027 0.0398111
\(751\) −42.9011 −1.56548 −0.782741 0.622348i \(-0.786179\pi\)
−0.782741 + 0.622348i \(0.786179\pi\)
\(752\) −22.8454 −0.833086
\(753\) 2.35334 0.0857606
\(754\) 19.1708 0.698158
\(755\) −14.2944 −0.520227
\(756\) −2.34465 −0.0852739
\(757\) −17.3376 −0.630146 −0.315073 0.949067i \(-0.602029\pi\)
−0.315073 + 0.949067i \(0.602029\pi\)
\(758\) 33.7434 1.22562
\(759\) −14.8687 −0.539700
\(760\) 13.1632 0.477480
\(761\) 41.5752 1.50710 0.753550 0.657390i \(-0.228340\pi\)
0.753550 + 0.657390i \(0.228340\pi\)
\(762\) 14.8184 0.536815
\(763\) 11.9565 0.432853
\(764\) −1.28209 −0.0463845
\(765\) −5.62536 −0.203385
\(766\) −18.8474 −0.680983
\(767\) 20.0179 0.722805
\(768\) 2.60624 0.0940445
\(769\) 10.1940 0.367603 0.183802 0.982963i \(-0.441160\pi\)
0.183802 + 0.982963i \(0.441160\pi\)
\(770\) −26.1286 −0.941609
\(771\) 8.72712 0.314300
\(772\) −3.17550 −0.114289
\(773\) −1.79833 −0.0646816 −0.0323408 0.999477i \(-0.510296\pi\)
−0.0323408 + 0.999477i \(0.510296\pi\)
\(774\) 4.28258 0.153934
\(775\) 4.75908 0.170951
\(776\) −17.2970 −0.620926
\(777\) 0 0
\(778\) −23.6176 −0.846732
\(779\) −25.2775 −0.905661
\(780\) 0.149475 0.00535206
\(781\) −68.6398 −2.45613
\(782\) 14.8873 0.532368
\(783\) −38.7277 −1.38402
\(784\) −36.5321 −1.30472
\(785\) 1.95398 0.0697406
\(786\) 23.0918 0.823658
\(787\) −44.7062 −1.59360 −0.796802 0.604241i \(-0.793477\pi\)
−0.796802 + 0.604241i \(0.793477\pi\)
\(788\) −0.382321 −0.0136196
\(789\) 0.562139 0.0200127
\(790\) −6.80597 −0.242146
\(791\) 79.6211 2.83100
\(792\) 30.0383 1.06737
\(793\) 1.79058 0.0635852
\(794\) 18.9725 0.673310
\(795\) −0.769314 −0.0272847
\(796\) 0.964680 0.0341922
\(797\) −1.95203 −0.0691444 −0.0345722 0.999402i \(-0.511007\pi\)
−0.0345722 + 0.999402i \(0.511007\pi\)
\(798\) 20.8428 0.737826
\(799\) −12.2977 −0.435062
\(800\) 0.828243 0.0292828
\(801\) −25.3030 −0.894038
\(802\) −25.2671 −0.892211
\(803\) 21.7762 0.768467
\(804\) 0.790336 0.0278730
\(805\) −17.4250 −0.614151
\(806\) 9.54748 0.336296
\(807\) 10.0117 0.352429
\(808\) −12.5489 −0.441469
\(809\) −32.1732 −1.13115 −0.565574 0.824698i \(-0.691345\pi\)
−0.565574 + 0.824698i \(0.691345\pi\)
\(810\) 6.33397 0.222553
\(811\) 43.5729 1.53005 0.765025 0.644000i \(-0.222726\pi\)
0.765025 + 0.644000i \(0.222726\pi\)
\(812\) 5.52844 0.194010
\(813\) 5.91039 0.207286
\(814\) 0 0
\(815\) 3.01431 0.105587
\(816\) 7.30995 0.255900
\(817\) −5.79223 −0.202645
\(818\) 45.8478 1.60303
\(819\) 13.2091 0.461564
\(820\) −0.764967 −0.0267138
\(821\) −42.7990 −1.49370 −0.746848 0.664995i \(-0.768434\pi\)
−0.746848 + 0.664995i \(0.768434\pi\)
\(822\) −7.82658 −0.272983
\(823\) 52.9850 1.84694 0.923470 0.383670i \(-0.125340\pi\)
0.923470 + 0.383670i \(0.125340\pi\)
\(824\) −49.8908 −1.73803
\(825\) −3.36504 −0.117156
\(826\) 84.4724 2.93917
\(827\) −23.3945 −0.813508 −0.406754 0.913538i \(-0.633339\pi\)
−0.406754 + 0.913538i \(0.633339\pi\)
\(828\) −1.58572 −0.0551077
\(829\) −0.375803 −0.0130522 −0.00652608 0.999979i \(-0.502077\pi\)
−0.00652608 + 0.999979i \(0.502077\pi\)
\(830\) −8.63390 −0.299687
\(831\) −5.12437 −0.177762
\(832\) −10.0369 −0.347966
\(833\) −19.6653 −0.681362
\(834\) 14.1302 0.489288
\(835\) 4.16008 0.143965
\(836\) 3.21596 0.111226
\(837\) −19.2873 −0.666666
\(838\) 17.3187 0.598263
\(839\) 15.8320 0.546583 0.273291 0.961931i \(-0.411888\pi\)
0.273291 + 0.961931i \(0.411888\pi\)
\(840\) −7.96837 −0.274935
\(841\) 62.3161 2.14883
\(842\) 28.0832 0.967810
\(843\) −11.9711 −0.412307
\(844\) −0.293693 −0.0101093
\(845\) 11.1252 0.382718
\(846\) 19.1677 0.658998
\(847\) 37.2644 1.28042
\(848\) −4.41646 −0.151662
\(849\) −18.5485 −0.636581
\(850\) 3.36924 0.115564
\(851\) 0 0
\(852\) 1.65701 0.0567681
\(853\) 9.32579 0.319309 0.159655 0.987173i \(-0.448962\pi\)
0.159655 + 0.987173i \(0.448962\pi\)
\(854\) 7.55595 0.258559
\(855\) −11.8587 −0.405557
\(856\) −48.5238 −1.65851
\(857\) 5.99313 0.204721 0.102361 0.994747i \(-0.467360\pi\)
0.102361 + 0.994747i \(0.467360\pi\)
\(858\) −6.75080 −0.230469
\(859\) 44.6541 1.52358 0.761788 0.647826i \(-0.224322\pi\)
0.761788 + 0.647826i \(0.224322\pi\)
\(860\) −0.175289 −0.00597730
\(861\) 15.3018 0.521483
\(862\) 14.3362 0.488292
\(863\) −21.8515 −0.743832 −0.371916 0.928266i \(-0.621299\pi\)
−0.371916 + 0.928266i \(0.621299\pi\)
\(864\) −3.35665 −0.114196
\(865\) 3.79279 0.128959
\(866\) −51.6706 −1.75584
\(867\) −8.71525 −0.295986
\(868\) 2.75329 0.0934527
\(869\) 21.0061 0.712582
\(870\) 10.4186 0.353223
\(871\) −9.91295 −0.335888
\(872\) 8.23273 0.278795
\(873\) 15.5827 0.527396
\(874\) 31.3834 1.06156
\(875\) −3.94357 −0.133317
\(876\) −0.525691 −0.0177615
\(877\) −11.3951 −0.384786 −0.192393 0.981318i \(-0.561625\pi\)
−0.192393 + 0.981318i \(0.561625\pi\)
\(878\) 35.8868 1.21112
\(879\) 19.4019 0.654409
\(880\) −19.3179 −0.651206
\(881\) −48.2087 −1.62419 −0.812096 0.583523i \(-0.801674\pi\)
−0.812096 + 0.583523i \(0.801674\pi\)
\(882\) 30.6510 1.03207
\(883\) 36.2461 1.21978 0.609890 0.792486i \(-0.291214\pi\)
0.609890 + 0.792486i \(0.291214\pi\)
\(884\) 0.461918 0.0155360
\(885\) 10.8790 0.365693
\(886\) 38.3653 1.28891
\(887\) −23.8002 −0.799134 −0.399567 0.916704i \(-0.630840\pi\)
−0.399567 + 0.916704i \(0.630840\pi\)
\(888\) 0 0
\(889\) −53.5990 −1.79765
\(890\) 15.1549 0.507995
\(891\) −19.5493 −0.654925
\(892\) −1.09059 −0.0365158
\(893\) −25.9245 −0.867530
\(894\) 17.2755 0.577780
\(895\) −13.0017 −0.434599
\(896\) −48.8865 −1.63318
\(897\) −4.50207 −0.150320
\(898\) 58.1624 1.94090
\(899\) 45.4775 1.51676
\(900\) −0.358875 −0.0119625
\(901\) −2.37739 −0.0792023
\(902\) 34.5486 1.15034
\(903\) 3.50634 0.116684
\(904\) 54.8239 1.82342
\(905\) 16.6739 0.554260
\(906\) −15.5848 −0.517771
\(907\) 9.82566 0.326256 0.163128 0.986605i \(-0.447842\pi\)
0.163128 + 0.986605i \(0.447842\pi\)
\(908\) 0.0928643 0.00308181
\(909\) 11.3052 0.374971
\(910\) −7.91143 −0.262261
\(911\) −31.2125 −1.03412 −0.517058 0.855950i \(-0.672973\pi\)
−0.517058 + 0.855950i \(0.672973\pi\)
\(912\) 15.4099 0.510273
\(913\) 26.6478 0.881914
\(914\) 30.2999 1.00223
\(915\) 0.973111 0.0321701
\(916\) 2.33437 0.0771298
\(917\) −83.5243 −2.75821
\(918\) −13.6546 −0.450670
\(919\) −28.5950 −0.943263 −0.471631 0.881796i \(-0.656335\pi\)
−0.471631 + 0.881796i \(0.656335\pi\)
\(920\) −11.9982 −0.395567
\(921\) −13.6160 −0.448663
\(922\) −8.08424 −0.266240
\(923\) −20.7833 −0.684092
\(924\) −1.94679 −0.0640446
\(925\) 0 0
\(926\) 30.7366 1.01007
\(927\) 44.9463 1.47623
\(928\) 7.91465 0.259811
\(929\) −45.3832 −1.48898 −0.744488 0.667636i \(-0.767306\pi\)
−0.744488 + 0.667636i \(0.767306\pi\)
\(930\) 5.18869 0.170144
\(931\) −41.4558 −1.35866
\(932\) −1.30488 −0.0427426
\(933\) 1.07242 0.0351095
\(934\) −11.1684 −0.365440
\(935\) −10.3989 −0.340080
\(936\) 9.09526 0.297288
\(937\) −27.0457 −0.883543 −0.441772 0.897128i \(-0.645650\pi\)
−0.441772 + 0.897128i \(0.645650\pi\)
\(938\) −41.8311 −1.36583
\(939\) 13.7675 0.449285
\(940\) −0.784546 −0.0255891
\(941\) 31.3367 1.02155 0.510773 0.859716i \(-0.329359\pi\)
0.510773 + 0.859716i \(0.329359\pi\)
\(942\) 2.13037 0.0694113
\(943\) 23.0402 0.750293
\(944\) 62.4538 2.03270
\(945\) 15.9822 0.519903
\(946\) 7.91665 0.257393
\(947\) 27.4446 0.891830 0.445915 0.895075i \(-0.352878\pi\)
0.445915 + 0.895075i \(0.352878\pi\)
\(948\) −0.507099 −0.0164698
\(949\) 6.59359 0.214037
\(950\) 7.10259 0.230439
\(951\) −17.9858 −0.583231
\(952\) −24.6244 −0.798083
\(953\) −35.3324 −1.14453 −0.572265 0.820069i \(-0.693935\pi\)
−0.572265 + 0.820069i \(0.693935\pi\)
\(954\) 3.70548 0.119969
\(955\) 8.73937 0.282799
\(956\) 0.0121294 0.000392292 0
\(957\) −32.1561 −1.03946
\(958\) 47.9760 1.55004
\(959\) 28.3091 0.914150
\(960\) −5.45467 −0.176049
\(961\) −8.35116 −0.269392
\(962\) 0 0
\(963\) 43.7147 1.40869
\(964\) 2.88008 0.0927612
\(965\) 21.6457 0.696801
\(966\) −18.9980 −0.611251
\(967\) −31.4137 −1.01020 −0.505098 0.863062i \(-0.668544\pi\)
−0.505098 + 0.863062i \(0.668544\pi\)
\(968\) 25.6588 0.824705
\(969\) 8.29519 0.266480
\(970\) −9.33309 −0.299667
\(971\) 6.60982 0.212119 0.106060 0.994360i \(-0.466177\pi\)
0.106060 + 0.994360i \(0.466177\pi\)
\(972\) 2.25558 0.0723477
\(973\) −51.1095 −1.63850
\(974\) −35.6748 −1.14310
\(975\) −1.01889 −0.0326307
\(976\) 5.58641 0.178817
\(977\) 0.318781 0.0101987 0.00509935 0.999987i \(-0.498377\pi\)
0.00509935 + 0.999987i \(0.498377\pi\)
\(978\) 3.28642 0.105088
\(979\) −46.7744 −1.49492
\(980\) −1.25457 −0.0400757
\(981\) −7.41681 −0.236801
\(982\) −14.4789 −0.462042
\(983\) −10.7688 −0.343473 −0.171736 0.985143i \(-0.554938\pi\)
−0.171736 + 0.985143i \(0.554938\pi\)
\(984\) 10.5362 0.335881
\(985\) 2.60609 0.0830368
\(986\) 32.1963 1.02534
\(987\) 15.6934 0.499527
\(988\) 0.973756 0.0309793
\(989\) 5.27957 0.167881
\(990\) 16.2081 0.515126
\(991\) 23.6638 0.751706 0.375853 0.926679i \(-0.377350\pi\)
0.375853 + 0.926679i \(0.377350\pi\)
\(992\) 3.94167 0.125148
\(993\) 0.229491 0.00728267
\(994\) −87.7023 −2.78175
\(995\) −6.57573 −0.208465
\(996\) −0.643294 −0.0203835
\(997\) 4.48006 0.141885 0.0709425 0.997480i \(-0.477399\pi\)
0.0709425 + 0.997480i \(0.477399\pi\)
\(998\) 56.2850 1.78167
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6845.2.a.g.1.2 5
37.36 even 2 185.2.a.d.1.4 5
111.110 odd 2 1665.2.a.q.1.2 5
148.147 odd 2 2960.2.a.ba.1.2 5
185.73 odd 4 925.2.b.g.149.3 10
185.147 odd 4 925.2.b.g.149.8 10
185.184 even 2 925.2.a.h.1.2 5
259.258 odd 2 9065.2.a.j.1.4 5
555.554 odd 2 8325.2.a.cc.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.a.d.1.4 5 37.36 even 2
925.2.a.h.1.2 5 185.184 even 2
925.2.b.g.149.3 10 185.73 odd 4
925.2.b.g.149.8 10 185.147 odd 4
1665.2.a.q.1.2 5 111.110 odd 2
2960.2.a.ba.1.2 5 148.147 odd 2
6845.2.a.g.1.2 5 1.1 even 1 trivial
8325.2.a.cc.1.4 5 555.554 odd 2
9065.2.a.j.1.4 5 259.258 odd 2