Properties

Label 684.2.r.b.559.10
Level $684$
Weight $2$
Character 684.559
Analytic conductor $5.462$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [684,2,Mod(487,684)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(684, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("684.487"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.46176749826\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 3 x^{18} - 2 x^{17} + x^{16} + 3 x^{14} - 12 x^{13} + 28 x^{12} - 24 x^{11} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 228)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 559.10
Root \(-0.874835 - 1.11115i\) of defining polynomial
Character \(\chi\) \(=\) 684.559
Dual form 684.2.r.b.487.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.39971 - 0.202053i) q^{2} +(1.91835 - 0.565628i) q^{4} +(0.490176 - 0.849009i) q^{5} +4.28530i q^{7} +(2.57084 - 1.17932i) q^{8} +(0.514557 - 1.28740i) q^{10} -3.77820i q^{11} +(4.37962 - 2.52858i) q^{13} +(0.865857 + 5.99816i) q^{14} +(3.36013 - 2.17015i) q^{16} +(-0.354457 + 0.613937i) q^{17} +(-2.31504 + 3.69332i) q^{19} +(0.460105 - 1.90595i) q^{20} +(-0.763397 - 5.28837i) q^{22} +(-4.89773 + 2.82770i) q^{23} +(2.01946 + 3.49780i) q^{25} +(5.61928 - 4.42418i) q^{26} +(2.42389 + 8.22071i) q^{28} +(3.94046 - 2.27503i) q^{29} +3.03527 q^{31} +(4.26471 - 3.71649i) q^{32} +(-0.372087 + 0.930950i) q^{34} +(3.63826 + 2.10055i) q^{35} -5.22254i q^{37} +(-2.49412 + 5.63732i) q^{38} +(0.258908 - 2.76074i) q^{40} +(-1.10560 - 0.638319i) q^{41} +(-4.92588 - 2.84396i) q^{43} +(-2.13706 - 7.24792i) q^{44} +(-6.28403 + 4.94755i) q^{46} +(-0.130104 + 0.0751157i) q^{47} -11.3638 q^{49} +(3.53338 + 4.48785i) q^{50} +(6.97141 - 7.32794i) q^{52} +(-9.82290 + 5.67125i) q^{53} +(-3.20773 - 1.85198i) q^{55} +(5.05375 + 11.0168i) q^{56} +(5.05581 - 3.98055i) q^{58} +(3.36409 - 5.82677i) q^{59} +(-6.30501 - 10.9206i) q^{61} +(4.24849 - 0.613285i) q^{62} +(5.21840 - 6.06368i) q^{64} -4.95779i q^{65} +(-5.08009 - 8.79898i) q^{67} +(-0.332712 + 1.37824i) q^{68} +(5.51692 + 2.20503i) q^{70} +(-1.60313 + 2.77670i) q^{71} +(-7.73383 + 13.3954i) q^{73} +(-1.05523 - 7.31002i) q^{74} +(-2.35200 + 8.39453i) q^{76} +16.1908 q^{77} +(-3.16218 + 5.47706i) q^{79} +(-0.195421 - 3.91653i) q^{80} +(-1.67649 - 0.670069i) q^{82} +15.8553i q^{83} +(0.347492 + 0.601874i) q^{85} +(-7.46942 - 2.98542i) q^{86} +(-4.45572 - 9.71315i) q^{88} +(-3.25153 + 1.87727i) q^{89} +(10.8357 + 18.7680i) q^{91} +(-7.79612 + 8.19482i) q^{92} +(-0.166930 + 0.131428i) q^{94} +(2.00089 + 3.77586i) q^{95} +(1.29749 + 0.749106i) q^{97} +(-15.9060 + 2.29609i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - q^{2} + q^{4} - 4 q^{8} + 6 q^{10} + 6 q^{13} - 9 q^{14} - 11 q^{16} + 12 q^{19} + 14 q^{20} + 8 q^{22} - 10 q^{25} + 7 q^{28} + 12 q^{31} + 29 q^{32} - 6 q^{34} - 25 q^{38} - 46 q^{40} - 12 q^{41}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/684\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(343\) \(533\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.39971 0.202053i 0.989741 0.142873i
\(3\) 0 0
\(4\) 1.91835 0.565628i 0.959175 0.282814i
\(5\) 0.490176 0.849009i 0.219213 0.379689i −0.735354 0.677683i \(-0.762984\pi\)
0.954568 + 0.297994i \(0.0963176\pi\)
\(6\) 0 0
\(7\) 4.28530i 1.61969i 0.586642 + 0.809846i \(0.300449\pi\)
−0.586642 + 0.809846i \(0.699551\pi\)
\(8\) 2.57084 1.17932i 0.908928 0.416953i
\(9\) 0 0
\(10\) 0.514557 1.28740i 0.162717 0.407113i
\(11\) 3.77820i 1.13917i −0.821932 0.569586i \(-0.807104\pi\)
0.821932 0.569586i \(-0.192896\pi\)
\(12\) 0 0
\(13\) 4.37962 2.52858i 1.21469 0.701301i 0.250912 0.968010i \(-0.419269\pi\)
0.963777 + 0.266709i \(0.0859362\pi\)
\(14\) 0.865857 + 5.99816i 0.231410 + 1.60308i
\(15\) 0 0
\(16\) 3.36013 2.17015i 0.840032 0.542537i
\(17\) −0.354457 + 0.613937i −0.0859684 + 0.148902i −0.905803 0.423698i \(-0.860732\pi\)
0.819835 + 0.572600i \(0.194065\pi\)
\(18\) 0 0
\(19\) −2.31504 + 3.69332i −0.531106 + 0.847306i
\(20\) 0.460105 1.90595i 0.102883 0.426184i
\(21\) 0 0
\(22\) −0.763397 5.28837i −0.162757 1.12748i
\(23\) −4.89773 + 2.82770i −1.02125 + 0.589617i −0.914465 0.404666i \(-0.867388\pi\)
−0.106782 + 0.994282i \(0.534055\pi\)
\(24\) 0 0
\(25\) 2.01946 + 3.49780i 0.403891 + 0.699560i
\(26\) 5.61928 4.42418i 1.10203 0.867653i
\(27\) 0 0
\(28\) 2.42389 + 8.22071i 0.458072 + 1.55357i
\(29\) 3.94046 2.27503i 0.731726 0.422462i −0.0873273 0.996180i \(-0.527833\pi\)
0.819053 + 0.573717i \(0.194499\pi\)
\(30\) 0 0
\(31\) 3.03527 0.545151 0.272575 0.962134i \(-0.412125\pi\)
0.272575 + 0.962134i \(0.412125\pi\)
\(32\) 4.26471 3.71649i 0.753901 0.656988i
\(33\) 0 0
\(34\) −0.372087 + 0.930950i −0.0638124 + 0.159657i
\(35\) 3.63826 + 2.10055i 0.614979 + 0.355058i
\(36\) 0 0
\(37\) 5.22254i 0.858581i −0.903166 0.429290i \(-0.858764\pi\)
0.903166 0.429290i \(-0.141236\pi\)
\(38\) −2.49412 + 5.63732i −0.404600 + 0.914494i
\(39\) 0 0
\(40\) 0.258908 2.76074i 0.0409369 0.436511i
\(41\) −1.10560 0.638319i −0.172666 0.0996887i 0.411176 0.911556i \(-0.365118\pi\)
−0.583842 + 0.811867i \(0.698451\pi\)
\(42\) 0 0
\(43\) −4.92588 2.84396i −0.751190 0.433700i 0.0749335 0.997189i \(-0.476126\pi\)
−0.826124 + 0.563489i \(0.809459\pi\)
\(44\) −2.13706 7.24792i −0.322174 1.09266i
\(45\) 0 0
\(46\) −6.28403 + 4.94755i −0.926529 + 0.729476i
\(47\) −0.130104 + 0.0751157i −0.0189776 + 0.0109568i −0.509459 0.860495i \(-0.670154\pi\)
0.490481 + 0.871452i \(0.336821\pi\)
\(48\) 0 0
\(49\) −11.3638 −1.62340
\(50\) 3.53338 + 4.48785i 0.499696 + 0.634678i
\(51\) 0 0
\(52\) 6.97141 7.32794i 0.966761 1.01620i
\(53\) −9.82290 + 5.67125i −1.34928 + 0.779007i −0.988147 0.153508i \(-0.950943\pi\)
−0.361132 + 0.932515i \(0.617610\pi\)
\(54\) 0 0
\(55\) −3.20773 1.85198i −0.432530 0.249722i
\(56\) 5.05375 + 11.0168i 0.675335 + 1.47218i
\(57\) 0 0
\(58\) 5.05581 3.98055i 0.663861 0.522672i
\(59\) 3.36409 5.82677i 0.437967 0.758581i −0.559566 0.828786i \(-0.689032\pi\)
0.997533 + 0.0702051i \(0.0223654\pi\)
\(60\) 0 0
\(61\) −6.30501 10.9206i −0.807274 1.39824i −0.914745 0.404031i \(-0.867609\pi\)
0.107472 0.994208i \(-0.465724\pi\)
\(62\) 4.24849 0.613285i 0.539558 0.0778873i
\(63\) 0 0
\(64\) 5.21840 6.06368i 0.652301 0.757960i
\(65\) 4.95779i 0.614938i
\(66\) 0 0
\(67\) −5.08009 8.79898i −0.620632 1.07497i −0.989368 0.145432i \(-0.953543\pi\)
0.368736 0.929534i \(-0.379791\pi\)
\(68\) −0.332712 + 1.37824i −0.0403472 + 0.167136i
\(69\) 0 0
\(70\) 5.51692 + 2.20503i 0.659398 + 0.263552i
\(71\) −1.60313 + 2.77670i −0.190256 + 0.329534i −0.945335 0.326100i \(-0.894265\pi\)
0.755079 + 0.655634i \(0.227599\pi\)
\(72\) 0 0
\(73\) −7.73383 + 13.3954i −0.905177 + 1.56781i −0.0844965 + 0.996424i \(0.526928\pi\)
−0.820680 + 0.571388i \(0.806405\pi\)
\(74\) −1.05523 7.31002i −0.122668 0.849773i
\(75\) 0 0
\(76\) −2.35200 + 8.39453i −0.269793 + 0.962918i
\(77\) 16.1908 1.84511
\(78\) 0 0
\(79\) −3.16218 + 5.47706i −0.355773 + 0.616217i −0.987250 0.159178i \(-0.949116\pi\)
0.631477 + 0.775395i \(0.282449\pi\)
\(80\) −0.195421 3.91653i −0.0218487 0.437882i
\(81\) 0 0
\(82\) −1.67649 0.670069i −0.185137 0.0739967i
\(83\) 15.8553i 1.74035i 0.492747 + 0.870173i \(0.335993\pi\)
−0.492747 + 0.870173i \(0.664007\pi\)
\(84\) 0 0
\(85\) 0.347492 + 0.601874i 0.0376908 + 0.0652824i
\(86\) −7.46942 2.98542i −0.805448 0.321926i
\(87\) 0 0
\(88\) −4.45572 9.71315i −0.474981 1.03543i
\(89\) −3.25153 + 1.87727i −0.344662 + 0.198991i −0.662332 0.749211i \(-0.730433\pi\)
0.317670 + 0.948201i \(0.397100\pi\)
\(90\) 0 0
\(91\) 10.8357 + 18.7680i 1.13589 + 1.96742i
\(92\) −7.79612 + 8.19482i −0.812802 + 0.854369i
\(93\) 0 0
\(94\) −0.166930 + 0.131428i −0.0172175 + 0.0135557i
\(95\) 2.00089 + 3.77586i 0.205287 + 0.387395i
\(96\) 0 0
\(97\) 1.29749 + 0.749106i 0.131740 + 0.0760601i 0.564422 0.825487i \(-0.309099\pi\)
−0.432682 + 0.901547i \(0.642433\pi\)
\(98\) −15.9060 + 2.29609i −1.60675 + 0.231940i
\(99\) 0 0
\(100\) 5.85248 + 5.56774i 0.585248 + 0.556774i
\(101\) −6.30734 10.9246i −0.627604 1.08704i −0.988031 0.154254i \(-0.950702\pi\)
0.360427 0.932787i \(-0.382631\pi\)
\(102\) 0 0
\(103\) −0.862870 −0.0850211 −0.0425105 0.999096i \(-0.513536\pi\)
−0.0425105 + 0.999096i \(0.513536\pi\)
\(104\) 8.27730 11.6655i 0.811656 1.14390i
\(105\) 0 0
\(106\) −12.6033 + 9.92283i −1.22414 + 0.963790i
\(107\) −12.8583 −1.24306 −0.621528 0.783392i \(-0.713488\pi\)
−0.621528 + 0.783392i \(0.713488\pi\)
\(108\) 0 0
\(109\) 5.94933 + 3.43485i 0.569843 + 0.328999i 0.757086 0.653315i \(-0.226622\pi\)
−0.187244 + 0.982313i \(0.559955\pi\)
\(110\) −4.86408 1.94410i −0.463772 0.185363i
\(111\) 0 0
\(112\) 9.29973 + 14.3992i 0.878742 + 1.36059i
\(113\) 14.6160i 1.37496i 0.726205 + 0.687478i \(0.241282\pi\)
−0.726205 + 0.687478i \(0.758718\pi\)
\(114\) 0 0
\(115\) 5.54429i 0.517007i
\(116\) 6.27237 6.59314i 0.582375 0.612158i
\(117\) 0 0
\(118\) 3.53142 8.83548i 0.325093 0.813372i
\(119\) −2.63091 1.51895i −0.241175 0.139242i
\(120\) 0 0
\(121\) −3.27483 −0.297712
\(122\) −11.0317 14.0117i −0.998762 1.26856i
\(123\) 0 0
\(124\) 5.82271 1.71684i 0.522895 0.154176i
\(125\) 8.86131 0.792580
\(126\) 0 0
\(127\) −4.03813 6.99425i −0.358326 0.620639i 0.629355 0.777118i \(-0.283319\pi\)
−0.987681 + 0.156479i \(0.949986\pi\)
\(128\) 6.07905 9.54176i 0.537317 0.843381i
\(129\) 0 0
\(130\) −1.00173 6.93944i −0.0878580 0.608630i
\(131\) 5.04606 + 2.91335i 0.440877 + 0.254540i 0.703969 0.710230i \(-0.251409\pi\)
−0.263093 + 0.964771i \(0.584743\pi\)
\(132\) 0 0
\(133\) −15.8270 9.92063i −1.37237 0.860227i
\(134\) −8.88849 11.2895i −0.767848 0.975267i
\(135\) 0 0
\(136\) −0.187222 + 1.99635i −0.0160541 + 0.171186i
\(137\) −5.39030 9.33627i −0.460524 0.797651i 0.538463 0.842649i \(-0.319005\pi\)
−0.998987 + 0.0449981i \(0.985672\pi\)
\(138\) 0 0
\(139\) 9.31646 5.37886i 0.790212 0.456229i −0.0498253 0.998758i \(-0.515866\pi\)
0.840037 + 0.542529i \(0.182533\pi\)
\(140\) 8.16759 + 1.97169i 0.690287 + 0.166638i
\(141\) 0 0
\(142\) −1.68287 + 4.21048i −0.141223 + 0.353336i
\(143\) −9.55348 16.5471i −0.798902 1.38374i
\(144\) 0 0
\(145\) 4.46066i 0.370437i
\(146\) −8.11851 + 20.3122i −0.671893 + 1.68105i
\(147\) 0 0
\(148\) −2.95402 10.0187i −0.242819 0.823529i
\(149\) −10.6555 + 18.4559i −0.872934 + 1.51197i −0.0139857 + 0.999902i \(0.504452\pi\)
−0.858948 + 0.512063i \(0.828881\pi\)
\(150\) 0 0
\(151\) −8.79259 −0.715531 −0.357765 0.933812i \(-0.616461\pi\)
−0.357765 + 0.933812i \(0.616461\pi\)
\(152\) −1.59597 + 12.2251i −0.129450 + 0.991586i
\(153\) 0 0
\(154\) 22.6623 3.27139i 1.82618 0.263616i
\(155\) 1.48782 2.57697i 0.119504 0.206988i
\(156\) 0 0
\(157\) 0.270402 0.468350i 0.0215805 0.0373784i −0.855033 0.518573i \(-0.826464\pi\)
0.876614 + 0.481194i \(0.159797\pi\)
\(158\) −3.31947 + 8.30519i −0.264083 + 0.660726i
\(159\) 0 0
\(160\) −1.06488 5.44251i −0.0841860 0.430268i
\(161\) −12.1176 20.9882i −0.954998 1.65410i
\(162\) 0 0
\(163\) 9.53202i 0.746605i −0.927710 0.373303i \(-0.878225\pi\)
0.927710 0.373303i \(-0.121775\pi\)
\(164\) −2.48198 0.599159i −0.193810 0.0467865i
\(165\) 0 0
\(166\) 3.20361 + 22.1927i 0.248648 + 1.72249i
\(167\) 5.42333 + 9.39349i 0.419670 + 0.726890i 0.995906 0.0903933i \(-0.0288124\pi\)
−0.576236 + 0.817283i \(0.695479\pi\)
\(168\) 0 0
\(169\) 6.28741 10.8901i 0.483647 0.837701i
\(170\) 0.607997 + 0.772235i 0.0466312 + 0.0592277i
\(171\) 0 0
\(172\) −11.0582 2.66949i −0.843179 0.203547i
\(173\) −2.60358 1.50318i −0.197946 0.114284i 0.397751 0.917493i \(-0.369791\pi\)
−0.595697 + 0.803209i \(0.703124\pi\)
\(174\) 0 0
\(175\) −14.9891 + 8.65398i −1.13307 + 0.654179i
\(176\) −8.19926 12.6953i −0.618042 0.956941i
\(177\) 0 0
\(178\) −4.17188 + 3.28461i −0.312696 + 0.246192i
\(179\) 6.11802 0.457282 0.228641 0.973511i \(-0.426572\pi\)
0.228641 + 0.973511i \(0.426572\pi\)
\(180\) 0 0
\(181\) 2.86502 1.65412i 0.212956 0.122950i −0.389729 0.920930i \(-0.627431\pi\)
0.602684 + 0.797980i \(0.294098\pi\)
\(182\) 18.9589 + 24.0803i 1.40533 + 1.78495i
\(183\) 0 0
\(184\) −9.25649 + 13.0456i −0.682397 + 0.961731i
\(185\) −4.43399 2.55997i −0.325993 0.188212i
\(186\) 0 0
\(187\) 2.31958 + 1.33921i 0.169624 + 0.0979327i
\(188\) −0.207098 + 0.217689i −0.0151042 + 0.0158766i
\(189\) 0 0
\(190\) 3.56358 + 4.88081i 0.258529 + 0.354091i
\(191\) 8.20235i 0.593501i −0.954955 0.296751i \(-0.904097\pi\)
0.954955 0.296751i \(-0.0959030\pi\)
\(192\) 0 0
\(193\) 15.4678 + 8.93034i 1.11340 + 0.642820i 0.939707 0.341981i \(-0.111098\pi\)
0.173690 + 0.984800i \(0.444431\pi\)
\(194\) 1.96746 + 0.786366i 0.141255 + 0.0564578i
\(195\) 0 0
\(196\) −21.7998 + 6.42770i −1.55713 + 0.459121i
\(197\) −11.5559 −0.823323 −0.411661 0.911337i \(-0.635051\pi\)
−0.411661 + 0.911337i \(0.635051\pi\)
\(198\) 0 0
\(199\) 19.5628 11.2946i 1.38677 0.800653i 0.393821 0.919187i \(-0.371153\pi\)
0.992950 + 0.118534i \(0.0378196\pi\)
\(200\) 9.31672 + 6.61069i 0.658791 + 0.467446i
\(201\) 0 0
\(202\) −11.0358 14.0169i −0.776474 0.986222i
\(203\) 9.74919 + 16.8861i 0.684259 + 1.18517i
\(204\) 0 0
\(205\) −1.08388 + 0.625777i −0.0757013 + 0.0437062i
\(206\) −1.20776 + 0.174345i −0.0841488 + 0.0121472i
\(207\) 0 0
\(208\) 9.22872 18.0008i 0.639897 1.24813i
\(209\) 13.9541 + 8.74668i 0.965227 + 0.605020i
\(210\) 0 0
\(211\) 0.533846 0.924649i 0.0367515 0.0636554i −0.847065 0.531490i \(-0.821632\pi\)
0.883816 + 0.467835i \(0.154966\pi\)
\(212\) −15.6359 + 16.4356i −1.07388 + 1.12880i
\(213\) 0 0
\(214\) −17.9978 + 2.59805i −1.23030 + 0.177599i
\(215\) −4.82910 + 2.78808i −0.329342 + 0.190146i
\(216\) 0 0
\(217\) 13.0071i 0.882977i
\(218\) 9.02133 + 3.60570i 0.611002 + 0.244209i
\(219\) 0 0
\(220\) −7.20109 1.73837i −0.485497 0.117201i
\(221\) 3.58508i 0.241159i
\(222\) 0 0
\(223\) 7.85315 13.6020i 0.525886 0.910861i −0.473660 0.880708i \(-0.657067\pi\)
0.999545 0.0301526i \(-0.00959933\pi\)
\(224\) 15.9263 + 18.2756i 1.06412 + 1.22109i
\(225\) 0 0
\(226\) 2.95320 + 20.4581i 0.196444 + 1.36085i
\(227\) 6.85339 0.454875 0.227438 0.973793i \(-0.426965\pi\)
0.227438 + 0.973793i \(0.426965\pi\)
\(228\) 0 0
\(229\) 3.91451 0.258678 0.129339 0.991600i \(-0.458714\pi\)
0.129339 + 0.991600i \(0.458714\pi\)
\(230\) 1.12024 + 7.76037i 0.0738663 + 0.511704i
\(231\) 0 0
\(232\) 7.44730 10.4958i 0.488939 0.689083i
\(233\) 7.38806 12.7965i 0.484008 0.838326i −0.515823 0.856695i \(-0.672514\pi\)
0.999831 + 0.0183686i \(0.00584723\pi\)
\(234\) 0 0
\(235\) 0.147280i 0.00960746i
\(236\) 3.15771 13.0806i 0.205549 0.851475i
\(237\) 0 0
\(238\) −3.98940 1.59451i −0.258594 0.103357i
\(239\) 16.8531i 1.09014i −0.838391 0.545069i \(-0.816503\pi\)
0.838391 0.545069i \(-0.183497\pi\)
\(240\) 0 0
\(241\) 10.7076 6.18203i 0.689737 0.398220i −0.113776 0.993506i \(-0.536295\pi\)
0.803514 + 0.595287i \(0.202961\pi\)
\(242\) −4.58380 + 0.661689i −0.294658 + 0.0425350i
\(243\) 0 0
\(244\) −18.2722 17.3832i −1.16976 1.11285i
\(245\) −5.57027 + 9.64799i −0.355872 + 0.616388i
\(246\) 0 0
\(247\) −0.800140 + 22.0291i −0.0509117 + 1.40168i
\(248\) 7.80319 3.57956i 0.495503 0.227302i
\(249\) 0 0
\(250\) 12.4032 1.79045i 0.784449 0.113238i
\(251\) 20.6917 11.9464i 1.30605 0.754047i 0.324614 0.945847i \(-0.394766\pi\)
0.981434 + 0.191800i \(0.0614324\pi\)
\(252\) 0 0
\(253\) 10.6836 + 18.5046i 0.671675 + 1.16338i
\(254\) −7.06540 8.97397i −0.443323 0.563077i
\(255\) 0 0
\(256\) 6.58093 14.5839i 0.411308 0.911496i
\(257\) 2.89737 1.67280i 0.180733 0.104346i −0.406904 0.913471i \(-0.633392\pi\)
0.587637 + 0.809125i \(0.300058\pi\)
\(258\) 0 0
\(259\) 22.3802 1.39064
\(260\) −2.80427 9.51077i −0.173913 0.589833i
\(261\) 0 0
\(262\) 7.65165 + 3.05825i 0.472721 + 0.188940i
\(263\) −22.7935 13.1598i −1.40551 0.811470i −0.410556 0.911835i \(-0.634666\pi\)
−0.994951 + 0.100365i \(0.967999\pi\)
\(264\) 0 0
\(265\) 11.1196i 0.683075i
\(266\) −24.1576 10.6881i −1.48120 0.655327i
\(267\) 0 0
\(268\) −14.7223 14.0061i −0.899310 0.855557i
\(269\) 14.8066 + 8.54860i 0.902775 + 0.521217i 0.878100 0.478478i \(-0.158811\pi\)
0.0246756 + 0.999696i \(0.492145\pi\)
\(270\) 0 0
\(271\) −4.23109 2.44282i −0.257020 0.148391i 0.365954 0.930633i \(-0.380743\pi\)
−0.622975 + 0.782242i \(0.714076\pi\)
\(272\) 0.141313 + 2.83213i 0.00856834 + 0.171723i
\(273\) 0 0
\(274\) −9.43124 11.9789i −0.569762 0.723672i
\(275\) 13.2154 7.62992i 0.796919 0.460101i
\(276\) 0 0
\(277\) −1.47561 −0.0886607 −0.0443303 0.999017i \(-0.514115\pi\)
−0.0443303 + 0.999017i \(0.514115\pi\)
\(278\) 11.9535 9.41123i 0.716922 0.564448i
\(279\) 0 0
\(280\) 11.8306 + 1.10950i 0.707014 + 0.0663052i
\(281\) 22.8573 13.1967i 1.36355 0.787248i 0.373458 0.927647i \(-0.378172\pi\)
0.990095 + 0.140400i \(0.0448387\pi\)
\(282\) 0 0
\(283\) 2.66671 + 1.53963i 0.158520 + 0.0915214i 0.577161 0.816630i \(-0.304160\pi\)
−0.418642 + 0.908151i \(0.637494\pi\)
\(284\) −1.50478 + 6.23346i −0.0892923 + 0.369888i
\(285\) 0 0
\(286\) −16.7155 21.2308i −0.988405 1.25540i
\(287\) 2.73539 4.73783i 0.161465 0.279665i
\(288\) 0 0
\(289\) 8.24872 + 14.2872i 0.485219 + 0.840424i
\(290\) −0.901288 6.24360i −0.0529254 0.366637i
\(291\) 0 0
\(292\) −7.25938 + 30.0715i −0.424823 + 1.75980i
\(293\) 22.5211i 1.31570i 0.753151 + 0.657848i \(0.228533\pi\)
−0.753151 + 0.657848i \(0.771467\pi\)
\(294\) 0 0
\(295\) −3.29799 5.71228i −0.192016 0.332582i
\(296\) −6.15906 13.4263i −0.357988 0.780388i
\(297\) 0 0
\(298\) −11.1855 + 27.9858i −0.647959 + 1.62117i
\(299\) −14.3001 + 24.7686i −0.826998 + 1.43240i
\(300\) 0 0
\(301\) 12.1872 21.1089i 0.702460 1.21670i
\(302\) −12.3070 + 1.77657i −0.708190 + 0.102230i
\(303\) 0 0
\(304\) 0.236227 + 17.4340i 0.0135485 + 0.999908i
\(305\) −12.3622 −0.707860
\(306\) 0 0
\(307\) −0.623630 + 1.08016i −0.0355924 + 0.0616479i −0.883273 0.468859i \(-0.844665\pi\)
0.847680 + 0.530507i \(0.177998\pi\)
\(308\) 31.0595 9.15795i 1.76978 0.521823i
\(309\) 0 0
\(310\) 1.56182 3.90762i 0.0887054 0.221938i
\(311\) 7.29013i 0.413385i −0.978406 0.206693i \(-0.933730\pi\)
0.978406 0.206693i \(-0.0662700\pi\)
\(312\) 0 0
\(313\) −6.28690 10.8892i −0.355357 0.615496i 0.631822 0.775113i \(-0.282307\pi\)
−0.987179 + 0.159617i \(0.948974\pi\)
\(314\) 0.283852 0.710188i 0.0160187 0.0400782i
\(315\) 0 0
\(316\) −2.96819 + 12.2955i −0.166974 + 0.691678i
\(317\) −21.7262 + 12.5436i −1.22027 + 0.704521i −0.964975 0.262343i \(-0.915505\pi\)
−0.255292 + 0.966864i \(0.582172\pi\)
\(318\) 0 0
\(319\) −8.59552 14.8879i −0.481257 0.833561i
\(320\) −2.59019 7.40275i −0.144796 0.413826i
\(321\) 0 0
\(322\) −21.2017 26.9290i −1.18153 1.50069i
\(323\) −1.44689 2.73041i −0.0805069 0.151924i
\(324\) 0 0
\(325\) 17.6889 + 10.2127i 0.981204 + 0.566499i
\(326\) −1.92597 13.3420i −0.106670 0.738946i
\(327\) 0 0
\(328\) −3.59510 0.337156i −0.198506 0.0186163i
\(329\) −0.321894 0.557536i −0.0177466 0.0307380i
\(330\) 0 0
\(331\) −21.8003 −1.19825 −0.599127 0.800654i \(-0.704485\pi\)
−0.599127 + 0.800654i \(0.704485\pi\)
\(332\) 8.96821 + 30.4160i 0.492194 + 1.66930i
\(333\) 0 0
\(334\) 9.48905 + 12.0523i 0.519218 + 0.659473i
\(335\) −9.96055 −0.544203
\(336\) 0 0
\(337\) 16.2854 + 9.40240i 0.887124 + 0.512182i 0.873001 0.487719i \(-0.162171\pi\)
0.0141236 + 0.999900i \(0.495504\pi\)
\(338\) 6.60014 16.5133i 0.359000 0.898207i
\(339\) 0 0
\(340\) 1.00705 + 0.958053i 0.0546149 + 0.0519577i
\(341\) 11.4679i 0.621021i
\(342\) 0 0
\(343\) 18.7003i 1.00972i
\(344\) −16.0176 1.50216i −0.863610 0.0809911i
\(345\) 0 0
\(346\) −3.94796 1.57794i −0.212244 0.0848308i
\(347\) 27.9162 + 16.1175i 1.49862 + 0.865230i 0.999999 0.00158848i \(-0.000505629\pi\)
0.498624 + 0.866819i \(0.333839\pi\)
\(348\) 0 0
\(349\) −12.8141 −0.685923 −0.342961 0.939350i \(-0.611430\pi\)
−0.342961 + 0.939350i \(0.611430\pi\)
\(350\) −19.2318 + 15.1416i −1.02798 + 0.809353i
\(351\) 0 0
\(352\) −14.0417 16.1129i −0.748423 0.858822i
\(353\) 21.8474 1.16282 0.581410 0.813611i \(-0.302501\pi\)
0.581410 + 0.813611i \(0.302501\pi\)
\(354\) 0 0
\(355\) 1.57163 + 2.72214i 0.0834135 + 0.144476i
\(356\) −5.17574 + 5.44043i −0.274314 + 0.288342i
\(357\) 0 0
\(358\) 8.56342 1.23616i 0.452591 0.0653332i
\(359\) −5.88277 3.39642i −0.310481 0.179256i 0.336661 0.941626i \(-0.390702\pi\)
−0.647142 + 0.762370i \(0.724036\pi\)
\(360\) 0 0
\(361\) −8.28122 17.1003i −0.435854 0.900017i
\(362\) 3.67597 2.89417i 0.193205 0.152114i
\(363\) 0 0
\(364\) 31.4024 + 29.8746i 1.64593 + 1.56586i
\(365\) 7.58187 + 13.1322i 0.396853 + 0.687370i
\(366\) 0 0
\(367\) 14.8232 8.55817i 0.773764 0.446733i −0.0604514 0.998171i \(-0.519254\pi\)
0.834216 + 0.551438i \(0.185921\pi\)
\(368\) −10.3205 + 20.1302i −0.537991 + 1.04936i
\(369\) 0 0
\(370\) −6.72353 2.68730i −0.349539 0.139706i
\(371\) −24.3030 42.0941i −1.26175 2.18542i
\(372\) 0 0
\(373\) 19.8642i 1.02853i 0.857631 + 0.514265i \(0.171935\pi\)
−0.857631 + 0.514265i \(0.828065\pi\)
\(374\) 3.51732 + 1.40582i 0.181876 + 0.0726933i
\(375\) 0 0
\(376\) −0.245891 + 0.346545i −0.0126809 + 0.0178717i
\(377\) 11.5052 19.9275i 0.592546 1.02632i
\(378\) 0 0
\(379\) −10.3716 −0.532754 −0.266377 0.963869i \(-0.585827\pi\)
−0.266377 + 0.963869i \(0.585827\pi\)
\(380\) 5.97414 + 6.11166i 0.306467 + 0.313522i
\(381\) 0 0
\(382\) −1.65731 11.4809i −0.0847952 0.587413i
\(383\) 12.1885 21.1112i 0.622805 1.07873i −0.366156 0.930554i \(-0.619326\pi\)
0.988961 0.148176i \(-0.0473403\pi\)
\(384\) 0 0
\(385\) 7.93632 13.7461i 0.404472 0.700566i
\(386\) 23.4548 + 9.37453i 1.19382 + 0.477151i
\(387\) 0 0
\(388\) 2.91275 + 0.703150i 0.147873 + 0.0356970i
\(389\) 2.87971 + 4.98780i 0.146007 + 0.252892i 0.929748 0.368196i \(-0.120024\pi\)
−0.783741 + 0.621088i \(0.786691\pi\)
\(390\) 0 0
\(391\) 4.00919i 0.202754i
\(392\) −29.2145 + 13.4016i −1.47556 + 0.676882i
\(393\) 0 0
\(394\) −16.1748 + 2.33490i −0.814876 + 0.117630i
\(395\) 3.10005 + 5.36944i 0.155980 + 0.270166i
\(396\) 0 0
\(397\) −14.0559 + 24.3455i −0.705444 + 1.22187i 0.261087 + 0.965315i \(0.415919\pi\)
−0.966531 + 0.256550i \(0.917414\pi\)
\(398\) 25.1001 19.7618i 1.25815 0.990571i
\(399\) 0 0
\(400\) 14.3764 + 7.37054i 0.718818 + 0.368527i
\(401\) 10.8958 + 6.29068i 0.544109 + 0.314142i 0.746743 0.665113i \(-0.231617\pi\)
−0.202633 + 0.979255i \(0.564950\pi\)
\(402\) 0 0
\(403\) 13.2934 7.67492i 0.662189 0.382315i
\(404\) −18.2790 17.3897i −0.909412 0.865168i
\(405\) 0 0
\(406\) 17.0579 + 21.6657i 0.846568 + 1.07525i
\(407\) −19.7318 −0.978071
\(408\) 0 0
\(409\) −12.6235 + 7.28819i −0.624193 + 0.360378i −0.778500 0.627645i \(-0.784019\pi\)
0.154307 + 0.988023i \(0.450686\pi\)
\(410\) −1.39067 + 1.09490i −0.0686802 + 0.0540734i
\(411\) 0 0
\(412\) −1.65529 + 0.488064i −0.0815501 + 0.0240452i
\(413\) 24.9695 + 14.4161i 1.22867 + 0.709372i
\(414\) 0 0
\(415\) 13.4613 + 7.77189i 0.660789 + 0.381507i
\(416\) 9.28038 27.0605i 0.455008 1.32675i
\(417\) 0 0
\(418\) 21.2989 + 9.42330i 1.04177 + 0.460909i
\(419\) 8.26594i 0.403817i 0.979404 + 0.201909i \(0.0647144\pi\)
−0.979404 + 0.201909i \(0.935286\pi\)
\(420\) 0 0
\(421\) −32.0531 18.5059i −1.56217 0.901921i −0.997037 0.0769222i \(-0.975491\pi\)
−0.565135 0.824998i \(-0.691176\pi\)
\(422\) 0.560399 1.40210i 0.0272798 0.0682532i
\(423\) 0 0
\(424\) −18.5648 + 26.1642i −0.901589 + 1.27065i
\(425\) −2.86324 −0.138887
\(426\) 0 0
\(427\) 46.7981 27.0189i 2.26472 1.30753i
\(428\) −24.6667 + 7.27300i −1.19231 + 0.351554i
\(429\) 0 0
\(430\) −6.19598 + 4.87822i −0.298796 + 0.235249i
\(431\) 19.1283 + 33.1311i 0.921376 + 1.59587i 0.797289 + 0.603598i \(0.206267\pi\)
0.124087 + 0.992271i \(0.460400\pi\)
\(432\) 0 0
\(433\) −15.3878 + 8.88418i −0.739493 + 0.426946i −0.821885 0.569654i \(-0.807077\pi\)
0.0823921 + 0.996600i \(0.473744\pi\)
\(434\) 2.62811 + 18.2060i 0.126153 + 0.873918i
\(435\) 0 0
\(436\) 13.3557 + 3.22413i 0.639624 + 0.154408i
\(437\) 0.894795 24.6351i 0.0428039 1.17846i
\(438\) 0 0
\(439\) 1.17417 2.03372i 0.0560401 0.0970643i −0.836644 0.547746i \(-0.815486\pi\)
0.892685 + 0.450682i \(0.148819\pi\)
\(440\) −10.4306 0.978206i −0.497261 0.0466341i
\(441\) 0 0
\(442\) 0.724376 + 5.01806i 0.0344551 + 0.238685i
\(443\) −1.59306 + 0.919751i −0.0756884 + 0.0436987i −0.537367 0.843349i \(-0.680581\pi\)
0.461678 + 0.887047i \(0.347247\pi\)
\(444\) 0 0
\(445\) 3.68078i 0.174486i
\(446\) 8.24376 20.6256i 0.390353 0.976651i
\(447\) 0 0
\(448\) 25.9847 + 22.3624i 1.22766 + 1.05653i
\(449\) 1.49190i 0.0704073i −0.999380 0.0352037i \(-0.988792\pi\)
0.999380 0.0352037i \(-0.0112080\pi\)
\(450\) 0 0
\(451\) −2.41170 + 4.17719i −0.113562 + 0.196696i
\(452\) 8.26722 + 28.0386i 0.388857 + 1.31882i
\(453\) 0 0
\(454\) 9.59273 1.38475i 0.450209 0.0649894i
\(455\) 21.2456 0.996011
\(456\) 0 0
\(457\) 16.8982 0.790465 0.395233 0.918581i \(-0.370664\pi\)
0.395233 + 0.918581i \(0.370664\pi\)
\(458\) 5.47916 0.790937i 0.256024 0.0369581i
\(459\) 0 0
\(460\) 3.13601 + 10.6359i 0.146217 + 0.495901i
\(461\) 10.7302 18.5853i 0.499757 0.865604i −0.500243 0.865885i \(-0.666756\pi\)
1.00000 0.000280614i \(8.93223e-5\pi\)
\(462\) 0 0
\(463\) 6.33305i 0.294322i 0.989113 + 0.147161i \(0.0470135\pi\)
−0.989113 + 0.147161i \(0.952987\pi\)
\(464\) 8.30333 16.1958i 0.385472 0.751870i
\(465\) 0 0
\(466\) 7.75554 19.4041i 0.359268 0.898878i
\(467\) 11.4220i 0.528548i 0.964448 + 0.264274i \(0.0851323\pi\)
−0.964448 + 0.264274i \(0.914868\pi\)
\(468\) 0 0
\(469\) 37.7063 21.7697i 1.74111 1.00523i
\(470\) 0.0297582 + 0.206148i 0.00137265 + 0.00950890i
\(471\) 0 0
\(472\) 1.77689 18.9470i 0.0817879 0.872107i
\(473\) −10.7451 + 18.6110i −0.494059 + 0.855735i
\(474\) 0 0
\(475\) −17.5936 0.639034i −0.807250 0.0293209i
\(476\) −5.90616 1.42577i −0.270708 0.0653500i
\(477\) 0 0
\(478\) −3.40522 23.5894i −0.155751 1.07896i
\(479\) −28.1985 + 16.2804i −1.28842 + 0.743870i −0.978372 0.206851i \(-0.933678\pi\)
−0.310048 + 0.950721i \(0.600345\pi\)
\(480\) 0 0
\(481\) −13.2056 22.8728i −0.602124 1.04291i
\(482\) 13.7384 10.8165i 0.625766 0.492679i
\(483\) 0 0
\(484\) −6.28227 + 1.85234i −0.285558 + 0.0841972i
\(485\) 1.27200 0.734387i 0.0577583 0.0333468i
\(486\) 0 0
\(487\) −12.5326 −0.567906 −0.283953 0.958838i \(-0.591646\pi\)
−0.283953 + 0.958838i \(0.591646\pi\)
\(488\) −29.0880 20.6394i −1.31675 0.934303i
\(489\) 0 0
\(490\) −5.84733 + 14.6298i −0.264156 + 0.660908i
\(491\) −14.4609 8.34899i −0.652610 0.376785i 0.136845 0.990592i \(-0.456304\pi\)
−0.789456 + 0.613808i \(0.789637\pi\)
\(492\) 0 0
\(493\) 3.22560i 0.145274i
\(494\) 3.33108 + 30.9959i 0.149872 + 1.39457i
\(495\) 0 0
\(496\) 10.1989 6.58698i 0.457944 0.295764i
\(497\) −11.8990 6.86990i −0.533743 0.308157i
\(498\) 0 0
\(499\) 7.54758 + 4.35759i 0.337876 + 0.195073i 0.659332 0.751852i \(-0.270839\pi\)
−0.321456 + 0.946924i \(0.604172\pi\)
\(500\) 16.9991 5.01221i 0.760222 0.224153i
\(501\) 0 0
\(502\) 26.5485 20.9022i 1.18492 0.932910i
\(503\) 16.3287 9.42738i 0.728061 0.420346i −0.0896513 0.995973i \(-0.528575\pi\)
0.817712 + 0.575627i \(0.195242\pi\)
\(504\) 0 0
\(505\) −12.3668 −0.550316
\(506\) 18.6929 + 23.7423i 0.830999 + 1.05548i
\(507\) 0 0
\(508\) −11.7027 11.1333i −0.519223 0.493962i
\(509\) 34.8313 20.1099i 1.54387 0.891354i 0.545281 0.838254i \(-0.316423\pi\)
0.998589 0.0531001i \(-0.0169102\pi\)
\(510\) 0 0
\(511\) −57.4033 33.1418i −2.53937 1.46611i
\(512\) 6.26464 21.7429i 0.276861 0.960910i
\(513\) 0 0
\(514\) 3.71747 2.92685i 0.163971 0.129098i
\(515\) −0.422958 + 0.732585i −0.0186378 + 0.0322815i
\(516\) 0 0
\(517\) 0.283803 + 0.491560i 0.0124816 + 0.0216188i
\(518\) 31.3257 4.52198i 1.37637 0.198684i
\(519\) 0 0
\(520\) −5.84683 12.7457i −0.256400 0.558935i
\(521\) 30.5495i 1.33840i 0.743082 + 0.669200i \(0.233363\pi\)
−0.743082 + 0.669200i \(0.766637\pi\)
\(522\) 0 0
\(523\) 1.09831 + 1.90233i 0.0480257 + 0.0831829i 0.889039 0.457832i \(-0.151374\pi\)
−0.841013 + 0.541015i \(0.818040\pi\)
\(524\) 11.3280 + 2.73462i 0.494865 + 0.119462i
\(525\) 0 0
\(526\) −34.5632 13.8144i −1.50703 0.602336i
\(527\) −1.07587 + 1.86347i −0.0468657 + 0.0811738i
\(528\) 0 0
\(529\) 4.49181 7.78005i 0.195296 0.338263i
\(530\) 2.24676 + 15.5642i 0.0975928 + 0.676067i
\(531\) 0 0
\(532\) −35.9731 10.0790i −1.55963 0.436981i
\(533\) −6.45615 −0.279647
\(534\) 0 0
\(535\) −6.30281 + 10.9168i −0.272494 + 0.471974i
\(536\) −23.4369 16.6297i −1.01232 0.718293i
\(537\) 0 0
\(538\) 22.4522 + 8.97381i 0.967981 + 0.386888i
\(539\) 42.9348i 1.84933i
\(540\) 0 0
\(541\) −1.16936 2.02540i −0.0502748 0.0870786i 0.839793 0.542907i \(-0.182676\pi\)
−0.890068 + 0.455828i \(0.849343\pi\)
\(542\) −6.41585 2.56432i −0.275585 0.110147i
\(543\) 0 0
\(544\) 0.770036 + 3.93559i 0.0330150 + 0.168737i
\(545\) 5.83244 3.36736i 0.249834 0.144242i
\(546\) 0 0
\(547\) 12.9835 + 22.4880i 0.555133 + 0.961519i 0.997893 + 0.0648785i \(0.0206660\pi\)
−0.442760 + 0.896640i \(0.646001\pi\)
\(548\) −15.6213 14.8613i −0.667310 0.634844i
\(549\) 0 0
\(550\) 16.9560 13.3498i 0.723007 0.569239i
\(551\) −0.719907 + 19.8202i −0.0306691 + 0.844368i
\(552\) 0 0
\(553\) −23.4709 13.5509i −0.998082 0.576243i
\(554\) −2.06542 + 0.298151i −0.0877511 + 0.0126672i
\(555\) 0 0
\(556\) 14.8298 15.5882i 0.628923 0.661086i
\(557\) −14.0655 24.3621i −0.595974 1.03226i −0.993409 0.114626i \(-0.963433\pi\)
0.397435 0.917630i \(-0.369900\pi\)
\(558\) 0 0
\(559\) −28.7647 −1.21662
\(560\) 16.7835 0.837436i 0.709234 0.0353881i
\(561\) 0 0
\(562\) 29.3271 23.0898i 1.23709 0.973986i
\(563\) 39.3721 1.65934 0.829668 0.558257i \(-0.188530\pi\)
0.829668 + 0.558257i \(0.188530\pi\)
\(564\) 0 0
\(565\) 12.4091 + 7.16440i 0.522055 + 0.301409i
\(566\) 4.04370 + 1.61621i 0.169969 + 0.0679343i
\(567\) 0 0
\(568\) −0.846762 + 9.02905i −0.0355294 + 0.378851i
\(569\) 6.02447i 0.252559i 0.991995 + 0.126279i \(0.0403036\pi\)
−0.991995 + 0.126279i \(0.959696\pi\)
\(570\) 0 0
\(571\) 33.1860i 1.38879i 0.719594 + 0.694395i \(0.244328\pi\)
−0.719594 + 0.694395i \(0.755672\pi\)
\(572\) −27.6864 26.3394i −1.15763 1.10131i
\(573\) 0 0
\(574\) 2.87145 7.18426i 0.119852 0.299865i
\(575\) −19.7815 11.4208i −0.824945 0.476282i
\(576\) 0 0
\(577\) 34.9768 1.45610 0.728051 0.685523i \(-0.240426\pi\)
0.728051 + 0.685523i \(0.240426\pi\)
\(578\) 14.4325 + 18.3312i 0.600315 + 0.762477i
\(579\) 0 0
\(580\) −2.52307 8.55710i −0.104765 0.355314i
\(581\) −67.9448 −2.81882
\(582\) 0 0
\(583\) 21.4272 + 37.1129i 0.887422 + 1.53706i
\(584\) −4.08496 + 43.5580i −0.169037 + 1.80244i
\(585\) 0 0
\(586\) 4.55045 + 31.5229i 0.187977 + 1.30220i
\(587\) 28.6111 + 16.5186i 1.18091 + 0.681796i 0.956224 0.292636i \(-0.0945325\pi\)
0.224682 + 0.974432i \(0.427866\pi\)
\(588\) 0 0
\(589\) −7.02676 + 11.2102i −0.289533 + 0.461910i
\(590\) −5.77040 7.32915i −0.237563 0.301736i
\(591\) 0 0
\(592\) −11.3337 17.5484i −0.465812 0.721236i
\(593\) 12.7775 + 22.1313i 0.524709 + 0.908822i 0.999586 + 0.0287702i \(0.00915911\pi\)
−0.474877 + 0.880052i \(0.657508\pi\)
\(594\) 0 0
\(595\) −2.57921 + 1.48911i −0.105737 + 0.0610475i
\(596\) −10.0018 + 41.4319i −0.409690 + 1.69712i
\(597\) 0 0
\(598\) −15.0114 + 37.5581i −0.613863 + 1.53586i
\(599\) −2.25614 3.90775i −0.0921835 0.159667i 0.816246 0.577704i \(-0.196051\pi\)
−0.908430 + 0.418038i \(0.862718\pi\)
\(600\) 0 0
\(601\) 40.6603i 1.65857i 0.558826 + 0.829285i \(0.311252\pi\)
−0.558826 + 0.829285i \(0.688748\pi\)
\(602\) 12.7934 32.0087i 0.521421 1.30458i
\(603\) 0 0
\(604\) −16.8673 + 4.97334i −0.686319 + 0.202362i
\(605\) −1.60524 + 2.78036i −0.0652624 + 0.113038i
\(606\) 0 0
\(607\) 10.0709 0.408767 0.204384 0.978891i \(-0.434481\pi\)
0.204384 + 0.978891i \(0.434481\pi\)
\(608\) 3.85323 + 24.3547i 0.156269 + 0.987714i
\(609\) 0 0
\(610\) −17.3035 + 2.49783i −0.700598 + 0.101134i
\(611\) −0.379872 + 0.657957i −0.0153680 + 0.0266181i
\(612\) 0 0
\(613\) 21.4108 37.0847i 0.864776 1.49784i −0.00249333 0.999997i \(-0.500794\pi\)
0.867269 0.497839i \(-0.165873\pi\)
\(614\) −0.654649 + 1.63791i −0.0264195 + 0.0661007i
\(615\) 0 0
\(616\) 41.6238 19.0941i 1.67707 0.769323i
\(617\) −3.97251 6.88059i −0.159927 0.277002i 0.774915 0.632065i \(-0.217793\pi\)
−0.934842 + 0.355063i \(0.884459\pi\)
\(618\) 0 0
\(619\) 33.5206i 1.34731i 0.739047 + 0.673653i \(0.235276\pi\)
−0.739047 + 0.673653i \(0.764724\pi\)
\(620\) 1.39654 5.78509i 0.0560865 0.232335i
\(621\) 0 0
\(622\) −1.47299 10.2040i −0.0590615 0.409144i
\(623\) −8.04469 13.9338i −0.322304 0.558246i
\(624\) 0 0
\(625\) −5.75368 + 9.96566i −0.230147 + 0.398626i
\(626\) −11.0000 13.9714i −0.439649 0.558411i
\(627\) 0 0
\(628\) 0.253814 1.05141i 0.0101283 0.0419557i
\(629\) 3.20631 + 1.85117i 0.127844 + 0.0738108i
\(630\) 0 0
\(631\) 17.9583 10.3682i 0.714909 0.412753i −0.0979670 0.995190i \(-0.531234\pi\)
0.812876 + 0.582437i \(0.197901\pi\)
\(632\) −1.67024 + 17.8098i −0.0664387 + 0.708438i
\(633\) 0 0
\(634\) −27.8758 + 21.9473i −1.10709 + 0.871637i
\(635\) −7.91758 −0.314200
\(636\) 0 0
\(637\) −49.7693 + 28.7343i −1.97193 + 1.13849i
\(638\) −15.0393 19.1019i −0.595413 0.756251i
\(639\) 0 0
\(640\) −5.12124 9.83831i −0.202435 0.388893i
\(641\) −41.5249 23.9744i −1.64013 0.946931i −0.980785 0.195094i \(-0.937499\pi\)
−0.659349 0.751837i \(-0.729168\pi\)
\(642\) 0 0
\(643\) −20.5401 11.8588i −0.810023 0.467667i 0.0369410 0.999317i \(-0.488239\pi\)
−0.846964 + 0.531651i \(0.821572\pi\)
\(644\) −35.1173 33.4087i −1.38381 1.31649i
\(645\) 0 0
\(646\) −2.57690 3.52942i −0.101387 0.138863i
\(647\) 31.0790i 1.22184i −0.791692 0.610921i \(-0.790799\pi\)
0.791692 0.610921i \(-0.209201\pi\)
\(648\) 0 0
\(649\) −22.0147 12.7102i −0.864154 0.498920i
\(650\) 26.8228 + 10.7207i 1.05208 + 0.420499i
\(651\) 0 0
\(652\) −5.39158 18.2857i −0.211151 0.716125i
\(653\) −32.4012 −1.26796 −0.633979 0.773350i \(-0.718579\pi\)
−0.633979 + 0.773350i \(0.718579\pi\)
\(654\) 0 0
\(655\) 4.94692 2.85610i 0.193292 0.111597i
\(656\) −5.10021 + 0.254481i −0.199130 + 0.00993583i
\(657\) 0 0
\(658\) −0.563208 0.715347i −0.0219561 0.0278871i
\(659\) −12.0633 20.8942i −0.469918 0.813923i 0.529490 0.848316i \(-0.322383\pi\)
−0.999408 + 0.0343936i \(0.989050\pi\)
\(660\) 0 0
\(661\) 35.4425 20.4627i 1.37855 0.795907i 0.386567 0.922261i \(-0.373661\pi\)
0.991985 + 0.126354i \(0.0403275\pi\)
\(662\) −30.5140 + 4.40481i −1.18596 + 0.171198i
\(663\) 0 0
\(664\) 18.6985 + 40.7614i 0.725642 + 1.58185i
\(665\) −16.1807 + 8.57442i −0.627461 + 0.332502i
\(666\) 0 0
\(667\) −12.8662 + 22.2849i −0.498182 + 0.862876i
\(668\) 15.7171 + 14.9524i 0.608112 + 0.578526i
\(669\) 0 0
\(670\) −13.9418 + 2.01256i −0.538620 + 0.0777519i
\(671\) −41.2602 + 23.8216i −1.59283 + 0.919623i
\(672\) 0 0
\(673\) 21.5578i 0.830993i −0.909595 0.415496i \(-0.863608\pi\)
0.909595 0.415496i \(-0.136392\pi\)
\(674\) 24.6946 + 9.87008i 0.951200 + 0.380181i
\(675\) 0 0
\(676\) 5.90169 24.4474i 0.226988 0.940283i
\(677\) 19.5655i 0.751961i −0.926627 0.375981i \(-0.877306\pi\)
0.926627 0.375981i \(-0.122694\pi\)
\(678\) 0 0
\(679\) −3.21014 + 5.56013i −0.123194 + 0.213378i
\(680\) 1.60315 + 1.13752i 0.0614779 + 0.0436217i
\(681\) 0 0
\(682\) −2.31712 16.0517i −0.0887270 0.614650i
\(683\) −33.7851 −1.29275 −0.646375 0.763020i \(-0.723716\pi\)
−0.646375 + 0.763020i \(0.723716\pi\)
\(684\) 0 0
\(685\) −10.5688 −0.403812
\(686\) −3.77844 26.1749i −0.144262 0.999362i
\(687\) 0 0
\(688\) −22.7234 + 1.13381i −0.866322 + 0.0432263i
\(689\) −28.6804 + 49.6759i −1.09264 + 1.89250i
\(690\) 0 0
\(691\) 6.96281i 0.264878i −0.991191 0.132439i \(-0.957719\pi\)
0.991191 0.132439i \(-0.0422808\pi\)
\(692\) −5.84481 1.41096i −0.222186 0.0536366i
\(693\) 0 0
\(694\) 42.3311 + 16.9191i 1.60687 + 0.642241i
\(695\) 10.5463i 0.400046i
\(696\) 0 0
\(697\) 0.783775 0.452513i 0.0296876 0.0171401i
\(698\) −17.9359 + 2.58912i −0.678886 + 0.0979997i
\(699\) 0 0
\(700\) −23.8594 + 25.0796i −0.901802 + 0.947921i
\(701\) 1.46064 2.52991i 0.0551677 0.0955532i −0.837123 0.547015i \(-0.815764\pi\)
0.892290 + 0.451462i \(0.149097\pi\)
\(702\) 0 0
\(703\) 19.2885 + 12.0904i 0.727481 + 0.455997i
\(704\) −22.9098 19.7162i −0.863447 0.743082i
\(705\) 0 0
\(706\) 30.5799 4.41433i 1.15089 0.166135i
\(707\) 46.8154 27.0289i 1.76067 1.01652i
\(708\) 0 0
\(709\) −2.62608 4.54851i −0.0986247 0.170823i 0.812491 0.582974i \(-0.198111\pi\)
−0.911116 + 0.412151i \(0.864778\pi\)
\(710\) 2.74984 + 3.49265i 0.103200 + 0.131077i
\(711\) 0 0
\(712\) −6.14526 + 8.66077i −0.230303 + 0.324576i
\(713\) −14.8659 + 8.58285i −0.556733 + 0.321430i
\(714\) 0 0
\(715\) −18.7315 −0.700520
\(716\) 11.7365 3.46053i 0.438614 0.129326i
\(717\) 0 0
\(718\) −8.92040 3.56536i −0.332906 0.133058i
\(719\) −25.8616 14.9312i −0.964473 0.556839i −0.0669265 0.997758i \(-0.521319\pi\)
−0.897547 + 0.440919i \(0.854653\pi\)
\(720\) 0 0
\(721\) 3.69766i 0.137708i
\(722\) −15.0464 22.2622i −0.559971 0.828513i
\(723\) 0 0
\(724\) 4.56050 4.79372i 0.169490 0.178157i
\(725\) 15.9152 + 9.18864i 0.591075 + 0.341257i
\(726\) 0 0
\(727\) 6.22247 + 3.59255i 0.230779 + 0.133240i 0.610931 0.791684i \(-0.290795\pi\)
−0.380152 + 0.924924i \(0.624128\pi\)
\(728\) 49.9904 + 35.4707i 1.85277 + 1.31463i
\(729\) 0 0
\(730\) 13.2658 + 16.8493i 0.490989 + 0.623619i
\(731\) 3.49202 2.01612i 0.129157 0.0745689i
\(732\) 0 0
\(733\) −26.6597 −0.984698 −0.492349 0.870398i \(-0.663862\pi\)
−0.492349 + 0.870398i \(0.663862\pi\)
\(734\) 19.0189 14.9740i 0.702000 0.552700i
\(735\) 0 0
\(736\) −10.3782 + 30.2617i −0.382547 + 1.11546i
\(737\) −33.2443 + 19.1936i −1.22457 + 0.707006i
\(738\) 0 0
\(739\) 12.1059 + 6.98933i 0.445322 + 0.257107i 0.705852 0.708359i \(-0.250564\pi\)
−0.260531 + 0.965466i \(0.583897\pi\)
\(740\) −9.95393 2.40292i −0.365914 0.0883330i
\(741\) 0 0
\(742\) −42.5223 54.0088i −1.56104 1.98273i
\(743\) 0.420962 0.729128i 0.0154436 0.0267491i −0.858200 0.513315i \(-0.828417\pi\)
0.873644 + 0.486566i \(0.161751\pi\)
\(744\) 0 0
\(745\) 10.4461 + 18.0933i 0.382717 + 0.662886i
\(746\) 4.01362 + 27.8040i 0.146949 + 1.01798i
\(747\) 0 0
\(748\) 5.20726 + 1.25705i 0.190396 + 0.0459624i
\(749\) 55.1016i 2.01337i
\(750\) 0 0
\(751\) 0.619203 + 1.07249i 0.0225950 + 0.0391358i 0.877102 0.480304i \(-0.159474\pi\)
−0.854507 + 0.519440i \(0.826140\pi\)
\(752\) −0.274155 + 0.534744i −0.00999740 + 0.0195001i
\(753\) 0 0
\(754\) 12.0774 30.2173i 0.439834 1.10045i
\(755\) −4.30991 + 7.46499i −0.156854 + 0.271679i
\(756\) 0 0
\(757\) −26.6473 + 46.1545i −0.968512 + 1.67751i −0.268645 + 0.963239i \(0.586576\pi\)
−0.699867 + 0.714273i \(0.746758\pi\)
\(758\) −14.5172 + 2.09561i −0.527289 + 0.0761161i
\(759\) 0 0
\(760\) 9.59691 + 7.34744i 0.348117 + 0.266520i
\(761\) −4.46182 −0.161741 −0.0808704 0.996725i \(-0.525770\pi\)
−0.0808704 + 0.996725i \(0.525770\pi\)
\(762\) 0 0
\(763\) −14.7194 + 25.4947i −0.532877 + 0.922970i
\(764\) −4.63948 15.7350i −0.167851 0.569272i
\(765\) 0 0
\(766\) 12.7948 32.0121i 0.462294 1.15665i
\(767\) 34.0254i 1.22859i
\(768\) 0 0
\(769\) −18.3414 31.7682i −0.661407 1.14559i −0.980246 0.197782i \(-0.936626\pi\)
0.318839 0.947809i \(-0.396707\pi\)
\(770\) 8.33107 20.8440i 0.300231 0.751167i
\(771\) 0 0
\(772\) 34.7239 + 8.38248i 1.24974 + 0.301692i
\(773\) 41.4667 23.9408i 1.49145 0.861091i 0.491501 0.870877i \(-0.336448\pi\)
0.999952 + 0.00978619i \(0.00311509\pi\)
\(774\) 0 0
\(775\) 6.12960 + 10.6168i 0.220182 + 0.381366i
\(776\) 4.21907 + 0.395673i 0.151456 + 0.0142038i
\(777\) 0 0
\(778\) 5.03854 + 6.39960i 0.180640 + 0.229437i
\(779\) 4.91702 2.60561i 0.176171 0.0933555i
\(780\) 0 0
\(781\) 10.4909 + 6.05695i 0.375396 + 0.216735i
\(782\) −0.810068 5.61169i −0.0289680 0.200674i
\(783\) 0 0
\(784\) −38.1839 + 24.6611i −1.36371 + 0.880755i
\(785\) −0.265089 0.459148i −0.00946144 0.0163877i
\(786\) 0 0
\(787\) −44.3265 −1.58007 −0.790035 0.613062i \(-0.789938\pi\)
−0.790035 + 0.613062i \(0.789938\pi\)
\(788\) −22.1682 + 6.53634i −0.789710 + 0.232847i
\(789\) 0 0
\(790\) 5.42407 + 6.88926i 0.192980 + 0.245109i
\(791\) −62.6339 −2.22701
\(792\) 0 0
\(793\) −55.2271 31.8854i −1.96117 1.13228i
\(794\) −14.7550 + 36.9165i −0.523636 + 1.31012i
\(795\) 0 0
\(796\) 31.1398 32.7323i 1.10372 1.16016i
\(797\) 14.2943i 0.506329i −0.967423 0.253165i \(-0.918529\pi\)
0.967423 0.253165i \(-0.0814714\pi\)
\(798\) 0 0
\(799\) 0.106501i 0.00376774i
\(800\) 21.6119 + 7.41180i 0.764096 + 0.262047i
\(801\) 0 0
\(802\) 16.5219 + 6.60358i 0.583410 + 0.233181i
\(803\) 50.6105 + 29.2200i 1.78601 + 1.03115i
\(804\) 0 0
\(805\) −23.7590 −0.837393
\(806\) 17.0560 13.4286i 0.600773 0.473002i
\(807\) 0 0
\(808\) −29.0988 20.6471i −1.02369 0.726361i
\(809\) −15.7026 −0.552074 −0.276037 0.961147i \(-0.589021\pi\)
−0.276037 + 0.961147i \(0.589021\pi\)
\(810\) 0 0
\(811\) −2.70921 4.69248i −0.0951331 0.164775i 0.814531 0.580120i \(-0.196994\pi\)
−0.909664 + 0.415345i \(0.863661\pi\)
\(812\) 28.2536 + 26.8790i 0.991507 + 0.943268i
\(813\) 0 0
\(814\) −27.6188 + 3.98687i −0.968037 + 0.139740i
\(815\) −8.09277 4.67236i −0.283477 0.163666i
\(816\) 0 0
\(817\) 21.9073 11.6090i 0.766438 0.406147i
\(818\) −16.1966 + 12.7519i −0.566301 + 0.445861i
\(819\) 0 0
\(820\) −1.72530 + 1.81353i −0.0602500 + 0.0633312i
\(821\) −8.93735 15.4799i −0.311916 0.540254i 0.666861 0.745182i \(-0.267637\pi\)
−0.978777 + 0.204928i \(0.934304\pi\)
\(822\) 0 0
\(823\) −25.1381 + 14.5135i −0.876260 + 0.505909i −0.869423 0.494068i \(-0.835509\pi\)
−0.00683644 + 0.999977i \(0.502176\pi\)
\(824\) −2.21830 + 1.01760i −0.0772780 + 0.0354498i
\(825\) 0 0
\(826\) 37.8627 + 15.1332i 1.31741 + 0.526551i
\(827\) 13.8666 + 24.0177i 0.482190 + 0.835178i 0.999791 0.0204443i \(-0.00650809\pi\)
−0.517601 + 0.855622i \(0.673175\pi\)
\(828\) 0 0
\(829\) 21.3004i 0.739795i −0.929073 0.369897i \(-0.879393\pi\)
0.929073 0.369897i \(-0.120607\pi\)
\(830\) 20.4122 + 8.15846i 0.708517 + 0.283184i
\(831\) 0 0
\(832\) 7.52216 39.7518i 0.260784 1.37815i
\(833\) 4.02798 6.97667i 0.139561 0.241727i
\(834\) 0 0
\(835\) 10.6335 0.367989
\(836\) 31.7162 + 8.88634i 1.09693 + 0.307340i
\(837\) 0 0
\(838\) 1.67015 + 11.5699i 0.0576945 + 0.399675i
\(839\) −16.9556 + 29.3680i −0.585372 + 1.01389i 0.409457 + 0.912330i \(0.365718\pi\)
−0.994829 + 0.101565i \(0.967615\pi\)
\(840\) 0 0
\(841\) −4.14849 + 7.18540i −0.143051 + 0.247772i
\(842\) −48.6040 19.4263i −1.67501 0.669476i
\(843\) 0 0
\(844\) 0.501096 2.07576i 0.0172484 0.0714505i
\(845\) −6.16387 10.6761i −0.212044 0.367270i
\(846\) 0 0
\(847\) 14.0336i 0.482202i
\(848\) −20.6988 + 40.3733i −0.710798 + 1.38642i
\(849\) 0 0
\(850\) −4.00769 + 0.578525i −0.137463 + 0.0198432i
\(851\) 14.7678 + 25.5786i 0.506234 + 0.876823i
\(852\) 0 0
\(853\) −0.360150 + 0.623798i −0.0123313 + 0.0213584i −0.872125 0.489283i \(-0.837259\pi\)
0.859794 + 0.510641i \(0.170592\pi\)
\(854\) 60.0442 47.2741i 2.05467 1.61769i
\(855\) 0 0
\(856\) −33.0565 + 15.1640i −1.12985 + 0.518296i
\(857\) 22.8485 + 13.1916i 0.780489 + 0.450616i 0.836604 0.547809i \(-0.184538\pi\)
−0.0561143 + 0.998424i \(0.517871\pi\)
\(858\) 0 0
\(859\) 18.1975 10.5063i 0.620890 0.358471i −0.156326 0.987706i \(-0.549965\pi\)
0.777215 + 0.629235i \(0.216632\pi\)
\(860\) −7.68688 + 8.07999i −0.262120 + 0.275525i
\(861\) 0 0
\(862\) 33.4682 + 42.5089i 1.13993 + 1.44786i
\(863\) 33.4307 1.13799 0.568997 0.822340i \(-0.307332\pi\)
0.568997 + 0.822340i \(0.307332\pi\)
\(864\) 0 0
\(865\) −2.55242 + 1.47364i −0.0867850 + 0.0501053i
\(866\) −19.7434 + 15.5444i −0.670907 + 0.528220i
\(867\) 0 0
\(868\) 7.35716 + 24.9521i 0.249718 + 0.846929i
\(869\) 20.6934 + 11.9474i 0.701977 + 0.405287i
\(870\) 0 0
\(871\) −44.4978 25.6908i −1.50775 0.870500i
\(872\) 19.3455 + 1.81426i 0.655123 + 0.0614387i
\(873\) 0 0
\(874\) −3.72514 34.6627i −0.126005 1.17248i
\(875\) 37.9734i 1.28374i
\(876\) 0 0
\(877\) 2.95806 + 1.70784i 0.0998866 + 0.0576696i 0.549111 0.835749i \(-0.314966\pi\)
−0.449225 + 0.893419i \(0.648300\pi\)
\(878\) 1.23257 3.08386i 0.0415973 0.104075i
\(879\) 0 0
\(880\) −14.7975 + 0.738339i −0.498823 + 0.0248894i
\(881\) 28.9200 0.974340 0.487170 0.873307i \(-0.338029\pi\)
0.487170 + 0.873307i \(0.338029\pi\)
\(882\) 0 0
\(883\) 30.2498 17.4647i 1.01799 0.587734i 0.104466 0.994529i \(-0.466687\pi\)
0.913520 + 0.406794i \(0.133353\pi\)
\(884\) 2.02783 + 6.87744i 0.0682032 + 0.231313i
\(885\) 0 0
\(886\) −2.04397 + 1.60926i −0.0686685 + 0.0540642i
\(887\) 21.8812 + 37.8993i 0.734698 + 1.27253i 0.954856 + 0.297070i \(0.0960094\pi\)
−0.220158 + 0.975464i \(0.570657\pi\)
\(888\) 0 0
\(889\) 29.9725 17.3046i 1.00524 0.580378i
\(890\) 0.743711 + 5.15200i 0.0249293 + 0.172696i
\(891\) 0 0
\(892\) 7.37137 30.5354i 0.246812 1.02240i
\(893\) 0.0237695 0.654412i 0.000795417 0.0218991i
\(894\) 0 0
\(895\) 2.99891 5.19426i 0.100242 0.173625i
\(896\) 40.8893 + 26.0505i 1.36602 + 0.870288i
\(897\) 0 0
\(898\) −0.301443 2.08823i −0.0100593 0.0696850i
\(899\) 11.9604 6.90533i 0.398901 0.230306i
\(900\) 0 0
\(901\) 8.04086i 0.267880i
\(902\) −2.53166 + 6.33412i −0.0842949 + 0.210903i
\(903\) 0 0
\(904\) 17.2369 + 37.5753i 0.573292 + 1.24974i
\(905\) 3.24324i 0.107809i
\(906\) 0 0
\(907\) −9.97196 + 17.2719i −0.331113 + 0.573505i −0.982730 0.185043i \(-0.940758\pi\)
0.651617 + 0.758548i \(0.274091\pi\)
\(908\) 13.1472 3.87647i 0.436305 0.128645i
\(909\) 0 0
\(910\) 29.7376 4.29274i 0.985793 0.142303i
\(911\) −1.26063 −0.0417665 −0.0208833 0.999782i \(-0.506648\pi\)
−0.0208833 + 0.999782i \(0.506648\pi\)
\(912\) 0 0
\(913\) 59.9046 1.98255
\(914\) 23.6525 3.41433i 0.782356 0.112936i
\(915\) 0 0
\(916\) 7.50940 2.21416i 0.248117 0.0731578i
\(917\) −12.4846 + 21.6239i −0.412277 + 0.714084i
\(918\) 0 0
\(919\) 37.8973i 1.25012i −0.780578 0.625058i \(-0.785075\pi\)
0.780578 0.625058i \(-0.214925\pi\)
\(920\) 6.53849 + 14.2535i 0.215568 + 0.469923i
\(921\) 0 0
\(922\) 11.2640 28.1820i 0.370959 0.928126i
\(923\) 16.2145i 0.533708i
\(924\) 0 0
\(925\) 18.2674 10.5467i 0.600629 0.346773i
\(926\) 1.27961 + 8.86440i 0.0420506 + 0.291302i
\(927\) 0 0
\(928\) 8.34981 24.3470i 0.274096 0.799230i
\(929\) −11.1030 + 19.2310i −0.364278 + 0.630949i −0.988660 0.150171i \(-0.952018\pi\)
0.624382 + 0.781119i \(0.285351\pi\)
\(930\) 0 0
\(931\) 26.3076 41.9702i 0.862198 1.37552i
\(932\) 6.93482 28.7271i 0.227158 0.940986i
\(933\) 0 0
\(934\) 2.30785 + 15.9875i 0.0755152 + 0.523126i
\(935\) 2.27400 1.31290i 0.0743679 0.0429363i
\(936\) 0 0
\(937\) −19.6950 34.1127i −0.643406 1.11441i −0.984667 0.174444i \(-0.944187\pi\)
0.341261 0.939969i \(-0.389146\pi\)
\(938\) 48.3790 38.0899i 1.57963 1.24368i
\(939\) 0 0
\(940\) 0.0833055 + 0.282534i 0.00271713 + 0.00921523i
\(941\) 0.888923 0.513220i 0.0289781 0.0167305i −0.485441 0.874269i \(-0.661341\pi\)
0.514419 + 0.857539i \(0.328008\pi\)
\(942\) 0 0
\(943\) 7.21991 0.235112
\(944\) −1.34118 26.8793i −0.0436515 0.874846i
\(945\) 0 0
\(946\) −11.2795 + 28.2210i −0.366729 + 0.917543i
\(947\) −30.9889 17.8915i −1.00701 0.581395i −0.0966919 0.995314i \(-0.530826\pi\)
−0.910313 + 0.413920i \(0.864159\pi\)
\(948\) 0 0
\(949\) 78.2224i 2.53921i
\(950\) −24.7550 + 2.66038i −0.803157 + 0.0863140i
\(951\) 0 0
\(952\) −8.55496 0.802302i −0.277268 0.0260027i
\(953\) 48.8654 + 28.2125i 1.58291 + 0.913891i 0.994433 + 0.105374i \(0.0336041\pi\)
0.588473 + 0.808517i \(0.299729\pi\)
\(954\) 0 0
\(955\) −6.96387 4.02060i −0.225346 0.130103i
\(956\) −9.53261 32.3302i −0.308307 1.04563i
\(957\) 0 0
\(958\) −36.1800 + 28.4853i −1.16892 + 0.920319i
\(959\) 40.0087 23.0990i 1.29195 0.745907i
\(960\) 0 0
\(961\) −21.7871 −0.702810
\(962\) −23.1055 29.3469i −0.744950 0.946183i
\(963\) 0 0
\(964\) 17.0442 17.9158i 0.548956 0.577030i
\(965\) 15.1639 8.75487i 0.488143 0.281829i
\(966\) 0 0
\(967\) −2.89715 1.67267i −0.0931661 0.0537895i 0.452693 0.891666i \(-0.350463\pi\)
−0.545859 + 0.837877i \(0.683797\pi\)
\(968\) −8.41906 + 3.86208i −0.270599 + 0.124132i
\(969\) 0 0
\(970\) 1.63203 1.28494i 0.0524014 0.0412568i
\(971\) −7.62452 + 13.2061i −0.244683 + 0.423803i −0.962042 0.272900i \(-0.912017\pi\)
0.717360 + 0.696703i \(0.245350\pi\)
\(972\) 0 0
\(973\) 23.0500 + 39.9238i 0.738950 + 1.27990i
\(974\) −17.5419 + 2.53225i −0.562080 + 0.0811384i
\(975\) 0 0
\(976\) −44.8849 23.0118i −1.43673 0.736590i
\(977\) 9.19538i 0.294186i 0.989123 + 0.147093i \(0.0469917\pi\)
−0.989123 + 0.147093i \(0.953008\pi\)
\(978\) 0 0
\(979\) 7.09273 + 12.2850i 0.226684 + 0.392629i
\(980\) −5.22855 + 21.6589i −0.167020 + 0.691869i
\(981\) 0 0
\(982\) −21.9279 8.76427i −0.699748 0.279679i
\(983\) −12.6703 + 21.9456i −0.404119 + 0.699955i −0.994219 0.107375i \(-0.965755\pi\)
0.590099 + 0.807331i \(0.299089\pi\)
\(984\) 0 0
\(985\) −5.66442 + 9.81106i −0.180483 + 0.312606i
\(986\) 0.651740 + 4.51488i 0.0207556 + 0.143783i
\(987\) 0 0
\(988\) 10.9253 + 42.7121i 0.347581 + 1.35885i
\(989\) 32.1675 1.02287
\(990\) 0 0
\(991\) −13.6238 + 23.5971i −0.432775 + 0.749587i −0.997111 0.0759574i \(-0.975799\pi\)
0.564337 + 0.825545i \(0.309132\pi\)
\(992\) 12.9445 11.2806i 0.410990 0.358158i
\(993\) 0 0
\(994\) −18.0432 7.21160i −0.572295 0.228738i
\(995\) 22.1454i 0.702055i
\(996\) 0 0
\(997\) 4.14522 + 7.17973i 0.131280 + 0.227384i 0.924170 0.381981i \(-0.124758\pi\)
−0.792890 + 0.609365i \(0.791425\pi\)
\(998\) 11.4448 + 4.57434i 0.362280 + 0.144798i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 684.2.r.b.559.10 20
3.2 odd 2 228.2.k.b.103.1 yes 20
4.3 odd 2 684.2.r.c.559.7 20
12.11 even 2 228.2.k.a.103.4 yes 20
19.12 odd 6 684.2.r.c.487.7 20
57.50 even 6 228.2.k.a.31.4 20
76.31 even 6 inner 684.2.r.b.487.10 20
228.107 odd 6 228.2.k.b.31.1 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
228.2.k.a.31.4 20 57.50 even 6
228.2.k.a.103.4 yes 20 12.11 even 2
228.2.k.b.31.1 yes 20 228.107 odd 6
228.2.k.b.103.1 yes 20 3.2 odd 2
684.2.r.b.487.10 20 76.31 even 6 inner
684.2.r.b.559.10 20 1.1 even 1 trivial
684.2.r.c.487.7 20 19.12 odd 6
684.2.r.c.559.7 20 4.3 odd 2