Defining parameters
Level: | \( N \) | \(=\) | \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 684.r (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 76 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(5\), \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(684, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 256 | 104 | 152 |
Cusp forms | 224 | 96 | 128 |
Eisenstein series | 32 | 8 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(684, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
684.2.r.a | $16$ | $5.462$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(3\) | \(0\) | \(2\) | \(0\) | \(q-\beta _{12}q^{2}+(-1-\beta _{1}+\beta _{2}-2\beta _{3}+\cdots)q^{4}+\cdots\) |
684.2.r.b | $20$ | $5.462$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(-1\) | \(0\) | \(0\) | \(0\) | \(q+(-\beta _{1}+\beta _{4})q^{2}+(-\beta _{2}-\beta _{9})q^{4}+\cdots\) |
684.2.r.c | $20$ | $5.462$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(1\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{16}q^{2}+(\beta _{14}-\beta _{17})q^{4}-\beta _{6}q^{5}+\cdots\) |
684.2.r.d | $40$ | $5.462$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(684, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(684, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(228, [\chi])\)\(^{\oplus 2}\)