Properties

Label 684.2.r.b.559.6
Level $684$
Weight $2$
Character 684.559
Analytic conductor $5.462$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [684,2,Mod(487,684)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(684, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("684.487"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.46176749826\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 3 x^{18} - 2 x^{17} + x^{16} + 3 x^{14} - 12 x^{13} + 28 x^{12} - 24 x^{11} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 228)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 559.6
Root \(-1.34963 + 0.422503i\) of defining polynomial
Character \(\chi\) \(=\) 684.559
Dual form 684.2.r.b.487.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.308915 - 1.38006i) q^{2} +(-1.80914 - 0.852645i) q^{4} +(-0.984694 + 1.70554i) q^{5} +0.355075i q^{7} +(-1.73557 + 2.23333i) q^{8} +(2.04956 + 1.88581i) q^{10} +1.34327i q^{11} +(5.75562 - 3.32301i) q^{13} +(0.490026 + 0.109688i) q^{14} +(2.54599 + 3.08511i) q^{16} +(1.91321 - 3.31378i) q^{17} +(2.96616 - 3.19404i) q^{19} +(3.23567 - 2.24597i) q^{20} +(1.85379 + 0.414956i) q^{22} +(2.43262 - 1.40448i) q^{23} +(0.560757 + 0.971259i) q^{25} +(-2.80796 - 8.96963i) q^{26} +(0.302753 - 0.642382i) q^{28} +(4.28481 - 2.47383i) q^{29} -1.76220 q^{31} +(5.04414 - 2.56059i) q^{32} +(-3.98220 - 3.66403i) q^{34} +(-0.605595 - 0.349640i) q^{35} +8.49598i q^{37} +(-3.49169 - 5.08017i) q^{38} +(-2.10003 - 5.15924i) q^{40} +(5.63122 + 3.25119i) q^{41} +(-4.14089 - 2.39074i) q^{43} +(1.14533 - 2.43016i) q^{44} +(-1.18679 - 3.79103i) q^{46} +(-6.83062 + 3.94366i) q^{47} +6.87392 q^{49} +(1.51362 - 0.473842i) q^{50} +(-13.2461 + 1.10430i) q^{52} +(2.89136 - 1.66933i) q^{53} +(-2.29100 - 1.32271i) q^{55} +(-0.793001 - 0.616259i) q^{56} +(-2.09040 - 6.67750i) q^{58} +(-1.83715 + 3.18204i) q^{59} +(1.98919 + 3.44537i) q^{61} +(-0.544372 + 2.43195i) q^{62} +(-1.97556 - 7.75223i) q^{64} +13.0886i q^{65} +(-1.05161 - 1.82144i) q^{67} +(-6.28675 + 4.36381i) q^{68} +(-0.669603 + 0.727749i) q^{70} +(7.80349 - 13.5160i) q^{71} +(0.435445 - 0.754212i) q^{73} +(11.7250 + 2.62454i) q^{74} +(-8.08958 + 3.24941i) q^{76} -0.476961 q^{77} +(-8.37212 + 14.5009i) q^{79} +(-7.76880 + 1.30440i) q^{80} +(6.22641 - 6.76709i) q^{82} -8.44752i q^{83} +(3.76786 + 6.52612i) q^{85} +(-4.57856 + 4.97615i) q^{86} +(-2.99997 - 2.33134i) q^{88} +(-1.83862 + 1.06153i) q^{89} +(1.17992 + 2.04368i) q^{91} +(-5.59848 + 0.466734i) q^{92} +(3.33241 + 10.6449i) q^{94} +(2.52682 + 8.20405i) q^{95} +(-13.7139 - 7.91774i) q^{97} +(2.12346 - 9.48644i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - q^{2} + q^{4} - 4 q^{8} + 6 q^{10} + 6 q^{13} - 9 q^{14} - 11 q^{16} + 12 q^{19} + 14 q^{20} + 8 q^{22} - 10 q^{25} + 7 q^{28} + 12 q^{31} + 29 q^{32} - 6 q^{34} - 25 q^{38} - 46 q^{40} - 12 q^{41}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/684\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(343\) \(533\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.308915 1.38006i 0.218436 0.975851i
\(3\) 0 0
\(4\) −1.80914 0.852645i −0.904571 0.426322i
\(5\) −0.984694 + 1.70554i −0.440368 + 0.762740i −0.997717 0.0675384i \(-0.978485\pi\)
0.557348 + 0.830279i \(0.311819\pi\)
\(6\) 0 0
\(7\) 0.355075i 0.134206i 0.997746 + 0.0671029i \(0.0213756\pi\)
−0.997746 + 0.0671029i \(0.978624\pi\)
\(8\) −1.73557 + 2.23333i −0.613618 + 0.789603i
\(9\) 0 0
\(10\) 2.04956 + 1.88581i 0.648129 + 0.596344i
\(11\) 1.34327i 0.405011i 0.979281 + 0.202505i \(0.0649084\pi\)
−0.979281 + 0.202505i \(0.935092\pi\)
\(12\) 0 0
\(13\) 5.75562 3.32301i 1.59632 0.921636i 0.604133 0.796884i \(-0.293520\pi\)
0.992188 0.124752i \(-0.0398137\pi\)
\(14\) 0.490026 + 0.109688i 0.130965 + 0.0293154i
\(15\) 0 0
\(16\) 2.54599 + 3.08511i 0.636499 + 0.771278i
\(17\) 1.91321 3.31378i 0.464022 0.803710i −0.535134 0.844767i \(-0.679739\pi\)
0.999157 + 0.0410566i \(0.0130724\pi\)
\(18\) 0 0
\(19\) 2.96616 3.19404i 0.680483 0.732764i
\(20\) 3.23567 2.24597i 0.723518 0.502214i
\(21\) 0 0
\(22\) 1.85379 + 0.414956i 0.395230 + 0.0884690i
\(23\) 2.43262 1.40448i 0.507237 0.292853i −0.224460 0.974483i \(-0.572062\pi\)
0.731697 + 0.681630i \(0.238729\pi\)
\(24\) 0 0
\(25\) 0.560757 + 0.971259i 0.112151 + 0.194252i
\(26\) −2.80796 8.96963i −0.550686 1.75909i
\(27\) 0 0
\(28\) 0.302753 0.642382i 0.0572149 0.121399i
\(29\) 4.28481 2.47383i 0.795669 0.459380i −0.0462857 0.998928i \(-0.514738\pi\)
0.841954 + 0.539549i \(0.181405\pi\)
\(30\) 0 0
\(31\) −1.76220 −0.316501 −0.158251 0.987399i \(-0.550585\pi\)
−0.158251 + 0.987399i \(0.550585\pi\)
\(32\) 5.04414 2.56059i 0.891687 0.452653i
\(33\) 0 0
\(34\) −3.98220 3.66403i −0.682942 0.628376i
\(35\) −0.605595 0.349640i −0.102364 0.0591000i
\(36\) 0 0
\(37\) 8.49598i 1.39673i 0.715742 + 0.698365i \(0.246089\pi\)
−0.715742 + 0.698365i \(0.753911\pi\)
\(38\) −3.49169 5.08017i −0.566427 0.824112i
\(39\) 0 0
\(40\) −2.10003 5.15924i −0.332044 0.815748i
\(41\) 5.63122 + 3.25119i 0.879449 + 0.507750i 0.870477 0.492210i \(-0.163811\pi\)
0.00897225 + 0.999960i \(0.497144\pi\)
\(42\) 0 0
\(43\) −4.14089 2.39074i −0.631479 0.364585i 0.149845 0.988709i \(-0.452122\pi\)
−0.781325 + 0.624125i \(0.785456\pi\)
\(44\) 1.14533 2.43016i 0.172665 0.366361i
\(45\) 0 0
\(46\) −1.18679 3.79103i −0.174982 0.558957i
\(47\) −6.83062 + 3.94366i −0.996348 + 0.575242i −0.907166 0.420774i \(-0.861759\pi\)
−0.0891820 + 0.996015i \(0.528425\pi\)
\(48\) 0 0
\(49\) 6.87392 0.981989
\(50\) 1.51362 0.473842i 0.214059 0.0670114i
\(51\) 0 0
\(52\) −13.2461 + 1.10430i −1.83690 + 0.153139i
\(53\) 2.89136 1.66933i 0.397159 0.229300i −0.288098 0.957601i \(-0.593023\pi\)
0.685257 + 0.728301i \(0.259690\pi\)
\(54\) 0 0
\(55\) −2.29100 1.32271i −0.308918 0.178354i
\(56\) −0.793001 0.616259i −0.105969 0.0823511i
\(57\) 0 0
\(58\) −2.09040 6.67750i −0.274483 0.876799i
\(59\) −1.83715 + 3.18204i −0.239177 + 0.414266i −0.960478 0.278355i \(-0.910211\pi\)
0.721302 + 0.692621i \(0.243544\pi\)
\(60\) 0 0
\(61\) 1.98919 + 3.44537i 0.254689 + 0.441135i 0.964811 0.262944i \(-0.0846935\pi\)
−0.710122 + 0.704079i \(0.751360\pi\)
\(62\) −0.544372 + 2.43195i −0.0691353 + 0.308858i
\(63\) 0 0
\(64\) −1.97556 7.75223i −0.246946 0.969029i
\(65\) 13.0886i 1.62344i
\(66\) 0 0
\(67\) −1.05161 1.82144i −0.128475 0.222525i 0.794611 0.607119i \(-0.207675\pi\)
−0.923086 + 0.384594i \(0.874341\pi\)
\(68\) −6.28675 + 4.36381i −0.762381 + 0.529190i
\(69\) 0 0
\(70\) −0.669603 + 0.727749i −0.0800328 + 0.0869826i
\(71\) 7.80349 13.5160i 0.926104 1.60406i 0.136327 0.990664i \(-0.456470\pi\)
0.789776 0.613395i \(-0.210197\pi\)
\(72\) 0 0
\(73\) 0.435445 0.754212i 0.0509649 0.0882739i −0.839417 0.543487i \(-0.817104\pi\)
0.890382 + 0.455213i \(0.150437\pi\)
\(74\) 11.7250 + 2.62454i 1.36300 + 0.305096i
\(75\) 0 0
\(76\) −8.08958 + 3.24941i −0.927939 + 0.372733i
\(77\) −0.476961 −0.0543548
\(78\) 0 0
\(79\) −8.37212 + 14.5009i −0.941937 + 1.63148i −0.180165 + 0.983636i \(0.557663\pi\)
−0.761771 + 0.647846i \(0.775670\pi\)
\(80\) −7.76880 + 1.30440i −0.868579 + 0.145837i
\(81\) 0 0
\(82\) 6.22641 6.76709i 0.687592 0.747300i
\(83\) 8.44752i 0.927235i −0.886035 0.463618i \(-0.846551\pi\)
0.886035 0.463618i \(-0.153449\pi\)
\(84\) 0 0
\(85\) 3.76786 + 6.52612i 0.408682 + 0.707857i
\(86\) −4.57856 + 4.97615i −0.493718 + 0.536592i
\(87\) 0 0
\(88\) −2.99997 2.33134i −0.319798 0.248522i
\(89\) −1.83862 + 1.06153i −0.194894 + 0.112522i −0.594271 0.804265i \(-0.702560\pi\)
0.399378 + 0.916786i \(0.369226\pi\)
\(90\) 0 0
\(91\) 1.17992 + 2.04368i 0.123689 + 0.214235i
\(92\) −5.59848 + 0.466734i −0.583682 + 0.0486604i
\(93\) 0 0
\(94\) 3.33241 + 10.6449i 0.343712 + 1.09794i
\(95\) 2.52682 + 8.20405i 0.259246 + 0.841718i
\(96\) 0 0
\(97\) −13.7139 7.91774i −1.39244 0.803924i −0.398853 0.917015i \(-0.630592\pi\)
−0.993585 + 0.113090i \(0.963925\pi\)
\(98\) 2.12346 9.48644i 0.214502 0.958275i
\(99\) 0 0
\(100\) −0.186350 2.23527i −0.0186350 0.223527i
\(101\) −2.81400 4.87399i −0.280004 0.484980i 0.691382 0.722490i \(-0.257002\pi\)
−0.971385 + 0.237509i \(0.923669\pi\)
\(102\) 0 0
\(103\) 17.9755 1.77118 0.885590 0.464469i \(-0.153755\pi\)
0.885590 + 0.464469i \(0.153755\pi\)
\(104\) −2.56791 + 18.6215i −0.251805 + 1.82599i
\(105\) 0 0
\(106\) −1.41059 4.50594i −0.137009 0.437655i
\(107\) −10.4128 −1.00664 −0.503322 0.864099i \(-0.667889\pi\)
−0.503322 + 0.864099i \(0.667889\pi\)
\(108\) 0 0
\(109\) −0.0517777 0.0298939i −0.00495940 0.00286331i 0.497518 0.867454i \(-0.334245\pi\)
−0.502478 + 0.864590i \(0.667578\pi\)
\(110\) −2.53314 + 2.75311i −0.241526 + 0.262499i
\(111\) 0 0
\(112\) −1.09545 + 0.904019i −0.103510 + 0.0854218i
\(113\) 0.272476i 0.0256324i −0.999918 0.0128162i \(-0.995920\pi\)
0.999918 0.0128162i \(-0.00407963\pi\)
\(114\) 0 0
\(115\) 5.53191i 0.515853i
\(116\) −9.86113 + 0.822102i −0.915583 + 0.0763303i
\(117\) 0 0
\(118\) 3.82389 + 3.51836i 0.352017 + 0.323891i
\(119\) 1.17664 + 0.679334i 0.107863 + 0.0622745i
\(120\) 0 0
\(121\) 9.19563 0.835966
\(122\) 5.36932 1.68087i 0.486115 0.152179i
\(123\) 0 0
\(124\) 3.18808 + 1.50253i 0.286298 + 0.134932i
\(125\) −12.0556 −1.07829
\(126\) 0 0
\(127\) 6.44881 + 11.1697i 0.572239 + 0.991148i 0.996336 + 0.0855306i \(0.0272585\pi\)
−0.424096 + 0.905617i \(0.639408\pi\)
\(128\) −11.3088 + 0.331618i −0.999570 + 0.0293112i
\(129\) 0 0
\(130\) 18.0630 + 4.04326i 1.58423 + 0.354617i
\(131\) −9.18456 5.30271i −0.802459 0.463300i 0.0418713 0.999123i \(-0.486668\pi\)
−0.844330 + 0.535823i \(0.820001\pi\)
\(132\) 0 0
\(133\) 1.13413 + 1.05321i 0.0983412 + 0.0913247i
\(134\) −2.83856 + 0.888617i −0.245215 + 0.0767648i
\(135\) 0 0
\(136\) 4.08026 + 10.0242i 0.349879 + 0.859565i
\(137\) 2.79679 + 4.84418i 0.238946 + 0.413866i 0.960412 0.278583i \(-0.0898649\pi\)
−0.721466 + 0.692449i \(0.756532\pi\)
\(138\) 0 0
\(139\) −9.39468 + 5.42402i −0.796846 + 0.460060i −0.842367 0.538904i \(-0.818839\pi\)
0.0455208 + 0.998963i \(0.485505\pi\)
\(140\) 0.797488 + 1.14891i 0.0674001 + 0.0971003i
\(141\) 0 0
\(142\) −16.2424 14.9446i −1.36303 1.25412i
\(143\) 4.46369 + 7.73134i 0.373273 + 0.646527i
\(144\) 0 0
\(145\) 9.74388i 0.809185i
\(146\) −0.906344 0.833928i −0.0750096 0.0690164i
\(147\) 0 0
\(148\) 7.24405 15.3704i 0.595457 1.26344i
\(149\) 9.13332 15.8194i 0.748230 1.29597i −0.200440 0.979706i \(-0.564237\pi\)
0.948670 0.316267i \(-0.102430\pi\)
\(150\) 0 0
\(151\) −1.59192 −0.129549 −0.0647743 0.997900i \(-0.520633\pi\)
−0.0647743 + 0.997900i \(0.520633\pi\)
\(152\) 1.98539 + 12.1679i 0.161036 + 0.986949i
\(153\) 0 0
\(154\) −0.147341 + 0.658236i −0.0118730 + 0.0530422i
\(155\) 1.73523 3.00551i 0.139377 0.241408i
\(156\) 0 0
\(157\) 0.00391076 0.00677364i 0.000312113 0.000540595i −0.865869 0.500270i \(-0.833234\pi\)
0.866181 + 0.499730i \(0.166567\pi\)
\(158\) 17.4259 + 16.0336i 1.38633 + 1.27556i
\(159\) 0 0
\(160\) −0.599742 + 11.1244i −0.0474138 + 0.879460i
\(161\) 0.498694 + 0.863764i 0.0393026 + 0.0680741i
\(162\) 0 0
\(163\) 17.5559i 1.37509i −0.726143 0.687544i \(-0.758689\pi\)
0.726143 0.687544i \(-0.241311\pi\)
\(164\) −7.41558 10.6833i −0.579059 0.834225i
\(165\) 0 0
\(166\) −11.6581 2.60957i −0.904844 0.202542i
\(167\) 11.2272 + 19.4461i 0.868787 + 1.50478i 0.863238 + 0.504798i \(0.168433\pi\)
0.00554910 + 0.999985i \(0.498234\pi\)
\(168\) 0 0
\(169\) 15.5847 26.9936i 1.19883 2.07643i
\(170\) 10.1704 3.18386i 0.780034 0.244191i
\(171\) 0 0
\(172\) 5.45300 + 7.85590i 0.415788 + 0.599007i
\(173\) 6.61142 + 3.81710i 0.502657 + 0.290209i 0.729810 0.683650i \(-0.239609\pi\)
−0.227153 + 0.973859i \(0.572942\pi\)
\(174\) 0 0
\(175\) −0.344870 + 0.199111i −0.0260697 + 0.0150514i
\(176\) −4.14413 + 3.41995i −0.312376 + 0.257789i
\(177\) 0 0
\(178\) 0.896998 + 2.86534i 0.0672329 + 0.214766i
\(179\) 12.2234 0.913619 0.456809 0.889565i \(-0.348992\pi\)
0.456809 + 0.889565i \(0.348992\pi\)
\(180\) 0 0
\(181\) −9.15093 + 5.28329i −0.680183 + 0.392704i −0.799924 0.600101i \(-0.795127\pi\)
0.119741 + 0.992805i \(0.461794\pi\)
\(182\) 3.18489 0.997036i 0.236080 0.0739052i
\(183\) 0 0
\(184\) −1.08533 + 7.87043i −0.0800119 + 0.580216i
\(185\) −14.4902 8.36594i −1.06534 0.615076i
\(186\) 0 0
\(187\) 4.45130 + 2.56996i 0.325511 + 0.187934i
\(188\) 15.7201 1.31055i 1.14651 0.0955819i
\(189\) 0 0
\(190\) 12.1027 0.952805i 0.878020 0.0691238i
\(191\) 15.0979i 1.09244i 0.837641 + 0.546222i \(0.183934\pi\)
−0.837641 + 0.546222i \(0.816066\pi\)
\(192\) 0 0
\(193\) −19.1330 11.0464i −1.37722 0.795141i −0.385400 0.922750i \(-0.625936\pi\)
−0.991825 + 0.127609i \(0.959270\pi\)
\(194\) −15.1634 + 16.4802i −1.08867 + 1.18321i
\(195\) 0 0
\(196\) −12.4359 5.86101i −0.888279 0.418644i
\(197\) −11.7097 −0.834278 −0.417139 0.908843i \(-0.636967\pi\)
−0.417139 + 0.908843i \(0.636967\pi\)
\(198\) 0 0
\(199\) −0.153604 + 0.0886834i −0.0108887 + 0.00628660i −0.505434 0.862865i \(-0.668668\pi\)
0.494546 + 0.869152i \(0.335334\pi\)
\(200\) −3.14238 0.433335i −0.222200 0.0306414i
\(201\) 0 0
\(202\) −7.59570 + 2.37785i −0.534432 + 0.167305i
\(203\) 0.878397 + 1.52143i 0.0616514 + 0.106783i
\(204\) 0 0
\(205\) −11.0901 + 6.40285i −0.774563 + 0.447194i
\(206\) 5.55291 24.8073i 0.386889 1.72841i
\(207\) 0 0
\(208\) 24.9056 + 9.29636i 1.72689 + 0.644586i
\(209\) 4.29046 + 3.98434i 0.296777 + 0.275603i
\(210\) 0 0
\(211\) −6.51477 + 11.2839i −0.448495 + 0.776817i −0.998288 0.0584842i \(-0.981373\pi\)
0.549793 + 0.835301i \(0.314707\pi\)
\(212\) −6.65423 + 0.554749i −0.457014 + 0.0381003i
\(213\) 0 0
\(214\) −3.21667 + 14.3703i −0.219887 + 0.982334i
\(215\) 8.15501 4.70830i 0.556167 0.321103i
\(216\) 0 0
\(217\) 0.625715i 0.0424763i
\(218\) −0.0572503 + 0.0622218i −0.00387748 + 0.00421419i
\(219\) 0 0
\(220\) 3.01694 + 4.34637i 0.203402 + 0.293032i
\(221\) 25.4305i 1.71064i
\(222\) 0 0
\(223\) 2.15498 3.73253i 0.144308 0.249949i −0.784807 0.619741i \(-0.787238\pi\)
0.929115 + 0.369792i \(0.120571\pi\)
\(224\) 0.909203 + 1.79105i 0.0607487 + 0.119670i
\(225\) 0 0
\(226\) −0.376034 0.0841719i −0.0250134 0.00559903i
\(227\) −21.1194 −1.40175 −0.700873 0.713286i \(-0.747206\pi\)
−0.700873 + 0.713286i \(0.747206\pi\)
\(228\) 0 0
\(229\) −4.17703 −0.276026 −0.138013 0.990430i \(-0.544072\pi\)
−0.138013 + 0.990430i \(0.544072\pi\)
\(230\) 7.63438 + 1.70889i 0.503396 + 0.112681i
\(231\) 0 0
\(232\) −1.91170 + 13.8629i −0.125509 + 0.910146i
\(233\) −14.2716 + 24.7192i −0.934964 + 1.61941i −0.160267 + 0.987074i \(0.551236\pi\)
−0.774697 + 0.632332i \(0.782098\pi\)
\(234\) 0 0
\(235\) 15.5332i 1.01327i
\(236\) 6.03681 4.19032i 0.392963 0.272767i
\(237\) 0 0
\(238\) 1.30101 1.41398i 0.0843317 0.0916548i
\(239\) 0.705254i 0.0456191i 0.999740 + 0.0228095i \(0.00726113\pi\)
−0.999740 + 0.0228095i \(0.992739\pi\)
\(240\) 0 0
\(241\) −4.95189 + 2.85897i −0.318979 + 0.184163i −0.650937 0.759131i \(-0.725624\pi\)
0.331958 + 0.943294i \(0.392291\pi\)
\(242\) 2.84067 12.6905i 0.182605 0.815779i
\(243\) 0 0
\(244\) −0.661044 7.92924i −0.0423190 0.507617i
\(245\) −6.76871 + 11.7237i −0.432437 + 0.749003i
\(246\) 0 0
\(247\) 6.45822 28.2402i 0.410927 1.79688i
\(248\) 3.05844 3.93559i 0.194211 0.249910i
\(249\) 0 0
\(250\) −3.72417 + 16.6375i −0.235537 + 1.05225i
\(251\) −14.2589 + 8.23237i −0.900013 + 0.519623i −0.877204 0.480117i \(-0.840594\pi\)
−0.0228086 + 0.999740i \(0.507261\pi\)
\(252\) 0 0
\(253\) 1.88659 + 3.26767i 0.118609 + 0.205436i
\(254\) 17.4070 5.44928i 1.09221 0.341918i
\(255\) 0 0
\(256\) −3.03582 + 15.7094i −0.189739 + 0.981835i
\(257\) 13.2604 7.65590i 0.827161 0.477562i −0.0257185 0.999669i \(-0.508187\pi\)
0.852880 + 0.522107i \(0.174854\pi\)
\(258\) 0 0
\(259\) −3.01671 −0.187449
\(260\) 11.1599 23.6791i 0.692108 1.46852i
\(261\) 0 0
\(262\) −10.1553 + 11.0372i −0.627398 + 0.681879i
\(263\) 12.0977 + 6.98462i 0.745977 + 0.430690i 0.824238 0.566243i \(-0.191604\pi\)
−0.0782616 + 0.996933i \(0.524937\pi\)
\(264\) 0 0
\(265\) 6.57511i 0.403905i
\(266\) 1.80384 1.23981i 0.110601 0.0760178i
\(267\) 0 0
\(268\) 0.349470 + 4.19190i 0.0213473 + 0.256061i
\(269\) 17.7199 + 10.2306i 1.08040 + 0.623770i 0.931004 0.365008i \(-0.118934\pi\)
0.149396 + 0.988777i \(0.452267\pi\)
\(270\) 0 0
\(271\) 7.40043 + 4.27264i 0.449544 + 0.259544i 0.707638 0.706576i \(-0.249761\pi\)
−0.258094 + 0.966120i \(0.583094\pi\)
\(272\) 15.0944 2.53440i 0.915234 0.153670i
\(273\) 0 0
\(274\) 7.54924 2.36330i 0.456066 0.142772i
\(275\) −1.30466 + 0.753247i −0.0786741 + 0.0454225i
\(276\) 0 0
\(277\) −10.4223 −0.626213 −0.313107 0.949718i \(-0.601370\pi\)
−0.313107 + 0.949718i \(0.601370\pi\)
\(278\) 4.58333 + 14.6408i 0.274890 + 0.878097i
\(279\) 0 0
\(280\) 1.83192 0.745669i 0.109478 0.0445622i
\(281\) −12.0512 + 6.95777i −0.718915 + 0.415066i −0.814353 0.580370i \(-0.802908\pi\)
0.0954384 + 0.995435i \(0.469575\pi\)
\(282\) 0 0
\(283\) −13.1484 7.59120i −0.781588 0.451250i 0.0554045 0.998464i \(-0.482355\pi\)
−0.836993 + 0.547214i \(0.815688\pi\)
\(284\) −25.6420 + 17.7988i −1.52157 + 1.05617i
\(285\) 0 0
\(286\) 12.0486 3.77184i 0.712450 0.223034i
\(287\) −1.15442 + 1.99951i −0.0681430 + 0.118027i
\(288\) 0 0
\(289\) 1.17923 + 2.04249i 0.0693665 + 0.120146i
\(290\) 13.4472 + 3.01003i 0.789644 + 0.176755i
\(291\) 0 0
\(292\) −1.43086 + 0.993198i −0.0837346 + 0.0581225i
\(293\) 15.3923i 0.899229i −0.893223 0.449614i \(-0.851561\pi\)
0.893223 0.449614i \(-0.148439\pi\)
\(294\) 0 0
\(295\) −3.61806 6.26666i −0.210652 0.364859i
\(296\) −18.9744 14.7454i −1.10286 0.857059i
\(297\) 0 0
\(298\) −19.0103 17.4914i −1.10124 1.01325i
\(299\) 9.33416 16.1672i 0.539808 0.934976i
\(300\) 0 0
\(301\) 0.848893 1.47033i 0.0489294 0.0847482i
\(302\) −0.491769 + 2.19695i −0.0282981 + 0.126420i
\(303\) 0 0
\(304\) 17.4058 + 1.01890i 0.998291 + 0.0584378i
\(305\) −7.83496 −0.448628
\(306\) 0 0
\(307\) 16.2895 28.2143i 0.929692 1.61027i 0.145856 0.989306i \(-0.453406\pi\)
0.783836 0.620968i \(-0.213260\pi\)
\(308\) 0.862891 + 0.406678i 0.0491678 + 0.0231727i
\(309\) 0 0
\(310\) −3.61175 3.32317i −0.205134 0.188744i
\(311\) 23.4521i 1.32984i −0.746913 0.664922i \(-0.768465\pi\)
0.746913 0.664922i \(-0.231535\pi\)
\(312\) 0 0
\(313\) 0.505863 + 0.876180i 0.0285930 + 0.0495246i 0.879968 0.475033i \(-0.157564\pi\)
−0.851375 + 0.524558i \(0.824231\pi\)
\(314\) −0.00813995 0.00748958i −0.000459364 0.000422661i
\(315\) 0 0
\(316\) 27.5105 19.0958i 1.54759 1.07422i
\(317\) −26.9491 + 15.5591i −1.51361 + 0.873885i −0.513740 + 0.857946i \(0.671741\pi\)
−0.999873 + 0.0159394i \(0.994926\pi\)
\(318\) 0 0
\(319\) 3.32302 + 5.75565i 0.186054 + 0.322254i
\(320\) 15.1671 + 4.26417i 0.847865 + 0.238375i
\(321\) 0 0
\(322\) 1.34610 0.421399i 0.0750153 0.0234837i
\(323\) −4.90948 15.9401i −0.273171 0.886930i
\(324\) 0 0
\(325\) 6.45500 + 3.72680i 0.358059 + 0.206725i
\(326\) −24.2283 5.42330i −1.34188 0.300369i
\(327\) 0 0
\(328\) −17.0344 + 6.93372i −0.940567 + 0.382851i
\(329\) −1.40029 2.42538i −0.0772007 0.133716i
\(330\) 0 0
\(331\) −33.1040 −1.81956 −0.909781 0.415089i \(-0.863750\pi\)
−0.909781 + 0.415089i \(0.863750\pi\)
\(332\) −7.20273 + 15.2828i −0.395301 + 0.838750i
\(333\) 0 0
\(334\) 30.3050 9.48704i 1.65822 0.519108i
\(335\) 4.14206 0.226305
\(336\) 0 0
\(337\) −26.3761 15.2282i −1.43680 0.829535i −0.439171 0.898404i \(-0.644728\pi\)
−0.997626 + 0.0688690i \(0.978061\pi\)
\(338\) −32.4384 29.8466i −1.76442 1.62344i
\(339\) 0 0
\(340\) −1.25213 15.0193i −0.0679063 0.814537i
\(341\) 2.36711i 0.128186i
\(342\) 0 0
\(343\) 4.92628i 0.265994i
\(344\) 12.5261 5.09868i 0.675365 0.274902i
\(345\) 0 0
\(346\) 7.31021 7.94500i 0.392999 0.427126i
\(347\) 0.161858 + 0.0934487i 0.00868898 + 0.00501659i 0.504338 0.863506i \(-0.331736\pi\)
−0.495649 + 0.868523i \(0.665070\pi\)
\(348\) 0 0
\(349\) 5.01843 0.268631 0.134315 0.990939i \(-0.457116\pi\)
0.134315 + 0.990939i \(0.457116\pi\)
\(350\) 0.168250 + 0.537450i 0.00899332 + 0.0287279i
\(351\) 0 0
\(352\) 3.43956 + 6.77564i 0.183329 + 0.361143i
\(353\) 29.7351 1.58264 0.791319 0.611404i \(-0.209395\pi\)
0.791319 + 0.611404i \(0.209395\pi\)
\(354\) 0 0
\(355\) 15.3681 + 26.6183i 0.815654 + 1.41275i
\(356\) 4.23144 0.352767i 0.224266 0.0186966i
\(357\) 0 0
\(358\) 3.77599 16.8690i 0.199567 0.891556i
\(359\) −13.1403 7.58655i −0.693518 0.400403i 0.111411 0.993774i \(-0.464463\pi\)
−0.804929 + 0.593372i \(0.797796\pi\)
\(360\) 0 0
\(361\) −1.40385 18.9481i −0.0738866 0.997267i
\(362\) 4.46441 + 14.2609i 0.234644 + 0.749538i
\(363\) 0 0
\(364\) −0.392109 4.70335i −0.0205521 0.246523i
\(365\) 0.857559 + 1.48534i 0.0448867 + 0.0777461i
\(366\) 0 0
\(367\) 12.4274 7.17495i 0.648704 0.374530i −0.139255 0.990257i \(-0.544471\pi\)
0.787960 + 0.615727i \(0.211138\pi\)
\(368\) 10.5264 + 3.92912i 0.548727 + 0.204820i
\(369\) 0 0
\(370\) −16.0218 + 17.4130i −0.832932 + 0.905261i
\(371\) 0.592737 + 1.02665i 0.0307734 + 0.0533010i
\(372\) 0 0
\(373\) 1.28645i 0.0666099i 0.999445 + 0.0333050i \(0.0106033\pi\)
−0.999445 + 0.0333050i \(0.989397\pi\)
\(374\) 4.92178 5.34917i 0.254499 0.276599i
\(375\) 0 0
\(376\) 3.04753 22.0996i 0.157165 1.13970i
\(377\) 16.4411 28.4769i 0.846762 1.46663i
\(378\) 0 0
\(379\) −1.85939 −0.0955106 −0.0477553 0.998859i \(-0.515207\pi\)
−0.0477553 + 0.998859i \(0.515207\pi\)
\(380\) 2.42377 16.9968i 0.124337 0.871916i
\(381\) 0 0
\(382\) 20.8360 + 4.66396i 1.06606 + 0.238629i
\(383\) 14.5822 25.2572i 0.745118 1.29058i −0.205022 0.978757i \(-0.565727\pi\)
0.950140 0.311824i \(-0.100940\pi\)
\(384\) 0 0
\(385\) 0.469661 0.813476i 0.0239361 0.0414586i
\(386\) −21.1553 + 22.9923i −1.07677 + 1.17028i
\(387\) 0 0
\(388\) 18.0594 + 26.0174i 0.916829 + 1.32083i
\(389\) 2.67844 + 4.63919i 0.135802 + 0.235216i 0.925904 0.377760i \(-0.123305\pi\)
−0.790101 + 0.612976i \(0.789972\pi\)
\(390\) 0 0
\(391\) 10.7482i 0.543562i
\(392\) −11.9302 + 15.3518i −0.602566 + 0.775381i
\(393\) 0 0
\(394\) −3.61729 + 16.1601i −0.182236 + 0.814132i
\(395\) −16.4879 28.5580i −0.829598 1.43691i
\(396\) 0 0
\(397\) 13.0057 22.5266i 0.652738 1.13058i −0.329718 0.944080i \(-0.606954\pi\)
0.982456 0.186496i \(-0.0597131\pi\)
\(398\) 0.0749380 + 0.239379i 0.00375630 + 0.0119990i
\(399\) 0 0
\(400\) −1.56876 + 4.20282i −0.0784379 + 0.210141i
\(401\) −19.4940 11.2548i −0.973482 0.562040i −0.0731860 0.997318i \(-0.523317\pi\)
−0.900296 + 0.435278i \(0.856650\pi\)
\(402\) 0 0
\(403\) −10.1426 + 5.85582i −0.505237 + 0.291699i
\(404\) 0.935146 + 11.2171i 0.0465253 + 0.558071i
\(405\) 0 0
\(406\) 2.37102 0.742250i 0.117672 0.0368372i
\(407\) −11.4124 −0.565691
\(408\) 0 0
\(409\) −17.7553 + 10.2510i −0.877945 + 0.506882i −0.869980 0.493087i \(-0.835869\pi\)
−0.00796465 + 0.999968i \(0.502535\pi\)
\(410\) 5.41044 + 17.2829i 0.267202 + 0.853542i
\(411\) 0 0
\(412\) −32.5203 15.3267i −1.60216 0.755093i
\(413\) −1.12986 0.652326i −0.0555969 0.0320989i
\(414\) 0 0
\(415\) 14.4076 + 8.31821i 0.707240 + 0.408325i
\(416\) 20.5233 31.4995i 1.00624 1.54439i
\(417\) 0 0
\(418\) 6.82403 4.69028i 0.333774 0.229409i
\(419\) 12.8954i 0.629984i −0.949094 0.314992i \(-0.897998\pi\)
0.949094 0.314992i \(-0.102002\pi\)
\(420\) 0 0
\(421\) −16.5038 9.52845i −0.804344 0.464388i 0.0406439 0.999174i \(-0.487059\pi\)
−0.844988 + 0.534785i \(0.820392\pi\)
\(422\) 13.5600 + 12.4766i 0.660090 + 0.607350i
\(423\) 0 0
\(424\) −1.29000 + 9.35462i −0.0626481 + 0.454300i
\(425\) 4.29139 0.208163
\(426\) 0 0
\(427\) −1.22337 + 0.706310i −0.0592028 + 0.0341808i
\(428\) 18.8382 + 8.87842i 0.910581 + 0.429154i
\(429\) 0 0
\(430\) −3.97854 12.7089i −0.191862 0.612877i
\(431\) 9.21153 + 15.9548i 0.443704 + 0.768517i 0.997961 0.0638282i \(-0.0203310\pi\)
−0.554257 + 0.832345i \(0.686998\pi\)
\(432\) 0 0
\(433\) −7.50721 + 4.33429i −0.360774 + 0.208293i −0.669420 0.742884i \(-0.733457\pi\)
0.308646 + 0.951177i \(0.400124\pi\)
\(434\) −0.863525 0.193293i −0.0414505 0.00927835i
\(435\) 0 0
\(436\) 0.0681844 + 0.0982302i 0.00326544 + 0.00470438i
\(437\) 2.72958 11.9358i 0.130573 0.570967i
\(438\) 0 0
\(439\) −15.6506 + 27.1077i −0.746963 + 1.29378i 0.202309 + 0.979322i \(0.435156\pi\)
−0.949272 + 0.314456i \(0.898178\pi\)
\(440\) 6.93025 2.82091i 0.330387 0.134481i
\(441\) 0 0
\(442\) −35.0956 7.85586i −1.66933 0.373665i
\(443\) 2.99719 1.73043i 0.142401 0.0822152i −0.427107 0.904201i \(-0.640467\pi\)
0.569508 + 0.821986i \(0.307134\pi\)
\(444\) 0 0
\(445\) 4.18113i 0.198204i
\(446\) −4.48542 4.12704i −0.212391 0.195421i
\(447\) 0 0
\(448\) 2.75263 0.701474i 0.130049 0.0331415i
\(449\) 17.3513i 0.818858i −0.912342 0.409429i \(-0.865728\pi\)
0.912342 0.409429i \(-0.134272\pi\)
\(450\) 0 0
\(451\) −4.36722 + 7.56424i −0.205644 + 0.356186i
\(452\) −0.232325 + 0.492948i −0.0109276 + 0.0231863i
\(453\) 0 0
\(454\) −6.52412 + 29.1461i −0.306192 + 1.36790i
\(455\) −4.64743 −0.217875
\(456\) 0 0
\(457\) −2.05680 −0.0962131 −0.0481065 0.998842i \(-0.515319\pi\)
−0.0481065 + 0.998842i \(0.515319\pi\)
\(458\) −1.29035 + 5.76456i −0.0602940 + 0.269360i
\(459\) 0 0
\(460\) 4.71675 10.0080i 0.219920 0.466626i
\(461\) −9.26074 + 16.0401i −0.431316 + 0.747061i −0.996987 0.0775700i \(-0.975284\pi\)
0.565671 + 0.824631i \(0.308617\pi\)
\(462\) 0 0
\(463\) 14.7319i 0.684649i −0.939582 0.342325i \(-0.888786\pi\)
0.939582 0.342325i \(-0.111214\pi\)
\(464\) 18.5412 + 6.92074i 0.860751 + 0.321287i
\(465\) 0 0
\(466\) 29.7053 + 27.3318i 1.37607 + 1.26612i
\(467\) 28.5370i 1.32054i 0.751030 + 0.660268i \(0.229557\pi\)
−0.751030 + 0.660268i \(0.770443\pi\)
\(468\) 0 0
\(469\) 0.646749 0.373401i 0.0298641 0.0172421i
\(470\) −21.4368 4.79844i −0.988804 0.221335i
\(471\) 0 0
\(472\) −3.91804 9.62563i −0.180343 0.443056i
\(473\) 3.21141 5.56232i 0.147661 0.255756i
\(474\) 0 0
\(475\) 4.76554 + 1.08982i 0.218658 + 0.0500045i
\(476\) −1.54948 2.23227i −0.0710204 0.102316i
\(477\) 0 0
\(478\) 0.973294 + 0.217864i 0.0445174 + 0.00996485i
\(479\) −2.12263 + 1.22550i −0.0969857 + 0.0559947i −0.547708 0.836669i \(-0.684500\pi\)
0.450723 + 0.892664i \(0.351166\pi\)
\(480\) 0 0
\(481\) 28.2322 + 48.8996i 1.28728 + 2.22963i
\(482\) 2.41585 + 7.71709i 0.110039 + 0.351504i
\(483\) 0 0
\(484\) −16.6362 7.84060i −0.756191 0.356391i
\(485\) 27.0080 15.5931i 1.22637 0.708046i
\(486\) 0 0
\(487\) 8.18323 0.370817 0.185409 0.982661i \(-0.440639\pi\)
0.185409 + 0.982661i \(0.440639\pi\)
\(488\) −11.1470 1.53718i −0.504603 0.0695849i
\(489\) 0 0
\(490\) 14.0885 + 12.9629i 0.636455 + 0.585603i
\(491\) −0.994013 0.573893i −0.0448592 0.0258994i 0.477403 0.878685i \(-0.341578\pi\)
−0.522262 + 0.852785i \(0.674912\pi\)
\(492\) 0 0
\(493\) 18.9319i 0.852649i
\(494\) −36.9783 17.6366i −1.66373 0.793508i
\(495\) 0 0
\(496\) −4.48656 5.43660i −0.201453 0.244110i
\(497\) 4.79921 + 2.77082i 0.215274 + 0.124288i
\(498\) 0 0
\(499\) 22.8813 + 13.2105i 1.02431 + 0.591385i 0.915349 0.402662i \(-0.131915\pi\)
0.108959 + 0.994046i \(0.465248\pi\)
\(500\) 21.8104 + 10.2792i 0.975389 + 0.459698i
\(501\) 0 0
\(502\) 6.95640 + 22.2213i 0.310479 + 0.991783i
\(503\) 33.7105 19.4628i 1.50308 0.867802i 0.503084 0.864238i \(-0.332199\pi\)
0.999994 0.00356422i \(-0.00113453\pi\)
\(504\) 0 0
\(505\) 11.0837 0.493219
\(506\) 5.09238 1.59418i 0.226384 0.0708698i
\(507\) 0 0
\(508\) −2.14306 25.7061i −0.0950830 1.14052i
\(509\) −27.6426 + 15.9594i −1.22524 + 0.707390i −0.966029 0.258432i \(-0.916794\pi\)
−0.259206 + 0.965822i \(0.583461\pi\)
\(510\) 0 0
\(511\) 0.267802 + 0.154616i 0.0118469 + 0.00683979i
\(512\) 20.7421 + 9.04248i 0.916679 + 0.399625i
\(513\) 0 0
\(514\) −6.46927 20.6652i −0.285347 0.911503i
\(515\) −17.7004 + 30.6579i −0.779971 + 1.35095i
\(516\) 0 0
\(517\) −5.29739 9.17535i −0.232979 0.403531i
\(518\) −0.931908 + 4.16325i −0.0409457 + 0.182923i
\(519\) 0 0
\(520\) −29.2312 22.7162i −1.28187 0.996171i
\(521\) 38.3269i 1.67913i 0.543259 + 0.839565i \(0.317190\pi\)
−0.543259 + 0.839565i \(0.682810\pi\)
\(522\) 0 0
\(523\) 12.2460 + 21.2106i 0.535478 + 0.927475i 0.999140 + 0.0414632i \(0.0132019\pi\)
−0.463662 + 0.886012i \(0.653465\pi\)
\(524\) 12.0949 + 17.4245i 0.528366 + 0.761194i
\(525\) 0 0
\(526\) 13.3764 14.5379i 0.583238 0.633884i
\(527\) −3.37147 + 5.83956i −0.146864 + 0.254375i
\(528\) 0 0
\(529\) −7.55490 + 13.0855i −0.328474 + 0.568933i
\(530\) 9.07405 + 2.03115i 0.394152 + 0.0882275i
\(531\) 0 0
\(532\) −1.15378 2.87241i −0.0500229 0.124535i
\(533\) 43.2149 1.87184
\(534\) 0 0
\(535\) 10.2534 17.7594i 0.443294 0.767807i
\(536\) 5.89304 + 0.812652i 0.254541 + 0.0351012i
\(537\) 0 0
\(538\) 19.5928 21.2942i 0.844705 0.918056i
\(539\) 9.23352i 0.397716i
\(540\) 0 0
\(541\) 15.0480 + 26.0639i 0.646964 + 1.12058i 0.983844 + 0.179027i \(0.0572951\pi\)
−0.336880 + 0.941548i \(0.609372\pi\)
\(542\) 8.18261 8.89317i 0.351473 0.381994i
\(543\) 0 0
\(544\) 1.16527 21.6141i 0.0499606 0.926699i
\(545\) 0.101970 0.0588726i 0.00436793 0.00252183i
\(546\) 0 0
\(547\) −1.94265 3.36477i −0.0830619 0.143867i 0.821502 0.570206i \(-0.193137\pi\)
−0.904564 + 0.426339i \(0.859803\pi\)
\(548\) −0.929426 11.1485i −0.0397031 0.476239i
\(549\) 0 0
\(550\) 0.636498 + 2.03320i 0.0271403 + 0.0866961i
\(551\) 4.80786 21.0236i 0.204822 0.895637i
\(552\) 0 0
\(553\) −5.14892 2.97273i −0.218954 0.126413i
\(554\) −3.21960 + 14.3834i −0.136788 + 0.611091i
\(555\) 0 0
\(556\) 21.6211 1.80251i 0.916938 0.0764433i
\(557\) −9.25647 16.0327i −0.392209 0.679326i 0.600531 0.799601i \(-0.294956\pi\)
−0.992741 + 0.120275i \(0.961622\pi\)
\(558\) 0 0
\(559\) −31.7778 −1.34406
\(560\) −0.463162 2.75851i −0.0195722 0.116568i
\(561\) 0 0
\(562\) 5.87935 + 18.7808i 0.248005 + 0.792219i
\(563\) 37.3030 1.57213 0.786067 0.618141i \(-0.212114\pi\)
0.786067 + 0.618141i \(0.212114\pi\)
\(564\) 0 0
\(565\) 0.464718 + 0.268305i 0.0195508 + 0.0112877i
\(566\) −14.5381 + 15.8005i −0.611080 + 0.664145i
\(567\) 0 0
\(568\) 16.6423 + 40.8859i 0.698295 + 1.71553i
\(569\) 35.1981i 1.47558i 0.675030 + 0.737791i \(0.264131\pi\)
−0.675030 + 0.737791i \(0.735869\pi\)
\(570\) 0 0
\(571\) 22.9289i 0.959544i 0.877393 + 0.479772i \(0.159281\pi\)
−0.877393 + 0.479772i \(0.840719\pi\)
\(572\) −1.48337 17.7930i −0.0620228 0.743964i
\(573\) 0 0
\(574\) 2.40283 + 2.21084i 0.100292 + 0.0922788i
\(575\) 2.72822 + 1.57514i 0.113775 + 0.0656878i
\(576\) 0 0
\(577\) 34.9147 1.45352 0.726759 0.686892i \(-0.241026\pi\)
0.726759 + 0.686892i \(0.241026\pi\)
\(578\) 3.18304 0.996456i 0.132397 0.0414471i
\(579\) 0 0
\(580\) 8.30806 17.6281i 0.344974 0.731965i
\(581\) 2.99950 0.124440
\(582\) 0 0
\(583\) 2.24236 + 3.88387i 0.0928689 + 0.160854i
\(584\) 0.928662 + 2.28149i 0.0384283 + 0.0944085i
\(585\) 0 0
\(586\) −21.2424 4.75492i −0.877514 0.196424i
\(587\) −8.39604 4.84746i −0.346542 0.200076i 0.316619 0.948553i \(-0.397452\pi\)
−0.663161 + 0.748477i \(0.730786\pi\)
\(588\) 0 0
\(589\) −5.22697 + 5.62856i −0.215374 + 0.231921i
\(590\) −9.76606 + 3.05728i −0.402062 + 0.125866i
\(591\) 0 0
\(592\) −26.2110 + 21.6307i −1.07727 + 0.889017i
\(593\) 5.45069 + 9.44088i 0.223833 + 0.387690i 0.955969 0.293469i \(-0.0948096\pi\)
−0.732136 + 0.681159i \(0.761476\pi\)
\(594\) 0 0
\(595\) −2.31726 + 1.33787i −0.0949985 + 0.0548474i
\(596\) −30.0118 + 20.8320i −1.22933 + 0.853313i
\(597\) 0 0
\(598\) −19.4283 17.8760i −0.794484 0.731005i
\(599\) 21.1928 + 36.7070i 0.865915 + 1.49981i 0.866136 + 0.499808i \(0.166596\pi\)
−0.000221764 1.00000i \(0.500071\pi\)
\(600\) 0 0
\(601\) 5.82413i 0.237571i 0.992920 + 0.118786i \(0.0379001\pi\)
−0.992920 + 0.118786i \(0.962100\pi\)
\(602\) −1.76691 1.62573i −0.0720137 0.0662599i
\(603\) 0 0
\(604\) 2.88001 + 1.35734i 0.117186 + 0.0552295i
\(605\) −9.05488 + 15.6835i −0.368133 + 0.637625i
\(606\) 0 0
\(607\) −32.3172 −1.31172 −0.655858 0.754884i \(-0.727693\pi\)
−0.655858 + 0.754884i \(0.727693\pi\)
\(608\) 6.78306 23.7063i 0.275089 0.961419i
\(609\) 0 0
\(610\) −2.42034 + 10.8127i −0.0979966 + 0.437794i
\(611\) −26.2096 + 45.3964i −1.06033 + 1.83654i
\(612\) 0 0
\(613\) −7.57118 + 13.1137i −0.305797 + 0.529656i −0.977438 0.211220i \(-0.932256\pi\)
0.671641 + 0.740876i \(0.265590\pi\)
\(614\) −33.9054 31.1964i −1.36831 1.25898i
\(615\) 0 0
\(616\) 0.827802 1.06521i 0.0333531 0.0429187i
\(617\) −17.9959 31.1699i −0.724489 1.25485i −0.959184 0.282782i \(-0.908743\pi\)
0.234696 0.972069i \(-0.424591\pi\)
\(618\) 0 0
\(619\) 18.3315i 0.736806i −0.929666 0.368403i \(-0.879905\pi\)
0.929666 0.368403i \(-0.120095\pi\)
\(620\) −5.70191 + 3.95786i −0.228994 + 0.158951i
\(621\) 0 0
\(622\) −32.3653 7.24470i −1.29773 0.290486i
\(623\) −0.376923 0.652850i −0.0151011 0.0261559i
\(624\) 0 0
\(625\) 9.06732 15.7051i 0.362693 0.628202i
\(626\) 1.36545 0.427457i 0.0545744 0.0170846i
\(627\) 0 0
\(628\) −0.0128506 + 0.00891999i −0.000512796 + 0.000355946i
\(629\) 28.1538 + 16.2546i 1.12257 + 0.648114i
\(630\) 0 0
\(631\) 2.13172 1.23075i 0.0848624 0.0489953i −0.456968 0.889483i \(-0.651065\pi\)
0.541831 + 0.840488i \(0.317731\pi\)
\(632\) −17.8550 43.8652i −0.710234 1.74486i
\(633\) 0 0
\(634\) 13.1475 + 41.9979i 0.522154 + 1.66795i
\(635\) −25.4004 −1.00798
\(636\) 0 0
\(637\) 39.5637 22.8421i 1.56757 0.905036i
\(638\) 8.96968 2.80797i 0.355113 0.111169i
\(639\) 0 0
\(640\) 10.5702 19.6142i 0.417822 0.775320i
\(641\) −36.7475 21.2162i −1.45144 0.837988i −0.452875 0.891574i \(-0.649601\pi\)
−0.998563 + 0.0535862i \(0.982935\pi\)
\(642\) 0 0
\(643\) −18.1691 10.4899i −0.716519 0.413682i 0.0969511 0.995289i \(-0.469091\pi\)
−0.813470 + 0.581607i \(0.802424\pi\)
\(644\) −0.165726 1.98788i −0.00653050 0.0783335i
\(645\) 0 0
\(646\) −23.5149 + 1.85126i −0.925182 + 0.0728367i
\(647\) 41.3586i 1.62597i 0.582282 + 0.812987i \(0.302160\pi\)
−0.582282 + 0.812987i \(0.697840\pi\)
\(648\) 0 0
\(649\) −4.27433 2.46779i −0.167782 0.0968691i
\(650\) 7.13726 7.75704i 0.279946 0.304256i
\(651\) 0 0
\(652\) −14.9690 + 31.7612i −0.586230 + 1.24386i
\(653\) −21.1062 −0.825950 −0.412975 0.910742i \(-0.635510\pi\)
−0.412975 + 0.910742i \(0.635510\pi\)
\(654\) 0 0
\(655\) 18.0880 10.4431i 0.706755 0.408045i
\(656\) 4.30678 + 25.6504i 0.168152 + 1.00148i
\(657\) 0 0
\(658\) −3.77975 + 1.18326i −0.147350 + 0.0461281i
\(659\) −10.9192 18.9126i −0.425351 0.736730i 0.571102 0.820879i \(-0.306516\pi\)
−0.996453 + 0.0841494i \(0.973183\pi\)
\(660\) 0 0
\(661\) −7.76653 + 4.48401i −0.302083 + 0.174408i −0.643378 0.765548i \(-0.722468\pi\)
0.341295 + 0.939956i \(0.389134\pi\)
\(662\) −10.2263 + 45.6856i −0.397458 + 1.77562i
\(663\) 0 0
\(664\) 18.8661 + 14.6613i 0.732148 + 0.568968i
\(665\) −2.91305 + 0.897209i −0.112963 + 0.0347923i
\(666\) 0 0
\(667\) 6.94888 12.0358i 0.269062 0.466028i
\(668\) −3.73101 44.7535i −0.144357 1.73157i
\(669\) 0 0
\(670\) 1.27955 5.71630i 0.0494331 0.220840i
\(671\) −4.62806 + 2.67201i −0.178664 + 0.103152i
\(672\) 0 0
\(673\) 3.65151i 0.140756i 0.997520 + 0.0703778i \(0.0224205\pi\)
−0.997520 + 0.0703778i \(0.977580\pi\)
\(674\) −29.1639 + 31.6964i −1.12335 + 1.22090i
\(675\) 0 0
\(676\) −51.2109 + 35.5470i −1.96965 + 1.36719i
\(677\) 12.3206i 0.473520i 0.971568 + 0.236760i \(0.0760855\pi\)
−0.971568 + 0.236760i \(0.923915\pi\)
\(678\) 0 0
\(679\) 2.81139 4.86947i 0.107891 0.186873i
\(680\) −21.1144 2.91168i −0.809701 0.111658i
\(681\) 0 0
\(682\) −3.26676 0.731238i −0.125091 0.0280005i
\(683\) −34.1567 −1.30697 −0.653486 0.756939i \(-0.726694\pi\)
−0.653486 + 0.756939i \(0.726694\pi\)
\(684\) 0 0
\(685\) −11.0159 −0.420896
\(686\) 6.79858 + 1.52180i 0.259571 + 0.0581028i
\(687\) 0 0
\(688\) −3.16697 18.8619i −0.120740 0.719104i
\(689\) 11.0944 19.2160i 0.422662 0.732072i
\(690\) 0 0
\(691\) 10.5938i 0.403008i 0.979488 + 0.201504i \(0.0645830\pi\)
−0.979488 + 0.201504i \(0.935417\pi\)
\(692\) −8.70636 12.5429i −0.330966 0.476808i
\(693\) 0 0
\(694\) 0.178965 0.194506i 0.00679343 0.00738335i
\(695\) 21.3640i 0.810383i
\(696\) 0 0
\(697\) 21.5475 12.4404i 0.816168 0.471215i
\(698\) 1.55027 6.92575i 0.0586786 0.262144i
\(699\) 0 0
\(700\) 0.793690 0.0661683i 0.0299987 0.00250093i
\(701\) −5.91254 + 10.2408i −0.223314 + 0.386791i −0.955812 0.293978i \(-0.905021\pi\)
0.732498 + 0.680769i \(0.238354\pi\)
\(702\) 0 0
\(703\) 27.1365 + 25.2004i 1.02347 + 0.950451i
\(704\) 10.4133 2.65371i 0.392467 0.100016i
\(705\) 0 0
\(706\) 9.18561 41.0362i 0.345705 1.54442i
\(707\) 1.73063 0.999182i 0.0650872 0.0375781i
\(708\) 0 0
\(709\) −3.70068 6.40977i −0.138982 0.240724i 0.788130 0.615509i \(-0.211050\pi\)
−0.927112 + 0.374786i \(0.877716\pi\)
\(710\) 41.4824 12.9861i 1.55681 0.487360i
\(711\) 0 0
\(712\) 0.820317 5.94863i 0.0307427 0.222934i
\(713\) −4.28678 + 2.47497i −0.160541 + 0.0926884i
\(714\) 0 0
\(715\) −17.5815 −0.657510
\(716\) −22.1139 10.4222i −0.826433 0.389496i
\(717\) 0 0
\(718\) −14.5291 + 15.7908i −0.542223 + 0.589308i
\(719\) 28.7145 + 16.5783i 1.07087 + 0.618268i 0.928419 0.371534i \(-0.121168\pi\)
0.142452 + 0.989802i \(0.454501\pi\)
\(720\) 0 0
\(721\) 6.38265i 0.237702i
\(722\) −26.5832 3.91595i −0.989323 0.145737i
\(723\) 0 0
\(724\) 21.0601 1.75574i 0.782692 0.0652515i
\(725\) 4.80547 + 2.77444i 0.178471 + 0.103040i
\(726\) 0 0
\(727\) 30.3035 + 17.4957i 1.12390 + 0.648881i 0.942393 0.334509i \(-0.108570\pi\)
0.181503 + 0.983390i \(0.441904\pi\)
\(728\) −6.61204 0.911802i −0.245059 0.0337936i
\(729\) 0 0
\(730\) 2.31477 0.724642i 0.0856735 0.0268202i
\(731\) −15.8448 + 9.14800i −0.586041 + 0.338351i
\(732\) 0 0
\(733\) 4.06091 0.149993 0.0749966 0.997184i \(-0.476105\pi\)
0.0749966 + 0.997184i \(0.476105\pi\)
\(734\) −6.06287 19.3670i −0.223785 0.714850i
\(735\) 0 0
\(736\) 8.67420 13.3133i 0.319735 0.490736i
\(737\) 2.44669 1.41260i 0.0901249 0.0520336i
\(738\) 0 0
\(739\) −37.7065 21.7699i −1.38706 0.800817i −0.394074 0.919079i \(-0.628935\pi\)
−0.992982 + 0.118261i \(0.962268\pi\)
\(740\) 19.0817 + 27.4902i 0.701458 + 1.01056i
\(741\) 0 0
\(742\) 1.59995 0.500866i 0.0587359 0.0183874i
\(743\) 1.52131 2.63499i 0.0558115 0.0966683i −0.836770 0.547555i \(-0.815559\pi\)
0.892581 + 0.450887i \(0.148892\pi\)
\(744\) 0 0
\(745\) 17.9870 + 31.1545i 0.658994 + 1.14141i
\(746\) 1.77538 + 0.397405i 0.0650014 + 0.0145500i
\(747\) 0 0
\(748\) −5.86178 8.44480i −0.214328 0.308772i
\(749\) 3.69733i 0.135097i
\(750\) 0 0
\(751\) −13.9706 24.1977i −0.509794 0.882988i −0.999936 0.0113458i \(-0.996388\pi\)
0.490142 0.871643i \(-0.336945\pi\)
\(752\) −29.5573 11.0327i −1.07785 0.402320i
\(753\) 0 0
\(754\) −34.2209 31.4867i −1.24625 1.14668i
\(755\) 1.56755 2.71508i 0.0570492 0.0988120i
\(756\) 0 0
\(757\) 6.64342 11.5067i 0.241459 0.418219i −0.719671 0.694315i \(-0.755707\pi\)
0.961130 + 0.276096i \(0.0890407\pi\)
\(758\) −0.574395 + 2.56608i −0.0208630 + 0.0932041i
\(759\) 0 0
\(760\) −22.7079 8.59552i −0.823701 0.311792i
\(761\) −0.108264 −0.00392458 −0.00196229 0.999998i \(-0.500625\pi\)
−0.00196229 + 0.999998i \(0.500625\pi\)
\(762\) 0 0
\(763\) 0.0106146 0.0183850i 0.000384273 0.000665581i
\(764\) 12.8731 27.3142i 0.465733 0.988193i
\(765\) 0 0
\(766\) −30.3518 27.9267i −1.09665 1.00903i
\(767\) 24.4194i 0.881735i
\(768\) 0 0
\(769\) 16.3034 + 28.2383i 0.587916 + 1.01830i 0.994505 + 0.104689i \(0.0333847\pi\)
−0.406589 + 0.913611i \(0.633282\pi\)
\(770\) −0.977562 0.899456i −0.0352289 0.0324142i
\(771\) 0 0
\(772\) 25.1957 + 36.2983i 0.906811 + 1.30640i
\(773\) −23.4972 + 13.5661i −0.845135 + 0.487939i −0.859006 0.511965i \(-0.828918\pi\)
0.0138713 + 0.999904i \(0.495584\pi\)
\(774\) 0 0
\(775\) −0.988168 1.71156i −0.0354960 0.0614809i
\(776\) 41.4845 16.8860i 1.48921 0.606170i
\(777\) 0 0
\(778\) 7.22979 2.26329i 0.259200 0.0811431i
\(779\) 27.0875 8.34285i 0.970511 0.298914i
\(780\) 0 0
\(781\) 18.1557 + 10.4822i 0.649661 + 0.375082i
\(782\) −14.8332 3.32030i −0.530436 0.118734i
\(783\) 0 0
\(784\) 17.5010 + 21.2068i 0.625035 + 0.757386i
\(785\) 0.00770181 + 0.0133399i 0.000274889 + 0.000476122i
\(786\) 0 0
\(787\) 21.3735 0.761882 0.380941 0.924599i \(-0.375600\pi\)
0.380941 + 0.924599i \(0.375600\pi\)
\(788\) 21.1844 + 9.98417i 0.754664 + 0.355671i
\(789\) 0 0
\(790\) −44.5051 + 13.9324i −1.58342 + 0.495692i
\(791\) 0.0967494 0.00344001
\(792\) 0 0
\(793\) 22.8980 + 13.2202i 0.813131 + 0.469461i
\(794\) −27.0704 24.9075i −0.960692 0.883934i
\(795\) 0 0
\(796\) 0.353507 0.0294712i 0.0125297 0.00104458i
\(797\) 16.8176i 0.595709i −0.954611 0.297854i \(-0.903729\pi\)
0.954611 0.297854i \(-0.0962710\pi\)
\(798\) 0 0
\(799\) 30.1802i 1.06770i
\(800\) 5.31554 + 3.46330i 0.187933 + 0.122446i
\(801\) 0 0
\(802\) −21.5544 + 23.4261i −0.761111 + 0.827204i
\(803\) 1.01311 + 0.584919i 0.0357519 + 0.0206414i
\(804\) 0 0
\(805\) −1.96424 −0.0692305
\(806\) 4.94819 + 15.8063i 0.174293 + 0.556754i
\(807\) 0 0
\(808\) 15.7692 + 2.17457i 0.554757 + 0.0765011i
\(809\) −2.57747 −0.0906191 −0.0453095 0.998973i \(-0.514427\pi\)
−0.0453095 + 0.998973i \(0.514427\pi\)
\(810\) 0 0
\(811\) −3.04330 5.27116i −0.106865 0.185095i 0.807634 0.589684i \(-0.200748\pi\)
−0.914499 + 0.404589i \(0.867415\pi\)
\(812\) −0.291908 3.50144i −0.0102440 0.122877i
\(813\) 0 0
\(814\) −3.52546 + 15.7498i −0.123567 + 0.552030i
\(815\) 29.9424 + 17.2872i 1.04883 + 0.605545i
\(816\) 0 0
\(817\) −19.9187 + 6.13487i −0.696866 + 0.214632i
\(818\) 8.66219 + 27.6702i 0.302866 + 0.967465i
\(819\) 0 0
\(820\) 25.5228 2.12779i 0.891296 0.0743056i
\(821\) 8.28986 + 14.3585i 0.289318 + 0.501114i 0.973647 0.228060i \(-0.0732382\pi\)
−0.684329 + 0.729173i \(0.739905\pi\)
\(822\) 0 0
\(823\) −0.808864 + 0.466998i −0.0281952 + 0.0162785i −0.514031 0.857771i \(-0.671849\pi\)
0.485836 + 0.874050i \(0.338515\pi\)
\(824\) −31.1978 + 40.1453i −1.08683 + 1.39853i
\(825\) 0 0
\(826\) −1.24928 + 1.35777i −0.0434681 + 0.0472427i
\(827\) −23.7237 41.0907i −0.824954 1.42886i −0.901954 0.431831i \(-0.857868\pi\)
0.0770002 0.997031i \(-0.475466\pi\)
\(828\) 0 0
\(829\) 47.7375i 1.65799i −0.559254 0.828997i \(-0.688912\pi\)
0.559254 0.828997i \(-0.311088\pi\)
\(830\) 15.9304 17.3137i 0.552951 0.600968i
\(831\) 0 0
\(832\) −37.1313 38.0541i −1.28730 1.31929i
\(833\) 13.1513 22.7787i 0.455665 0.789235i
\(834\) 0 0
\(835\) −44.2214 −1.53034
\(836\) −4.36483 10.8665i −0.150961 0.375825i
\(837\) 0 0
\(838\) −17.7965 3.98360i −0.614771 0.137611i
\(839\) −7.37906 + 12.7809i −0.254754 + 0.441246i −0.964829 0.262880i \(-0.915328\pi\)
0.710075 + 0.704126i \(0.248661\pi\)
\(840\) 0 0
\(841\) −2.26029 + 3.91493i −0.0779409 + 0.134998i
\(842\) −18.2481 + 19.8327i −0.628872 + 0.683481i
\(843\) 0 0
\(844\) 21.4073 14.8594i 0.736870 0.511483i
\(845\) 30.6924 + 53.1608i 1.05585 + 1.82879i
\(846\) 0 0
\(847\) 3.26514i 0.112192i
\(848\) 12.5114 + 4.67007i 0.429645 + 0.160371i
\(849\) 0 0
\(850\) 1.32568 5.92238i 0.0454703 0.203136i
\(851\) 11.9324 + 20.6675i 0.409037 + 0.708473i
\(852\) 0 0
\(853\) −17.8909 + 30.9879i −0.612573 + 1.06101i 0.378232 + 0.925711i \(0.376532\pi\)
−0.990805 + 0.135296i \(0.956801\pi\)
\(854\) 0.596836 + 1.90651i 0.0204233 + 0.0652394i
\(855\) 0 0
\(856\) 18.0722 23.2553i 0.617695 0.794848i
\(857\) 11.1696 + 6.44877i 0.381546 + 0.220286i 0.678491 0.734609i \(-0.262634\pi\)
−0.296945 + 0.954895i \(0.595968\pi\)
\(858\) 0 0
\(859\) −24.0984 + 13.9132i −0.822225 + 0.474712i −0.851183 0.524869i \(-0.824114\pi\)
0.0289579 + 0.999581i \(0.490781\pi\)
\(860\) −18.7681 + 1.56466i −0.639986 + 0.0533544i
\(861\) 0 0
\(862\) 24.8642 7.78379i 0.846879 0.265117i
\(863\) 13.5990 0.462917 0.231458 0.972845i \(-0.425650\pi\)
0.231458 + 0.972845i \(0.425650\pi\)
\(864\) 0 0
\(865\) −13.0204 + 7.51735i −0.442708 + 0.255598i
\(866\) 3.66250 + 11.6993i 0.124457 + 0.397560i
\(867\) 0 0
\(868\) −0.533512 + 1.13201i −0.0181086 + 0.0384228i
\(869\) −19.4786 11.2460i −0.660768 0.381494i
\(870\) 0 0
\(871\) −12.1053 6.98902i −0.410174 0.236814i
\(872\) 0.156627 0.0637539i 0.00530406 0.00215898i
\(873\) 0 0
\(874\) −15.6289 7.45414i −0.528657 0.252140i
\(875\) 4.28065i 0.144713i
\(876\) 0 0
\(877\) 0.579383 + 0.334507i 0.0195644 + 0.0112955i 0.509750 0.860322i \(-0.329738\pi\)
−0.490186 + 0.871618i \(0.663071\pi\)
\(878\) 32.5755 + 29.9728i 1.09937 + 1.01153i
\(879\) 0 0
\(880\) −1.75217 10.4356i −0.0590655 0.351784i
\(881\) 44.4036 1.49600 0.747998 0.663701i \(-0.231015\pi\)
0.747998 + 0.663701i \(0.231015\pi\)
\(882\) 0 0
\(883\) 37.7133 21.7738i 1.26915 0.732747i 0.294326 0.955705i \(-0.404905\pi\)
0.974828 + 0.222958i \(0.0715714\pi\)
\(884\) −21.6832 + 46.0074i −0.729284 + 1.54740i
\(885\) 0 0
\(886\) −1.46222 4.67087i −0.0491243 0.156921i
\(887\) −6.59049 11.4151i −0.221287 0.383280i 0.733912 0.679245i \(-0.237692\pi\)
−0.955199 + 0.295964i \(0.904359\pi\)
\(888\) 0 0
\(889\) −3.96607 + 2.28981i −0.133018 + 0.0767978i
\(890\) −5.77022 1.29161i −0.193418 0.0432950i
\(891\) 0 0
\(892\) −7.08119 + 4.91525i −0.237096 + 0.164575i
\(893\) −7.66445 + 33.5148i −0.256481 + 1.12153i
\(894\) 0 0
\(895\) −12.0363 + 20.8475i −0.402329 + 0.696854i
\(896\) −0.117749 4.01549i −0.00393373 0.134148i
\(897\) 0 0
\(898\) −23.9459 5.36008i −0.799084 0.178868i
\(899\) −7.55070 + 4.35940i −0.251830 + 0.145394i
\(900\) 0 0
\(901\) 12.7751i 0.425601i
\(902\) 9.09002 + 8.36374i 0.302665 + 0.278482i
\(903\) 0 0
\(904\) 0.608530 + 0.472902i 0.0202394 + 0.0157285i
\(905\) 20.8097i 0.691737i
\(906\) 0 0
\(907\) 26.1929 45.3674i 0.869720 1.50640i 0.00743704 0.999972i \(-0.497633\pi\)
0.862283 0.506427i \(-0.169034\pi\)
\(908\) 38.2081 + 18.0074i 1.26798 + 0.597596i
\(909\) 0 0
\(910\) −1.43566 + 6.41374i −0.0475917 + 0.212613i
\(911\) 19.4053 0.642925 0.321462 0.946922i \(-0.395826\pi\)
0.321462 + 0.946922i \(0.395826\pi\)
\(912\) 0 0
\(913\) 11.3473 0.375540
\(914\) −0.635377 + 2.83851i −0.0210164 + 0.0938897i
\(915\) 0 0
\(916\) 7.55684 + 3.56152i 0.249685 + 0.117676i
\(917\) 1.88286 3.26121i 0.0621775 0.107695i
\(918\) 0 0
\(919\) 16.2385i 0.535660i 0.963466 + 0.267830i \(0.0863065\pi\)
−0.963466 + 0.267830i \(0.913693\pi\)
\(920\) −12.3546 9.60104i −0.407319 0.316537i
\(921\) 0 0
\(922\) 19.2755 + 17.7354i 0.634805 + 0.584085i
\(923\) 103.724i 3.41412i
\(924\) 0 0
\(925\) −8.25180 + 4.76418i −0.271317 + 0.156645i
\(926\) −20.3309 4.55091i −0.668116 0.149552i
\(927\) 0 0
\(928\) 15.2787 23.4500i 0.501548 0.769785i
\(929\) 14.8773 25.7682i 0.488108 0.845429i −0.511798 0.859106i \(-0.671020\pi\)
0.999906 + 0.0136771i \(0.00435370\pi\)
\(930\) 0 0
\(931\) 20.3891 21.9556i 0.668226 0.719566i
\(932\) 46.8960 32.5519i 1.53613 1.06627i
\(933\) 0 0
\(934\) 39.3829 + 8.81553i 1.28865 + 0.288453i
\(935\) −8.76633 + 5.06125i −0.286690 + 0.165520i
\(936\) 0 0
\(937\) −5.96068 10.3242i −0.194727 0.337277i 0.752084 0.659067i \(-0.229049\pi\)
−0.946811 + 0.321790i \(0.895715\pi\)
\(938\) −0.315526 1.00790i −0.0103023 0.0329092i
\(939\) 0 0
\(940\) −13.2443 + 28.1017i −0.431981 + 0.916578i
\(941\) 39.8041 22.9809i 1.29758 0.749156i 0.317592 0.948228i \(-0.397126\pi\)
0.979985 + 0.199071i \(0.0637925\pi\)
\(942\) 0 0
\(943\) 18.2648 0.594785
\(944\) −14.4943 + 2.43364i −0.471750 + 0.0792082i
\(945\) 0 0
\(946\) −6.68430 6.15023i −0.217325 0.199961i
\(947\) −12.3615 7.13691i −0.401695 0.231918i 0.285520 0.958373i \(-0.407834\pi\)
−0.687215 + 0.726454i \(0.741167\pi\)
\(948\) 0 0
\(949\) 5.78794i 0.187885i
\(950\) 2.97617 6.24007i 0.0965597 0.202455i
\(951\) 0 0
\(952\) −3.55933 + 1.44880i −0.115359 + 0.0469558i
\(953\) −42.9569 24.8012i −1.39151 0.803389i −0.398028 0.917373i \(-0.630305\pi\)
−0.993483 + 0.113985i \(0.963639\pi\)
\(954\) 0 0
\(955\) −25.7500 14.8668i −0.833251 0.481078i
\(956\) 0.601331 1.27590i 0.0194484 0.0412657i
\(957\) 0 0
\(958\) 1.03556 + 3.30794i 0.0334573 + 0.106875i
\(959\) −1.72005 + 0.993069i −0.0555432 + 0.0320679i
\(960\) 0 0
\(961\) −27.8946 −0.899827
\(962\) 76.2058 23.8563i 2.45697 0.769160i
\(963\) 0 0
\(964\) 11.3964 0.950091i 0.367052 0.0306004i
\(965\) 37.6803 21.7547i 1.21297 0.700310i
\(966\) 0 0
\(967\) 33.2407 + 19.1915i 1.06895 + 0.617157i 0.927894 0.372845i \(-0.121618\pi\)
0.141054 + 0.990002i \(0.454951\pi\)
\(968\) −15.9597 + 20.5369i −0.512964 + 0.660081i
\(969\) 0 0
\(970\) −13.1762 42.0897i −0.423064 1.35142i
\(971\) −2.90903 + 5.03859i −0.0933552 + 0.161696i −0.908921 0.416968i \(-0.863093\pi\)
0.815566 + 0.578664i \(0.196426\pi\)
\(972\) 0 0
\(973\) −1.92594 3.33582i −0.0617426 0.106941i
\(974\) 2.52792 11.2934i 0.0809999 0.361863i
\(975\) 0 0
\(976\) −5.56490 + 14.9088i −0.178128 + 0.477218i
\(977\) 44.4183i 1.42107i −0.703663 0.710533i \(-0.748454\pi\)
0.703663 0.710533i \(-0.251546\pi\)
\(978\) 0 0
\(979\) −1.42592 2.46977i −0.0455726 0.0789341i
\(980\) 22.2417 15.4386i 0.710486 0.493169i
\(981\) 0 0
\(982\) −1.09907 + 1.19451i −0.0350729 + 0.0381185i
\(983\) −4.00137 + 6.93057i −0.127624 + 0.221051i −0.922755 0.385386i \(-0.874068\pi\)
0.795132 + 0.606437i \(0.207402\pi\)
\(984\) 0 0
\(985\) 11.5304 19.9713i 0.367390 0.636338i
\(986\) −26.1272 5.84835i −0.832059 0.186249i
\(987\) 0 0
\(988\) −35.7627 + 45.5841i −1.13776 + 1.45022i
\(989\) −13.4310 −0.427080
\(990\) 0 0
\(991\) −9.93799 + 17.2131i −0.315691 + 0.546792i −0.979584 0.201035i \(-0.935570\pi\)
0.663893 + 0.747827i \(0.268903\pi\)
\(992\) −8.88881 + 4.51229i −0.282220 + 0.143265i
\(993\) 0 0
\(994\) 5.30646 5.76726i 0.168311 0.182926i
\(995\) 0.349304i 0.0110737i
\(996\) 0 0
\(997\) −1.78001 3.08307i −0.0563736 0.0976419i 0.836461 0.548026i \(-0.184620\pi\)
−0.892835 + 0.450384i \(0.851287\pi\)
\(998\) 25.2997 27.4967i 0.800849 0.870393i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 684.2.r.b.559.6 20
3.2 odd 2 228.2.k.b.103.5 yes 20
4.3 odd 2 684.2.r.c.559.3 20
12.11 even 2 228.2.k.a.103.8 yes 20
19.12 odd 6 684.2.r.c.487.3 20
57.50 even 6 228.2.k.a.31.8 20
76.31 even 6 inner 684.2.r.b.487.6 20
228.107 odd 6 228.2.k.b.31.5 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
228.2.k.a.31.8 20 57.50 even 6
228.2.k.a.103.8 yes 20 12.11 even 2
228.2.k.b.31.5 yes 20 228.107 odd 6
228.2.k.b.103.5 yes 20 3.2 odd 2
684.2.r.b.487.6 20 76.31 even 6 inner
684.2.r.b.559.6 20 1.1 even 1 trivial
684.2.r.c.487.3 20 19.12 odd 6
684.2.r.c.559.3 20 4.3 odd 2