Properties

Label 185.2.a.d.1.4
Level 185185
Weight 22
Character 185.1
Self dual yes
Analytic conductor 1.4771.477
Analytic rank 00
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [185,2,Mod(1,185)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(185, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("185.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 185=537 185 = 5 \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 185.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.477232437391.47723243739
Analytic rank: 00
Dimension: 55
Coefficient field: 5.5.368464.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x52x46x3+6x2+6x4 x^{5} - 2x^{4} - 6x^{3} + 6x^{2} + 6x - 4 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.4
Root 1.09027-1.09027 of defining polynomial
Character χ\chi == 185.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+1.46516q2+0.744131q3+0.146703q4+1.00000q5+1.09027q6+3.94357q72.71538q82.44627q9+1.46516q104.52210q11+0.109166q12+1.36924q13+5.77797q14+0.744131q154.27188q16+2.29957q173.58418q18+4.84765q19+0.146703q20+2.93453q216.62562q224.41859q232.02060q24+1.00000q25+2.00616q264.05274q27+0.578534q289.55595q29+1.09027q304.75908q310.828243q323.36504q33+3.36924q34+3.94357q350.358875q361.00000q37+7.10259q38+1.01889q392.71538q40+5.21439q41+4.29957q421.19485q430.663407q442.44627q456.47395q46+5.34785q473.17884q48+8.55174q49+1.46516q50+1.71118q51+0.200872q52+1.03384q535.93792q544.52210q5510.7083q56+3.60728q5714.0010q58+14.6197q59+0.109166q60+1.30772q616.97283q629.64703q63+7.33026q64+1.36924q654.93033q66+7.23975q67+0.337354q683.28801q69+5.77797q70+15.1787q71+6.64256q724.81551q731.46516q74+0.744131q75+0.711165q7617.8332q77+1.49285q78+4.64520q794.27188q80+4.32304q81+7.63993q825.89279q83+0.430505q84+2.29957q851.75066q867.11087q87+12.2792q8810.3435q893.58418q90+5.39969q910.648221q923.54138q93+7.83547q94+4.84765q950.616321q96+6.37000q97+12.5297q98+11.0623q99+O(q100)q+1.46516 q^{2} +0.744131 q^{3} +0.146703 q^{4} +1.00000 q^{5} +1.09027 q^{6} +3.94357 q^{7} -2.71538 q^{8} -2.44627 q^{9} +1.46516 q^{10} -4.52210 q^{11} +0.109166 q^{12} +1.36924 q^{13} +5.77797 q^{14} +0.744131 q^{15} -4.27188 q^{16} +2.29957 q^{17} -3.58418 q^{18} +4.84765 q^{19} +0.146703 q^{20} +2.93453 q^{21} -6.62562 q^{22} -4.41859 q^{23} -2.02060 q^{24} +1.00000 q^{25} +2.00616 q^{26} -4.05274 q^{27} +0.578534 q^{28} -9.55595 q^{29} +1.09027 q^{30} -4.75908 q^{31} -0.828243 q^{32} -3.36504 q^{33} +3.36924 q^{34} +3.94357 q^{35} -0.358875 q^{36} -1.00000 q^{37} +7.10259 q^{38} +1.01889 q^{39} -2.71538 q^{40} +5.21439 q^{41} +4.29957 q^{42} -1.19485 q^{43} -0.663407 q^{44} -2.44627 q^{45} -6.47395 q^{46} +5.34785 q^{47} -3.17884 q^{48} +8.55174 q^{49} +1.46516 q^{50} +1.71118 q^{51} +0.200872 q^{52} +1.03384 q^{53} -5.93792 q^{54} -4.52210 q^{55} -10.7083 q^{56} +3.60728 q^{57} -14.0010 q^{58} +14.6197 q^{59} +0.109166 q^{60} +1.30772 q^{61} -6.97283 q^{62} -9.64703 q^{63} +7.33026 q^{64} +1.36924 q^{65} -4.93033 q^{66} +7.23975 q^{67} +0.337354 q^{68} -3.28801 q^{69} +5.77797 q^{70} +15.1787 q^{71} +6.64256 q^{72} -4.81551 q^{73} -1.46516 q^{74} +0.744131 q^{75} +0.711165 q^{76} -17.8332 q^{77} +1.49285 q^{78} +4.64520 q^{79} -4.27188 q^{80} +4.32304 q^{81} +7.63993 q^{82} -5.89279 q^{83} +0.430505 q^{84} +2.29957 q^{85} -1.75066 q^{86} -7.11087 q^{87} +12.2792 q^{88} -10.3435 q^{89} -3.58418 q^{90} +5.39969 q^{91} -0.648221 q^{92} -3.54138 q^{93} +7.83547 q^{94} +4.84765 q^{95} -0.616321 q^{96} +6.37000 q^{97} +12.5297 q^{98} +11.0623 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 5qq3+6q4+5q52q6+7q76q8+2q9+7q11+2q13+4q14q15+8q168q176q18+14q19+6q209q21+2q22+2q23++18q99+O(q100) 5 q - q^{3} + 6 q^{4} + 5 q^{5} - 2 q^{6} + 7 q^{7} - 6 q^{8} + 2 q^{9} + 7 q^{11} + 2 q^{13} + 4 q^{14} - q^{15} + 8 q^{16} - 8 q^{17} - 6 q^{18} + 14 q^{19} + 6 q^{20} - 9 q^{21} + 2 q^{22} + 2 q^{23}+ \cdots + 18 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.46516 1.03603 0.518013 0.855372i 0.326672π-0.326672\pi
0.518013 + 0.855372i 0.326672π0.326672\pi
33 0.744131 0.429624 0.214812 0.976655i 0.431086π-0.431086\pi
0.214812 + 0.976655i 0.431086π0.431086\pi
44 0.146703 0.0733516
55 1.00000 0.447214
66 1.09027 0.445102
77 3.94357 1.49053 0.745265 0.666769i 0.232323π-0.232323\pi
0.745265 + 0.666769i 0.232323π0.232323\pi
88 −2.71538 −0.960033
99 −2.44627 −0.815423
1010 1.46516 0.463325
1111 −4.52210 −1.36347 −0.681733 0.731601i 0.738773π-0.738773\pi
−0.681733 + 0.731601i 0.738773π0.738773\pi
1212 0.109166 0.0315136
1313 1.36924 0.379759 0.189879 0.981807i 0.439190π-0.439190\pi
0.189879 + 0.981807i 0.439190π0.439190\pi
1414 5.77797 1.54423
1515 0.744131 0.192134
1616 −4.27188 −1.06797
1717 2.29957 0.557727 0.278863 0.960331i 0.410042π-0.410042\pi
0.278863 + 0.960331i 0.410042π0.410042\pi
1818 −3.58418 −0.844800
1919 4.84765 1.11213 0.556063 0.831140i 0.312311π-0.312311\pi
0.556063 + 0.831140i 0.312311π0.312311\pi
2020 0.146703 0.0328038
2121 2.93453 0.640367
2222 −6.62562 −1.41259
2323 −4.41859 −0.921339 −0.460670 0.887572i 0.652391π-0.652391\pi
−0.460670 + 0.887572i 0.652391π0.652391\pi
2424 −2.02060 −0.412453
2525 1.00000 0.200000
2626 2.00616 0.393440
2727 −4.05274 −0.779949
2828 0.578534 0.109333
2929 −9.55595 −1.77449 −0.887247 0.461294i 0.847385π-0.847385\pi
−0.887247 + 0.461294i 0.847385π0.847385\pi
3030 1.09027 0.199056
3131 −4.75908 −0.854756 −0.427378 0.904073i 0.640563π-0.640563\pi
−0.427378 + 0.904073i 0.640563π0.640563\pi
3232 −0.828243 −0.146414
3333 −3.36504 −0.585778
3434 3.36924 0.577820
3535 3.94357 0.666585
3636 −0.358875 −0.0598126
3737 −1.00000 −0.164399
3838 7.10259 1.15219
3939 1.01889 0.163154
4040 −2.71538 −0.429340
4141 5.21439 0.814351 0.407175 0.913350i 0.366514π-0.366514\pi
0.407175 + 0.913350i 0.366514π0.366514\pi
4242 4.29957 0.663438
4343 −1.19485 −0.182214 −0.0911068 0.995841i 0.529040π-0.529040\pi
−0.0911068 + 0.995841i 0.529040π0.529040\pi
4444 −0.663407 −0.100012
4545 −2.44627 −0.364668
4646 −6.47395 −0.954532
4747 5.34785 0.780064 0.390032 0.920801i 0.372464π-0.372464\pi
0.390032 + 0.920801i 0.372464π0.372464\pi
4848 −3.17884 −0.458826
4949 8.55174 1.22168
5050 1.46516 0.207205
5151 1.71118 0.239613
5252 0.200872 0.0278559
5353 1.03384 0.142009 0.0710046 0.997476i 0.477380π-0.477380\pi
0.0710046 + 0.997476i 0.477380π0.477380\pi
5454 −5.93792 −0.808048
5555 −4.52210 −0.609760
5656 −10.7083 −1.43096
5757 3.60728 0.477796
5858 −14.0010 −1.83842
5959 14.6197 1.90333 0.951664 0.307143i 0.0993729π-0.0993729\pi
0.951664 + 0.307143i 0.0993729π0.0993729\pi
6060 0.109166 0.0140933
6161 1.30772 0.167436 0.0837179 0.996489i 0.473321π-0.473321\pi
0.0837179 + 0.996489i 0.473321π0.473321\pi
6262 −6.97283 −0.885550
6363 −9.64703 −1.21541
6464 7.33026 0.916282
6565 1.36924 0.169833
6666 −4.93033 −0.606881
6767 7.23975 0.884476 0.442238 0.896898i 0.354185π-0.354185\pi
0.442238 + 0.896898i 0.354185π0.354185\pi
6868 0.337354 0.0409101
6969 −3.28801 −0.395829
7070 5.77797 0.690600
7171 15.1787 1.80138 0.900692 0.434458i 0.143060π-0.143060\pi
0.900692 + 0.434458i 0.143060π0.143060\pi
7272 6.64256 0.782833
7373 −4.81551 −0.563613 −0.281806 0.959471i 0.590934π-0.590934\pi
−0.281806 + 0.959471i 0.590934π0.590934\pi
7474 −1.46516 −0.170322
7575 0.744131 0.0859248
7676 0.711165 0.0815762
7777 −17.8332 −2.03229
7878 1.49285 0.169031
7979 4.64520 0.522626 0.261313 0.965254i 0.415845π-0.415845\pi
0.261313 + 0.965254i 0.415845π0.415845\pi
8080 −4.27188 −0.477611
8181 4.32304 0.480338
8282 7.63993 0.843689
8383 −5.89279 −0.646818 −0.323409 0.946259i 0.604829π-0.604829\pi
−0.323409 + 0.946259i 0.604829π0.604829\pi
8484 0.430505 0.0469719
8585 2.29957 0.249423
8686 −1.75066 −0.188778
8787 −7.11087 −0.762365
8888 12.2792 1.30897
8989 −10.3435 −1.09641 −0.548205 0.836344i 0.684689π-0.684689\pi
−0.548205 + 0.836344i 0.684689π0.684689\pi
9090 −3.58418 −0.377806
9191 5.39969 0.566042
9292 −0.648221 −0.0675817
9393 −3.54138 −0.367224
9494 7.83547 0.808167
9595 4.84765 0.497358
9696 −0.616321 −0.0629030
9797 6.37000 0.646776 0.323388 0.946267i 0.395178π-0.395178\pi
0.323388 + 0.946267i 0.395178π0.395178\pi
9898 12.5297 1.26569
9999 11.0623 1.11180
100100 0.146703 0.0146703
101101 −4.62142 −0.459848 −0.229924 0.973209i 0.573848π-0.573848\pi
−0.229924 + 0.973209i 0.573848π0.573848\pi
102102 2.50715 0.248245
103103 18.3734 1.81039 0.905193 0.425001i 0.139726π-0.139726\pi
0.905193 + 0.425001i 0.139726π0.139726\pi
104104 −3.71801 −0.364581
105105 2.93453 0.286381
106106 1.51475 0.147125
107107 −17.8700 −1.72755 −0.863777 0.503875i 0.831907π-0.831907\pi
−0.863777 + 0.503875i 0.831907π0.831907\pi
108108 −0.594549 −0.0572105
109109 −3.03189 −0.290402 −0.145201 0.989402i 0.546383π-0.546383\pi
−0.145201 + 0.989402i 0.546383π0.546383\pi
110110 −6.62562 −0.631728
111111 −0.744131 −0.0706298
112112 −16.8465 −1.59184
113113 −20.1901 −1.89933 −0.949663 0.313273i 0.898575π-0.898575\pi
−0.949663 + 0.313273i 0.898575π0.898575\pi
114114 5.28526 0.495010
115115 −4.41859 −0.412035
116116 −1.40189 −0.130162
117117 −3.34953 −0.309664
118118 21.4203 1.97190
119119 9.06850 0.831308
120120 −2.02060 −0.184455
121121 9.44942 0.859038
122122 1.91602 0.173468
123123 3.88019 0.349865
124124 −0.698172 −0.0626977
125125 1.00000 0.0894427
126126 −14.1345 −1.25920
127127 −13.5915 −1.20605 −0.603025 0.797722i 0.706038π-0.706038\pi
−0.603025 + 0.797722i 0.706038π0.706038\pi
128128 12.3965 1.09571
129129 −0.889128 −0.0782834
130130 2.00616 0.175952
131131 21.1799 1.85049 0.925246 0.379367i 0.123858π-0.123858\pi
0.925246 + 0.379367i 0.123858π0.123858\pi
132132 −0.493661 −0.0429677
133133 19.1170 1.65766
134134 10.6074 0.916341
135135 −4.05274 −0.348804
136136 −6.24420 −0.535436
137137 7.17856 0.613305 0.306653 0.951821i 0.400791π-0.400791\pi
0.306653 + 0.951821i 0.400791π0.400791\pi
138138 −4.81747 −0.410090
139139 −12.9602 −1.09927 −0.549636 0.835404i 0.685234π-0.685234\pi
−0.549636 + 0.835404i 0.685234π0.685234\pi
140140 0.578534 0.0488950
141141 3.97950 0.335134
142142 22.2393 1.86628
143143 −6.19185 −0.517788
144144 10.4502 0.870848
145145 −9.55595 −0.793578
146146 −7.05551 −0.583918
147147 6.36361 0.524862
148148 −0.146703 −0.0120589
149149 −15.8451 −1.29809 −0.649043 0.760752i 0.724830π-0.724830\pi
−0.649043 + 0.760752i 0.724830π0.724830\pi
150150 1.09027 0.0890204
151151 14.2944 1.16326 0.581632 0.813452i 0.302414π-0.302414\pi
0.581632 + 0.813452i 0.302414π0.302414\pi
152152 −13.1632 −1.06768
153153 −5.62536 −0.454783
154154 −26.1286 −2.10550
155155 −4.75908 −0.382258
156156 0.149475 0.0119676
157157 −1.95398 −0.155945 −0.0779723 0.996956i 0.524845π-0.524845\pi
−0.0779723 + 0.996956i 0.524845π0.524845\pi
158158 6.80597 0.541454
159159 0.769314 0.0610105
160160 −0.828243 −0.0654784
161161 −17.4250 −1.37328
162162 6.33397 0.497643
163163 3.01431 0.236099 0.118049 0.993008i 0.462336π-0.462336\pi
0.118049 + 0.993008i 0.462336π0.462336\pi
164164 0.764967 0.0597339
165165 −3.36504 −0.261968
166166 −8.63390 −0.670120
167167 4.16008 0.321916 0.160958 0.986961i 0.448542π-0.448542\pi
0.160958 + 0.986961i 0.448542π0.448542\pi
168168 −7.96837 −0.614773
169169 −11.1252 −0.855783
170170 3.36924 0.258409
171171 −11.8587 −0.906854
172172 −0.175289 −0.0133657
173173 −3.79279 −0.288361 −0.144180 0.989551i 0.546055π-0.546055\pi
−0.144180 + 0.989551i 0.546055π0.546055\pi
174174 −10.4186 −0.789831
175175 3.94357 0.298106
176176 19.3179 1.45614
177177 10.8790 0.817715
178178 −15.1549 −1.13591
179179 −13.0017 −0.971793 −0.485897 0.874016i 0.661507π-0.661507\pi
−0.485897 + 0.874016i 0.661507π0.661507\pi
180180 −0.358875 −0.0267490
181181 −16.6739 −1.23936 −0.619681 0.784854i 0.712738π-0.712738\pi
−0.619681 + 0.784854i 0.712738π0.712738\pi
182182 7.91143 0.586434
183183 0.973111 0.0719345
184184 11.9982 0.884516
185185 −1.00000 −0.0735215
186186 −5.18869 −0.380454
187187 −10.3989 −0.760441
188188 0.784546 0.0572189
189189 −15.9822 −1.16254
190190 7.10259 0.515276
191191 8.73937 0.632359 0.316179 0.948699i 0.397600π-0.397600\pi
0.316179 + 0.948699i 0.397600π0.397600\pi
192192 5.45467 0.393657
193193 21.6457 1.55809 0.779047 0.626966i 0.215703π-0.215703\pi
0.779047 + 0.626966i 0.215703π0.215703\pi
194194 9.33309 0.670077
195195 1.01889 0.0729645
196196 1.25457 0.0896119
197197 −2.60609 −0.185676 −0.0928380 0.995681i 0.529594π-0.529594\pi
−0.0928380 + 0.995681i 0.529594π0.529594\pi
198198 16.2081 1.15186
199199 −6.57573 −0.466141 −0.233071 0.972460i 0.574877π-0.574877\pi
−0.233071 + 0.972460i 0.574877π0.574877\pi
200200 −2.71538 −0.192007
201201 5.38732 0.379992
202202 −6.77113 −0.476415
203203 −37.6845 −2.64494
204204 0.251035 0.0175760
205205 5.21439 0.364189
206206 26.9200 1.87561
207207 10.8091 0.751281
208208 −5.84924 −0.405572
209209 −21.9216 −1.51635
210210 4.29957 0.296698
211211 −2.00196 −0.137820 −0.0689102 0.997623i 0.521952π-0.521952\pi
−0.0689102 + 0.997623i 0.521952π0.521952\pi
212212 0.151668 0.0104166
213213 11.2950 0.773918
214214 −26.1824 −1.78979
215215 −1.19485 −0.0814884
216216 11.0047 0.748777
217217 −18.7678 −1.27404
218218 −4.44221 −0.300864
219219 −3.58337 −0.242142
220220 −0.663407 −0.0447269
221221 3.14866 0.211802
222222 −1.09027 −0.0731743
223223 −7.43402 −0.497819 −0.248910 0.968527i 0.580072π-0.580072\pi
−0.248910 + 0.968527i 0.580072π0.580072\pi
224224 −3.26623 −0.218234
225225 −2.44627 −0.163085
226226 −29.5818 −1.96775
227227 −0.633009 −0.0420143 −0.0210071 0.999779i 0.506687π-0.506687\pi
−0.0210071 + 0.999779i 0.506687π0.506687\pi
228228 0.529200 0.0350471
229229 15.9122 1.05151 0.525754 0.850636i 0.323783π-0.323783\pi
0.525754 + 0.850636i 0.323783π0.323783\pi
230230 −6.47395 −0.426880
231231 −13.2703 −0.873119
232232 25.9480 1.70357
233233 −8.89467 −0.582709 −0.291355 0.956615i 0.594106π-0.594106\pi
−0.291355 + 0.956615i 0.594106π0.594106\pi
234234 −4.90761 −0.320820
235235 5.34785 0.348855
236236 2.14476 0.139612
237237 3.45663 0.224533
238238 13.2868 0.861257
239239 −0.0826797 −0.00534810 −0.00267405 0.999996i 0.500851π-0.500851\pi
−0.00267405 + 0.999996i 0.500851π0.500851\pi
240240 −3.17884 −0.205193
241241 −19.6320 −1.26461 −0.632305 0.774719i 0.717891π-0.717891\pi
−0.632305 + 0.774719i 0.717891π0.717891\pi
242242 13.8449 0.889987
243243 15.3751 0.986314
244244 0.191846 0.0122817
245245 8.55174 0.546351
246246 5.68511 0.362469
247247 6.63759 0.422340
248248 12.9227 0.820594
249249 −4.38501 −0.277888
250250 1.46516 0.0926651
251251 −3.16254 −0.199618 −0.0998089 0.995007i 0.531823π-0.531823\pi
−0.0998089 + 0.995007i 0.531823π0.531823\pi
252252 −1.41525 −0.0891524
253253 19.9813 1.25621
254254 −19.9138 −1.24950
255255 1.71118 0.107158
256256 3.50239 0.218900
257257 −11.7279 −0.731569 −0.365784 0.930700i 0.619199π-0.619199\pi
−0.365784 + 0.930700i 0.619199π0.619199\pi
258258 −1.30272 −0.0811037
259259 −3.94357 −0.245041
260260 0.200872 0.0124575
261261 23.3764 1.44696
262262 31.0320 1.91716
263263 0.755431 0.0465819 0.0232909 0.999729i 0.492586π-0.492586\pi
0.0232909 + 0.999729i 0.492586π0.492586\pi
264264 9.13736 0.562366
265265 1.03384 0.0635084
266266 28.0096 1.71738
267267 −7.69693 −0.471044
268268 1.06209 0.0648777
269269 13.4542 0.820320 0.410160 0.912014i 0.365473π-0.365473\pi
0.410160 + 0.912014i 0.365473π0.365473\pi
270270 −5.93792 −0.361370
271271 7.94268 0.482483 0.241242 0.970465i 0.422445π-0.422445\pi
0.241242 + 0.970465i 0.422445π0.422445\pi
272272 −9.82348 −0.595636
273273 4.01808 0.243185
274274 10.5178 0.635401
275275 −4.52210 −0.272693
276276 −0.482361 −0.0290347
277277 6.88638 0.413762 0.206881 0.978366i 0.433669π-0.433669\pi
0.206881 + 0.978366i 0.433669π0.433669\pi
278278 −18.9888 −1.13888
279279 11.6420 0.696988
280280 −10.7083 −0.639943
281281 16.0874 0.959693 0.479847 0.877352i 0.340692π-0.340692\pi
0.479847 + 0.877352i 0.340692π0.340692\pi
282282 5.83061 0.347208
283283 24.9263 1.48172 0.740859 0.671661i 0.234419π-0.234419\pi
0.740859 + 0.671661i 0.234419π0.234419\pi
284284 2.22677 0.132134
285285 3.60728 0.213677
286286 −9.07206 −0.536442
287287 20.5633 1.21381
288288 2.02611 0.119389
289289 −11.7120 −0.688941
290290 −14.0010 −0.822168
291291 4.74011 0.277870
292292 −0.706450 −0.0413419
293293 26.0732 1.52321 0.761607 0.648039i 0.224411π-0.224411\pi
0.761607 + 0.648039i 0.224411π0.224411\pi
294294 9.32373 0.543771
295295 14.6197 0.851194
296296 2.71538 0.157828
297297 18.3269 1.06343
298298 −23.2157 −1.34485
299299 −6.05011 −0.349887
300300 0.109166 0.00630272
301301 −4.71199 −0.271595
302302 20.9437 1.20517
303303 −3.43894 −0.197562
304304 −20.7086 −1.18772
305305 1.30772 0.0748796
306306 −8.24207 −0.471168
307307 −18.2979 −1.04432 −0.522158 0.852849i 0.674873π-0.674873\pi
−0.522158 + 0.852849i 0.674873π0.674873\pi
308308 −2.61619 −0.149071
309309 13.6722 0.777785
310310 −6.97283 −0.396030
311311 −1.44118 −0.0817216 −0.0408608 0.999165i 0.513010π-0.513010\pi
−0.0408608 + 0.999165i 0.513010π0.513010\pi
312312 −2.76669 −0.156633
313313 −18.5015 −1.04576 −0.522882 0.852405i 0.675143π-0.675143\pi
−0.522882 + 0.852405i 0.675143π0.675143\pi
314314 −2.86290 −0.161563
315315 −9.64703 −0.543549
316316 0.681465 0.0383354
317317 −24.1703 −1.35754 −0.678769 0.734352i 0.737486π-0.737486\pi
−0.678769 + 0.734352i 0.737486π0.737486\pi
318318 1.12717 0.0632086
319319 43.2130 2.41946
320320 7.33026 0.409774
321321 −13.2976 −0.742198
322322 −25.5305 −1.42276
323323 11.1475 0.620263
324324 0.634204 0.0352336
325325 1.36924 0.0759518
326326 4.41646 0.244605
327327 −2.25612 −0.124764
328328 −14.1591 −0.781803
329329 21.0896 1.16271
330330 −4.93033 −0.271406
331331 −0.308401 −0.0169513 −0.00847563 0.999964i 0.502698π-0.502698\pi
−0.00847563 + 0.999964i 0.502698π0.502698\pi
332332 −0.864491 −0.0474451
333333 2.44627 0.134055
334334 6.09519 0.333514
335335 7.23975 0.395550
336336 −12.5360 −0.683894
337337 −17.7374 −0.966219 −0.483110 0.875560i 0.660493π-0.660493\pi
−0.483110 + 0.875560i 0.660493π0.660493\pi
338338 −16.3002 −0.886614
339339 −15.0241 −0.815996
340340 0.337354 0.0182956
341341 21.5211 1.16543
342342 −17.3749 −0.939525
343343 6.11940 0.330417
344344 3.24449 0.174931
345345 −3.28801 −0.177020
346346 −5.55706 −0.298749
347347 13.4103 0.719902 0.359951 0.932971i 0.382793π-0.382793\pi
0.359951 + 0.932971i 0.382793π0.382793\pi
348348 −1.04319 −0.0559207
349349 −18.0187 −0.964521 −0.482261 0.876028i 0.660184π-0.660184\pi
−0.482261 + 0.876028i 0.660184π0.660184\pi
350350 5.77797 0.308846
351351 −5.54917 −0.296193
352352 3.74540 0.199631
353353 −16.5967 −0.883355 −0.441678 0.897174i 0.645617π-0.645617\pi
−0.441678 + 0.897174i 0.645617π0.645617\pi
354354 15.9395 0.847175
355355 15.1787 0.805604
356356 −1.51743 −0.0804234
357357 6.74815 0.357150
358358 −19.0496 −1.00680
359359 0.294342 0.0155348 0.00776739 0.999970i 0.497528π-0.497528\pi
0.00776739 + 0.999970i 0.497528π0.497528\pi
360360 6.64256 0.350094
361361 4.49968 0.236825
362362 −24.4300 −1.28401
363363 7.03160 0.369063
364364 0.792152 0.0415200
365365 −4.81551 −0.252055
366366 1.42577 0.0745260
367367 23.2638 1.21436 0.607181 0.794563i 0.292300π-0.292300\pi
0.607181 + 0.794563i 0.292300π0.292300\pi
368368 18.8757 0.983964
369369 −12.7558 −0.664040
370370 −1.46516 −0.0761702
371371 4.07703 0.211669
372372 −0.519531 −0.0269364
373373 −37.2311 −1.92776 −0.963878 0.266345i 0.914184π-0.914184\pi
−0.963878 + 0.266345i 0.914184π0.914184\pi
374374 −15.2361 −0.787838
375375 0.744131 0.0384267
376376 −14.5215 −0.748887
377377 −13.0844 −0.673880
378378 −23.4166 −1.20442
379379 −23.0305 −1.18300 −0.591498 0.806306i 0.701463π-0.701463\pi
−0.591498 + 0.806306i 0.701463π0.701463\pi
380380 0.711165 0.0364820
381381 −10.1138 −0.518148
382382 12.8046 0.655140
383383 −12.8637 −0.657302 −0.328651 0.944451i 0.606594π-0.606594\pi
−0.328651 + 0.944451i 0.606594π0.606594\pi
384384 9.22462 0.470742
385385 −17.8332 −0.908866
386386 31.7145 1.61423
387387 2.92294 0.148581
388388 0.934499 0.0474420
389389 −16.1194 −0.817287 −0.408644 0.912694i 0.633998π-0.633998\pi
−0.408644 + 0.912694i 0.633998π0.633998\pi
390390 1.49285 0.0755932
391391 −10.1608 −0.513856
392392 −23.2212 −1.17285
393393 15.7606 0.795016
394394 −3.81834 −0.192365
395395 4.64520 0.233725
396396 1.62287 0.0815524
397397 −12.9491 −0.649897 −0.324948 0.945732i 0.605347π-0.605347\pi
−0.324948 + 0.945732i 0.605347π0.605347\pi
398398 −9.63452 −0.482935
399399 14.2256 0.712169
400400 −4.27188 −0.213594
401401 −17.2452 −0.861185 −0.430593 0.902546i 0.641695π-0.641695\pi
−0.430593 + 0.902546i 0.641695π0.641695\pi
402402 7.89330 0.393682
403403 −6.51632 −0.324601
404404 −0.677976 −0.0337306
405405 4.32304 0.214814
406406 −55.2140 −2.74022
407407 4.52210 0.224152
408408 −4.64650 −0.230036
409409 31.2920 1.54729 0.773644 0.633621i 0.218432π-0.218432\pi
0.773644 + 0.633621i 0.218432π0.218432\pi
410410 7.63993 0.377309
411411 5.34178 0.263491
412412 2.69544 0.132795
413413 57.6539 2.83696
414414 15.8370 0.778348
415415 −5.89279 −0.289266
416416 −1.13406 −0.0556020
417417 −9.64410 −0.472274
418418 −32.1187 −1.57098
419419 −11.8203 −0.577459 −0.288730 0.957411i 0.593233π-0.593233\pi
−0.288730 + 0.957411i 0.593233π0.593233\pi
420420 0.430505 0.0210065
421421 19.1673 0.934155 0.467077 0.884216i 0.345307π-0.345307\pi
0.467077 + 0.884216i 0.345307π0.345307\pi
422422 −2.93319 −0.142786
423423 −13.0823 −0.636082
424424 −2.80728 −0.136333
425425 2.29957 0.111545
426426 16.5490 0.801800
427427 5.15707 0.249568
428428 −2.62158 −0.126719
429429 −4.60754 −0.222454
430430 −1.75066 −0.0844242
431431 9.78469 0.471312 0.235656 0.971837i 0.424276π-0.424276\pi
0.235656 + 0.971837i 0.424276π0.424276\pi
432432 17.3128 0.832963
433433 35.2661 1.69478 0.847391 0.530969i 0.178172π-0.178172\pi
0.847391 + 0.530969i 0.178172π0.178172\pi
434434 −27.4978 −1.31994
435435 −7.11087 −0.340940
436436 −0.444787 −0.0213014
437437 −21.4198 −1.02465
438438 −5.25022 −0.250865
439439 24.4934 1.16901 0.584503 0.811392i 0.301290π-0.301290\pi
0.584503 + 0.811392i 0.301290π0.301290\pi
440440 12.2792 0.585390
441441 −20.9199 −0.996184
442442 4.61330 0.219432
443443 −26.1850 −1.24409 −0.622044 0.782982i 0.713698π-0.713698\pi
−0.622044 + 0.782982i 0.713698π0.713698\pi
444444 −0.109166 −0.00518080
445445 −10.3435 −0.490330
446446 −10.8921 −0.515754
447447 −11.7909 −0.557689
448448 28.9074 1.36575
449449 39.6969 1.87341 0.936705 0.350119i 0.113859π-0.113859\pi
0.936705 + 0.350119i 0.113859π0.113859\pi
450450 −3.58418 −0.168960
451451 −23.5800 −1.11034
452452 −2.96195 −0.139319
453453 10.6369 0.499766
454454 −0.927461 −0.0435279
455455 5.39969 0.253142
456456 −9.79515 −0.458700
457457 20.6802 0.967380 0.483690 0.875239i 0.339296π-0.339296\pi
0.483690 + 0.875239i 0.339296π0.339296\pi
458458 23.3140 1.08939
459459 −9.31954 −0.434999
460460 −0.648221 −0.0302234
461461 −5.51764 −0.256982 −0.128491 0.991711i 0.541013π-0.541013\pi
−0.128491 + 0.991711i 0.541013π0.541013\pi
462462 −19.4431 −0.904574
463463 20.9783 0.974944 0.487472 0.873139i 0.337919π-0.337919\pi
0.487472 + 0.873139i 0.337919π0.337919\pi
464464 40.8219 1.89511
465465 −3.54138 −0.164227
466466 −13.0321 −0.603702
467467 −7.62261 −0.352732 −0.176366 0.984325i 0.556434π-0.556434\pi
−0.176366 + 0.984325i 0.556434π0.556434\pi
468468 −0.491387 −0.0227144
469469 28.5504 1.31834
470470 7.83547 0.361423
471471 −1.45402 −0.0669976
472472 −39.6982 −1.82726
473473 5.40326 0.248442
474474 5.06453 0.232622
475475 4.84765 0.222425
476476 1.33038 0.0609777
477477 −2.52906 −0.115798
478478 −0.121139 −0.00554078
479479 32.7445 1.49613 0.748067 0.663623i 0.230982π-0.230982\pi
0.748067 + 0.663623i 0.230982π0.230982\pi
480480 −0.616321 −0.0281311
481481 −1.36924 −0.0624320
482482 −28.7641 −1.31017
483483 −12.9665 −0.589995
484484 1.38626 0.0630118
485485 6.37000 0.289247
486486 22.5271 1.02185
487487 −24.3487 −1.10335 −0.551673 0.834061i 0.686010π-0.686010\pi
−0.551673 + 0.834061i 0.686010π0.686010\pi
488488 −3.55095 −0.160744
489489 2.24304 0.101434
490490 12.5297 0.566034
491491 9.88214 0.445975 0.222987 0.974821i 0.428419π-0.428419\pi
0.222987 + 0.974821i 0.428419π0.428419\pi
492492 0.569235 0.0256631
493493 −21.9745 −0.989683
494494 9.72516 0.437555
495495 11.0623 0.497213
496496 20.3302 0.912855
497497 59.8584 2.68502
498498 −6.42475 −0.287900
499499 38.4155 1.71971 0.859857 0.510535i 0.170553π-0.170553\pi
0.859857 + 0.510535i 0.170553π0.170553\pi
500500 0.146703 0.00656076
501501 3.09564 0.138303
502502 −4.63364 −0.206809
503503 −14.2482 −0.635297 −0.317649 0.948209i 0.602893π-0.602893\pi
−0.317649 + 0.948209i 0.602893π0.602893\pi
504504 26.1954 1.16684
505505 −4.62142 −0.205650
506506 29.2759 1.30147
507507 −8.27859 −0.367665
508508 −1.99391 −0.0884657
509509 28.0410 1.24290 0.621448 0.783455i 0.286545π-0.286545\pi
0.621448 + 0.783455i 0.286545π0.286545\pi
510510 2.50715 0.111019
511511 −18.9903 −0.840081
512512 −19.6614 −0.868921
513513 −19.6462 −0.867402
514514 −17.1833 −0.757925
515515 18.3734 0.809629
516516 −0.130438 −0.00574221
517517 −24.1835 −1.06359
518518 −5.77797 −0.253870
519519 −2.82233 −0.123887
520520 −3.71801 −0.163046
521521 31.3715 1.37441 0.687204 0.726464i 0.258838π-0.258838\pi
0.687204 + 0.726464i 0.258838π0.258838\pi
522522 34.2503 1.49909
523523 −37.1439 −1.62419 −0.812095 0.583525i 0.801673π-0.801673\pi
−0.812095 + 0.583525i 0.801673π0.801673\pi
524524 3.10715 0.135737
525525 2.93453 0.128073
526526 1.10683 0.0482601
527527 −10.9438 −0.476720
528528 14.3750 0.625593
529529 −3.47608 −0.151134
530530 1.51475 0.0657964
531531 −35.7638 −1.55202
532532 2.80453 0.121592
533533 7.13975 0.309257
534534 −11.2773 −0.488014
535535 −17.8700 −0.772585
536536 −19.6587 −0.849126
537537 −9.67497 −0.417506
538538 19.7127 0.849873
539539 −38.6719 −1.66571
540540 −0.594549 −0.0255853
541541 −4.01732 −0.172718 −0.0863590 0.996264i 0.527523π-0.527523\pi
−0.0863590 + 0.996264i 0.527523π0.527523\pi
542542 11.6373 0.499866
543543 −12.4076 −0.532460
544544 −1.90460 −0.0816591
545545 −3.03189 −0.129872
546546 5.88714 0.251946
547547 −40.4991 −1.73162 −0.865809 0.500375i 0.833195π-0.833195\pi
−0.865809 + 0.500375i 0.833195π0.833195\pi
548548 1.05312 0.0449869
549549 −3.19903 −0.136531
550550 −6.62562 −0.282517
551551 −46.3238 −1.97346
552552 8.92819 0.380009
553553 18.3187 0.778989
554554 10.0897 0.428669
555555 −0.744131 −0.0315866
556556 −1.90131 −0.0806333
557557 41.5078 1.75874 0.879370 0.476139i 0.157964π-0.157964\pi
0.879370 + 0.476139i 0.157964π0.157964\pi
558558 17.0574 0.722098
559559 −1.63604 −0.0691973
560560 −16.8465 −0.711893
561561 −7.73812 −0.326704
562562 23.5707 0.994268
563563 8.82377 0.371877 0.185939 0.982561i 0.440467π-0.440467\pi
0.185939 + 0.982561i 0.440467π0.440467\pi
564564 0.583805 0.0245826
565565 −20.1901 −0.849405
566566 36.5212 1.53510
567567 17.0482 0.715958
568568 −41.2161 −1.72939
569569 −1.06707 −0.0447338 −0.0223669 0.999750i 0.507120π-0.507120\pi
−0.0223669 + 0.999750i 0.507120π0.507120\pi
570570 5.28526 0.221375
571571 3.43435 0.143723 0.0718616 0.997415i 0.477106π-0.477106\pi
0.0718616 + 0.997415i 0.477106π0.477106\pi
572572 −0.908363 −0.0379806
573573 6.50323 0.271676
574574 30.1286 1.25754
575575 −4.41859 −0.184268
576576 −17.9318 −0.747158
577577 30.2801 1.26058 0.630289 0.776361i 0.282936π-0.282936\pi
0.630289 + 0.776361i 0.282936π0.282936\pi
578578 −17.1600 −0.713761
579579 16.1073 0.669395
580580 −1.40189 −0.0582102
581581 −23.2386 −0.964101
582582 6.94504 0.287881
583583 −4.67514 −0.193625
584584 13.0760 0.541087
585585 −3.34953 −0.138486
586586 38.2015 1.57809
587587 −10.4265 −0.430347 −0.215173 0.976576i 0.569032π-0.569032\pi
−0.215173 + 0.976576i 0.569032π0.569032\pi
588588 0.933562 0.0384994
589589 −23.0703 −0.950597
590590 21.4203 0.881860
591591 −1.93927 −0.0797709
592592 4.27188 0.175573
593593 19.5382 0.802337 0.401169 0.916004i 0.368604π-0.368604\pi
0.401169 + 0.916004i 0.368604π0.368604\pi
594594 26.8519 1.10175
595595 9.06850 0.371772
596596 −2.32453 −0.0952166
597597 −4.89320 −0.200265
598598 −8.86439 −0.362492
599599 −9.95917 −0.406921 −0.203460 0.979083i 0.565219π-0.565219\pi
−0.203460 + 0.979083i 0.565219π0.565219\pi
600600 −2.02060 −0.0824906
601601 0.201892 0.00823534 0.00411767 0.999992i 0.498689π-0.498689\pi
0.00411767 + 0.999992i 0.498689π0.498689\pi
602602 −6.90384 −0.281380
603603 −17.7104 −0.721222
604604 2.09704 0.0853272
605605 9.44942 0.384174
606606 −5.03860 −0.204679
607607 33.5993 1.36375 0.681876 0.731468i 0.261164π-0.261164\pi
0.681876 + 0.731468i 0.261164π0.261164\pi
608608 −4.01503 −0.162831
609609 −28.0422 −1.13633
610610 1.91602 0.0775773
611611 7.32249 0.296236
612612 −0.825258 −0.0333591
613613 8.63736 0.348859 0.174430 0.984670i 0.444192π-0.444192\pi
0.174430 + 0.984670i 0.444192π0.444192\pi
614614 −26.8094 −1.08194
615615 3.88019 0.156464
616616 48.4240 1.95106
617617 8.37257 0.337067 0.168533 0.985696i 0.446097π-0.446097\pi
0.168533 + 0.985696i 0.446097π0.446097\pi
618618 20.0320 0.805806
619619 −0.670360 −0.0269441 −0.0134720 0.999909i 0.504288π-0.504288\pi
−0.0134720 + 0.999909i 0.504288π0.504288\pi
620620 −0.698172 −0.0280393
621621 17.9074 0.718598
622622 −2.11156 −0.0846657
623623 −40.7904 −1.63423
624624 −4.35260 −0.174243
625625 1.00000 0.0400000
626626 −27.1077 −1.08344
627627 −16.3125 −0.651459
628628 −0.286655 −0.0114388
629629 −2.29957 −0.0916897
630630 −14.1345 −0.563131
631631 15.0416 0.598798 0.299399 0.954128i 0.403214π-0.403214\pi
0.299399 + 0.954128i 0.403214π0.403214\pi
632632 −12.6135 −0.501738
633633 −1.48972 −0.0592109
634634 −35.4134 −1.40645
635635 −13.5915 −0.539362
636636 0.112861 0.00447522
637637 11.7094 0.463943
638638 63.3141 2.50663
639639 −37.1313 −1.46889
640640 12.3965 0.490015
641641 18.9440 0.748241 0.374121 0.927380i 0.377945π-0.377945\pi
0.374121 + 0.927380i 0.377945π0.377945\pi
642642 −19.4831 −0.768937
643643 −27.9869 −1.10369 −0.551847 0.833945i 0.686077π-0.686077\pi
−0.551847 + 0.833945i 0.686077π0.686077\pi
644644 −2.55630 −0.100732
645645 −0.889128 −0.0350094
646646 16.3329 0.642609
647647 20.3334 0.799387 0.399694 0.916649i 0.369117π-0.369117\pi
0.399694 + 0.916649i 0.369117π0.369117\pi
648648 −11.7387 −0.461140
649649 −66.1119 −2.59512
650650 2.00616 0.0786881
651651 −13.9657 −0.547358
652652 0.442209 0.0173182
653653 −12.5212 −0.489991 −0.244996 0.969524i 0.578787π-0.578787\pi
−0.244996 + 0.969524i 0.578787π0.578787\pi
654654 −3.30558 −0.129259
655655 21.1799 0.827566
656656 −22.2753 −0.869703
657657 11.7800 0.459583
658658 30.8997 1.20460
659659 −10.5140 −0.409565 −0.204783 0.978807i 0.565649π-0.565649\pi
−0.204783 + 0.978807i 0.565649π0.565649\pi
660660 −0.493661 −0.0192157
661661 12.9804 0.504880 0.252440 0.967613i 0.418767π-0.418767\pi
0.252440 + 0.967613i 0.418767π0.418767\pi
662662 −0.451858 −0.0175620
663663 2.34301 0.0909951
664664 16.0012 0.620966
665665 19.1170 0.741327
666666 3.58418 0.138884
667667 42.2238 1.63491
668668 0.610296 0.0236131
669669 −5.53188 −0.213875
670670 10.6074 0.409800
671671 −5.91363 −0.228293
672672 −2.43050 −0.0937588
673673 2.47979 0.0955890 0.0477945 0.998857i 0.484781π-0.484781\pi
0.0477945 + 0.998857i 0.484781π0.484781\pi
674674 −25.9882 −1.00103
675675 −4.05274 −0.155990
676676 −1.63210 −0.0627730
677677 −23.8883 −0.918103 −0.459052 0.888410i 0.651811π-0.651811\pi
−0.459052 + 0.888410i 0.651811π0.651811\pi
678678 −22.0127 −0.845394
679679 25.1205 0.964038
680680 −6.24420 −0.239454
681681 −0.471041 −0.0180503
682682 31.5319 1.20742
683683 −36.3338 −1.39028 −0.695138 0.718876i 0.744657π-0.744657\pi
−0.695138 + 0.718876i 0.744657π0.744657\pi
684684 −1.73970 −0.0665191
685685 7.17856 0.274279
686686 8.96592 0.342320
687687 11.8408 0.451753
688688 5.10428 0.194599
689689 1.41558 0.0539292
690690 −4.81747 −0.183398
691691 2.36561 0.0899922 0.0449961 0.998987i 0.485672π-0.485672\pi
0.0449961 + 0.998987i 0.485672π0.485672\pi
692692 −0.556414 −0.0211517
693693 43.6249 1.65717
694694 19.6483 0.745838
695695 −12.9602 −0.491609
696696 19.3087 0.731896
697697 11.9908 0.454185
698698 −26.4004 −0.999270
699699 −6.61880 −0.250346
700700 0.578534 0.0218665
701701 −36.1238 −1.36438 −0.682189 0.731176i 0.738972π-0.738972\pi
−0.682189 + 0.731176i 0.738972π0.738972\pi
702702 −8.13044 −0.306864
703703 −4.84765 −0.182832
704704 −33.1482 −1.24932
705705 3.97950 0.149877
706706 −24.3169 −0.915180
707707 −18.2249 −0.685417
708708 1.59598 0.0599807
709709 24.4167 0.916989 0.458495 0.888697i 0.348389π-0.348389\pi
0.458495 + 0.888697i 0.348389π0.348389\pi
710710 22.2393 0.834627
711711 −11.3634 −0.426161
712712 28.0866 1.05259
713713 21.0284 0.787520
714714 9.88714 0.370017
715715 −6.19185 −0.231562
716716 −1.90739 −0.0712825
717717 −0.0615245 −0.00229767
718718 0.431259 0.0160944
719719 −26.7224 −0.996576 −0.498288 0.867012i 0.666038π-0.666038\pi
−0.498288 + 0.867012i 0.666038π0.666038\pi
720720 10.4502 0.389455
721721 72.4568 2.69843
722722 6.59276 0.245357
723723 −14.6088 −0.543307
724724 −2.44612 −0.0909092
725725 −9.55595 −0.354899
726726 10.3024 0.382360
727727 2.85449 0.105867 0.0529336 0.998598i 0.483143π-0.483143\pi
0.0529336 + 0.998598i 0.483143π0.483143\pi
728728 −14.6622 −0.543419
729729 −1.52804 −0.0565940
730730 −7.05551 −0.261136
731731 −2.74765 −0.101625
732732 0.142758 0.00527650
733733 −23.9471 −0.884507 −0.442253 0.896890i 0.645821π-0.645821\pi
−0.442253 + 0.896890i 0.645821π0.645821\pi
734734 34.0853 1.25811
735735 6.36361 0.234725
736736 3.65966 0.134897
737737 −32.7389 −1.20595
738738 −18.6893 −0.687964
739739 27.0438 0.994823 0.497411 0.867515i 0.334284π-0.334284\pi
0.497411 + 0.867515i 0.334284π0.334284\pi
740740 −0.146703 −0.00539291
741741 4.93924 0.181447
742742 5.97351 0.219295
743743 38.5442 1.41405 0.707026 0.707188i 0.250037π-0.250037\pi
0.707026 + 0.707188i 0.250037π0.250037\pi
744744 9.61619 0.352547
745745 −15.8451 −0.580521
746746 −54.5497 −1.99721
747747 14.4154 0.527430
748748 −1.52555 −0.0557796
749749 −70.4714 −2.57497
750750 1.09027 0.0398111
751751 −42.9011 −1.56548 −0.782741 0.622348i 0.786179π-0.786179\pi
−0.782741 + 0.622348i 0.786179π0.786179\pi
752752 −22.8454 −0.833086
753753 −2.35334 −0.0857606
754754 −19.1708 −0.698158
755755 14.2944 0.520227
756756 −2.34465 −0.0852739
757757 17.3376 0.630146 0.315073 0.949067i 0.397971π-0.397971\pi
0.315073 + 0.949067i 0.397971π0.397971\pi
758758 −33.7434 −1.22562
759759 14.8687 0.539700
760760 −13.1632 −0.477480
761761 41.5752 1.50710 0.753550 0.657390i 0.228340π-0.228340\pi
0.753550 + 0.657390i 0.228340π0.228340\pi
762762 −14.8184 −0.536815
763763 −11.9565 −0.432853
764764 1.28209 0.0463845
765765 −5.62536 −0.203385
766766 −18.8474 −0.680983
767767 20.0179 0.722805
768768 2.60624 0.0940445
769769 −10.1940 −0.367603 −0.183802 0.982963i 0.558840π-0.558840\pi
−0.183802 + 0.982963i 0.558840π0.558840\pi
770770 −26.1286 −0.941609
771771 −8.72712 −0.314300
772772 3.17550 0.114289
773773 −1.79833 −0.0646816 −0.0323408 0.999477i 0.510296π-0.510296\pi
−0.0323408 + 0.999477i 0.510296π0.510296\pi
774774 4.28258 0.153934
775775 −4.75908 −0.170951
776776 −17.2970 −0.620926
777777 −2.93453 −0.105276
778778 −23.6176 −0.846732
779779 25.2775 0.905661
780780 0.149475 0.00535206
781781 −68.6398 −2.45613
782782 −14.8873 −0.532368
783783 38.7277 1.38402
784784 −36.5321 −1.30472
785785 −1.95398 −0.0697406
786786 23.0918 0.823658
787787 −44.7062 −1.59360 −0.796802 0.604241i 0.793477π-0.793477\pi
−0.796802 + 0.604241i 0.793477π0.793477\pi
788788 −0.382321 −0.0136196
789789 0.562139 0.0200127
790790 6.80597 0.242146
791791 −79.6211 −2.83100
792792 −30.0383 −1.06737
793793 1.79058 0.0635852
794794 −18.9725 −0.673310
795795 0.769314 0.0272847
796796 −0.964680 −0.0341922
797797 1.95203 0.0691444 0.0345722 0.999402i 0.488993π-0.488993\pi
0.0345722 + 0.999402i 0.488993π0.488993\pi
798798 20.8428 0.737826
799799 12.2977 0.435062
800800 −0.828243 −0.0292828
801801 25.3030 0.894038
802802 −25.2671 −0.892211
803803 21.7762 0.768467
804804 0.790336 0.0278730
805805 −17.4250 −0.614151
806806 −9.54748 −0.336296
807807 10.0117 0.352429
808808 12.5489 0.441469
809809 32.1732 1.13115 0.565574 0.824698i 0.308655π-0.308655\pi
0.565574 + 0.824698i 0.308655π0.308655\pi
810810 6.33397 0.222553
811811 43.5729 1.53005 0.765025 0.644000i 0.222726π-0.222726\pi
0.765025 + 0.644000i 0.222726π0.222726\pi
812812 −5.52844 −0.194010
813813 5.91039 0.207286
814814 6.62562 0.232228
815815 3.01431 0.105587
816816 −7.30995 −0.255900
817817 −5.79223 −0.202645
818818 45.8478 1.60303
819819 −13.2091 −0.461564
820820 0.764967 0.0267138
821821 −42.7990 −1.49370 −0.746848 0.664995i 0.768434π-0.768434\pi
−0.746848 + 0.664995i 0.768434π0.768434\pi
822822 7.82658 0.272983
823823 52.9850 1.84694 0.923470 0.383670i 0.125340π-0.125340\pi
0.923470 + 0.383670i 0.125340π0.125340\pi
824824 −49.8908 −1.73803
825825 −3.36504 −0.117156
826826 84.4724 2.93917
827827 23.3945 0.813508 0.406754 0.913538i 0.366661π-0.366661\pi
0.406754 + 0.913538i 0.366661π0.366661\pi
828828 1.58572 0.0551077
829829 0.375803 0.0130522 0.00652608 0.999979i 0.497923π-0.497923\pi
0.00652608 + 0.999979i 0.497923π0.497923\pi
830830 −8.63390 −0.299687
831831 5.12437 0.177762
832832 10.0369 0.347966
833833 19.6653 0.681362
834834 −14.1302 −0.489288
835835 4.16008 0.143965
836836 −3.21596 −0.111226
837837 19.2873 0.666666
838838 −17.3187 −0.598263
839839 15.8320 0.546583 0.273291 0.961931i 0.411888π-0.411888\pi
0.273291 + 0.961931i 0.411888π0.411888\pi
840840 −7.96837 −0.274935
841841 62.3161 2.14883
842842 28.0832 0.967810
843843 11.9711 0.412307
844844 −0.293693 −0.0101093
845845 −11.1252 −0.382718
846846 −19.1677 −0.658998
847847 37.2644 1.28042
848848 −4.41646 −0.151662
849849 18.5485 0.636581
850850 3.36924 0.115564
851851 4.41859 0.151467
852852 1.65701 0.0567681
853853 −9.32579 −0.319309 −0.159655 0.987173i 0.551038π-0.551038\pi
−0.159655 + 0.987173i 0.551038π0.551038\pi
854854 7.55595 0.258559
855855 −11.8587 −0.405557
856856 48.5238 1.65851
857857 −5.99313 −0.204721 −0.102361 0.994747i 0.532640π-0.532640\pi
−0.102361 + 0.994747i 0.532640π0.532640\pi
858858 −6.75080 −0.230469
859859 −44.6541 −1.52358 −0.761788 0.647826i 0.775678π-0.775678\pi
−0.761788 + 0.647826i 0.775678π0.775678\pi
860860 −0.175289 −0.00597730
861861 15.3018 0.521483
862862 14.3362 0.488292
863863 −21.8515 −0.743832 −0.371916 0.928266i 0.621299π-0.621299\pi
−0.371916 + 0.928266i 0.621299π0.621299\pi
864864 3.35665 0.114196
865865 −3.79279 −0.128959
866866 51.6706 1.75584
867867 −8.71525 −0.295986
868868 −2.75329 −0.0934527
869869 −21.0061 −0.712582
870870 −10.4186 −0.353223
871871 9.91295 0.335888
872872 8.23273 0.278795
873873 −15.5827 −0.527396
874874 −31.3834 −1.06156
875875 3.94357 0.133317
876876 −0.525691 −0.0177615
877877 −11.3951 −0.384786 −0.192393 0.981318i 0.561625π-0.561625\pi
−0.192393 + 0.981318i 0.561625π0.561625\pi
878878 35.8868 1.21112
879879 19.4019 0.654409
880880 19.3179 0.651206
881881 −48.2087 −1.62419 −0.812096 0.583523i 0.801674π-0.801674\pi
−0.812096 + 0.583523i 0.801674π0.801674\pi
882882 −30.6510 −1.03207
883883 −36.2461 −1.21978 −0.609890 0.792486i 0.708786π-0.708786\pi
−0.609890 + 0.792486i 0.708786π0.708786\pi
884884 0.461918 0.0155360
885885 10.8790 0.365693
886886 −38.3653 −1.28891
887887 −23.8002 −0.799134 −0.399567 0.916704i 0.630840π-0.630840\pi
−0.399567 + 0.916704i 0.630840π0.630840\pi
888888 2.02060 0.0678069
889889 −53.5990 −1.79765
890890 −15.1549 −0.507995
891891 −19.5493 −0.654925
892892 −1.09059 −0.0365158
893893 25.9245 0.867530
894894 −17.2755 −0.577780
895895 −13.0017 −0.434599
896896 48.8865 1.63318
897897 −4.50207 −0.150320
898898 58.1624 1.94090
899899 45.4775 1.51676
900900 −0.358875 −0.0119625
901901 2.37739 0.0792023
902902 −34.5486 −1.15034
903903 −3.50634 −0.116684
904904 54.8239 1.82342
905905 −16.6739 −0.554260
906906 15.5848 0.517771
907907 −9.82566 −0.326256 −0.163128 0.986605i 0.552158π-0.552158\pi
−0.163128 + 0.986605i 0.552158π0.552158\pi
908908 −0.0928643 −0.00308181
909909 11.3052 0.374971
910910 7.91143 0.262261
911911 31.2125 1.03412 0.517058 0.855950i 0.327027π-0.327027\pi
0.517058 + 0.855950i 0.327027π0.327027\pi
912912 −15.4099 −0.510273
913913 26.6478 0.881914
914914 30.2999 1.00223
915915 0.973111 0.0321701
916916 2.33437 0.0771298
917917 83.5243 2.75821
918918 −13.6546 −0.450670
919919 28.5950 0.943263 0.471631 0.881796i 0.343665π-0.343665\pi
0.471631 + 0.881796i 0.343665π0.343665\pi
920920 11.9982 0.395567
921921 −13.6160 −0.448663
922922 −8.08424 −0.266240
923923 20.7833 0.684092
924924 −1.94679 −0.0640446
925925 −1.00000 −0.0328798
926926 30.7366 1.01007
927927 −44.9463 −1.47623
928928 7.91465 0.259811
929929 −45.3832 −1.48898 −0.744488 0.667636i 0.767306π-0.767306\pi
−0.744488 + 0.667636i 0.767306π0.767306\pi
930930 −5.18869 −0.170144
931931 41.4558 1.35866
932932 −1.30488 −0.0427426
933933 −1.07242 −0.0351095
934934 −11.1684 −0.365440
935935 −10.3989 −0.340080
936936 9.09526 0.297288
937937 −27.0457 −0.883543 −0.441772 0.897128i 0.645650π-0.645650\pi
−0.441772 + 0.897128i 0.645650π0.645650\pi
938938 41.8311 1.36583
939939 −13.7675 −0.449285
940940 0.784546 0.0255891
941941 31.3367 1.02155 0.510773 0.859716i 0.329359π-0.329359\pi
0.510773 + 0.859716i 0.329359π0.329359\pi
942942 −2.13037 −0.0694113
943943 −23.0402 −0.750293
944944 −62.4538 −2.03270
945945 −15.9822 −0.519903
946946 7.91665 0.257393
947947 −27.4446 −0.891830 −0.445915 0.895075i 0.647122π-0.647122\pi
−0.445915 + 0.895075i 0.647122π0.647122\pi
948948 0.507099 0.0164698
949949 −6.59359 −0.214037
950950 7.10259 0.230439
951951 −17.9858 −0.583231
952952 −24.6244 −0.798083
953953 −35.3324 −1.14453 −0.572265 0.820069i 0.693935π-0.693935\pi
−0.572265 + 0.820069i 0.693935π0.693935\pi
954954 −3.70548 −0.119969
955955 8.73937 0.282799
956956 −0.0121294 −0.000392292 0
957957 32.1561 1.03946
958958 47.9760 1.55004
959959 28.3091 0.914150
960960 5.45467 0.176049
961961 −8.35116 −0.269392
962962 −2.00616 −0.0646812
963963 43.7147 1.40869
964964 −2.88008 −0.0927612
965965 21.6457 0.696801
966966 −18.9980 −0.611251
967967 31.4137 1.01020 0.505098 0.863062i 0.331456π-0.331456\pi
0.505098 + 0.863062i 0.331456π0.331456\pi
968968 −25.6588 −0.824705
969969 8.29519 0.266480
970970 9.33309 0.299667
971971 6.60982 0.212119 0.106060 0.994360i 0.466177π-0.466177\pi
0.106060 + 0.994360i 0.466177π0.466177\pi
972972 2.25558 0.0723477
973973 −51.1095 −1.63850
974974 −35.6748 −1.14310
975975 1.01889 0.0326307
976976 −5.58641 −0.178817
977977 −0.318781 −0.0101987 −0.00509935 0.999987i 0.501623π-0.501623\pi
−0.00509935 + 0.999987i 0.501623π0.501623\pi
978978 3.28642 0.105088
979979 46.7744 1.49492
980980 1.25457 0.0400757
981981 7.41681 0.236801
982982 14.4789 0.462042
983983 −10.7688 −0.343473 −0.171736 0.985143i 0.554938π-0.554938\pi
−0.171736 + 0.985143i 0.554938π0.554938\pi
984984 −10.5362 −0.335881
985985 −2.60609 −0.0830368
986986 −32.1963 −1.02534
987987 15.6934 0.499527
988988 0.973756 0.0309793
989989 5.27957 0.167881
990990 16.2081 0.515126
991991 −23.6638 −0.751706 −0.375853 0.926679i 0.622650π-0.622650\pi
−0.375853 + 0.926679i 0.622650π0.622650\pi
992992 3.94167 0.125148
993993 −0.229491 −0.00728267
994994 87.7023 2.78175
995995 −6.57573 −0.208465
996996 −0.643294 −0.0203835
997997 −4.48006 −0.141885 −0.0709425 0.997480i 0.522601π-0.522601\pi
−0.0709425 + 0.997480i 0.522601π0.522601\pi
998998 56.2850 1.78167
999999 4.05274 0.128223
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 185.2.a.d.1.4 5
3.2 odd 2 1665.2.a.q.1.2 5
4.3 odd 2 2960.2.a.ba.1.2 5
5.2 odd 4 925.2.b.g.149.8 10
5.3 odd 4 925.2.b.g.149.3 10
5.4 even 2 925.2.a.h.1.2 5
7.6 odd 2 9065.2.a.j.1.4 5
15.14 odd 2 8325.2.a.cc.1.4 5
37.36 even 2 6845.2.a.g.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.a.d.1.4 5 1.1 even 1 trivial
925.2.a.h.1.2 5 5.4 even 2
925.2.b.g.149.3 10 5.3 odd 4
925.2.b.g.149.8 10 5.2 odd 4
1665.2.a.q.1.2 5 3.2 odd 2
2960.2.a.ba.1.2 5 4.3 odd 2
6845.2.a.g.1.2 5 37.36 even 2
8325.2.a.cc.1.4 5 15.14 odd 2
9065.2.a.j.1.4 5 7.6 odd 2