Properties

Label 684.2.r.b.487.3
Level $684$
Weight $2$
Character 684.487
Analytic conductor $5.462$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [684,2,Mod(487,684)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(684, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("684.487"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.46176749826\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 3 x^{18} - 2 x^{17} + x^{16} + 3 x^{14} - 12 x^{13} + 28 x^{12} - 24 x^{11} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 228)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 487.3
Root \(-0.237943 - 1.39405i\) of defining polynomial
Character \(\chi\) \(=\) 684.487
Dual form 684.2.r.b.559.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.08831 + 0.903091i) q^{2} +(0.368852 - 1.96569i) q^{4} +(-1.43271 - 2.48152i) q^{5} +2.64551i q^{7} +(1.37377 + 2.47240i) q^{8} +(3.80027 + 1.40681i) q^{10} +2.73265i q^{11} +(-1.86752 - 1.07822i) q^{13} +(-2.38914 - 2.87915i) q^{14} +(-3.72790 - 1.45010i) q^{16} +(1.26747 + 2.19532i) q^{17} +(1.53443 - 4.07989i) q^{19} +(-5.40636 + 1.90095i) q^{20} +(-2.46783 - 2.97398i) q^{22} +(3.37287 + 1.94733i) q^{23} +(-1.60529 + 2.78044i) q^{25} +(3.00618 - 0.513109i) q^{26} +(5.20027 + 0.975802i) q^{28} +(2.79010 + 1.61086i) q^{29} +8.83425 q^{31} +(5.36669 - 1.78847i) q^{32} +(-3.36199 - 1.24456i) q^{34} +(6.56489 - 3.79024i) q^{35} +12.0463i q^{37} +(2.01457 + 5.82593i) q^{38} +(4.16708 - 6.95126i) q^{40} +(4.75850 - 2.74732i) q^{41} +(1.31272 - 0.757900i) q^{43} +(5.37154 + 1.00794i) q^{44} +(-5.42935 + 0.926708i) q^{46} +(9.19542 + 5.30898i) q^{47} +0.00125668 q^{49} +(-0.763936 - 4.47571i) q^{50} +(-2.80828 + 3.27328i) q^{52} +(-4.25386 - 2.45597i) q^{53} +(6.78111 - 3.91508i) q^{55} +(-6.54076 + 3.63434i) q^{56} +(-4.49126 + 0.766589i) q^{58} +(-3.80546 - 6.59126i) q^{59} +(0.788072 - 1.36498i) q^{61} +(-9.61444 + 7.97814i) q^{62} +(-4.22549 + 6.79303i) q^{64} +6.17906i q^{65} +(-5.23140 + 9.06106i) q^{67} +(4.78284 - 1.68171i) q^{68} +(-3.72172 + 10.0537i) q^{70} +(2.82329 + 4.89008i) q^{71} +(-6.42096 - 11.1214i) q^{73} +(-10.8789 - 13.1102i) q^{74} +(-7.45383 - 4.52110i) q^{76} -7.22925 q^{77} +(8.67850 + 15.0316i) q^{79} +(1.74253 + 11.3284i) q^{80} +(-2.69766 + 7.28730i) q^{82} -5.64965i q^{83} +(3.63183 - 6.29051i) q^{85} +(-0.744199 + 2.01034i) q^{86} +(-6.75619 + 3.75404i) q^{88} +(-1.33617 - 0.771439i) q^{89} +(2.85244 - 4.94056i) q^{91} +(5.07194 - 5.91175i) q^{92} +(-14.8020 + 2.52647i) q^{94} +(-12.3227 + 2.03755i) q^{95} +(-2.09143 + 1.20749i) q^{97} +(-0.00136766 + 0.00113490i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - q^{2} + q^{4} - 4 q^{8} + 6 q^{10} + 6 q^{13} - 9 q^{14} - 11 q^{16} + 12 q^{19} + 14 q^{20} + 8 q^{22} - 10 q^{25} + 7 q^{28} + 12 q^{31} + 29 q^{32} - 6 q^{34} - 25 q^{38} - 46 q^{40} - 12 q^{41}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/684\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(343\) \(533\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.08831 + 0.903091i −0.769554 + 0.638582i
\(3\) 0 0
\(4\) 0.368852 1.96569i 0.184426 0.982846i
\(5\) −1.43271 2.48152i −0.640725 1.10977i −0.985271 0.170999i \(-0.945300\pi\)
0.344546 0.938769i \(-0.388033\pi\)
\(6\) 0 0
\(7\) 2.64551i 0.999910i 0.866051 + 0.499955i \(0.166650\pi\)
−0.866051 + 0.499955i \(0.833350\pi\)
\(8\) 1.37377 + 2.47240i 0.485703 + 0.874124i
\(9\) 0 0
\(10\) 3.80027 + 1.40681i 1.20175 + 0.444871i
\(11\) 2.73265i 0.823924i 0.911201 + 0.411962i \(0.135156\pi\)
−0.911201 + 0.411962i \(0.864844\pi\)
\(12\) 0 0
\(13\) −1.86752 1.07822i −0.517958 0.299043i 0.218141 0.975917i \(-0.430001\pi\)
−0.736099 + 0.676874i \(0.763334\pi\)
\(14\) −2.38914 2.87915i −0.638525 0.769485i
\(15\) 0 0
\(16\) −3.72790 1.45010i −0.931974 0.362525i
\(17\) 1.26747 + 2.19532i 0.307407 + 0.532445i 0.977794 0.209567i \(-0.0672054\pi\)
−0.670387 + 0.742011i \(0.733872\pi\)
\(18\) 0 0
\(19\) 1.53443 4.07989i 0.352024 0.935991i
\(20\) −5.40636 + 1.90095i −1.20890 + 0.425064i
\(21\) 0 0
\(22\) −2.46783 2.97398i −0.526143 0.634054i
\(23\) 3.37287 + 1.94733i 0.703292 + 0.406046i 0.808572 0.588397i \(-0.200241\pi\)
−0.105280 + 0.994443i \(0.533574\pi\)
\(24\) 0 0
\(25\) −1.60529 + 2.78044i −0.321058 + 0.556088i
\(26\) 3.00618 0.513109i 0.589560 0.100629i
\(27\) 0 0
\(28\) 5.20027 + 0.975802i 0.982758 + 0.184409i
\(29\) 2.79010 + 1.61086i 0.518108 + 0.299130i 0.736160 0.676807i \(-0.236637\pi\)
−0.218052 + 0.975937i \(0.569970\pi\)
\(30\) 0 0
\(31\) 8.83425 1.58668 0.793339 0.608780i \(-0.208341\pi\)
0.793339 + 0.608780i \(0.208341\pi\)
\(32\) 5.36669 1.78847i 0.948706 0.316160i
\(33\) 0 0
\(34\) −3.36199 1.24456i −0.576576 0.213440i
\(35\) 6.56489 3.79024i 1.10967 0.640668i
\(36\) 0 0
\(37\) 12.0463i 1.98040i 0.139656 + 0.990200i \(0.455400\pi\)
−0.139656 + 0.990200i \(0.544600\pi\)
\(38\) 2.01457 + 5.82593i 0.326806 + 0.945091i
\(39\) 0 0
\(40\) 4.16708 6.95126i 0.658874 1.09909i
\(41\) 4.75850 2.74732i 0.743153 0.429059i −0.0800618 0.996790i \(-0.525512\pi\)
0.823214 + 0.567731i \(0.192178\pi\)
\(42\) 0 0
\(43\) 1.31272 0.757900i 0.200188 0.115579i −0.396555 0.918011i \(-0.629794\pi\)
0.596743 + 0.802432i \(0.296461\pi\)
\(44\) 5.37154 + 1.00794i 0.809791 + 0.151953i
\(45\) 0 0
\(46\) −5.42935 + 0.926708i −0.800515 + 0.136636i
\(47\) 9.19542 + 5.30898i 1.34129 + 0.774394i 0.986997 0.160740i \(-0.0513880\pi\)
0.354294 + 0.935134i \(0.384721\pi\)
\(48\) 0 0
\(49\) 0.00125668 0.000179525
\(50\) −0.763936 4.47571i −0.108037 0.632961i
\(51\) 0 0
\(52\) −2.80828 + 3.27328i −0.389439 + 0.453922i
\(53\) −4.25386 2.45597i −0.584312 0.337353i 0.178533 0.983934i \(-0.442865\pi\)
−0.762845 + 0.646581i \(0.776198\pi\)
\(54\) 0 0
\(55\) 6.78111 3.91508i 0.914365 0.527909i
\(56\) −6.54076 + 3.63434i −0.874046 + 0.485659i
\(57\) 0 0
\(58\) −4.49126 + 0.766589i −0.589731 + 0.100658i
\(59\) −3.80546 6.59126i −0.495429 0.858109i 0.504557 0.863378i \(-0.331656\pi\)
−0.999986 + 0.00526981i \(0.998323\pi\)
\(60\) 0 0
\(61\) 0.788072 1.36498i 0.100902 0.174768i −0.811154 0.584832i \(-0.801160\pi\)
0.912057 + 0.410064i \(0.134494\pi\)
\(62\) −9.61444 + 7.97814i −1.22103 + 1.01322i
\(63\) 0 0
\(64\) −4.22549 + 6.79303i −0.528186 + 0.849129i
\(65\) 6.17906i 0.766418i
\(66\) 0 0
\(67\) −5.23140 + 9.06106i −0.639118 + 1.10698i 0.346509 + 0.938047i \(0.387367\pi\)
−0.985627 + 0.168938i \(0.945966\pi\)
\(68\) 4.78284 1.68171i 0.580005 0.203937i
\(69\) 0 0
\(70\) −3.72172 + 10.0537i −0.444831 + 1.20164i
\(71\) 2.82329 + 4.89008i 0.335063 + 0.580346i 0.983497 0.180925i \(-0.0579090\pi\)
−0.648434 + 0.761271i \(0.724576\pi\)
\(72\) 0 0
\(73\) −6.42096 11.1214i −0.751517 1.30167i −0.947087 0.320976i \(-0.895989\pi\)
0.195571 0.980690i \(-0.437344\pi\)
\(74\) −10.8789 13.1102i −1.26465 1.52402i
\(75\) 0 0
\(76\) −7.45383 4.52110i −0.855013 0.518606i
\(77\) −7.22925 −0.823850
\(78\) 0 0
\(79\) 8.67850 + 15.0316i 0.976408 + 1.69119i 0.675209 + 0.737626i \(0.264053\pi\)
0.301198 + 0.953561i \(0.402613\pi\)
\(80\) 1.74253 + 11.3284i 0.194821 + 1.26655i
\(81\) 0 0
\(82\) −2.69766 + 7.28730i −0.297906 + 0.804748i
\(83\) 5.64965i 0.620130i −0.950715 0.310065i \(-0.899649\pi\)
0.950715 0.310065i \(-0.100351\pi\)
\(84\) 0 0
\(85\) 3.63183 6.29051i 0.393927 0.682301i
\(86\) −0.744199 + 2.01034i −0.0802490 + 0.216780i
\(87\) 0 0
\(88\) −6.75619 + 3.75404i −0.720212 + 0.400182i
\(89\) −1.33617 0.771439i −0.141634 0.0817724i 0.427509 0.904011i \(-0.359391\pi\)
−0.569142 + 0.822239i \(0.692725\pi\)
\(90\) 0 0
\(91\) 2.85244 4.94056i 0.299016 0.517912i
\(92\) 5.07194 5.91175i 0.528786 0.616343i
\(93\) 0 0
\(94\) −14.8020 + 2.52647i −1.52671 + 0.260586i
\(95\) −12.3227 + 2.03755i −1.26428 + 0.209048i
\(96\) 0 0
\(97\) −2.09143 + 1.20749i −0.212353 + 0.122602i −0.602404 0.798191i \(-0.705791\pi\)
0.390052 + 0.920793i \(0.372457\pi\)
\(98\) −0.00136766 + 0.00113490i −0.000138154 + 0.000114642i
\(99\) 0 0
\(100\) 4.87338 + 4.18107i 0.487338 + 0.418107i
\(101\) −3.32390 + 5.75717i −0.330741 + 0.572860i −0.982657 0.185431i \(-0.940632\pi\)
0.651916 + 0.758291i \(0.273965\pi\)
\(102\) 0 0
\(103\) 9.22228 0.908698 0.454349 0.890824i \(-0.349872\pi\)
0.454349 + 0.890824i \(0.349872\pi\)
\(104\) 0.100220 6.09849i 0.00982737 0.598006i
\(105\) 0 0
\(106\) 6.84749 1.16876i 0.665087 0.113520i
\(107\) 11.0441 1.06767 0.533836 0.845588i \(-0.320750\pi\)
0.533836 + 0.845588i \(0.320750\pi\)
\(108\) 0 0
\(109\) 8.11096 4.68287i 0.776889 0.448537i −0.0584373 0.998291i \(-0.518612\pi\)
0.835327 + 0.549754i \(0.185278\pi\)
\(110\) −3.84430 + 10.3848i −0.366540 + 0.990151i
\(111\) 0 0
\(112\) 3.83625 9.86220i 0.362492 0.931891i
\(113\) 19.9991i 1.88136i 0.339298 + 0.940679i \(0.389811\pi\)
−0.339298 + 0.940679i \(0.610189\pi\)
\(114\) 0 0
\(115\) 11.1598i 1.04066i
\(116\) 4.19560 4.89031i 0.389551 0.454054i
\(117\) 0 0
\(118\) 10.0940 + 3.73667i 0.929232 + 0.343988i
\(119\) −5.80776 + 3.35311i −0.532397 + 0.307379i
\(120\) 0 0
\(121\) 3.53264 0.321149
\(122\) 0.375033 + 2.19723i 0.0339539 + 0.198928i
\(123\) 0 0
\(124\) 3.25853 17.3654i 0.292625 1.55946i
\(125\) −5.12743 −0.458612
\(126\) 0 0
\(127\) 0.531496 0.920577i 0.0471626 0.0816880i −0.841480 0.540288i \(-0.818315\pi\)
0.888643 + 0.458600i \(0.151649\pi\)
\(128\) −1.53607 11.2089i −0.135771 0.990740i
\(129\) 0 0
\(130\) −5.58026 6.72476i −0.489421 0.589800i
\(131\) −7.64858 + 4.41591i −0.668259 + 0.385820i −0.795417 0.606063i \(-0.792748\pi\)
0.127158 + 0.991883i \(0.459415\pi\)
\(132\) 0 0
\(133\) 10.7934 + 4.05937i 0.935907 + 0.351992i
\(134\) −2.48956 14.5857i −0.215065 1.26001i
\(135\) 0 0
\(136\) −3.68649 + 6.14957i −0.316114 + 0.527322i
\(137\) 10.2489 17.7515i 0.875619 1.51662i 0.0195162 0.999810i \(-0.493787\pi\)
0.856102 0.516806i \(-0.172879\pi\)
\(138\) 0 0
\(139\) −3.61248 2.08566i −0.306406 0.176904i 0.338911 0.940818i \(-0.389941\pi\)
−0.645317 + 0.763915i \(0.723275\pi\)
\(140\) −5.02898 14.3026i −0.425026 1.20879i
\(141\) 0 0
\(142\) −7.48882 2.77225i −0.628448 0.232642i
\(143\) 2.94638 5.10329i 0.246389 0.426758i
\(144\) 0 0
\(145\) 9.23157i 0.766640i
\(146\) 17.0317 + 6.30489i 1.40955 + 0.521796i
\(147\) 0 0
\(148\) 23.6793 + 4.44330i 1.94643 + 0.365237i
\(149\) −8.11424 14.0543i −0.664744 1.15137i −0.979355 0.202150i \(-0.935207\pi\)
0.314610 0.949221i \(-0.398126\pi\)
\(150\) 0 0
\(151\) −22.7285 −1.84962 −0.924809 0.380431i \(-0.875776\pi\)
−0.924809 + 0.380431i \(0.875776\pi\)
\(152\) 12.1951 1.81112i 0.989151 0.146901i
\(153\) 0 0
\(154\) 7.86769 6.52868i 0.633997 0.526096i
\(155\) −12.6569 21.9224i −1.01663 1.76085i
\(156\) 0 0
\(157\) 4.24706 + 7.35612i 0.338952 + 0.587082i 0.984236 0.176861i \(-0.0565943\pi\)
−0.645284 + 0.763943i \(0.723261\pi\)
\(158\) −23.0198 8.52162i −1.83136 0.677943i
\(159\) 0 0
\(160\) −12.1270 10.7552i −0.958724 0.850272i
\(161\) −5.15168 + 8.92297i −0.406009 + 0.703229i
\(162\) 0 0
\(163\) 0.960892i 0.0752629i −0.999292 0.0376314i \(-0.988019\pi\)
0.999292 0.0376314i \(-0.0119813\pi\)
\(164\) −3.64521 10.3671i −0.284643 0.809535i
\(165\) 0 0
\(166\) 5.10215 + 6.14859i 0.396004 + 0.477223i
\(167\) −8.88741 + 15.3934i −0.687728 + 1.19118i 0.284843 + 0.958574i \(0.408059\pi\)
−0.972571 + 0.232606i \(0.925275\pi\)
\(168\) 0 0
\(169\) −4.17490 7.23114i −0.321146 0.556242i
\(170\) 1.72834 + 10.1259i 0.132558 + 0.776622i
\(171\) 0 0
\(172\) −1.00560 2.85996i −0.0766762 0.218070i
\(173\) −1.94298 + 1.12178i −0.147722 + 0.0852875i −0.572039 0.820226i \(-0.693848\pi\)
0.424317 + 0.905514i \(0.360514\pi\)
\(174\) 0 0
\(175\) −7.35569 4.24681i −0.556038 0.321029i
\(176\) 3.96261 10.1870i 0.298693 0.767876i
\(177\) 0 0
\(178\) 2.15085 0.367118i 0.161213 0.0275167i
\(179\) −2.69305 −0.201288 −0.100644 0.994922i \(-0.532090\pi\)
−0.100644 + 0.994922i \(0.532090\pi\)
\(180\) 0 0
\(181\) 7.51874 + 4.34095i 0.558864 + 0.322660i 0.752689 0.658376i \(-0.228756\pi\)
−0.193825 + 0.981036i \(0.562090\pi\)
\(182\) 1.35744 + 7.95289i 0.100620 + 0.589507i
\(183\) 0 0
\(184\) −0.181003 + 11.0143i −0.0133438 + 0.811982i
\(185\) 29.8931 17.2588i 2.19779 1.26889i
\(186\) 0 0
\(187\) −5.99905 + 3.46355i −0.438694 + 0.253280i
\(188\) 13.8276 16.1172i 1.00848 1.17546i
\(189\) 0 0
\(190\) 11.5709 13.3460i 0.839440 0.968223i
\(191\) 15.4264i 1.11622i −0.829768 0.558109i \(-0.811527\pi\)
0.829768 0.558109i \(-0.188473\pi\)
\(192\) 0 0
\(193\) −13.1165 + 7.57281i −0.944146 + 0.545103i −0.891258 0.453497i \(-0.850176\pi\)
−0.0528886 + 0.998600i \(0.516843\pi\)
\(194\) 1.18566 3.20288i 0.0851255 0.229953i
\(195\) 0 0
\(196\) 0.000463528 0.00247024i 3.31091e−5 0.000176446i
\(197\) −1.69549 −0.120799 −0.0603994 0.998174i \(-0.519237\pi\)
−0.0603994 + 0.998174i \(0.519237\pi\)
\(198\) 0 0
\(199\) −13.3077 7.68321i −0.943358 0.544648i −0.0523468 0.998629i \(-0.516670\pi\)
−0.891011 + 0.453981i \(0.850003\pi\)
\(200\) −9.07965 0.149211i −0.642028 0.0105508i
\(201\) 0 0
\(202\) −1.58180 9.26740i −0.111295 0.652052i
\(203\) −4.26156 + 7.38124i −0.299103 + 0.518062i
\(204\) 0 0
\(205\) −13.6351 7.87220i −0.952313 0.549818i
\(206\) −10.0367 + 8.32856i −0.699292 + 0.580279i
\(207\) 0 0
\(208\) 5.39842 + 6.72757i 0.374313 + 0.466473i
\(209\) 11.1489 + 4.19307i 0.771185 + 0.290041i
\(210\) 0 0
\(211\) 2.98218 + 5.16529i 0.205302 + 0.355593i 0.950229 0.311553i \(-0.100849\pi\)
−0.744927 + 0.667146i \(0.767516\pi\)
\(212\) −6.39672 + 7.45589i −0.439328 + 0.512073i
\(213\) 0 0
\(214\) −12.0194 + 9.97382i −0.821631 + 0.681797i
\(215\) −3.76148 2.17169i −0.256531 0.148108i
\(216\) 0 0
\(217\) 23.3711i 1.58654i
\(218\) −4.59821 + 12.4214i −0.311430 + 0.841281i
\(219\) 0 0
\(220\) −5.19461 14.7737i −0.350221 0.996040i
\(221\) 5.46643i 0.367712i
\(222\) 0 0
\(223\) 5.15998 + 8.93736i 0.345538 + 0.598490i 0.985451 0.169958i \(-0.0543631\pi\)
−0.639913 + 0.768447i \(0.721030\pi\)
\(224\) 4.73142 + 14.1977i 0.316132 + 0.948621i
\(225\) 0 0
\(226\) −18.0610 21.7653i −1.20140 1.44781i
\(227\) 7.97639 0.529411 0.264706 0.964329i \(-0.414725\pi\)
0.264706 + 0.964329i \(0.414725\pi\)
\(228\) 0 0
\(229\) −5.24797 −0.346796 −0.173398 0.984852i \(-0.555475\pi\)
−0.173398 + 0.984852i \(0.555475\pi\)
\(230\) 10.0783 + 12.1453i 0.664544 + 0.800840i
\(231\) 0 0
\(232\) −0.149729 + 9.11119i −0.00983021 + 0.598179i
\(233\) 6.29168 + 10.8975i 0.412181 + 0.713919i 0.995128 0.0985913i \(-0.0314336\pi\)
−0.582947 + 0.812510i \(0.698100\pi\)
\(234\) 0 0
\(235\) 30.4248i 1.98470i
\(236\) −14.3600 + 5.04918i −0.934759 + 0.328673i
\(237\) 0 0
\(238\) 3.29250 8.89418i 0.213421 0.576524i
\(239\) 10.3998i 0.672707i 0.941736 + 0.336354i \(0.109194\pi\)
−0.941736 + 0.336354i \(0.890806\pi\)
\(240\) 0 0
\(241\) −13.6723 7.89370i −0.880710 0.508478i −0.00981747 0.999952i \(-0.503125\pi\)
−0.870892 + 0.491474i \(0.836458\pi\)
\(242\) −3.84462 + 3.19030i −0.247142 + 0.205080i
\(243\) 0 0
\(244\) −2.39245 2.05258i −0.153161 0.131403i
\(245\) −0.00180045 0.00311847i −0.000115026 0.000199232i
\(246\) 0 0
\(247\) −7.26460 + 5.96485i −0.462235 + 0.379534i
\(248\) 12.1363 + 21.8418i 0.770654 + 1.38695i
\(249\) 0 0
\(250\) 5.58026 4.63054i 0.352926 0.292861i
\(251\) −3.72142 2.14856i −0.234894 0.135616i 0.377934 0.925833i \(-0.376635\pi\)
−0.612828 + 0.790216i \(0.709968\pi\)
\(252\) 0 0
\(253\) −5.32136 + 9.21686i −0.334551 + 0.579459i
\(254\) 0.252932 + 1.48187i 0.0158704 + 0.0929805i
\(255\) 0 0
\(256\) 11.7944 + 10.8116i 0.737152 + 0.675727i
\(257\) −24.0830 13.9043i −1.50226 0.867328i −0.999997 0.00261095i \(-0.999169\pi\)
−0.502259 0.864717i \(-0.667498\pi\)
\(258\) 0 0
\(259\) −31.8687 −1.98022
\(260\) 12.1461 + 2.27916i 0.753272 + 0.141347i
\(261\) 0 0
\(262\) 4.33608 11.7133i 0.267884 0.723647i
\(263\) 19.9939 11.5435i 1.23288 0.711803i 0.265250 0.964180i \(-0.414545\pi\)
0.967629 + 0.252376i \(0.0812121\pi\)
\(264\) 0 0
\(265\) 14.0747i 0.864602i
\(266\) −15.4126 + 5.32957i −0.945007 + 0.326777i
\(267\) 0 0
\(268\) 15.8816 + 13.6255i 0.970126 + 0.832311i
\(269\) 23.3260 13.4673i 1.42221 0.821113i 0.425722 0.904854i \(-0.360020\pi\)
0.996488 + 0.0837405i \(0.0266867\pi\)
\(270\) 0 0
\(271\) 15.9754 9.22339i 0.970435 0.560281i 0.0710661 0.997472i \(-0.477360\pi\)
0.899369 + 0.437191i \(0.144027\pi\)
\(272\) −1.54157 10.0219i −0.0934712 0.607667i
\(273\) 0 0
\(274\) 4.87730 + 28.5749i 0.294648 + 1.72627i
\(275\) −7.59796 4.38668i −0.458174 0.264527i
\(276\) 0 0
\(277\) 4.74769 0.285261 0.142631 0.989776i \(-0.454444\pi\)
0.142631 + 0.989776i \(0.454444\pi\)
\(278\) 5.81505 0.992541i 0.348764 0.0595286i
\(279\) 0 0
\(280\) 18.3897 + 11.0241i 1.09899 + 0.658815i
\(281\) −0.594707 0.343354i −0.0354773 0.0204828i 0.482156 0.876085i \(-0.339854\pi\)
−0.517634 + 0.855602i \(0.673187\pi\)
\(282\) 0 0
\(283\) 12.0092 6.93350i 0.713871 0.412154i −0.0986215 0.995125i \(-0.531443\pi\)
0.812493 + 0.582971i \(0.198110\pi\)
\(284\) 10.6538 3.74601i 0.632186 0.222285i
\(285\) 0 0
\(286\) 1.40215 + 8.21483i 0.0829106 + 0.485753i
\(287\) 7.26807 + 12.5887i 0.429021 + 0.743086i
\(288\) 0 0
\(289\) 5.28703 9.15741i 0.311002 0.538671i
\(290\) 8.33695 + 10.0468i 0.489563 + 0.589971i
\(291\) 0 0
\(292\) −24.2297 + 8.51948i −1.41794 + 0.498565i
\(293\) 12.9508i 0.756594i −0.925684 0.378297i \(-0.876510\pi\)
0.925684 0.378297i \(-0.123490\pi\)
\(294\) 0 0
\(295\) −10.9042 + 18.8867i −0.634868 + 1.09962i
\(296\) −29.7832 + 16.5489i −1.73112 + 0.961885i
\(297\) 0 0
\(298\) 21.5231 + 7.96755i 1.24680 + 0.461548i
\(299\) −4.19928 7.27337i −0.242851 0.420630i
\(300\) 0 0
\(301\) 2.00503 + 3.47282i 0.115568 + 0.200170i
\(302\) 24.7357 20.5259i 1.42338 1.18113i
\(303\) 0 0
\(304\) −11.6365 + 12.9843i −0.667397 + 0.744702i
\(305\) −4.51630 −0.258603
\(306\) 0 0
\(307\) 15.3302 + 26.5527i 0.874940 + 1.51544i 0.856826 + 0.515605i \(0.172433\pi\)
0.0181139 + 0.999836i \(0.494234\pi\)
\(308\) −2.66652 + 14.2105i −0.151939 + 0.809718i
\(309\) 0 0
\(310\) 33.5725 + 12.4281i 1.90679 + 0.705867i
\(311\) 16.5211i 0.936826i 0.883510 + 0.468413i \(0.155174\pi\)
−0.883510 + 0.468413i \(0.844826\pi\)
\(312\) 0 0
\(313\) 11.5598 20.0221i 0.653397 1.13172i −0.328897 0.944366i \(-0.606677\pi\)
0.982293 0.187350i \(-0.0599899\pi\)
\(314\) −11.2654 4.17028i −0.635742 0.235342i
\(315\) 0 0
\(316\) 32.7486 11.5148i 1.84225 0.647760i
\(317\) −9.01160 5.20285i −0.506142 0.292221i 0.225104 0.974335i \(-0.427728\pi\)
−0.731246 + 0.682114i \(0.761061\pi\)
\(318\) 0 0
\(319\) −4.40192 + 7.62435i −0.246460 + 0.426882i
\(320\) 22.9109 + 0.753219i 1.28076 + 0.0421062i
\(321\) 0 0
\(322\) −2.45162 14.3634i −0.136623 0.800443i
\(323\) 10.9015 1.80256i 0.606578 0.100297i
\(324\) 0 0
\(325\) 5.99583 3.46169i 0.332589 0.192020i
\(326\) 0.867773 + 1.04575i 0.0480615 + 0.0579188i
\(327\) 0 0
\(328\) 13.3296 + 7.99070i 0.736002 + 0.441212i
\(329\) −14.0450 + 24.3266i −0.774325 + 1.34117i
\(330\) 0 0
\(331\) −2.96358 −0.162893 −0.0814465 0.996678i \(-0.525954\pi\)
−0.0814465 + 0.996678i \(0.525954\pi\)
\(332\) −11.1055 2.08388i −0.609492 0.114368i
\(333\) 0 0
\(334\) −4.22940 24.7790i −0.231423 1.35585i
\(335\) 29.9802 1.63800
\(336\) 0 0
\(337\) 17.9284 10.3510i 0.976625 0.563854i 0.0753752 0.997155i \(-0.475985\pi\)
0.901249 + 0.433301i \(0.142651\pi\)
\(338\) 11.0740 + 4.09943i 0.602345 + 0.222980i
\(339\) 0 0
\(340\) −11.0256 9.45932i −0.597947 0.513004i
\(341\) 24.1409i 1.30730i
\(342\) 0 0
\(343\) 18.5219i 1.00009i
\(344\) 3.67721 + 2.20438i 0.198262 + 0.118852i
\(345\) 0 0
\(346\) 1.10150 2.97554i 0.0592172 0.159966i
\(347\) −23.9465 + 13.8255i −1.28552 + 0.742192i −0.977851 0.209303i \(-0.932881\pi\)
−0.307664 + 0.951495i \(0.599547\pi\)
\(348\) 0 0
\(349\) −20.6404 −1.10486 −0.552428 0.833560i \(-0.686299\pi\)
−0.552428 + 0.833560i \(0.686299\pi\)
\(350\) 11.8406 2.02100i 0.632904 0.108027i
\(351\) 0 0
\(352\) 4.88726 + 14.6653i 0.260492 + 0.781661i
\(353\) −7.25841 −0.386326 −0.193163 0.981167i \(-0.561875\pi\)
−0.193163 + 0.981167i \(0.561875\pi\)
\(354\) 0 0
\(355\) 8.08989 14.0121i 0.429367 0.743685i
\(356\) −2.00926 + 2.34196i −0.106491 + 0.124123i
\(357\) 0 0
\(358\) 2.93089 2.43207i 0.154902 0.128539i
\(359\) −31.4803 + 18.1752i −1.66147 + 0.959249i −0.689453 + 0.724330i \(0.742149\pi\)
−0.972015 + 0.234919i \(0.924517\pi\)
\(360\) 0 0
\(361\) −14.2910 12.5207i −0.752159 0.658982i
\(362\) −12.1030 + 2.06580i −0.636121 + 0.108576i
\(363\) 0 0
\(364\) −8.65950 7.42935i −0.453881 0.389404i
\(365\) −18.3987 + 31.8675i −0.963031 + 1.66802i
\(366\) 0 0
\(367\) −24.0822 13.9038i −1.25708 0.725774i −0.284573 0.958654i \(-0.591852\pi\)
−0.972505 + 0.232880i \(0.925185\pi\)
\(368\) −9.74990 12.1504i −0.508248 0.633385i
\(369\) 0 0
\(370\) −16.9468 + 45.7792i −0.881022 + 2.37995i
\(371\) 6.49729 11.2536i 0.337323 0.584260i
\(372\) 0 0
\(373\) 14.1662i 0.733496i −0.930320 0.366748i \(-0.880471\pi\)
0.930320 0.366748i \(-0.119529\pi\)
\(374\) 3.40094 9.18712i 0.175858 0.475054i
\(375\) 0 0
\(376\) −0.493468 + 30.0281i −0.0254487 + 1.54858i
\(377\) −3.47372 6.01666i −0.178906 0.309874i
\(378\) 0 0
\(379\) 8.17116 0.419724 0.209862 0.977731i \(-0.432699\pi\)
0.209862 + 0.977731i \(0.432699\pi\)
\(380\) −0.540052 + 24.9742i −0.0277041 + 1.28115i
\(381\) 0 0
\(382\) 13.9315 + 16.7888i 0.712797 + 0.858990i
\(383\) 5.41972 + 9.38723i 0.276935 + 0.479665i 0.970621 0.240612i \(-0.0773481\pi\)
−0.693687 + 0.720277i \(0.744015\pi\)
\(384\) 0 0
\(385\) 10.3574 + 17.9395i 0.527861 + 0.914283i
\(386\) 7.43592 20.0870i 0.378478 1.02240i
\(387\) 0 0
\(388\) 1.60212 + 4.55650i 0.0813355 + 0.231321i
\(389\) −1.89844 + 3.28819i −0.0962545 + 0.166718i −0.910132 0.414319i \(-0.864020\pi\)
0.813877 + 0.581037i \(0.197353\pi\)
\(390\) 0 0
\(391\) 9.87273i 0.499285i
\(392\) 0.00172639 + 0.00310701i 8.71960e−5 + 0.000156928i
\(393\) 0 0
\(394\) 1.84523 1.53118i 0.0929612 0.0771400i
\(395\) 24.8675 43.0717i 1.25122 2.16717i
\(396\) 0 0
\(397\) 14.4380 + 25.0074i 0.724625 + 1.25509i 0.959128 + 0.282971i \(0.0913202\pi\)
−0.234504 + 0.972115i \(0.575347\pi\)
\(398\) 21.4216 3.65634i 1.07377 0.183276i
\(399\) 0 0
\(400\) 10.0163 8.03737i 0.500813 0.401868i
\(401\) −5.26528 + 3.03991i −0.262936 + 0.151806i −0.625673 0.780085i \(-0.715176\pi\)
0.362737 + 0.931891i \(0.381842\pi\)
\(402\) 0 0
\(403\) −16.4982 9.52523i −0.821833 0.474486i
\(404\) 10.0908 + 8.65732i 0.502036 + 0.430718i
\(405\) 0 0
\(406\) −2.02802 11.8817i −0.100649 0.589678i
\(407\) −32.9183 −1.63170
\(408\) 0 0
\(409\) −10.5135 6.06998i −0.519860 0.300141i 0.217017 0.976168i \(-0.430367\pi\)
−0.736877 + 0.676026i \(0.763701\pi\)
\(410\) 21.9485 3.74628i 1.08396 0.185015i
\(411\) 0 0
\(412\) 3.40165 18.1282i 0.167587 0.893111i
\(413\) 17.4373 10.0674i 0.858032 0.495385i
\(414\) 0 0
\(415\) −14.0197 + 8.09428i −0.688200 + 0.397333i
\(416\) −11.9508 2.44644i −0.585936 0.119947i
\(417\) 0 0
\(418\) −15.9202 + 5.50510i −0.778683 + 0.269263i
\(419\) 29.9456i 1.46294i 0.681875 + 0.731468i \(0.261165\pi\)
−0.681875 + 0.731468i \(0.738835\pi\)
\(420\) 0 0
\(421\) 25.1779 14.5365i 1.22710 0.708465i 0.260676 0.965426i \(-0.416055\pi\)
0.966422 + 0.256962i \(0.0827214\pi\)
\(422\) −7.91028 2.92827i −0.385066 0.142546i
\(423\) 0 0
\(424\) 0.228281 13.8912i 0.0110863 0.674615i
\(425\) −8.13863 −0.394781
\(426\) 0 0
\(427\) 3.61108 + 2.08486i 0.174752 + 0.100893i
\(428\) 4.07363 21.7093i 0.196906 1.04936i
\(429\) 0 0
\(430\) 6.05491 1.03348i 0.291994 0.0498389i
\(431\) −13.2187 + 22.8955i −0.636724 + 1.10284i 0.349423 + 0.936965i \(0.386378\pi\)
−0.986147 + 0.165873i \(0.946956\pi\)
\(432\) 0 0
\(433\) 7.80644 + 4.50705i 0.375154 + 0.216595i 0.675708 0.737170i \(-0.263838\pi\)
−0.300554 + 0.953765i \(0.597172\pi\)
\(434\) −21.1063 25.4351i −1.01313 1.22092i
\(435\) 0 0
\(436\) −6.21334 17.6709i −0.297565 0.846285i
\(437\) 13.1203 10.7729i 0.627631 0.515337i
\(438\) 0 0
\(439\) −1.79046 3.10116i −0.0854539 0.148011i 0.820131 0.572176i \(-0.193901\pi\)
−0.905585 + 0.424166i \(0.860567\pi\)
\(440\) 18.9953 + 11.3872i 0.905567 + 0.542862i
\(441\) 0 0
\(442\) 4.93669 + 5.94919i 0.234814 + 0.282974i
\(443\) 24.9361 + 14.3969i 1.18475 + 0.684015i 0.957108 0.289730i \(-0.0935655\pi\)
0.227641 + 0.973745i \(0.426899\pi\)
\(444\) 0 0
\(445\) 4.42098i 0.209575i
\(446\) −13.6869 5.06671i −0.648095 0.239915i
\(447\) 0 0
\(448\) −17.9711 11.1786i −0.849052 0.528139i
\(449\) 6.55031i 0.309128i −0.987983 0.154564i \(-0.950603\pi\)
0.987983 0.154564i \(-0.0493973\pi\)
\(450\) 0 0
\(451\) 7.50746 + 13.0033i 0.353512 + 0.612301i
\(452\) 39.3121 + 7.37671i 1.84909 + 0.346971i
\(453\) 0 0
\(454\) −8.68081 + 7.20341i −0.407410 + 0.338073i
\(455\) −16.3468 −0.766350
\(456\) 0 0
\(457\) −22.7229 −1.06293 −0.531467 0.847079i \(-0.678359\pi\)
−0.531467 + 0.847079i \(0.678359\pi\)
\(458\) 5.71144 4.73940i 0.266878 0.221458i
\(459\) 0 0
\(460\) −21.9367 4.11631i −1.02280 0.191924i
\(461\) 2.15879 + 3.73913i 0.100545 + 0.174149i 0.911909 0.410392i \(-0.134608\pi\)
−0.811364 + 0.584541i \(0.801275\pi\)
\(462\) 0 0
\(463\) 4.45527i 0.207054i −0.994627 0.103527i \(-0.966987\pi\)
0.994627 0.103527i \(-0.0330128\pi\)
\(464\) −8.06529 10.0511i −0.374422 0.466608i
\(465\) 0 0
\(466\) −16.6888 6.17794i −0.773092 0.286187i
\(467\) 29.6919i 1.37398i −0.726669 0.686988i \(-0.758933\pi\)
0.726669 0.686988i \(-0.241067\pi\)
\(468\) 0 0
\(469\) −23.9711 13.8397i −1.10688 0.639060i
\(470\) 27.4764 + 33.1117i 1.26739 + 1.52733i
\(471\) 0 0
\(472\) 11.0684 18.4635i 0.509462 0.849852i
\(473\) 2.07107 + 3.58720i 0.0952280 + 0.164940i
\(474\) 0 0
\(475\) 8.88068 + 10.8158i 0.407474 + 0.496263i
\(476\) 4.44899 + 12.6531i 0.203919 + 0.579953i
\(477\) 0 0
\(478\) −9.39197 11.3182i −0.429579 0.517684i
\(479\) 0.612140 + 0.353419i 0.0279694 + 0.0161481i 0.513920 0.857838i \(-0.328193\pi\)
−0.485950 + 0.873987i \(0.661526\pi\)
\(480\) 0 0
\(481\) 12.9885 22.4968i 0.592225 1.02576i
\(482\) 22.0085 3.75651i 1.00246 0.171104i
\(483\) 0 0
\(484\) 1.30302 6.94409i 0.0592283 0.315641i
\(485\) 5.99281 + 3.45995i 0.272120 + 0.157108i
\(486\) 0 0
\(487\) 2.51995 0.114190 0.0570950 0.998369i \(-0.481816\pi\)
0.0570950 + 0.998369i \(0.481816\pi\)
\(488\) 4.45741 + 0.0732511i 0.201777 + 0.00331592i
\(489\) 0 0
\(490\) 0.00477572 + 0.00176790i 0.000215745 + 7.98657e-5i
\(491\) 1.58171 0.913203i 0.0713817 0.0412123i −0.463884 0.885896i \(-0.653545\pi\)
0.535266 + 0.844684i \(0.320211\pi\)
\(492\) 0 0
\(493\) 8.16690i 0.367819i
\(494\) 2.51936 13.0522i 0.113351 0.587247i
\(495\) 0 0
\(496\) −32.9332 12.8105i −1.47874 0.575210i
\(497\) −12.9368 + 7.46906i −0.580294 + 0.335033i
\(498\) 0 0
\(499\) −1.45988 + 0.842864i −0.0653534 + 0.0377318i −0.532321 0.846543i \(-0.678680\pi\)
0.466967 + 0.884275i \(0.345347\pi\)
\(500\) −1.89126 + 10.0790i −0.0845798 + 0.450745i
\(501\) 0 0
\(502\) 5.99042 1.02247i 0.267366 0.0456352i
\(503\) 0.506143 + 0.292222i 0.0225678 + 0.0130295i 0.511241 0.859437i \(-0.329186\pi\)
−0.488674 + 0.872467i \(0.662519\pi\)
\(504\) 0 0
\(505\) 19.0487 0.847656
\(506\) −2.53236 14.8365i −0.112577 0.659563i
\(507\) 0 0
\(508\) −1.61353 1.38431i −0.0715888 0.0614190i
\(509\) 27.4296 + 15.8365i 1.21579 + 0.701939i 0.964015 0.265846i \(-0.0856513\pi\)
0.251778 + 0.967785i \(0.418985\pi\)
\(510\) 0 0
\(511\) 29.4219 16.9867i 1.30155 0.751449i
\(512\) −22.5999 1.11499i −0.998785 0.0492763i
\(513\) 0 0
\(514\) 38.7667 6.61689i 1.70993 0.291858i
\(515\) −13.2128 22.8853i −0.582226 1.00845i
\(516\) 0 0
\(517\) −14.5076 + 25.1278i −0.638042 + 1.10512i
\(518\) 34.6831 28.7803i 1.52389 1.26453i
\(519\) 0 0
\(520\) −15.2771 + 8.48864i −0.669945 + 0.372251i
\(521\) 9.96539i 0.436592i 0.975883 + 0.218296i \(0.0700498\pi\)
−0.975883 + 0.218296i \(0.929950\pi\)
\(522\) 0 0
\(523\) 6.71352 11.6282i 0.293562 0.508464i −0.681088 0.732202i \(-0.738493\pi\)
0.974649 + 0.223738i \(0.0718261\pi\)
\(524\) 5.85913 + 16.6636i 0.255957 + 0.727951i
\(525\) 0 0
\(526\) −11.3348 + 30.6193i −0.494222 + 1.33507i
\(527\) 11.1972 + 19.3941i 0.487756 + 0.844818i
\(528\) 0 0
\(529\) −3.91583 6.78242i −0.170254 0.294888i
\(530\) −12.7107 15.3177i −0.552119 0.665358i
\(531\) 0 0
\(532\) 11.9606 19.7192i 0.518559 0.854937i
\(533\) −11.8488 −0.513229
\(534\) 0 0
\(535\) −15.8229 27.4061i −0.684085 1.18487i
\(536\) −29.5893 0.486257i −1.27806 0.0210031i
\(537\) 0 0
\(538\) −13.2238 + 35.7221i −0.570119 + 1.54009i
\(539\) 0.00343406i 0.000147915i
\(540\) 0 0
\(541\) −8.23202 + 14.2583i −0.353922 + 0.613011i −0.986933 0.161132i \(-0.948486\pi\)
0.633011 + 0.774143i \(0.281819\pi\)
\(542\) −9.05665 + 24.4652i −0.389016 + 1.05087i
\(543\) 0 0
\(544\) 10.7284 + 9.51480i 0.459976 + 0.407943i
\(545\) −23.2412 13.4183i −0.995545 0.574778i
\(546\) 0 0
\(547\) −3.77873 + 6.54495i −0.161567 + 0.279842i −0.935431 0.353510i \(-0.884988\pi\)
0.773864 + 0.633352i \(0.218321\pi\)
\(548\) −31.1138 26.6938i −1.32911 1.14030i
\(549\) 0 0
\(550\) 12.2305 2.08757i 0.521512 0.0890141i
\(551\) 10.8534 8.91153i 0.462369 0.379644i
\(552\) 0 0
\(553\) −39.7663 + 22.9591i −1.69104 + 0.976320i
\(554\) −5.16698 + 4.28760i −0.219524 + 0.182163i
\(555\) 0 0
\(556\) −5.43224 + 6.33172i −0.230378 + 0.268525i
\(557\) 16.7655 29.0386i 0.710376 1.23041i −0.254340 0.967115i \(-0.581858\pi\)
0.964716 0.263292i \(-0.0848083\pi\)
\(558\) 0 0
\(559\) −3.26872 −0.138252
\(560\) −29.9695 + 4.60989i −1.26644 + 0.194804i
\(561\) 0 0
\(562\) 0.957308 0.163398i 0.0403816 0.00689252i
\(563\) 8.75511 0.368984 0.184492 0.982834i \(-0.440936\pi\)
0.184492 + 0.982834i \(0.440936\pi\)
\(564\) 0 0
\(565\) 49.6282 28.6528i 2.08787 1.20543i
\(566\) −6.80816 + 18.3912i −0.286168 + 0.773040i
\(567\) 0 0
\(568\) −8.21166 + 13.6982i −0.344554 + 0.574762i
\(569\) 6.32953i 0.265348i −0.991160 0.132674i \(-0.957644\pi\)
0.991160 0.132674i \(-0.0423563\pi\)
\(570\) 0 0
\(571\) 20.2768i 0.848559i −0.905531 0.424279i \(-0.860527\pi\)
0.905531 0.424279i \(-0.139473\pi\)
\(572\) −8.94471 7.67404i −0.373997 0.320868i
\(573\) 0 0
\(574\) −19.2787 7.13669i −0.804676 0.297879i
\(575\) −10.8289 + 6.25204i −0.451594 + 0.260728i
\(576\) 0 0
\(577\) 11.2386 0.467870 0.233935 0.972252i \(-0.424840\pi\)
0.233935 + 0.972252i \(0.424840\pi\)
\(578\) 2.51603 + 14.7408i 0.104653 + 0.613137i
\(579\) 0 0
\(580\) −18.1464 3.40508i −0.753490 0.141388i
\(581\) 14.9462 0.620074
\(582\) 0 0
\(583\) 6.71129 11.6243i 0.277953 0.481429i
\(584\) 18.6756 31.1535i 0.772803 1.28914i
\(585\) 0 0
\(586\) 11.6958 + 14.0945i 0.483147 + 0.582240i
\(587\) 18.7495 10.8250i 0.773874 0.446797i −0.0603806 0.998175i \(-0.519231\pi\)
0.834255 + 0.551379i \(0.185898\pi\)
\(588\) 0 0
\(589\) 13.5556 36.0428i 0.558548 1.48512i
\(590\) −5.18917 30.4021i −0.213635 1.25163i
\(591\) 0 0
\(592\) 17.4683 44.9074i 0.717944 1.84568i
\(593\) −10.8984 + 18.8765i −0.447542 + 0.775166i −0.998225 0.0595485i \(-0.981034\pi\)
0.550683 + 0.834714i \(0.314367\pi\)
\(594\) 0 0
\(595\) 16.6416 + 9.60804i 0.682240 + 0.393891i
\(596\) −30.6193 + 10.7662i −1.25422 + 0.440999i
\(597\) 0 0
\(598\) 11.1386 + 4.12337i 0.455493 + 0.168617i
\(599\) 12.9904 22.5000i 0.530773 0.919326i −0.468582 0.883420i \(-0.655235\pi\)
0.999355 0.0359059i \(-0.0114317\pi\)
\(600\) 0 0
\(601\) 5.80590i 0.236828i 0.992964 + 0.118414i \(0.0377809\pi\)
−0.992964 + 0.118414i \(0.962219\pi\)
\(602\) −5.31838 1.96879i −0.216761 0.0802418i
\(603\) 0 0
\(604\) −8.38344 + 44.6772i −0.341117 + 1.81789i
\(605\) −5.06124 8.76632i −0.205769 0.356402i
\(606\) 0 0
\(607\) −16.2119 −0.658022 −0.329011 0.944326i \(-0.606715\pi\)
−0.329011 + 0.944326i \(0.606715\pi\)
\(608\) 0.938073 24.6398i 0.0380439 0.999276i
\(609\) 0 0
\(610\) 4.91515 4.07863i 0.199009 0.165139i
\(611\) −11.4485 19.8293i −0.463155 0.802208i
\(612\) 0 0
\(613\) −11.3947 19.7362i −0.460227 0.797136i 0.538745 0.842469i \(-0.318899\pi\)
−0.998972 + 0.0453327i \(0.985565\pi\)
\(614\) −40.6635 15.0531i −1.64105 0.607492i
\(615\) 0 0
\(616\) −9.93136 17.8736i −0.400146 0.720147i
\(617\) 16.2450 28.1372i 0.653999 1.13276i −0.328144 0.944628i \(-0.606423\pi\)
0.982144 0.188132i \(-0.0602434\pi\)
\(618\) 0 0
\(619\) 6.61987i 0.266075i −0.991111 0.133037i \(-0.957527\pi\)
0.991111 0.133037i \(-0.0424731\pi\)
\(620\) −47.7611 + 16.7934i −1.91813 + 0.674441i
\(621\) 0 0
\(622\) −14.9201 17.9801i −0.598241 0.720938i
\(623\) 2.04085 3.53486i 0.0817651 0.141621i
\(624\) 0 0
\(625\) 15.3725 + 26.6260i 0.614902 + 1.06504i
\(626\) 5.50114 + 32.2298i 0.219870 + 1.28816i
\(627\) 0 0
\(628\) 16.0264 5.63509i 0.639523 0.224865i
\(629\) −26.4456 + 15.2683i −1.05445 + 0.608789i
\(630\) 0 0
\(631\) 6.62256 + 3.82354i 0.263640 + 0.152213i 0.625994 0.779828i \(-0.284693\pi\)
−0.362354 + 0.932041i \(0.618027\pi\)
\(632\) −25.2418 + 42.1067i −1.00406 + 1.67492i
\(633\) 0 0
\(634\) 14.5061 2.47597i 0.576111 0.0983333i
\(635\) −3.04591 −0.120873
\(636\) 0 0
\(637\) −0.00234688 0.00135497i −9.29867e−5 5.36859e-5i
\(638\) −2.09482 12.2730i −0.0829346 0.485894i
\(639\) 0 0
\(640\) −25.6145 + 19.8709i −1.01250 + 0.785466i
\(641\) 34.0636 19.6666i 1.34543 0.776785i 0.357833 0.933786i \(-0.383516\pi\)
0.987598 + 0.157001i \(0.0501825\pi\)
\(642\) 0 0
\(643\) 26.2592 15.1608i 1.03556 0.597882i 0.116989 0.993133i \(-0.462676\pi\)
0.918573 + 0.395251i \(0.129342\pi\)
\(644\) 15.6396 + 13.4179i 0.616287 + 0.528738i
\(645\) 0 0
\(646\) −10.2364 + 11.8068i −0.402746 + 0.464534i
\(647\) 16.9422i 0.666068i −0.942915 0.333034i \(-0.891928\pi\)
0.942915 0.333034i \(-0.108072\pi\)
\(648\) 0 0
\(649\) 18.0116 10.3990i 0.707016 0.408196i
\(650\) −3.39912 + 9.18219i −0.133324 + 0.360155i
\(651\) 0 0
\(652\) −1.88882 0.354427i −0.0739718 0.0138804i
\(653\) 20.3739 0.797293 0.398647 0.917105i \(-0.369480\pi\)
0.398647 + 0.917105i \(0.369480\pi\)
\(654\) 0 0
\(655\) 21.9163 + 12.6534i 0.856341 + 0.494409i
\(656\) −21.7231 + 3.34144i −0.848144 + 0.130461i
\(657\) 0 0
\(658\) −6.68382 39.1589i −0.260563 1.52657i
\(659\) 9.33757 16.1732i 0.363740 0.630017i −0.624833 0.780758i \(-0.714833\pi\)
0.988573 + 0.150742i \(0.0481662\pi\)
\(660\) 0 0
\(661\) −4.59355 2.65209i −0.178668 0.103154i 0.407999 0.912983i \(-0.366227\pi\)
−0.586667 + 0.809828i \(0.699560\pi\)
\(662\) 3.22530 2.67638i 0.125355 0.104020i
\(663\) 0 0
\(664\) 13.9682 7.76134i 0.542070 0.301198i
\(665\) −5.39037 32.5999i −0.209030 1.26417i
\(666\) 0 0
\(667\) 6.27376 + 10.8665i 0.242921 + 0.420751i
\(668\) 26.9806 + 23.1478i 1.04391 + 0.895616i
\(669\) 0 0
\(670\) −32.6279 + 27.0749i −1.26053 + 1.04599i
\(671\) 3.73001 + 2.15352i 0.143995 + 0.0831358i
\(672\) 0 0
\(673\) 46.2022i 1.78096i 0.455018 + 0.890482i \(0.349633\pi\)
−0.455018 + 0.890482i \(0.650367\pi\)
\(674\) −10.1639 + 27.4561i −0.391498 + 1.05757i
\(675\) 0 0
\(676\) −15.7541 + 5.53935i −0.605928 + 0.213052i
\(677\) 6.63900i 0.255157i 0.991828 + 0.127579i \(0.0407205\pi\)
−0.991828 + 0.127579i \(0.959279\pi\)
\(678\) 0 0
\(679\) −3.19443 5.53291i −0.122591 0.212334i
\(680\) 20.5419 + 0.337577i 0.787747 + 0.0129455i
\(681\) 0 0
\(682\) −21.8014 26.2729i −0.834820 1.00604i
\(683\) −17.9771 −0.687875 −0.343938 0.938992i \(-0.611761\pi\)
−0.343938 + 0.938992i \(0.611761\pi\)
\(684\) 0 0
\(685\) −58.7343 −2.24412
\(686\) −16.7270 20.1577i −0.638639 0.769623i
\(687\) 0 0
\(688\) −5.99272 + 0.921798i −0.228470 + 0.0351432i
\(689\) 5.29612 + 9.17316i 0.201766 + 0.349469i
\(690\) 0 0
\(691\) 5.97635i 0.227351i 0.993518 + 0.113675i \(0.0362624\pi\)
−0.993518 + 0.113675i \(0.963738\pi\)
\(692\) 1.48841 + 4.23308i 0.0565807 + 0.160918i
\(693\) 0 0
\(694\) 13.5756 36.6724i 0.515322 1.39206i
\(695\) 11.9526i 0.453387i
\(696\) 0 0
\(697\) 12.0625 + 6.96430i 0.456901 + 0.263792i
\(698\) 22.4633 18.6402i 0.850247 0.705542i
\(699\) 0 0
\(700\) −11.0611 + 12.8926i −0.418070 + 0.487294i
\(701\) −10.7697 18.6537i −0.406766 0.704540i 0.587759 0.809036i \(-0.300010\pi\)
−0.994525 + 0.104496i \(0.966677\pi\)
\(702\) 0 0
\(703\) 49.1476 + 18.4843i 1.85364 + 0.697147i
\(704\) −18.5629 11.5468i −0.699617 0.435185i
\(705\) 0 0
\(706\) 7.89942 6.55501i 0.297299 0.246701i
\(707\) −15.2307 8.79344i −0.572809 0.330711i
\(708\) 0 0
\(709\) −13.0879 + 22.6689i −0.491526 + 0.851348i −0.999952 0.00975743i \(-0.996894\pi\)
0.508426 + 0.861105i \(0.330227\pi\)
\(710\) 3.84987 + 22.5555i 0.144483 + 0.846491i
\(711\) 0 0
\(712\) 0.0717050 4.36333i 0.00268726 0.163523i
\(713\) 29.7968 + 17.2032i 1.11590 + 0.644264i
\(714\) 0 0
\(715\) −16.8852 −0.631470
\(716\) −0.993338 + 5.29372i −0.0371228 + 0.197836i
\(717\) 0 0
\(718\) 17.8466 48.2099i 0.666030 1.79918i
\(719\) −8.14319 + 4.70147i −0.303690 + 0.175335i −0.644099 0.764942i \(-0.722768\pi\)
0.340409 + 0.940277i \(0.389434\pi\)
\(720\) 0 0
\(721\) 24.3977i 0.908617i
\(722\) 26.8604 + 0.720297i 0.999641 + 0.0268067i
\(723\) 0 0
\(724\) 11.3063 13.1784i 0.420194 0.489770i
\(725\) −8.95782 + 5.17180i −0.332685 + 0.192076i
\(726\) 0 0
\(727\) −9.47912 + 5.47277i −0.351561 + 0.202974i −0.665373 0.746511i \(-0.731727\pi\)
0.313811 + 0.949485i \(0.398394\pi\)
\(728\) 16.1336 + 0.265133i 0.597952 + 0.00982648i
\(729\) 0 0
\(730\) −8.75570 51.2975i −0.324063 1.89861i
\(731\) 3.32767 + 1.92123i 0.123078 + 0.0710593i
\(732\) 0 0
\(733\) 7.49814 0.276950 0.138475 0.990366i \(-0.455780\pi\)
0.138475 + 0.990366i \(0.455780\pi\)
\(734\) 38.7654 6.61665i 1.43086 0.244225i
\(735\) 0 0
\(736\) 21.5839 + 4.41843i 0.795593 + 0.162865i
\(737\) −24.7607 14.2956i −0.912071 0.526584i
\(738\) 0 0
\(739\) −25.4925 + 14.7181i −0.937758 + 0.541415i −0.889257 0.457409i \(-0.848778\pi\)
−0.0485009 + 0.998823i \(0.515444\pi\)
\(740\) −22.8994 65.1266i −0.841798 2.39410i
\(741\) 0 0
\(742\) 3.09198 + 18.1151i 0.113510 + 0.665027i
\(743\) 10.1494 + 17.5793i 0.372345 + 0.644921i 0.989926 0.141587i \(-0.0452204\pi\)
−0.617581 + 0.786508i \(0.711887\pi\)
\(744\) 0 0
\(745\) −23.2506 + 40.2713i −0.851837 + 1.47542i
\(746\) 12.7933 + 15.4172i 0.468398 + 0.564465i
\(747\) 0 0
\(748\) 4.59552 + 13.0698i 0.168029 + 0.477880i
\(749\) 29.2173i 1.06758i
\(750\) 0 0
\(751\) 4.68855 8.12080i 0.171087 0.296332i −0.767713 0.640794i \(-0.778605\pi\)
0.938800 + 0.344462i \(0.111939\pi\)
\(752\) −26.5810 33.1256i −0.969311 1.20797i
\(753\) 0 0
\(754\) 9.21409 + 3.41092i 0.335557 + 0.124218i
\(755\) 32.5632 + 56.4012i 1.18510 + 2.05265i
\(756\) 0 0
\(757\) −11.3062 19.5829i −0.410930 0.711752i 0.584062 0.811709i \(-0.301463\pi\)
−0.994992 + 0.0999576i \(0.968129\pi\)
\(758\) −8.89278 + 7.37930i −0.323000 + 0.268028i
\(759\) 0 0
\(760\) −21.9663 27.6675i −0.796800 1.00361i
\(761\) −22.6617 −0.821484 −0.410742 0.911752i \(-0.634730\pi\)
−0.410742 + 0.911752i \(0.634730\pi\)
\(762\) 0 0
\(763\) 12.3886 + 21.4577i 0.448497 + 0.776820i
\(764\) −30.3236 5.69007i −1.09707 0.205859i
\(765\) 0 0
\(766\) −14.3759 5.32174i −0.519422 0.192282i
\(767\) 16.4125i 0.592619i
\(768\) 0 0
\(769\) 23.0145 39.8622i 0.829923 1.43747i −0.0681747 0.997673i \(-0.521718\pi\)
0.898098 0.439796i \(-0.144949\pi\)
\(770\) −27.4731 10.1702i −0.990062 0.366507i
\(771\) 0 0
\(772\) 10.0478 + 28.5763i 0.361628 + 1.02848i
\(773\) −0.612546 0.353654i −0.0220318 0.0127200i 0.488944 0.872315i \(-0.337382\pi\)
−0.510975 + 0.859595i \(0.670716\pi\)
\(774\) 0 0
\(775\) −14.1815 + 24.5631i −0.509415 + 0.882333i
\(776\) −5.85855 3.51203i −0.210310 0.126075i
\(777\) 0 0
\(778\) −0.903441 5.29304i −0.0323899 0.189765i
\(779\) −3.90716 23.6297i −0.139989 0.846623i
\(780\) 0 0
\(781\) −13.3629 + 7.71506i −0.478161 + 0.276066i
\(782\) −8.91598 10.7446i −0.318835 0.384227i
\(783\) 0 0
\(784\) −0.00468477 0.00182231i −0.000167313 6.50824e-5i
\(785\) 12.1696 21.0783i 0.434350 0.752316i
\(786\) 0 0
\(787\) −18.5369 −0.660769 −0.330385 0.943846i \(-0.607178\pi\)
−0.330385 + 0.943846i \(0.607178\pi\)
\(788\) −0.625385 + 3.33282i −0.0222784 + 0.118727i
\(789\) 0 0
\(790\) 11.8341 + 69.3331i 0.421039 + 2.46676i
\(791\) −52.9079 −1.88119
\(792\) 0 0
\(793\) −2.94349 + 1.69942i −0.104526 + 0.0603483i
\(794\) −38.2971 14.1770i −1.35911 0.503124i
\(795\) 0 0
\(796\) −20.0114 + 23.3249i −0.709285 + 0.826729i
\(797\) 9.45153i 0.334790i 0.985890 + 0.167395i \(0.0535356\pi\)
−0.985890 + 0.167395i \(0.946464\pi\)
\(798\) 0 0
\(799\) 26.9159i 0.952217i
\(800\) −3.64235 + 17.7928i −0.128776 + 0.629070i
\(801\) 0 0
\(802\) 2.98496 8.06341i 0.105402 0.284729i
\(803\) 30.3909 17.5462i 1.07247 0.619193i
\(804\) 0 0
\(805\) 29.5234 1.04056
\(806\) 26.5574 4.53293i 0.935443 0.159666i
\(807\) 0 0
\(808\) −18.8003 0.308956i −0.661393 0.0108690i
\(809\) 43.4906 1.52905 0.764524 0.644596i \(-0.222974\pi\)
0.764524 + 0.644596i \(0.222974\pi\)
\(810\) 0 0
\(811\) 26.7843 46.3918i 0.940525 1.62904i 0.176053 0.984381i \(-0.443667\pi\)
0.764472 0.644657i \(-0.223000\pi\)
\(812\) 12.9374 + 11.0995i 0.454013 + 0.389516i
\(813\) 0 0
\(814\) 35.8254 29.7282i 1.25568 1.04197i
\(815\) −2.38447 + 1.37667i −0.0835244 + 0.0482228i
\(816\) 0 0
\(817\) −1.07786 6.51870i −0.0377097 0.228061i
\(818\) 16.9238 2.88863i 0.591725 0.100998i
\(819\) 0 0
\(820\) −20.5036 + 23.8986i −0.716018 + 0.834577i
\(821\) −8.34812 + 14.4594i −0.291351 + 0.504635i −0.974130 0.225990i \(-0.927438\pi\)
0.682778 + 0.730626i \(0.260772\pi\)
\(822\) 0 0
\(823\) −0.302319 0.174544i −0.0105382 0.00608423i 0.494722 0.869051i \(-0.335270\pi\)
−0.505260 + 0.862967i \(0.668603\pi\)
\(824\) 12.6693 + 22.8011i 0.441357 + 0.794315i
\(825\) 0 0
\(826\) −9.88541 + 26.7039i −0.343958 + 0.929149i
\(827\) −0.101413 + 0.175653i −0.00352648 + 0.00610804i −0.867783 0.496943i \(-0.834456\pi\)
0.864257 + 0.503051i \(0.167789\pi\)
\(828\) 0 0
\(829\) 44.0142i 1.52868i 0.644815 + 0.764339i \(0.276934\pi\)
−0.644815 + 0.764339i \(0.723066\pi\)
\(830\) 7.94796 21.4702i 0.275878 0.745241i
\(831\) 0 0
\(832\) 15.2156 8.13016i 0.527505 0.281863i
\(833\) 0.00159280 + 0.00275882i 5.51874e−5 + 9.55873e-5i
\(834\) 0 0
\(835\) 50.9321 1.76258
\(836\) 12.3546 20.3687i 0.427292 0.704466i
\(837\) 0 0
\(838\) −27.0436 32.5902i −0.934205 1.12581i
\(839\) 3.76071 + 6.51373i 0.129834 + 0.224879i 0.923612 0.383328i \(-0.125222\pi\)
−0.793778 + 0.608207i \(0.791889\pi\)
\(840\) 0 0
\(841\) −9.31023 16.1258i −0.321043 0.556062i
\(842\) −14.2737 + 38.5582i −0.491904 + 1.32880i
\(843\) 0 0
\(844\) 11.2534 3.95683i 0.387357 0.136200i
\(845\) −11.9628 + 20.7202i −0.411533 + 0.712796i
\(846\) 0 0
\(847\) 9.34566i 0.321121i
\(848\) 12.2966 + 15.3241i 0.422265 + 0.526232i
\(849\) 0 0
\(850\) 8.85738 7.34992i 0.303805 0.252100i
\(851\) −23.4581 + 40.6306i −0.804133 + 1.39280i
\(852\) 0 0
\(853\) −14.0714 24.3724i −0.481797 0.834497i 0.517985 0.855390i \(-0.326682\pi\)
−0.999782 + 0.0208932i \(0.993349\pi\)
\(854\) −5.81280 + 0.992156i −0.198910 + 0.0339509i
\(855\) 0 0
\(856\) 15.1721 + 27.3054i 0.518571 + 0.933278i
\(857\) −36.3583 + 20.9915i −1.24197 + 0.717054i −0.969496 0.245108i \(-0.921177\pi\)
−0.272479 + 0.962162i \(0.587843\pi\)
\(858\) 0 0
\(859\) 34.5524 + 19.9488i 1.17891 + 0.680645i 0.955763 0.294139i \(-0.0950329\pi\)
0.223149 + 0.974784i \(0.428366\pi\)
\(860\) −5.65631 + 6.59289i −0.192879 + 0.224816i
\(861\) 0 0
\(862\) −6.29062 36.8552i −0.214259 1.25529i
\(863\) 29.5216 1.00493 0.502463 0.864598i \(-0.332427\pi\)
0.502463 + 0.864598i \(0.332427\pi\)
\(864\) 0 0
\(865\) 5.56745 + 3.21437i 0.189299 + 0.109292i
\(866\) −12.5661 + 2.14485i −0.427015 + 0.0728849i
\(867\) 0 0
\(868\) 45.9405 + 8.62048i 1.55932 + 0.292598i
\(869\) −41.0761 + 23.7153i −1.39341 + 0.804486i
\(870\) 0 0
\(871\) 19.5396 11.2812i 0.662072 0.382248i
\(872\) 22.7205 + 13.6203i 0.769414 + 0.461242i
\(873\) 0 0
\(874\) −4.55012 + 23.5731i −0.153910 + 0.797374i
\(875\) 13.5647i 0.458571i
\(876\) 0 0
\(877\) −23.1449 + 13.3627i −0.781549 + 0.451227i −0.836979 0.547235i \(-0.815680\pi\)
0.0554303 + 0.998463i \(0.482347\pi\)
\(878\) 4.74921 + 1.75809i 0.160278 + 0.0593327i
\(879\) 0 0
\(880\) −30.9565 + 4.76172i −1.04354 + 0.160518i
\(881\) 16.4961 0.555767 0.277883 0.960615i \(-0.410367\pi\)
0.277883 + 0.960615i \(0.410367\pi\)
\(882\) 0 0
\(883\) −20.0563 11.5795i −0.674950 0.389682i 0.123000 0.992407i \(-0.460749\pi\)
−0.797949 + 0.602724i \(0.794082\pi\)
\(884\) −10.7453 2.01630i −0.361404 0.0678156i
\(885\) 0 0
\(886\) −40.1399 + 6.85128i −1.34853 + 0.230173i
\(887\) −6.35899 + 11.0141i −0.213514 + 0.369817i −0.952812 0.303561i \(-0.901824\pi\)
0.739298 + 0.673379i \(0.235158\pi\)
\(888\) 0 0
\(889\) 2.43540 + 1.40608i 0.0816807 + 0.0471584i
\(890\) −3.99255 4.81141i −0.133831 0.161279i
\(891\) 0 0
\(892\) 19.4714 6.84639i 0.651950 0.229234i
\(893\) 35.7698 29.3700i 1.19699 0.982831i
\(894\) 0 0
\(895\) 3.85835 + 6.68286i 0.128970 + 0.223383i
\(896\) 29.6534 4.06370i 0.990651 0.135759i
\(897\) 0 0
\(898\) 5.91553 + 7.12879i 0.197404 + 0.237891i
\(899\) 24.6484 + 14.2308i 0.822071 + 0.474623i
\(900\) 0 0
\(901\) 12.4515i 0.414818i
\(902\) −19.9136 7.37174i −0.663051 0.245452i
\(903\) 0 0
\(904\) −49.4457 + 27.4743i −1.64454 + 0.913780i
\(905\) 24.8772i 0.826946i
\(906\) 0 0
\(907\) −22.0367 38.1687i −0.731717 1.26737i −0.956149 0.292881i \(-0.905386\pi\)
0.224432 0.974490i \(-0.427947\pi\)
\(908\) 2.94210 15.6791i 0.0976371 0.520330i
\(909\) 0 0
\(910\) 17.7904 14.7627i 0.589747 0.489377i
\(911\) 25.3618 0.840273 0.420136 0.907461i \(-0.361982\pi\)
0.420136 + 0.907461i \(0.361982\pi\)
\(912\) 0 0
\(913\) 15.4385 0.510940
\(914\) 24.7297 20.5209i 0.817985 0.678771i
\(915\) 0 0
\(916\) −1.93572 + 10.3159i −0.0639581 + 0.340847i
\(917\) −11.6823 20.2344i −0.385785 0.668199i
\(918\) 0 0
\(919\) 0.0795611i 0.00262448i −0.999999 0.00131224i \(-0.999582\pi\)
0.999999 0.00131224i \(-0.000417699\pi\)
\(920\) 27.5914 15.3310i 0.909662 0.505449i
\(921\) 0 0
\(922\) −5.72621 2.11976i −0.188583 0.0698106i
\(923\) 12.1765i 0.400793i
\(924\) 0 0
\(925\) −33.4940 19.3378i −1.10128 0.635823i
\(926\) 4.02352 + 4.84873i 0.132221 + 0.159339i
\(927\) 0 0
\(928\) 17.8546 + 3.65500i 0.586105 + 0.119981i
\(929\) −3.96340 6.86481i −0.130035 0.225227i 0.793655 0.608368i \(-0.208176\pi\)
−0.923690 + 0.383141i \(0.874842\pi\)
\(930\) 0 0
\(931\) 0.00192829 0.00512711i 6.31972e−5 0.000168034i
\(932\) 23.7418 8.34794i 0.777690 0.273446i
\(933\) 0 0
\(934\) 26.8145 + 32.3140i 0.877396 + 1.05735i
\(935\) 17.1897 + 9.92450i 0.562164 + 0.324566i
\(936\) 0 0
\(937\) 20.9870 36.3506i 0.685616 1.18752i −0.287627 0.957742i \(-0.592866\pi\)
0.973243 0.229779i \(-0.0738002\pi\)
\(938\) 38.5867 6.58616i 1.25990 0.215046i
\(939\) 0 0
\(940\) −59.8058 11.2222i −1.95065 0.366029i
\(941\) −17.0598 9.84946i −0.556132 0.321083i 0.195459 0.980712i \(-0.437380\pi\)
−0.751592 + 0.659629i \(0.770714\pi\)
\(942\) 0 0
\(943\) 21.3997 0.696871
\(944\) 4.62841 + 30.0898i 0.150642 + 0.979340i
\(945\) 0 0
\(946\) −5.49355 2.03363i −0.178611 0.0661191i
\(947\) −4.89713 + 2.82736i −0.159135 + 0.0918768i −0.577453 0.816424i \(-0.695953\pi\)
0.418318 + 0.908301i \(0.362620\pi\)
\(948\) 0 0
\(949\) 27.6927i 0.898944i
\(950\) −19.4326 3.75091i −0.630478 0.121696i
\(951\) 0 0
\(952\) −16.2688 9.75267i −0.527274 0.316086i
\(953\) −7.89881 + 4.56038i −0.255868 + 0.147725i −0.622448 0.782661i \(-0.713862\pi\)
0.366580 + 0.930386i \(0.380528\pi\)
\(954\) 0 0
\(955\) −38.2810 + 22.1015i −1.23874 + 0.715189i
\(956\) 20.4428 + 3.83598i 0.661168 + 0.124065i
\(957\) 0 0
\(958\) −0.985370 + 0.168188i −0.0318359 + 0.00543389i
\(959\) 46.9619 + 27.1135i 1.51648 + 0.875540i
\(960\) 0 0
\(961\) 47.0440 1.51755
\(962\) 6.18107 + 36.2134i 0.199286 + 1.16757i
\(963\) 0 0
\(964\) −20.5596 + 23.9639i −0.662182 + 0.771826i
\(965\) 37.5841 + 21.6992i 1.20988 + 0.698523i
\(966\) 0 0
\(967\) −20.6723 + 11.9351i −0.664775 + 0.383808i −0.794094 0.607795i \(-0.792054\pi\)
0.129319 + 0.991603i \(0.458721\pi\)
\(968\) 4.85306 + 8.73410i 0.155983 + 0.280724i
\(969\) 0 0
\(970\) −9.64671 + 1.64655i −0.309737 + 0.0528674i
\(971\) −28.0027 48.5022i −0.898651 1.55651i −0.829220 0.558922i \(-0.811215\pi\)
−0.0694307 0.997587i \(-0.522118\pi\)
\(972\) 0 0
\(973\) 5.51766 9.55686i 0.176888 0.306379i
\(974\) −2.74250 + 2.27575i −0.0878753 + 0.0729197i
\(975\) 0 0
\(976\) −4.91721 + 3.94573i −0.157396 + 0.126300i
\(977\) 7.94428i 0.254160i −0.991892 0.127080i \(-0.959439\pi\)
0.991892 0.127080i \(-0.0405605\pi\)
\(978\) 0 0
\(979\) 2.10807 3.65129i 0.0673742 0.116696i
\(980\) −0.00679405 + 0.00238888i −0.000217028 + 7.63099e-5i
\(981\) 0 0
\(982\) −0.896694 + 2.42228i −0.0286147 + 0.0772981i
\(983\) −19.4039 33.6085i −0.618887 1.07194i −0.989689 0.143232i \(-0.954251\pi\)
0.370802 0.928712i \(-0.379083\pi\)
\(984\) 0 0
\(985\) 2.42914 + 4.20740i 0.0773989 + 0.134059i
\(986\) −7.37545 8.88814i −0.234882 0.283056i
\(987\) 0 0
\(988\) 9.04550 + 16.4801i 0.287776 + 0.524302i
\(989\) 5.90351 0.187721
\(990\) 0 0
\(991\) −10.7169 18.5622i −0.340433 0.589648i 0.644080 0.764958i \(-0.277240\pi\)
−0.984513 + 0.175310i \(0.943907\pi\)
\(992\) 47.4107 15.7998i 1.50529 0.501644i
\(993\) 0 0
\(994\) 7.33403 19.8118i 0.232621 0.628391i
\(995\) 44.0311i 1.39588i
\(996\) 0 0
\(997\) 17.7924 30.8174i 0.563492 0.975997i −0.433696 0.901059i \(-0.642791\pi\)
0.997188 0.0749376i \(-0.0238758\pi\)
\(998\) 0.827627 2.23571i 0.0261981 0.0707701i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 684.2.r.b.487.3 20
3.2 odd 2 228.2.k.b.31.8 yes 20
4.3 odd 2 684.2.r.c.487.1 20
12.11 even 2 228.2.k.a.31.10 20
19.8 odd 6 684.2.r.c.559.1 20
57.8 even 6 228.2.k.a.103.10 yes 20
76.27 even 6 inner 684.2.r.b.559.3 20
228.179 odd 6 228.2.k.b.103.8 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
228.2.k.a.31.10 20 12.11 even 2
228.2.k.a.103.10 yes 20 57.8 even 6
228.2.k.b.31.8 yes 20 3.2 odd 2
228.2.k.b.103.8 yes 20 228.179 odd 6
684.2.r.b.487.3 20 1.1 even 1 trivial
684.2.r.b.559.3 20 76.27 even 6 inner
684.2.r.c.487.1 20 4.3 odd 2
684.2.r.c.559.1 20 19.8 odd 6