Properties

Label 684.2.r.b.559.7
Level $684$
Weight $2$
Character 684.559
Analytic conductor $5.462$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [684,2,Mod(487,684)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(684, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("684.487"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.46176749826\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 3 x^{18} - 2 x^{17} + x^{16} + 3 x^{14} - 12 x^{13} + 28 x^{12} - 24 x^{11} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 228)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 559.7
Root \(0.818463 - 1.15331i\) of defining polynomial
Character \(\chi\) \(=\) 684.559
Dual form 684.2.r.b.487.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.589563 + 1.28546i) q^{2} +(-1.30483 + 1.51572i) q^{4} +(2.18826 - 3.79018i) q^{5} +0.239504i q^{7} +(-2.71769 - 0.783701i) q^{8} +(6.16226 + 0.578382i) q^{10} -4.67278i q^{11} +(-2.48235 + 1.43318i) q^{13} +(-0.307873 + 0.141202i) q^{14} +(-0.594827 - 3.95553i) q^{16} +(1.08855 - 1.88543i) q^{17} +(4.03471 - 1.64957i) q^{19} +(2.88955 + 8.26235i) q^{20} +(6.00668 - 2.75489i) q^{22} +(-0.110122 + 0.0635792i) q^{23} +(-7.07699 - 12.2577i) q^{25} +(-3.30580 - 2.34601i) q^{26} +(-0.363021 - 0.312512i) q^{28} +(1.35698 - 0.783454i) q^{29} +5.03817 q^{31} +(4.73399 - 3.09666i) q^{32} +(3.06542 + 0.287717i) q^{34} +(0.907762 + 0.524097i) q^{35} +11.2173i q^{37} +(4.49918 + 4.21395i) q^{38} +(-8.91738 + 8.58558i) q^{40} +(0.433736 + 0.250418i) q^{41} +(-5.18284 - 2.99231i) q^{43} +(7.08263 + 6.09719i) q^{44} +(-0.146653 - 0.104074i) q^{46} +(1.85862 - 1.07308i) q^{47} +6.94264 q^{49} +(11.5845 - 16.3239i) q^{50} +(1.06674 - 5.63261i) q^{52} +(-0.825696 + 0.476716i) q^{53} +(-17.7107 - 10.2253i) q^{55} +(0.187699 - 0.650895i) q^{56} +(1.80713 + 1.28245i) q^{58} +(-5.47728 + 9.48693i) q^{59} +(2.77228 + 4.80174i) q^{61} +(2.97031 + 6.47638i) q^{62} +(6.77163 + 4.25970i) q^{64} +12.5447i q^{65} +(4.16350 + 7.21139i) q^{67} +(1.43741 + 4.11011i) q^{68} +(-0.138525 + 1.47588i) q^{70} +(3.74409 - 6.48496i) q^{71} +(-3.16780 + 5.48679i) q^{73} +(-14.4195 + 6.61331i) q^{74} +(-2.76433 + 8.26792i) q^{76} +1.11915 q^{77} +(4.85783 - 8.41402i) q^{79} +(-16.2938 - 6.40123i) q^{80} +(-0.0661882 + 0.705189i) q^{82} +12.7727i q^{83} +(-4.76408 - 8.25163i) q^{85} +(0.790901 - 8.42651i) q^{86} +(-3.66206 + 12.6991i) q^{88} +(-4.53985 + 2.62108i) q^{89} +(-0.343252 - 0.594531i) q^{91} +(0.0473228 - 0.249875i) q^{92} +(2.47518 + 1.75655i) q^{94} +(2.57683 - 18.9020i) q^{95} +(-7.33528 - 4.23502i) q^{97} +(4.09312 + 8.92451i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - q^{2} + q^{4} - 4 q^{8} + 6 q^{10} + 6 q^{13} - 9 q^{14} - 11 q^{16} + 12 q^{19} + 14 q^{20} + 8 q^{22} - 10 q^{25} + 7 q^{28} + 12 q^{31} + 29 q^{32} - 6 q^{34} - 25 q^{38} - 46 q^{40} - 12 q^{41}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/684\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(343\) \(533\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.589563 + 1.28546i 0.416884 + 0.908960i
\(3\) 0 0
\(4\) −1.30483 + 1.51572i −0.652416 + 0.757861i
\(5\) 2.18826 3.79018i 0.978621 1.69502i 0.311194 0.950347i \(-0.399271\pi\)
0.667427 0.744675i \(-0.267395\pi\)
\(6\) 0 0
\(7\) 0.239504i 0.0905238i 0.998975 + 0.0452619i \(0.0144122\pi\)
−0.998975 + 0.0452619i \(0.985588\pi\)
\(8\) −2.71769 0.783701i −0.960847 0.277080i
\(9\) 0 0
\(10\) 6.16226 + 0.578382i 1.94868 + 0.182900i
\(11\) 4.67278i 1.40890i −0.709756 0.704448i \(-0.751195\pi\)
0.709756 0.704448i \(-0.248805\pi\)
\(12\) 0 0
\(13\) −2.48235 + 1.43318i −0.688479 + 0.397493i −0.803042 0.595923i \(-0.796787\pi\)
0.114563 + 0.993416i \(0.463453\pi\)
\(14\) −0.307873 + 0.141202i −0.0822825 + 0.0377379i
\(15\) 0 0
\(16\) −0.594827 3.95553i −0.148707 0.988881i
\(17\) 1.08855 1.88543i 0.264013 0.457284i −0.703292 0.710901i \(-0.748287\pi\)
0.967305 + 0.253618i \(0.0816205\pi\)
\(18\) 0 0
\(19\) 4.03471 1.64957i 0.925627 0.378438i
\(20\) 2.88955 + 8.26235i 0.646123 + 1.84752i
\(21\) 0 0
\(22\) 6.00668 2.75489i 1.28063 0.587345i
\(23\) −0.110122 + 0.0635792i −0.0229621 + 0.0132572i −0.511437 0.859321i \(-0.670887\pi\)
0.488475 + 0.872578i \(0.337553\pi\)
\(24\) 0 0
\(25\) −7.07699 12.2577i −1.41540 2.45154i
\(26\) −3.30580 2.34601i −0.648321 0.460091i
\(27\) 0 0
\(28\) −0.363021 0.312512i −0.0686045 0.0590592i
\(29\) 1.35698 0.783454i 0.251985 0.145484i −0.368688 0.929553i \(-0.620193\pi\)
0.620673 + 0.784070i \(0.286860\pi\)
\(30\) 0 0
\(31\) 5.03817 0.904881 0.452441 0.891795i \(-0.350553\pi\)
0.452441 + 0.891795i \(0.350553\pi\)
\(32\) 4.73399 3.09666i 0.836860 0.547417i
\(33\) 0 0
\(34\) 3.06542 + 0.287717i 0.525715 + 0.0493430i
\(35\) 0.907762 + 0.524097i 0.153440 + 0.0885885i
\(36\) 0 0
\(37\) 11.2173i 1.84412i 0.387051 + 0.922058i \(0.373494\pi\)
−0.387051 + 0.922058i \(0.626506\pi\)
\(38\) 4.49918 + 4.21395i 0.729864 + 0.683593i
\(39\) 0 0
\(40\) −8.91738 + 8.58558i −1.40996 + 1.35750i
\(41\) 0.433736 + 0.250418i 0.0677382 + 0.0391087i 0.533487 0.845809i \(-0.320881\pi\)
−0.465748 + 0.884917i \(0.654215\pi\)
\(42\) 0 0
\(43\) −5.18284 2.99231i −0.790376 0.456324i 0.0497191 0.998763i \(-0.484167\pi\)
−0.840095 + 0.542440i \(0.817501\pi\)
\(44\) 7.08263 + 6.09719i 1.06775 + 0.919186i
\(45\) 0 0
\(46\) −0.146653 0.104074i −0.0216228 0.0153449i
\(47\) 1.85862 1.07308i 0.271108 0.156524i −0.358283 0.933613i \(-0.616638\pi\)
0.629391 + 0.777089i \(0.283304\pi\)
\(48\) 0 0
\(49\) 6.94264 0.991805
\(50\) 11.5845 16.3239i 1.63830 2.30855i
\(51\) 0 0
\(52\) 1.06674 5.63261i 0.147930 0.781102i
\(53\) −0.825696 + 0.476716i −0.113418 + 0.0654820i −0.555636 0.831426i \(-0.687525\pi\)
0.442218 + 0.896908i \(0.354192\pi\)
\(54\) 0 0
\(55\) −17.7107 10.2253i −2.38811 1.37877i
\(56\) 0.187699 0.650895i 0.0250823 0.0869795i
\(57\) 0 0
\(58\) 1.80713 + 1.28245i 0.237287 + 0.168395i
\(59\) −5.47728 + 9.48693i −0.713081 + 1.23509i 0.250614 + 0.968087i \(0.419368\pi\)
−0.963695 + 0.267006i \(0.913966\pi\)
\(60\) 0 0
\(61\) 2.77228 + 4.80174i 0.354955 + 0.614799i 0.987110 0.160042i \(-0.0511630\pi\)
−0.632156 + 0.774841i \(0.717830\pi\)
\(62\) 2.97031 + 6.47638i 0.377230 + 0.822501i
\(63\) 0 0
\(64\) 6.77163 + 4.25970i 0.846453 + 0.532463i
\(65\) 12.5447i 1.55598i
\(66\) 0 0
\(67\) 4.16350 + 7.21139i 0.508652 + 0.881012i 0.999950 + 0.0100198i \(0.00318946\pi\)
−0.491297 + 0.870992i \(0.663477\pi\)
\(68\) 1.43741 + 4.11011i 0.174311 + 0.498424i
\(69\) 0 0
\(70\) −0.138525 + 1.47588i −0.0165568 + 0.176402i
\(71\) 3.74409 6.48496i 0.444342 0.769623i −0.553664 0.832740i \(-0.686771\pi\)
0.998006 + 0.0631171i \(0.0201042\pi\)
\(72\) 0 0
\(73\) −3.16780 + 5.48679i −0.370763 + 0.642180i −0.989683 0.143274i \(-0.954237\pi\)
0.618920 + 0.785454i \(0.287570\pi\)
\(74\) −14.4195 + 6.61331i −1.67623 + 0.768782i
\(75\) 0 0
\(76\) −2.76433 + 8.26792i −0.317090 + 0.948395i
\(77\) 1.11915 0.127539
\(78\) 0 0
\(79\) 4.85783 8.41402i 0.546549 0.946651i −0.451959 0.892039i \(-0.649275\pi\)
0.998508 0.0546119i \(-0.0173922\pi\)
\(80\) −16.2938 6.40123i −1.82170 0.715679i
\(81\) 0 0
\(82\) −0.0661882 + 0.705189i −0.00730926 + 0.0778751i
\(83\) 12.7727i 1.40198i 0.713170 + 0.700991i \(0.247259\pi\)
−0.713170 + 0.700991i \(0.752741\pi\)
\(84\) 0 0
\(85\) −4.76408 8.25163i −0.516737 0.895015i
\(86\) 0.790901 8.42651i 0.0852851 0.908654i
\(87\) 0 0
\(88\) −3.66206 + 12.6991i −0.390377 + 1.35373i
\(89\) −4.53985 + 2.62108i −0.481223 + 0.277834i −0.720926 0.693012i \(-0.756283\pi\)
0.239703 + 0.970846i \(0.422950\pi\)
\(90\) 0 0
\(91\) −0.343252 0.594531i −0.0359826 0.0623237i
\(92\) 0.0473228 0.249875i 0.00493374 0.0260513i
\(93\) 0 0
\(94\) 2.47518 + 1.75655i 0.255295 + 0.181174i
\(95\) 2.57683 18.9020i 0.264377 1.93930i
\(96\) 0 0
\(97\) −7.33528 4.23502i −0.744784 0.430001i 0.0790219 0.996873i \(-0.474820\pi\)
−0.823806 + 0.566871i \(0.808154\pi\)
\(98\) 4.09312 + 8.92451i 0.413468 + 0.901511i
\(99\) 0 0
\(100\) 27.8136 + 5.26750i 2.78136 + 0.526750i
\(101\) −0.920375 1.59414i −0.0915808 0.158623i 0.816596 0.577210i \(-0.195859\pi\)
−0.908176 + 0.418588i \(0.862525\pi\)
\(102\) 0 0
\(103\) 6.25383 0.616209 0.308104 0.951353i \(-0.400305\pi\)
0.308104 + 0.951353i \(0.400305\pi\)
\(104\) 7.86942 1.94952i 0.771660 0.191167i
\(105\) 0 0
\(106\) −1.09960 0.780348i −0.106803 0.0757941i
\(107\) −10.5621 −1.02108 −0.510538 0.859855i \(-0.670554\pi\)
−0.510538 + 0.859855i \(0.670554\pi\)
\(108\) 0 0
\(109\) 7.09063 + 4.09378i 0.679159 + 0.392113i 0.799538 0.600615i \(-0.205078\pi\)
−0.120379 + 0.992728i \(0.538411\pi\)
\(110\) 2.70265 28.7949i 0.257688 2.74548i
\(111\) 0 0
\(112\) 0.947362 0.142463i 0.0895173 0.0134615i
\(113\) 3.64620i 0.343006i −0.985184 0.171503i \(-0.945138\pi\)
0.985184 0.171503i \(-0.0548623\pi\)
\(114\) 0 0
\(115\) 0.556512i 0.0518950i
\(116\) −0.583135 + 3.07908i −0.0541427 + 0.285886i
\(117\) 0 0
\(118\) −15.4243 1.44771i −1.41992 0.133272i
\(119\) 0.451567 + 0.260712i 0.0413951 + 0.0238995i
\(120\) 0 0
\(121\) −10.8348 −0.984985
\(122\) −4.53802 + 6.39459i −0.410853 + 0.578939i
\(123\) 0 0
\(124\) −6.57396 + 7.63646i −0.590359 + 0.685774i
\(125\) −40.0627 −3.58331
\(126\) 0 0
\(127\) −7.95258 13.7743i −0.705677 1.22227i −0.966447 0.256867i \(-0.917310\pi\)
0.260770 0.965401i \(-0.416024\pi\)
\(128\) −1.48339 + 11.2160i −0.131115 + 0.991367i
\(129\) 0 0
\(130\) −16.1258 + 7.39590i −1.41432 + 0.648663i
\(131\) −3.69633 2.13407i −0.322949 0.186455i 0.329757 0.944066i \(-0.393033\pi\)
−0.652706 + 0.757611i \(0.726367\pi\)
\(132\) 0 0
\(133\) 0.395078 + 0.966328i 0.0342576 + 0.0837913i
\(134\) −6.81534 + 9.60359i −0.588755 + 0.829624i
\(135\) 0 0
\(136\) −4.43596 + 4.27090i −0.380380 + 0.366227i
\(137\) −3.13941 5.43762i −0.268218 0.464567i 0.700184 0.713963i \(-0.253101\pi\)
−0.968402 + 0.249395i \(0.919768\pi\)
\(138\) 0 0
\(139\) 10.9010 6.29369i 0.924611 0.533824i 0.0395075 0.999219i \(-0.487421\pi\)
0.885103 + 0.465395i \(0.154088\pi\)
\(140\) −1.97886 + 0.692057i −0.167244 + 0.0584895i
\(141\) 0 0
\(142\) 10.5436 + 0.989605i 0.884795 + 0.0830458i
\(143\) 6.69694 + 11.5994i 0.560026 + 0.969994i
\(144\) 0 0
\(145\) 6.85761i 0.569494i
\(146\) −8.92069 0.837285i −0.738281 0.0692942i
\(147\) 0 0
\(148\) −17.0023 14.6367i −1.39758 1.20313i
\(149\) −0.500289 + 0.866526i −0.0409853 + 0.0709886i −0.885790 0.464086i \(-0.846383\pi\)
0.844805 + 0.535074i \(0.179716\pi\)
\(150\) 0 0
\(151\) 10.0189 0.815323 0.407661 0.913133i \(-0.366344\pi\)
0.407661 + 0.913133i \(0.366344\pi\)
\(152\) −12.2579 + 1.32101i −0.994243 + 0.107148i
\(153\) 0 0
\(154\) 0.659807 + 1.43862i 0.0531687 + 0.115927i
\(155\) 11.0248 19.0956i 0.885536 1.53379i
\(156\) 0 0
\(157\) 6.73633 11.6677i 0.537618 0.931181i −0.461414 0.887185i \(-0.652658\pi\)
0.999032 0.0439960i \(-0.0140089\pi\)
\(158\) 13.6799 + 1.28398i 1.08831 + 0.102148i
\(159\) 0 0
\(160\) −1.37767 24.7190i −0.108915 1.95421i
\(161\) −0.0152274 0.0263747i −0.00120009 0.00207862i
\(162\) 0 0
\(163\) 20.0318i 1.56901i 0.620123 + 0.784505i \(0.287083\pi\)
−0.620123 + 0.784505i \(0.712917\pi\)
\(164\) −0.945517 + 0.330671i −0.0738325 + 0.0258210i
\(165\) 0 0
\(166\) −16.4188 + 7.53028i −1.27434 + 0.584463i
\(167\) 1.87933 + 3.25510i 0.145427 + 0.251887i 0.929532 0.368741i \(-0.120211\pi\)
−0.784105 + 0.620628i \(0.786878\pi\)
\(168\) 0 0
\(169\) −2.39197 + 4.14302i −0.183998 + 0.318694i
\(170\) 7.79845 10.9889i 0.598113 0.842811i
\(171\) 0 0
\(172\) 11.2983 3.95128i 0.861484 0.301282i
\(173\) −6.73650 3.88932i −0.512167 0.295700i 0.221557 0.975147i \(-0.428886\pi\)
−0.733724 + 0.679448i \(0.762219\pi\)
\(174\) 0 0
\(175\) 2.93576 1.69496i 0.221923 0.128127i
\(176\) −18.4833 + 2.77949i −1.39323 + 0.209512i
\(177\) 0 0
\(178\) −6.04584 4.29052i −0.453155 0.321588i
\(179\) 12.2389 0.914778 0.457389 0.889267i \(-0.348785\pi\)
0.457389 + 0.889267i \(0.348785\pi\)
\(180\) 0 0
\(181\) −4.52118 + 2.61031i −0.336057 + 0.194023i −0.658527 0.752557i \(-0.728820\pi\)
0.322470 + 0.946580i \(0.395487\pi\)
\(182\) 0.561878 0.791751i 0.0416492 0.0586885i
\(183\) 0 0
\(184\) 0.349105 0.0864852i 0.0257364 0.00637577i
\(185\) 42.5157 + 24.5465i 3.12582 + 1.80469i
\(186\) 0 0
\(187\) −8.81019 5.08657i −0.644265 0.371966i
\(188\) −0.798705 + 4.21734i −0.0582516 + 0.307581i
\(189\) 0 0
\(190\) 25.8170 7.83149i 1.87296 0.568156i
\(191\) 14.9269i 1.08008i −0.841641 0.540038i \(-0.818410\pi\)
0.841641 0.540038i \(-0.181590\pi\)
\(192\) 0 0
\(193\) 13.2285 + 7.63746i 0.952206 + 0.549757i 0.893766 0.448534i \(-0.148054\pi\)
0.0584407 + 0.998291i \(0.481387\pi\)
\(194\) 1.11936 11.9260i 0.0803656 0.856240i
\(195\) 0 0
\(196\) −9.05898 + 10.5231i −0.647070 + 0.751651i
\(197\) 21.2411 1.51336 0.756682 0.653783i \(-0.226819\pi\)
0.756682 + 0.653783i \(0.226819\pi\)
\(198\) 0 0
\(199\) −16.3956 + 9.46600i −1.16225 + 0.671027i −0.951843 0.306586i \(-0.900813\pi\)
−0.210410 + 0.977613i \(0.567480\pi\)
\(200\) 9.62666 + 38.8588i 0.680708 + 2.74773i
\(201\) 0 0
\(202\) 1.50659 2.12295i 0.106003 0.149370i
\(203\) 0.187640 + 0.325002i 0.0131697 + 0.0228107i
\(204\) 0 0
\(205\) 1.89826 1.09596i 0.132580 0.0765452i
\(206\) 3.68703 + 8.03907i 0.256887 + 0.560109i
\(207\) 0 0
\(208\) 7.14556 + 8.96648i 0.495455 + 0.621714i
\(209\) −7.70808 18.8533i −0.533179 1.30411i
\(210\) 0 0
\(211\) −13.2887 + 23.0167i −0.914832 + 1.58454i −0.107685 + 0.994185i \(0.534344\pi\)
−0.807147 + 0.590350i \(0.798990\pi\)
\(212\) 0.354826 1.87356i 0.0243695 0.128677i
\(213\) 0 0
\(214\) −6.22702 13.5772i −0.425670 0.928118i
\(215\) −22.6828 + 13.0959i −1.54696 + 0.893136i
\(216\) 0 0
\(217\) 1.20666i 0.0819133i
\(218\) −1.08203 + 11.5283i −0.0732844 + 0.780794i
\(219\) 0 0
\(220\) 38.6081 13.5022i 2.60296 0.910319i
\(221\) 6.24038i 0.419774i
\(222\) 0 0
\(223\) 4.99275 8.64770i 0.334339 0.579093i −0.649018 0.760773i \(-0.724820\pi\)
0.983358 + 0.181680i \(0.0581535\pi\)
\(224\) 0.741661 + 1.13381i 0.0495543 + 0.0757558i
\(225\) 0 0
\(226\) 4.68706 2.14967i 0.311779 0.142994i
\(227\) −8.45242 −0.561007 −0.280503 0.959853i \(-0.590501\pi\)
−0.280503 + 0.959853i \(0.590501\pi\)
\(228\) 0 0
\(229\) 13.7714 0.910043 0.455021 0.890481i \(-0.349632\pi\)
0.455021 + 0.890481i \(0.349632\pi\)
\(230\) −0.715375 + 0.328099i −0.0471705 + 0.0216342i
\(231\) 0 0
\(232\) −4.30184 + 1.06571i −0.282430 + 0.0699675i
\(233\) −0.711952 + 1.23314i −0.0466415 + 0.0807854i −0.888404 0.459063i \(-0.848185\pi\)
0.841762 + 0.539849i \(0.181519\pi\)
\(234\) 0 0
\(235\) 9.39270i 0.612712i
\(236\) −7.23262 20.6809i −0.470803 1.34621i
\(237\) 0 0
\(238\) −0.0689091 + 0.734179i −0.00446672 + 0.0475898i
\(239\) 19.9629i 1.29129i 0.763637 + 0.645646i \(0.223412\pi\)
−0.763637 + 0.645646i \(0.776588\pi\)
\(240\) 0 0
\(241\) −7.75801 + 4.47909i −0.499738 + 0.288524i −0.728605 0.684934i \(-0.759831\pi\)
0.228868 + 0.973458i \(0.426498\pi\)
\(242\) −6.38782 13.9278i −0.410624 0.895312i
\(243\) 0 0
\(244\) −10.8955 2.06345i −0.697510 0.132099i
\(245\) 15.1923 26.3139i 0.970602 1.68113i
\(246\) 0 0
\(247\) −7.65141 + 9.87729i −0.486848 + 0.628477i
\(248\) −13.6921 3.94841i −0.869452 0.250725i
\(249\) 0 0
\(250\) −23.6194 51.4991i −1.49382 3.25709i
\(251\) 14.1105 8.14673i 0.890650 0.514217i 0.0164947 0.999864i \(-0.494749\pi\)
0.874155 + 0.485647i \(0.161416\pi\)
\(252\) 0 0
\(253\) 0.297091 + 0.514577i 0.0186780 + 0.0323512i
\(254\) 13.0178 18.3435i 0.816808 1.15098i
\(255\) 0 0
\(256\) −15.2924 + 4.70571i −0.955773 + 0.294107i
\(257\) −13.8688 + 8.00714i −0.865110 + 0.499472i −0.865720 0.500528i \(-0.833139\pi\)
0.000609991 1.00000i \(0.499806\pi\)
\(258\) 0 0
\(259\) −2.68659 −0.166936
\(260\) −19.0143 16.3688i −1.17922 1.01515i
\(261\) 0 0
\(262\) 0.564059 6.00966i 0.0348477 0.371278i
\(263\) 9.02588 + 5.21109i 0.556559 + 0.321330i 0.751763 0.659433i \(-0.229204\pi\)
−0.195204 + 0.980763i \(0.562537\pi\)
\(264\) 0 0
\(265\) 4.17272i 0.256328i
\(266\) −1.00926 + 1.07757i −0.0618814 + 0.0660700i
\(267\) 0 0
\(268\) −16.3631 3.09895i −0.999537 0.189298i
\(269\) 4.84447 + 2.79696i 0.295373 + 0.170534i 0.640362 0.768073i \(-0.278784\pi\)
−0.344990 + 0.938607i \(0.612118\pi\)
\(270\) 0 0
\(271\) 19.1570 + 11.0603i 1.16370 + 0.671865i 0.952189 0.305510i \(-0.0988270\pi\)
0.211515 + 0.977375i \(0.432160\pi\)
\(272\) −8.10536 3.18429i −0.491460 0.193076i
\(273\) 0 0
\(274\) 5.13898 7.24142i 0.310457 0.437470i
\(275\) −57.2775 + 33.0692i −3.45397 + 1.99415i
\(276\) 0 0
\(277\) −17.6484 −1.06039 −0.530193 0.847877i \(-0.677881\pi\)
−0.530193 + 0.847877i \(0.677881\pi\)
\(278\) 14.5171 + 10.3023i 0.870680 + 0.617891i
\(279\) 0 0
\(280\) −2.05628 2.13574i −0.122886 0.127635i
\(281\) −20.0321 + 11.5656i −1.19502 + 0.689943i −0.959440 0.281913i \(-0.909031\pi\)
−0.235576 + 0.971856i \(0.575698\pi\)
\(282\) 0 0
\(283\) 4.47260 + 2.58226i 0.265868 + 0.153499i 0.627009 0.779012i \(-0.284279\pi\)
−0.361140 + 0.932512i \(0.617612\pi\)
\(284\) 4.94398 + 14.1368i 0.293371 + 0.838864i
\(285\) 0 0
\(286\) −10.9624 + 15.4473i −0.648220 + 0.913416i
\(287\) −0.0599759 + 0.103881i −0.00354027 + 0.00613192i
\(288\) 0 0
\(289\) 6.13010 + 10.6177i 0.360594 + 0.624568i
\(290\) 8.81521 4.04299i 0.517647 0.237413i
\(291\) 0 0
\(292\) −4.18300 11.9608i −0.244792 0.699956i
\(293\) 4.82921i 0.282125i 0.990001 + 0.141063i \(0.0450519\pi\)
−0.990001 + 0.141063i \(0.954948\pi\)
\(294\) 0 0
\(295\) 23.9715 + 41.5198i 1.39567 + 2.41738i
\(296\) 8.79102 30.4852i 0.510968 1.77191i
\(297\) 0 0
\(298\) −1.40884 0.132232i −0.0816118 0.00765999i
\(299\) 0.182241 0.315651i 0.0105393 0.0182546i
\(300\) 0 0
\(301\) 0.716670 1.24131i 0.0413082 0.0715478i
\(302\) 5.90674 + 12.8789i 0.339895 + 0.741095i
\(303\) 0 0
\(304\) −8.92488 14.9782i −0.511877 0.859059i
\(305\) 24.2659 1.38946
\(306\) 0 0
\(307\) −9.58882 + 16.6083i −0.547263 + 0.947888i 0.451198 + 0.892424i \(0.350997\pi\)
−0.998461 + 0.0554634i \(0.982336\pi\)
\(308\) −1.46030 + 1.69631i −0.0832082 + 0.0966565i
\(309\) 0 0
\(310\) 31.0465 + 2.91398i 1.76332 + 0.165503i
\(311\) 8.28172i 0.469613i −0.972042 0.234807i \(-0.924554\pi\)
0.972042 0.234807i \(-0.0754457\pi\)
\(312\) 0 0
\(313\) −10.3863 17.9895i −0.587067 1.01683i −0.994614 0.103645i \(-0.966949\pi\)
0.407548 0.913184i \(-0.366384\pi\)
\(314\) 18.9698 + 1.78049i 1.07053 + 0.100479i
\(315\) 0 0
\(316\) 6.41465 + 18.3420i 0.360852 + 1.03182i
\(317\) 12.2188 7.05454i 0.686277 0.396222i −0.115939 0.993256i \(-0.536988\pi\)
0.802216 + 0.597034i \(0.203654\pi\)
\(318\) 0 0
\(319\) −3.66090 6.34087i −0.204971 0.355021i
\(320\) 30.9632 16.3444i 1.73089 0.913677i
\(321\) 0 0
\(322\) 0.0249262 0.0351238i 0.00138908 0.00195737i
\(323\) 1.28185 9.40281i 0.0713239 0.523187i
\(324\) 0 0
\(325\) 35.1351 + 20.2852i 1.94894 + 1.12522i
\(326\) −25.7501 + 11.8100i −1.42617 + 0.654094i
\(327\) 0 0
\(328\) −0.982506 1.02048i −0.0542498 0.0563464i
\(329\) 0.257006 + 0.445147i 0.0141692 + 0.0245417i
\(330\) 0 0
\(331\) 13.6376 0.749592 0.374796 0.927107i \(-0.377713\pi\)
0.374796 + 0.927107i \(0.377713\pi\)
\(332\) −19.3598 16.6662i −1.06251 0.914675i
\(333\) 0 0
\(334\) −3.07632 + 4.33489i −0.168329 + 0.237195i
\(335\) 36.4433 1.99111
\(336\) 0 0
\(337\) −5.27825 3.04740i −0.287525 0.166002i 0.349300 0.937011i \(-0.386419\pi\)
−0.636825 + 0.771008i \(0.719753\pi\)
\(338\) −6.73592 0.632225i −0.366386 0.0343885i
\(339\) 0 0
\(340\) 18.7235 + 3.54597i 1.01542 + 0.192307i
\(341\) 23.5422i 1.27488i
\(342\) 0 0
\(343\) 3.33931i 0.180306i
\(344\) 11.7402 + 12.1940i 0.632992 + 0.657454i
\(345\) 0 0
\(346\) 1.02799 10.9525i 0.0552651 0.588812i
\(347\) −6.24383 3.60488i −0.335186 0.193520i 0.322955 0.946414i \(-0.395324\pi\)
−0.658141 + 0.752894i \(0.728657\pi\)
\(348\) 0 0
\(349\) 0.239146 0.0128012 0.00640060 0.999980i \(-0.497963\pi\)
0.00640060 + 0.999980i \(0.497963\pi\)
\(350\) 3.90963 + 2.77453i 0.208979 + 0.148305i
\(351\) 0 0
\(352\) −14.4700 22.1209i −0.771253 1.17905i
\(353\) 27.7812 1.47864 0.739322 0.673352i \(-0.235146\pi\)
0.739322 + 0.673352i \(0.235146\pi\)
\(354\) 0 0
\(355\) −16.3861 28.3816i −0.869685 1.50634i
\(356\) 1.95091 10.3012i 0.103398 0.545964i
\(357\) 0 0
\(358\) 7.21559 + 15.7326i 0.381356 + 0.831496i
\(359\) 18.0826 + 10.4400i 0.954362 + 0.551001i 0.894433 0.447201i \(-0.147579\pi\)
0.0599291 + 0.998203i \(0.480913\pi\)
\(360\) 0 0
\(361\) 13.5578 13.3111i 0.713570 0.700584i
\(362\) −6.02097 4.27288i −0.316455 0.224577i
\(363\) 0 0
\(364\) 1.34903 + 0.255487i 0.0707084 + 0.0133912i
\(365\) 13.8640 + 24.0131i 0.725673 + 1.25690i
\(366\) 0 0
\(367\) 0.657637 0.379687i 0.0343284 0.0198195i −0.482738 0.875765i \(-0.660358\pi\)
0.517066 + 0.855946i \(0.327024\pi\)
\(368\) 0.316993 + 0.397773i 0.0165244 + 0.0207354i
\(369\) 0 0
\(370\) −6.48790 + 69.1240i −0.337290 + 3.59359i
\(371\) −0.114175 0.197757i −0.00592768 0.0102670i
\(372\) 0 0
\(373\) 24.1303i 1.24942i 0.780857 + 0.624709i \(0.214782\pi\)
−0.780857 + 0.624709i \(0.785218\pi\)
\(374\) 1.34444 14.3240i 0.0695191 0.740678i
\(375\) 0 0
\(376\) −5.89213 + 1.45968i −0.303863 + 0.0752773i
\(377\) −2.24566 + 3.88960i −0.115658 + 0.200325i
\(378\) 0 0
\(379\) 0.598000 0.0307172 0.0153586 0.999882i \(-0.495111\pi\)
0.0153586 + 0.999882i \(0.495111\pi\)
\(380\) 25.2878 + 28.5697i 1.29724 + 1.46559i
\(381\) 0 0
\(382\) 19.1880 8.80037i 0.981746 0.450266i
\(383\) 6.48012 11.2239i 0.331119 0.573515i −0.651613 0.758552i \(-0.725907\pi\)
0.982732 + 0.185037i \(0.0592406\pi\)
\(384\) 0 0
\(385\) 2.44899 4.24177i 0.124812 0.216181i
\(386\) −2.01867 + 21.5075i −0.102747 + 1.09470i
\(387\) 0 0
\(388\) 15.9904 5.59225i 0.811791 0.283903i
\(389\) −8.14560 14.1086i −0.412998 0.715334i 0.582218 0.813033i \(-0.302185\pi\)
−0.995216 + 0.0976991i \(0.968852\pi\)
\(390\) 0 0
\(391\) 0.276837i 0.0140003i
\(392\) −18.8679 5.44095i −0.952973 0.274809i
\(393\) 0 0
\(394\) 12.5229 + 27.3046i 0.630897 + 1.37559i
\(395\) −21.2604 36.8242i −1.06973 1.85282i
\(396\) 0 0
\(397\) 8.40683 14.5611i 0.421927 0.730799i −0.574201 0.818714i \(-0.694687\pi\)
0.996128 + 0.0879156i \(0.0280206\pi\)
\(398\) −21.8344 15.4951i −1.09446 0.776701i
\(399\) 0 0
\(400\) −44.2761 + 35.2844i −2.21380 + 1.76422i
\(401\) −9.52128 5.49711i −0.475470 0.274513i 0.243057 0.970012i \(-0.421850\pi\)
−0.718527 + 0.695499i \(0.755183\pi\)
\(402\) 0 0
\(403\) −12.5065 + 7.22061i −0.622992 + 0.359684i
\(404\) 3.61720 + 0.685048i 0.179963 + 0.0340824i
\(405\) 0 0
\(406\) −0.307152 + 0.432813i −0.0152437 + 0.0214802i
\(407\) 52.4160 2.59817
\(408\) 0 0
\(409\) 22.5210 13.0025i 1.11359 0.642932i 0.173834 0.984775i \(-0.444384\pi\)
0.939757 + 0.341843i \(0.111051\pi\)
\(410\) 2.52796 + 1.79400i 0.124847 + 0.0885996i
\(411\) 0 0
\(412\) −8.16020 + 9.47907i −0.402024 + 0.467001i
\(413\) −2.27215 1.31183i −0.111805 0.0645509i
\(414\) 0 0
\(415\) 48.4107 + 27.9499i 2.37639 + 1.37201i
\(416\) −7.31333 + 14.4717i −0.358566 + 0.709531i
\(417\) 0 0
\(418\) 19.6908 21.0237i 0.963111 1.02830i
\(419\) 33.6123i 1.64207i 0.570879 + 0.821034i \(0.306603\pi\)
−0.570879 + 0.821034i \(0.693397\pi\)
\(420\) 0 0
\(421\) −19.3211 11.1551i −0.941655 0.543665i −0.0511764 0.998690i \(-0.516297\pi\)
−0.890479 + 0.455025i \(0.849630\pi\)
\(422\) −37.4217 3.51235i −1.82166 0.170979i
\(423\) 0 0
\(424\) 2.61758 0.648465i 0.127121 0.0314923i
\(425\) −30.8147 −1.49473
\(426\) 0 0
\(427\) −1.15003 + 0.663972i −0.0556540 + 0.0321318i
\(428\) 13.7818 16.0092i 0.666167 0.773834i
\(429\) 0 0
\(430\) −30.2073 21.4371i −1.45673 1.03379i
\(431\) 15.0017 + 25.9837i 0.722605 + 1.25159i 0.959952 + 0.280164i \(0.0903890\pi\)
−0.237347 + 0.971425i \(0.576278\pi\)
\(432\) 0 0
\(433\) 24.7775 14.3053i 1.19073 0.687470i 0.232260 0.972654i \(-0.425388\pi\)
0.958473 + 0.285184i \(0.0920546\pi\)
\(434\) −1.55112 + 0.711401i −0.0744559 + 0.0341483i
\(435\) 0 0
\(436\) −15.4571 + 5.40574i −0.740262 + 0.258888i
\(437\) −0.339434 + 0.438178i −0.0162373 + 0.0209609i
\(438\) 0 0
\(439\) 8.02837 13.9055i 0.383173 0.663675i −0.608341 0.793676i \(-0.708165\pi\)
0.991514 + 0.130001i \(0.0414980\pi\)
\(440\) 40.1185 + 41.6689i 1.91257 + 1.98649i
\(441\) 0 0
\(442\) −8.02178 + 3.67910i −0.381557 + 0.174997i
\(443\) −22.0523 + 12.7319i −1.04774 + 0.604911i −0.922015 0.387154i \(-0.873458\pi\)
−0.125722 + 0.992066i \(0.540125\pi\)
\(444\) 0 0
\(445\) 22.9425i 1.08758i
\(446\) 14.0598 + 1.31964i 0.665753 + 0.0624867i
\(447\) 0 0
\(448\) −1.02021 + 1.62183i −0.0482006 + 0.0766242i
\(449\) 13.9298i 0.657388i −0.944436 0.328694i \(-0.893391\pi\)
0.944436 0.328694i \(-0.106609\pi\)
\(450\) 0 0
\(451\) 1.17015 2.02675i 0.0551000 0.0954361i
\(452\) 5.52663 + 4.75768i 0.259951 + 0.223783i
\(453\) 0 0
\(454\) −4.98323 10.8653i −0.233875 0.509933i
\(455\) −3.00451 −0.140853
\(456\) 0 0
\(457\) 29.1395 1.36309 0.681545 0.731777i \(-0.261309\pi\)
0.681545 + 0.731777i \(0.261309\pi\)
\(458\) 8.11913 + 17.7027i 0.379382 + 0.827192i
\(459\) 0 0
\(460\) −0.843517 0.726154i −0.0393292 0.0338571i
\(461\) 10.3043 17.8475i 0.479917 0.831241i −0.519817 0.854277i \(-0.674000\pi\)
0.999735 + 0.0230363i \(0.00733333\pi\)
\(462\) 0 0
\(463\) 31.0667i 1.44379i −0.692002 0.721896i \(-0.743271\pi\)
0.692002 0.721896i \(-0.256729\pi\)
\(464\) −3.90614 4.90155i −0.181338 0.227549i
\(465\) 0 0
\(466\) −2.00489 0.188177i −0.0928748 0.00871711i
\(467\) 2.26975i 0.105032i 0.998620 + 0.0525158i \(0.0167240\pi\)
−0.998620 + 0.0525158i \(0.983276\pi\)
\(468\) 0 0
\(469\) −1.72715 + 0.997173i −0.0797525 + 0.0460452i
\(470\) 12.0740 5.53758i 0.556931 0.255430i
\(471\) 0 0
\(472\) 22.3204 21.4899i 1.02738 0.989155i
\(473\) −13.9824 + 24.2182i −0.642912 + 1.11356i
\(474\) 0 0
\(475\) −48.7736 37.7823i −2.23789 1.73357i
\(476\) −0.984386 + 0.344264i −0.0451193 + 0.0157793i
\(477\) 0 0
\(478\) −25.6616 + 11.7694i −1.17373 + 0.538319i
\(479\) −29.8172 + 17.2150i −1.36238 + 0.786572i −0.989941 0.141483i \(-0.954813\pi\)
−0.372442 + 0.928055i \(0.621480\pi\)
\(480\) 0 0
\(481\) −16.0765 27.8453i −0.733024 1.26963i
\(482\) −10.3315 7.33194i −0.470589 0.333961i
\(483\) 0 0
\(484\) 14.1376 16.4226i 0.642620 0.746482i
\(485\) −32.1030 + 18.5347i −1.45772 + 0.841617i
\(486\) 0 0
\(487\) −7.86738 −0.356505 −0.178253 0.983985i \(-0.557044\pi\)
−0.178253 + 0.983985i \(0.557044\pi\)
\(488\) −3.77107 15.2222i −0.170708 0.689079i
\(489\) 0 0
\(490\) 42.7823 + 4.01550i 1.93271 + 0.181402i
\(491\) 21.6785 + 12.5161i 0.978337 + 0.564843i 0.901768 0.432221i \(-0.142270\pi\)
0.0765694 + 0.997064i \(0.475603\pi\)
\(492\) 0 0
\(493\) 3.41132i 0.153638i
\(494\) −17.2079 4.01233i −0.774219 0.180523i
\(495\) 0 0
\(496\) −2.99684 19.9286i −0.134562 0.894820i
\(497\) 1.55317 + 0.896723i 0.0696692 + 0.0402235i
\(498\) 0 0
\(499\) −24.2549 14.0036i −1.08580 0.626887i −0.153345 0.988173i \(-0.549005\pi\)
−0.932455 + 0.361286i \(0.882338\pi\)
\(500\) 52.2750 60.7238i 2.33781 2.71565i
\(501\) 0 0
\(502\) 18.7914 + 13.3356i 0.838700 + 0.595196i
\(503\) −3.15704 + 1.82272i −0.140766 + 0.0812711i −0.568729 0.822525i \(-0.692565\pi\)
0.427963 + 0.903796i \(0.359231\pi\)
\(504\) 0 0
\(505\) −8.05610 −0.358492
\(506\) −0.486316 + 0.685275i −0.0216194 + 0.0304642i
\(507\) 0 0
\(508\) 31.2547 + 5.91921i 1.38670 + 0.262622i
\(509\) −4.76629 + 2.75182i −0.211262 + 0.121972i −0.601898 0.798573i \(-0.705589\pi\)
0.390636 + 0.920545i \(0.372255\pi\)
\(510\) 0 0
\(511\) −1.31411 0.758699i −0.0581326 0.0335629i
\(512\) −15.0648 16.8835i −0.665777 0.746151i
\(513\) 0 0
\(514\) −18.4694 13.1071i −0.814650 0.578129i
\(515\) 13.6850 23.7032i 0.603035 1.04449i
\(516\) 0 0
\(517\) −5.01425 8.68493i −0.220526 0.381963i
\(518\) −1.58391 3.45351i −0.0695931 0.151739i
\(519\) 0 0
\(520\) 9.83131 34.0926i 0.431131 1.49506i
\(521\) 27.5982i 1.20910i −0.796567 0.604550i \(-0.793353\pi\)
0.796567 0.604550i \(-0.206647\pi\)
\(522\) 0 0
\(523\) −7.33484 12.7043i −0.320730 0.555521i 0.659909 0.751346i \(-0.270595\pi\)
−0.980639 + 0.195825i \(0.937262\pi\)
\(524\) 8.05775 2.81799i 0.352004 0.123105i
\(525\) 0 0
\(526\) −1.37735 + 14.6747i −0.0600553 + 0.639847i
\(527\) 5.48431 9.49911i 0.238900 0.413788i
\(528\) 0 0
\(529\) −11.4919 + 19.9046i −0.499648 + 0.865417i
\(530\) −5.36388 + 2.46008i −0.232992 + 0.106859i
\(531\) 0 0
\(532\) −1.98020 0.662067i −0.0858524 0.0287042i
\(533\) −1.43558 −0.0621818
\(534\) 0 0
\(535\) −23.1127 + 40.0323i −0.999247 + 1.73075i
\(536\) −5.66351 22.8612i −0.244626 0.987455i
\(537\) 0 0
\(538\) −0.739267 + 7.87637i −0.0318720 + 0.339575i
\(539\) 32.4414i 1.39735i
\(540\) 0 0
\(541\) −14.2204 24.6304i −0.611381 1.05894i −0.991008 0.133804i \(-0.957281\pi\)
0.379627 0.925140i \(-0.376052\pi\)
\(542\) −2.92336 + 31.1463i −0.125569 + 1.33785i
\(543\) 0 0
\(544\) −0.685325 12.2965i −0.0293831 0.527208i
\(545\) 31.0323 17.9165i 1.32928 0.767460i
\(546\) 0 0
\(547\) 12.7597 + 22.1004i 0.545564 + 0.944944i 0.998571 + 0.0534373i \(0.0170177\pi\)
−0.453008 + 0.891507i \(0.649649\pi\)
\(548\) 12.3383 + 2.33671i 0.527067 + 0.0998191i
\(549\) 0 0
\(550\) −76.2779 54.1318i −3.25250 2.30819i
\(551\) 4.18267 5.39945i 0.178188 0.230024i
\(552\) 0 0
\(553\) 2.01519 + 1.16347i 0.0856945 + 0.0494757i
\(554\) −10.4048 22.6863i −0.442058 0.963849i
\(555\) 0 0
\(556\) −4.68448 + 24.7351i −0.198666 + 1.04900i
\(557\) 11.6534 + 20.1843i 0.493770 + 0.855235i 0.999974 0.00717894i \(-0.00228515\pi\)
−0.506204 + 0.862414i \(0.668952\pi\)
\(558\) 0 0
\(559\) 17.1541 0.725542
\(560\) 1.53312 3.90242i 0.0647860 0.164907i
\(561\) 0 0
\(562\) −26.6773 18.9319i −1.12531 0.798596i
\(563\) −34.9445 −1.47274 −0.736368 0.676581i \(-0.763461\pi\)
−0.736368 + 0.676581i \(0.763461\pi\)
\(564\) 0 0
\(565\) −13.8198 7.97885i −0.581403 0.335673i
\(566\) −0.682519 + 7.27177i −0.0286884 + 0.305655i
\(567\) 0 0
\(568\) −15.2575 + 14.6898i −0.640192 + 0.616372i
\(569\) 19.6125i 0.822200i 0.911590 + 0.411100i \(0.134855\pi\)
−0.911590 + 0.411100i \(0.865145\pi\)
\(570\) 0 0
\(571\) 19.0983i 0.799240i −0.916681 0.399620i \(-0.869142\pi\)
0.916681 0.399620i \(-0.130858\pi\)
\(572\) −26.3199 4.98462i −1.10049 0.208418i
\(573\) 0 0
\(574\) −0.168895 0.0158523i −0.00704955 0.000661662i
\(575\) 1.55867 + 0.899898i 0.0650010 + 0.0375284i
\(576\) 0 0
\(577\) −33.8434 −1.40892 −0.704460 0.709744i \(-0.748811\pi\)
−0.704460 + 0.709744i \(0.748811\pi\)
\(578\) −10.0345 + 14.1398i −0.417381 + 0.588138i
\(579\) 0 0
\(580\) 10.3942 + 8.94803i 0.431597 + 0.371547i
\(581\) −3.05910 −0.126913
\(582\) 0 0
\(583\) 2.22759 + 3.85829i 0.0922572 + 0.159794i
\(584\) 12.9091 12.4288i 0.534182 0.514306i
\(585\) 0 0
\(586\) −6.20777 + 2.84712i −0.256441 + 0.117614i
\(587\) 0.0311422 + 0.0179800i 0.00128538 + 0.000742113i 0.500643 0.865654i \(-0.333097\pi\)
−0.499357 + 0.866396i \(0.666430\pi\)
\(588\) 0 0
\(589\) 20.3276 8.31082i 0.837582 0.342441i
\(590\) −39.2395 + 55.2930i −1.61546 + 2.27638i
\(591\) 0 0
\(592\) 44.3704 6.67237i 1.82361 0.274233i
\(593\) 7.10342 + 12.3035i 0.291703 + 0.505244i 0.974212 0.225633i \(-0.0724449\pi\)
−0.682510 + 0.730876i \(0.739112\pi\)
\(594\) 0 0
\(595\) 1.97629 1.14101i 0.0810202 0.0467770i
\(596\) −0.660619 1.88897i −0.0270600 0.0773752i
\(597\) 0 0
\(598\) 0.513200 + 0.0481683i 0.0209863 + 0.00196975i
\(599\) −9.32795 16.1565i −0.381130 0.660136i 0.610094 0.792329i \(-0.291132\pi\)
−0.991224 + 0.132193i \(0.957798\pi\)
\(600\) 0 0
\(601\) 18.5537i 0.756820i −0.925638 0.378410i \(-0.876471\pi\)
0.925638 0.378410i \(-0.123529\pi\)
\(602\) 2.01818 + 0.189424i 0.0822548 + 0.00772033i
\(603\) 0 0
\(604\) −13.0729 + 15.1858i −0.531929 + 0.617901i
\(605\) −23.7095 + 41.0660i −0.963927 + 1.66957i
\(606\) 0 0
\(607\) −15.3817 −0.624322 −0.312161 0.950029i \(-0.601053\pi\)
−0.312161 + 0.950029i \(0.601053\pi\)
\(608\) 13.9921 20.3032i 0.567457 0.823403i
\(609\) 0 0
\(610\) 14.3063 + 31.1930i 0.579245 + 1.26297i
\(611\) −3.07583 + 5.32750i −0.124435 + 0.215527i
\(612\) 0 0
\(613\) 5.04739 8.74233i 0.203862 0.353099i −0.745908 0.666050i \(-0.767984\pi\)
0.949770 + 0.312950i \(0.101317\pi\)
\(614\) −27.0026 2.53443i −1.08974 0.102281i
\(615\) 0 0
\(616\) −3.04149 0.877076i −0.122545 0.0353384i
\(617\) −16.9940 29.4344i −0.684151 1.18499i −0.973703 0.227823i \(-0.926839\pi\)
0.289551 0.957163i \(-0.406494\pi\)
\(618\) 0 0
\(619\) 12.8492i 0.516453i −0.966084 0.258226i \(-0.916862\pi\)
0.966084 0.258226i \(-0.0831381\pi\)
\(620\) 14.5580 + 41.6271i 0.584664 + 1.67178i
\(621\) 0 0
\(622\) 10.6459 4.88259i 0.426860 0.195774i
\(623\) −0.627759 1.08731i −0.0251506 0.0435622i
\(624\) 0 0
\(625\) −52.2827 + 90.5562i −2.09131 + 3.62225i
\(626\) 17.0015 23.9571i 0.679519 0.957520i
\(627\) 0 0
\(628\) 8.89516 + 25.4347i 0.354955 + 1.01496i
\(629\) 21.1495 + 12.2107i 0.843284 + 0.486871i
\(630\) 0 0
\(631\) 41.6289 24.0344i 1.65722 0.956796i 0.683230 0.730203i \(-0.260574\pi\)
0.973989 0.226594i \(-0.0727589\pi\)
\(632\) −19.7961 + 19.0596i −0.787448 + 0.758149i
\(633\) 0 0
\(634\) 16.2721 + 11.5478i 0.646248 + 0.458620i
\(635\) −69.6093 −2.76236
\(636\) 0 0
\(637\) −17.2340 + 9.95007i −0.682837 + 0.394236i
\(638\) 5.99262 8.44430i 0.237250 0.334313i
\(639\) 0 0
\(640\) 39.2648 + 30.1660i 1.55208 + 1.19242i
\(641\) −31.1211 17.9677i −1.22921 0.709683i −0.262343 0.964975i \(-0.584495\pi\)
−0.966864 + 0.255291i \(0.917829\pi\)
\(642\) 0 0
\(643\) 1.91374 + 1.10490i 0.0754705 + 0.0435729i 0.537260 0.843416i \(-0.319459\pi\)
−0.461790 + 0.886989i \(0.652793\pi\)
\(644\) 0.0598459 + 0.0113340i 0.00235826 + 0.000446621i
\(645\) 0 0
\(646\) 12.8427 3.89578i 0.505289 0.153277i
\(647\) 16.5467i 0.650518i 0.945625 + 0.325259i \(0.105452\pi\)
−0.945625 + 0.325259i \(0.894548\pi\)
\(648\) 0 0
\(649\) 44.3303 + 25.5941i 1.74012 + 1.00466i
\(650\) −5.36161 + 57.1243i −0.210300 + 2.24060i
\(651\) 0 0
\(652\) −30.3626 26.1381i −1.18909 1.02365i
\(653\) 14.2851 0.559019 0.279509 0.960143i \(-0.409828\pi\)
0.279509 + 0.960143i \(0.409828\pi\)
\(654\) 0 0
\(655\) −16.1771 + 9.33983i −0.632090 + 0.364938i
\(656\) 0.732536 1.86461i 0.0286007 0.0728008i
\(657\) 0 0
\(658\) −0.420699 + 0.592813i −0.0164006 + 0.0231103i
\(659\) −5.21869 9.03904i −0.203291 0.352111i 0.746296 0.665615i \(-0.231831\pi\)
−0.949587 + 0.313504i \(0.898497\pi\)
\(660\) 0 0
\(661\) −7.22027 + 4.16862i −0.280836 + 0.162141i −0.633802 0.773496i \(-0.718506\pi\)
0.352966 + 0.935636i \(0.385173\pi\)
\(662\) 8.04024 + 17.5307i 0.312493 + 0.681349i
\(663\) 0 0
\(664\) 10.0099 34.7121i 0.388461 1.34709i
\(665\) 4.52710 + 0.617160i 0.175553 + 0.0239325i
\(666\) 0 0
\(667\) −0.0996226 + 0.172551i −0.00385740 + 0.00668122i
\(668\) −7.38603 1.39881i −0.285774 0.0541216i
\(669\) 0 0
\(670\) 21.4856 + 46.8466i 0.830062 + 1.80984i
\(671\) 22.4374 12.9543i 0.866188 0.500094i
\(672\) 0 0
\(673\) 31.6397i 1.21962i 0.792547 + 0.609811i \(0.208755\pi\)
−0.792547 + 0.609811i \(0.791245\pi\)
\(674\) 0.805461 8.58163i 0.0310252 0.330552i
\(675\) 0 0
\(676\) −3.15854 9.03151i −0.121482 0.347366i
\(677\) 44.1257i 1.69589i 0.530087 + 0.847943i \(0.322159\pi\)
−0.530087 + 0.847943i \(0.677841\pi\)
\(678\) 0 0
\(679\) 1.01430 1.75682i 0.0389254 0.0674207i
\(680\) 6.48047 + 26.1590i 0.248515 + 1.00315i
\(681\) 0 0
\(682\) 30.2627 13.8796i 1.15882 0.531478i
\(683\) 3.14107 0.120190 0.0600949 0.998193i \(-0.480860\pi\)
0.0600949 + 0.998193i \(0.480860\pi\)
\(684\) 0 0
\(685\) −27.4794 −1.04994
\(686\) −4.29256 + 1.96873i −0.163891 + 0.0751666i
\(687\) 0 0
\(688\) −8.75328 + 22.2808i −0.333716 + 0.849446i
\(689\) 1.36644 2.36675i 0.0520573 0.0901659i
\(690\) 0 0
\(691\) 36.3881i 1.38427i −0.721769 0.692134i \(-0.756671\pi\)
0.721769 0.692134i \(-0.243329\pi\)
\(692\) 14.6851 5.13576i 0.558245 0.195232i
\(693\) 0 0
\(694\) 0.952809 10.1515i 0.0361681 0.385346i
\(695\) 55.0890i 2.08965i
\(696\) 0 0
\(697\) 0.944290 0.545186i 0.0357675 0.0206504i
\(698\) 0.140992 + 0.307414i 0.00533661 + 0.0116358i
\(699\) 0 0
\(700\) −1.26158 + 6.66145i −0.0476834 + 0.251779i
\(701\) −0.756319 + 1.30998i −0.0285658 + 0.0494773i −0.879955 0.475057i \(-0.842427\pi\)
0.851389 + 0.524535i \(0.175761\pi\)
\(702\) 0 0
\(703\) 18.5038 + 45.2587i 0.697884 + 1.70696i
\(704\) 19.9046 31.6423i 0.750184 1.19256i
\(705\) 0 0
\(706\) 16.3788 + 35.7117i 0.616422 + 1.34403i
\(707\) 0.381801 0.220433i 0.0143591 0.00829024i
\(708\) 0 0
\(709\) 7.54529 + 13.0688i 0.283369 + 0.490810i 0.972212 0.234100i \(-0.0752145\pi\)
−0.688843 + 0.724910i \(0.741881\pi\)
\(710\) 26.8229 37.7965i 1.00664 1.41848i
\(711\) 0 0
\(712\) 14.3920 3.56540i 0.539364 0.133619i
\(713\) −0.554815 + 0.320322i −0.0207780 + 0.0119962i
\(714\) 0 0
\(715\) 58.6187 2.19221
\(716\) −15.9697 + 18.5508i −0.596816 + 0.693274i
\(717\) 0 0
\(718\) −2.75940 + 29.3995i −0.102980 + 1.09718i
\(719\) −8.23299 4.75332i −0.307039 0.177269i 0.338562 0.940944i \(-0.390060\pi\)
−0.645601 + 0.763675i \(0.723393\pi\)
\(720\) 0 0
\(721\) 1.49782i 0.0557816i
\(722\) 25.1041 + 9.58035i 0.934279 + 0.356544i
\(723\) 0 0
\(724\) 1.94288 10.2589i 0.0722068 0.381268i
\(725\) −19.2067 11.0890i −0.713319 0.411835i
\(726\) 0 0
\(727\) −6.51295 3.76026i −0.241552 0.139460i 0.374338 0.927292i \(-0.377870\pi\)
−0.615890 + 0.787832i \(0.711203\pi\)
\(728\) 0.466918 + 1.88475i 0.0173051 + 0.0698536i
\(729\) 0 0
\(730\) −22.6943 + 31.9788i −0.839953 + 1.18359i
\(731\) −11.2836 + 6.51459i −0.417339 + 0.240951i
\(732\) 0 0
\(733\) −34.5713 −1.27692 −0.638460 0.769655i \(-0.720428\pi\)
−0.638460 + 0.769655i \(0.720428\pi\)
\(734\) 0.875791 + 0.621519i 0.0323261 + 0.0229407i
\(735\) 0 0
\(736\) −0.324436 + 0.641995i −0.0119589 + 0.0236642i
\(737\) 33.6972 19.4551i 1.24125 0.716638i
\(738\) 0 0
\(739\) 18.0526 + 10.4227i 0.664075 + 0.383404i 0.793828 0.608143i \(-0.208085\pi\)
−0.129753 + 0.991546i \(0.541418\pi\)
\(740\) −92.6814 + 32.4130i −3.40704 + 1.19153i
\(741\) 0 0
\(742\) 0.186896 0.263358i 0.00686117 0.00966818i
\(743\) −14.7223 + 25.4997i −0.540107 + 0.935494i 0.458790 + 0.888545i \(0.348283\pi\)
−0.998897 + 0.0469488i \(0.985050\pi\)
\(744\) 0 0
\(745\) 2.18953 + 3.79237i 0.0802181 + 0.138942i
\(746\) −31.0186 + 14.2263i −1.13567 + 0.520862i
\(747\) 0 0
\(748\) 19.2056 6.71669i 0.702228 0.245586i
\(749\) 2.52966i 0.0924318i
\(750\) 0 0
\(751\) −0.0915128 0.158505i −0.00333935 0.00578392i 0.864351 0.502889i \(-0.167730\pi\)
−0.867690 + 0.497105i \(0.834396\pi\)
\(752\) −5.35014 6.71354i −0.195100 0.244818i
\(753\) 0 0
\(754\) −6.32390 0.593554i −0.230303 0.0216160i
\(755\) 21.9239 37.9733i 0.797892 1.38199i
\(756\) 0 0
\(757\) −0.412765 + 0.714929i −0.0150022 + 0.0259845i −0.873429 0.486951i \(-0.838109\pi\)
0.858427 + 0.512936i \(0.171442\pi\)
\(758\) 0.352558 + 0.768707i 0.0128055 + 0.0279207i
\(759\) 0 0
\(760\) −21.8165 + 49.3502i −0.791369 + 1.79012i
\(761\) −38.9955 −1.41358 −0.706792 0.707421i \(-0.749858\pi\)
−0.706792 + 0.707421i \(0.749858\pi\)
\(762\) 0 0
\(763\) −0.980474 + 1.69823i −0.0354956 + 0.0614801i
\(764\) 22.6251 + 19.4772i 0.818548 + 0.704659i
\(765\) 0 0
\(766\) 18.2484 + 1.71277i 0.659340 + 0.0618848i
\(767\) 31.3998i 1.13378i
\(768\) 0 0
\(769\) −10.5294 18.2374i −0.379699 0.657657i 0.611320 0.791384i \(-0.290639\pi\)
−0.991018 + 0.133727i \(0.957306\pi\)
\(770\) 6.89647 + 0.647294i 0.248532 + 0.0233269i
\(771\) 0 0
\(772\) −28.8372 + 10.0851i −1.03787 + 0.362970i
\(773\) 15.5604 8.98380i 0.559669 0.323125i −0.193344 0.981131i \(-0.561933\pi\)
0.753012 + 0.658006i \(0.228600\pi\)
\(774\) 0 0
\(775\) −35.6551 61.7564i −1.28077 2.21835i
\(776\) 16.6160 + 17.2581i 0.596479 + 0.619530i
\(777\) 0 0
\(778\) 13.3337 18.7888i 0.478037 0.673610i
\(779\) 2.16308 + 0.294884i 0.0775005 + 0.0105653i
\(780\) 0 0
\(781\) −30.3028 17.4953i −1.08432 0.626031i
\(782\) −0.355864 + 0.163213i −0.0127257 + 0.00583648i
\(783\) 0 0
\(784\) −4.12967 27.4618i −0.147488 0.980778i
\(785\) −29.4817 51.0638i −1.05225 1.82255i
\(786\) 0 0
\(787\) −11.7070 −0.417309 −0.208655 0.977989i \(-0.566908\pi\)
−0.208655 + 0.977989i \(0.566908\pi\)
\(788\) −27.7160 + 32.1956i −0.987343 + 1.14692i
\(789\) 0 0
\(790\) 34.8018 49.0397i 1.23819 1.74475i
\(791\) 0.873279 0.0310502
\(792\) 0 0
\(793\) −13.7635 7.94638i −0.488757 0.282184i
\(794\) 23.6741 + 2.22202i 0.840161 + 0.0788565i
\(795\) 0 0
\(796\) 7.04567 37.2027i 0.249727 1.31862i
\(797\) 48.7535i 1.72694i 0.504403 + 0.863469i \(0.331713\pi\)
−0.504403 + 0.863469i \(0.668287\pi\)
\(798\) 0 0
\(799\) 4.67241i 0.165298i
\(800\) −71.4604 36.1129i −2.52651 1.27678i
\(801\) 0 0
\(802\) 1.45295 15.4801i 0.0513054 0.546623i
\(803\) 25.6386 + 14.8024i 0.904765 + 0.522366i
\(804\) 0 0
\(805\) −0.133287 −0.00469773
\(806\) −16.6552 11.8196i −0.586654 0.416328i
\(807\) 0 0
\(808\) 1.25196 + 5.05366i 0.0440440 + 0.177787i
\(809\) −9.79587 −0.344404 −0.172202 0.985062i \(-0.555088\pi\)
−0.172202 + 0.985062i \(0.555088\pi\)
\(810\) 0 0
\(811\) −7.80774 13.5234i −0.274167 0.474871i 0.695758 0.718277i \(-0.255069\pi\)
−0.969925 + 0.243405i \(0.921735\pi\)
\(812\) −0.737451 0.139663i −0.0258795 0.00490120i
\(813\) 0 0
\(814\) 30.9025 + 67.3789i 1.08313 + 2.36163i
\(815\) 75.9241 + 43.8348i 2.65950 + 1.53547i
\(816\) 0 0
\(817\) −25.8473 3.52366i −0.904283 0.123277i
\(818\) 29.9918 + 21.2841i 1.04864 + 0.744182i
\(819\) 0 0
\(820\) −0.815738 + 4.30728i −0.0284868 + 0.150417i
\(821\) −19.8442 34.3712i −0.692569 1.19956i −0.970993 0.239106i \(-0.923146\pi\)
0.278425 0.960458i \(-0.410188\pi\)
\(822\) 0 0
\(823\) 0.409585 0.236474i 0.0142772 0.00824297i −0.492844 0.870117i \(-0.664043\pi\)
0.507122 + 0.861874i \(0.330709\pi\)
\(824\) −16.9960 4.90113i −0.592082 0.170739i
\(825\) 0 0
\(826\) 0.346731 3.69417i 0.0120643 0.128537i
\(827\) 4.32281 + 7.48733i 0.150319 + 0.260360i 0.931345 0.364139i \(-0.118637\pi\)
−0.781026 + 0.624499i \(0.785303\pi\)
\(828\) 0 0
\(829\) 34.5533i 1.20009i −0.799968 0.600043i \(-0.795150\pi\)
0.799968 0.600043i \(-0.204850\pi\)
\(830\) −7.38748 + 78.7084i −0.256423 + 2.73201i
\(831\) 0 0
\(832\) −22.9145 0.869076i −0.794416 0.0301298i
\(833\) 7.55743 13.0899i 0.261849 0.453537i
\(834\) 0 0
\(835\) 16.4499 0.569272
\(836\) 38.6341 + 12.9171i 1.33619 + 0.446747i
\(837\) 0 0
\(838\) −43.2074 + 19.8166i −1.49257 + 0.684552i
\(839\) 12.6767 21.9567i 0.437648 0.758028i −0.559860 0.828587i \(-0.689145\pi\)
0.997508 + 0.0705590i \(0.0224783\pi\)
\(840\) 0 0
\(841\) −13.2724 + 22.9885i −0.457669 + 0.792706i
\(842\) 2.94841 31.4132i 0.101609 1.08257i
\(843\) 0 0
\(844\) −17.5474 50.1749i −0.604007 1.72709i
\(845\) 10.4685 + 18.1320i 0.360129 + 0.623761i
\(846\) 0 0
\(847\) 2.59498i 0.0891646i
\(848\) 2.37681 + 2.98250i 0.0816199 + 0.102419i
\(849\) 0 0
\(850\) −18.1672 39.6112i −0.623130 1.35865i
\(851\) −0.713188 1.23528i −0.0244478 0.0423448i
\(852\) 0 0
\(853\) −3.19049 + 5.52610i −0.109240 + 0.189210i −0.915463 0.402403i \(-0.868175\pi\)
0.806222 + 0.591613i \(0.201509\pi\)
\(854\) −1.53153 1.08687i −0.0524078 0.0371920i
\(855\) 0 0
\(856\) 28.7045 + 8.27753i 0.981099 + 0.282920i
\(857\) 19.9983 + 11.5460i 0.683127 + 0.394404i 0.801032 0.598621i \(-0.204284\pi\)
−0.117905 + 0.993025i \(0.537618\pi\)
\(858\) 0 0
\(859\) −40.6638 + 23.4773i −1.38743 + 0.801034i −0.993025 0.117902i \(-0.962383\pi\)
−0.394406 + 0.918936i \(0.629050\pi\)
\(860\) 9.74748 51.4689i 0.332386 1.75507i
\(861\) 0 0
\(862\) −24.5566 + 34.6031i −0.836402 + 1.17859i
\(863\) 16.9298 0.576296 0.288148 0.957586i \(-0.406960\pi\)
0.288148 + 0.957586i \(0.406960\pi\)
\(864\) 0 0
\(865\) −29.4825 + 17.0217i −1.00243 + 0.578756i
\(866\) 32.9969 + 23.4167i 1.12128 + 0.795733i
\(867\) 0 0
\(868\) −1.82896 1.57449i −0.0620789 0.0534416i
\(869\) −39.3168 22.6996i −1.33373 0.770030i
\(870\) 0 0
\(871\) −20.6705 11.9341i −0.700393 0.404372i
\(872\) −16.0618 16.6825i −0.543922 0.564942i
\(873\) 0 0
\(874\) −0.763380 0.177996i −0.0258217 0.00602080i
\(875\) 9.59515i 0.324375i
\(876\) 0 0
\(877\) −27.1037 15.6483i −0.915227 0.528407i −0.0331180 0.999451i \(-0.510544\pi\)
−0.882109 + 0.471045i \(0.843877\pi\)
\(878\) 22.6083 + 2.12199i 0.762993 + 0.0716136i
\(879\) 0 0
\(880\) −29.9115 + 76.1373i −1.00832 + 2.56659i
\(881\) −15.7315 −0.530007 −0.265004 0.964247i \(-0.585373\pi\)
−0.265004 + 0.964247i \(0.585373\pi\)
\(882\) 0 0
\(883\) −21.5867 + 12.4631i −0.726452 + 0.419417i −0.817123 0.576464i \(-0.804432\pi\)
0.0906710 + 0.995881i \(0.471099\pi\)
\(884\) −9.45869 8.14265i −0.318130 0.273867i
\(885\) 0 0
\(886\) −29.3676 20.8412i −0.986624 0.700173i
\(887\) −21.7463 37.6658i −0.730171 1.26469i −0.956810 0.290714i \(-0.906107\pi\)
0.226639 0.973979i \(-0.427226\pi\)
\(888\) 0 0
\(889\) 3.29899 1.90467i 0.110644 0.0638806i
\(890\) −29.4917 + 13.5260i −0.988565 + 0.453394i
\(891\) 0 0
\(892\) 6.59281 + 18.8514i 0.220744 + 0.631192i
\(893\) 5.72890 7.39549i 0.191710 0.247481i
\(894\) 0 0
\(895\) 26.7819 46.3876i 0.895221 1.55057i
\(896\) −2.68628 0.355278i −0.0897423 0.0118690i
\(897\) 0 0
\(898\) 17.9063 8.21249i 0.597540 0.274054i
\(899\) 6.83670 3.94717i 0.228017 0.131645i
\(900\) 0 0
\(901\) 2.07572i 0.0691523i
\(902\) 3.29519 + 0.309283i 0.109718 + 0.0102980i
\(903\) 0 0
\(904\) −2.85753 + 9.90924i −0.0950401 + 0.329576i
\(905\) 22.8481i 0.759498i
\(906\) 0 0
\(907\) −0.723484 + 1.25311i −0.0240229 + 0.0416089i −0.877787 0.479051i \(-0.840981\pi\)
0.853764 + 0.520660i \(0.174314\pi\)
\(908\) 11.0290 12.8115i 0.366010 0.425165i
\(909\) 0 0
\(910\) −1.77134 3.86218i −0.0587195 0.128030i
\(911\) −16.4377 −0.544607 −0.272303 0.962211i \(-0.587785\pi\)
−0.272303 + 0.962211i \(0.587785\pi\)
\(912\) 0 0
\(913\) 59.6838 1.97524
\(914\) 17.1796 + 37.4578i 0.568250 + 1.23899i
\(915\) 0 0
\(916\) −17.9694 + 20.8737i −0.593726 + 0.689686i
\(917\) 0.511118 0.885283i 0.0168786 0.0292346i
\(918\) 0 0
\(919\) 14.6577i 0.483513i 0.970337 + 0.241756i \(0.0777234\pi\)
−0.970337 + 0.241756i \(0.922277\pi\)
\(920\) 0.436139 1.51242i 0.0143791 0.0498631i
\(921\) 0 0
\(922\) 29.0173 + 2.72353i 0.955634 + 0.0896947i
\(923\) 21.4639i 0.706492i
\(924\) 0 0
\(925\) 137.499 79.3849i 4.52093 2.61016i
\(926\) 39.9351 18.3158i 1.31235 0.601893i
\(927\) 0 0
\(928\) 3.99786 7.91097i 0.131236 0.259690i
\(929\) −14.1568 + 24.5202i −0.464468 + 0.804483i −0.999177 0.0405536i \(-0.987088\pi\)
0.534709 + 0.845036i \(0.320421\pi\)
\(930\) 0 0
\(931\) 28.0116 11.4524i 0.918042 0.375337i
\(932\) −0.940115 2.68816i −0.0307945 0.0880535i
\(933\) 0 0
\(934\) −2.91769 + 1.33816i −0.0954696 + 0.0437860i
\(935\) −38.5580 + 22.2615i −1.26098 + 0.728028i
\(936\) 0 0
\(937\) 8.76699 + 15.1849i 0.286405 + 0.496068i 0.972949 0.231020i \(-0.0742064\pi\)
−0.686544 + 0.727088i \(0.740873\pi\)
\(938\) −2.30009 1.63230i −0.0751007 0.0532964i
\(939\) 0 0
\(940\) 14.2367 + 12.2559i 0.464351 + 0.399743i
\(941\) 30.8958 17.8377i 1.00717 0.581491i 0.0968101 0.995303i \(-0.469136\pi\)
0.910363 + 0.413811i \(0.135803\pi\)
\(942\) 0 0
\(943\) −0.0636854 −0.00207388
\(944\) 40.7838 + 16.0224i 1.32740 + 0.521486i
\(945\) 0 0
\(946\) −39.3752 3.69571i −1.28020 0.120158i
\(947\) 26.9058 + 15.5341i 0.874320 + 0.504789i 0.868781 0.495196i \(-0.164904\pi\)
0.00553875 + 0.999985i \(0.498237\pi\)
\(948\) 0 0
\(949\) 18.1602i 0.589503i
\(950\) 19.8127 84.9717i 0.642809 2.75685i
\(951\) 0 0
\(952\) −1.02290 1.06243i −0.0331523 0.0344335i
\(953\) −4.89263 2.82476i −0.158488 0.0915030i 0.418658 0.908144i \(-0.362500\pi\)
−0.577146 + 0.816641i \(0.695834\pi\)
\(954\) 0 0
\(955\) −56.5759 32.6641i −1.83075 1.05699i
\(956\) −30.2582 26.0482i −0.978621 0.842460i
\(957\) 0 0
\(958\) −39.7083 28.1796i −1.28292 0.910442i
\(959\) 1.30233 0.751900i 0.0420544 0.0242801i
\(960\) 0 0
\(961\) −5.61689 −0.181190
\(962\) 26.3160 37.0822i 0.848461 1.19558i
\(963\) 0 0
\(964\) 3.33385 17.6035i 0.107376 0.566969i
\(965\) 57.8948 33.4256i 1.86370 1.07601i
\(966\) 0 0
\(967\) 12.1691 + 7.02582i 0.391331 + 0.225935i 0.682737 0.730665i \(-0.260790\pi\)
−0.291406 + 0.956600i \(0.594123\pi\)
\(968\) 29.4457 + 8.49127i 0.946420 + 0.272920i
\(969\) 0 0
\(970\) −42.7524 30.3399i −1.37270 0.974156i
\(971\) 8.53968 14.7912i 0.274051 0.474671i −0.695844 0.718193i \(-0.744970\pi\)
0.969895 + 0.243522i \(0.0783029\pi\)
\(972\) 0 0
\(973\) 1.50736 + 2.61083i 0.0483238 + 0.0836993i
\(974\) −4.63831 10.1132i −0.148621 0.324049i
\(975\) 0 0
\(976\) 17.3444 13.8220i 0.555179 0.442433i
\(977\) 7.32115i 0.234224i 0.993119 + 0.117112i \(0.0373637\pi\)
−0.993119 + 0.117112i \(0.962636\pi\)
\(978\) 0 0
\(979\) 12.2477 + 21.2137i 0.391440 + 0.677993i
\(980\) 20.0611 + 57.3625i 0.640828 + 1.83238i
\(981\) 0 0
\(982\) −3.30814 + 35.2459i −0.105567 + 1.12474i
\(983\) −2.33635 + 4.04667i −0.0745179 + 0.129069i −0.900877 0.434075i \(-0.857075\pi\)
0.826359 + 0.563144i \(0.190408\pi\)
\(984\) 0 0
\(985\) 46.4811 80.5076i 1.48101 2.56518i
\(986\) 4.38513 2.01119i 0.139651 0.0640493i
\(987\) 0 0
\(988\) −4.98742 24.4856i −0.158671 0.778991i
\(989\) 0.760995 0.0241982
\(990\) 0 0
\(991\) 24.8465 43.0353i 0.789274 1.36706i −0.137138 0.990552i \(-0.543790\pi\)
0.926412 0.376511i \(-0.122876\pi\)
\(992\) 23.8507 15.6015i 0.757259 0.495347i
\(993\) 0 0
\(994\) −0.237014 + 2.52522i −0.00751762 + 0.0800951i
\(995\) 82.8564i 2.62673i
\(996\) 0 0
\(997\) 24.1946 + 41.9062i 0.766250 + 1.32718i 0.939583 + 0.342321i \(0.111213\pi\)
−0.173333 + 0.984863i \(0.555454\pi\)
\(998\) 3.70130 39.4348i 0.117163 1.24829i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 684.2.r.b.559.7 20
3.2 odd 2 228.2.k.b.103.4 yes 20
4.3 odd 2 684.2.r.c.559.10 20
12.11 even 2 228.2.k.a.103.1 yes 20
19.12 odd 6 684.2.r.c.487.10 20
57.50 even 6 228.2.k.a.31.1 20
76.31 even 6 inner 684.2.r.b.487.7 20
228.107 odd 6 228.2.k.b.31.4 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
228.2.k.a.31.1 20 57.50 even 6
228.2.k.a.103.1 yes 20 12.11 even 2
228.2.k.b.31.4 yes 20 228.107 odd 6
228.2.k.b.103.4 yes 20 3.2 odd 2
684.2.r.b.487.7 20 76.31 even 6 inner
684.2.r.b.559.7 20 1.1 even 1 trivial
684.2.r.c.487.10 20 19.12 odd 6
684.2.r.c.559.10 20 4.3 odd 2