Properties

Label 684.2.cf.c.523.9
Level $684$
Weight $2$
Character 684.523
Analytic conductor $5.462$
Analytic rank $0$
Dimension $60$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [684,2,Mod(91,684)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("684.91"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(684, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 0, 11])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.cf (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.46176749826\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(10\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 228)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 523.9
Character \(\chi\) \(=\) 684.523
Dual form 684.2.cf.c.667.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.33191 - 0.475423i) q^{2} +(1.54795 - 1.26644i) q^{4} +(-3.39140 - 1.23437i) q^{5} +(-1.70277 - 0.983096i) q^{7} +(1.45963 - 2.42270i) q^{8} +(-5.10387 - 0.0317150i) q^{10} +(-4.83466 + 2.79129i) q^{11} +(0.0739637 - 0.0881465i) q^{13} +(-2.73532 - 0.499855i) q^{14} +(0.792279 - 3.92075i) q^{16} +(-0.580442 - 3.29185i) q^{17} +(-1.02155 + 4.23750i) q^{19} +(-6.81295 + 2.38425i) q^{20} +(-5.11227 + 6.01624i) q^{22} +(-2.16818 - 5.95703i) q^{23} +(6.14770 + 5.15853i) q^{25} +(0.0566059 - 0.152567i) q^{26} +(-3.88083 + 0.634672i) q^{28} +(-1.55282 - 0.273805i) q^{29} +(0.653262 - 1.13148i) q^{31} +(-0.808773 - 5.59874i) q^{32} +(-2.33811 - 4.10848i) q^{34} +(4.56128 + 5.43592i) q^{35} -7.12135i q^{37} +(0.653996 + 6.12962i) q^{38} +(-7.94069 + 6.41463i) q^{40} +(4.70052 + 5.60186i) q^{41} +(1.14640 - 3.14970i) q^{43} +(-3.94880 + 10.4436i) q^{44} +(-5.71992 - 6.90340i) q^{46} +(5.87946 + 1.03671i) q^{47} +(-1.56704 - 2.71420i) q^{49} +(10.6406 + 3.94792i) q^{50} +(0.00285995 - 0.230117i) q^{52} +(-0.762548 - 2.09508i) q^{53} +(19.8417 - 3.49863i) q^{55} +(-4.86716 + 2.69036i) q^{56} +(-2.19839 + 0.373565i) q^{58} +(-2.03426 - 11.5368i) q^{59} +(-10.4409 + 3.80016i) q^{61} +(0.332151 - 1.81761i) q^{62} +(-3.73898 - 7.07249i) q^{64} +(-0.359646 + 0.207642i) q^{65} +(0.935414 - 5.30500i) q^{67} +(-5.06741 - 4.36052i) q^{68} +(8.65955 + 5.07160i) q^{70} +(-2.08825 - 0.760061i) q^{71} +(2.21674 - 1.86006i) q^{73} +(-3.38565 - 9.48496i) q^{74} +(3.78522 + 7.85316i) q^{76} +10.9764 q^{77} +(8.78604 - 7.37237i) q^{79} +(-7.52658 + 12.3189i) q^{80} +(8.92390 + 5.22642i) q^{82} +(15.2741 + 8.81848i) q^{83} +(-2.09484 + 11.8805i) q^{85} +(0.0294547 - 4.74012i) q^{86} +(-0.294330 + 15.7872i) q^{88} +(-7.41292 + 8.83438i) q^{89} +(-0.212600 + 0.0773800i) q^{91} +(-10.9004 - 6.47530i) q^{92} +(8.32376 - 1.41443i) q^{94} +(8.69512 - 13.1101i) q^{95} +(-5.32239 + 0.938482i) q^{97} +(-3.37755 - 2.87005i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q + 3 q^{2} - 3 q^{4} - 3 q^{8} - 6 q^{10} - 6 q^{13} + 9 q^{14} - 27 q^{16} - 18 q^{19} - 30 q^{20} + 12 q^{22} - 18 q^{28} + 12 q^{31} + 63 q^{32} - 39 q^{34} + 48 q^{38} + 33 q^{40} + 12 q^{41} + 18 q^{43}+ \cdots - 117 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/684\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(343\) \(533\)
\(\chi(n)\) \(e\left(\frac{17}{18}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.33191 0.475423i 0.941800 0.336174i
\(3\) 0 0
\(4\) 1.54795 1.26644i 0.773973 0.633218i
\(5\) −3.39140 1.23437i −1.51668 0.552026i −0.556363 0.830939i \(-0.687804\pi\)
−0.960316 + 0.278913i \(0.910026\pi\)
\(6\) 0 0
\(7\) −1.70277 0.983096i −0.643587 0.371575i 0.142408 0.989808i \(-0.454516\pi\)
−0.785995 + 0.618233i \(0.787849\pi\)
\(8\) 1.45963 2.42270i 0.516056 0.856555i
\(9\) 0 0
\(10\) −5.10387 0.0317150i −1.61399 0.0100292i
\(11\) −4.83466 + 2.79129i −1.45770 + 0.841606i −0.998898 0.0469311i \(-0.985056\pi\)
−0.458806 + 0.888537i \(0.651723\pi\)
\(12\) 0 0
\(13\) 0.0739637 0.0881465i 0.0205138 0.0244475i −0.755690 0.654929i \(-0.772698\pi\)
0.776204 + 0.630482i \(0.217143\pi\)
\(14\) −2.73532 0.499855i −0.731045 0.133592i
\(15\) 0 0
\(16\) 0.792279 3.92075i 0.198070 0.980188i
\(17\) −0.580442 3.29185i −0.140778 0.798391i −0.970661 0.240453i \(-0.922704\pi\)
0.829883 0.557938i \(-0.188407\pi\)
\(18\) 0 0
\(19\) −1.02155 + 4.23750i −0.234360 + 0.972150i
\(20\) −6.81295 + 2.38425i −1.52342 + 0.533135i
\(21\) 0 0
\(22\) −5.11227 + 6.01624i −1.08994 + 1.28267i
\(23\) −2.16818 5.95703i −0.452097 1.24213i −0.931245 0.364393i \(-0.881277\pi\)
0.479148 0.877734i \(-0.340946\pi\)
\(24\) 0 0
\(25\) 6.14770 + 5.15853i 1.22954 + 1.03171i
\(26\) 0.0566059 0.152567i 0.0111013 0.0299208i
\(27\) 0 0
\(28\) −3.88083 + 0.634672i −0.733408 + 0.119942i
\(29\) −1.55282 0.273805i −0.288352 0.0508442i 0.0276012 0.999619i \(-0.491213\pi\)
−0.315953 + 0.948775i \(0.602324\pi\)
\(30\) 0 0
\(31\) 0.653262 1.13148i 0.117329 0.203220i −0.801379 0.598157i \(-0.795900\pi\)
0.918708 + 0.394936i \(0.129233\pi\)
\(32\) −0.808773 5.59874i −0.142972 0.989727i
\(33\) 0 0
\(34\) −2.33811 4.10848i −0.400983 0.704598i
\(35\) 4.56128 + 5.43592i 0.770997 + 0.918838i
\(36\) 0 0
\(37\) 7.12135i 1.17074i −0.810766 0.585371i \(-0.800949\pi\)
0.810766 0.585371i \(-0.199051\pi\)
\(38\) 0.653996 + 6.12962i 0.106092 + 0.994356i
\(39\) 0 0
\(40\) −7.94069 + 6.41463i −1.25553 + 1.01424i
\(41\) 4.70052 + 5.60186i 0.734098 + 0.874864i 0.995919 0.0902527i \(-0.0287675\pi\)
−0.261821 + 0.965116i \(0.584323\pi\)
\(42\) 0 0
\(43\) 1.14640 3.14970i 0.174824 0.480324i −0.821073 0.570824i \(-0.806624\pi\)
0.995897 + 0.0904992i \(0.0288463\pi\)
\(44\) −3.94880 + 10.4436i −0.595304 + 1.57442i
\(45\) 0 0
\(46\) −5.71992 6.90340i −0.843356 1.01785i
\(47\) 5.87946 + 1.03671i 0.857607 + 0.151219i 0.585127 0.810942i \(-0.301045\pi\)
0.272481 + 0.962161i \(0.412156\pi\)
\(48\) 0 0
\(49\) −1.56704 2.71420i −0.223864 0.387743i
\(50\) 10.6406 + 3.94792i 1.50481 + 0.558321i
\(51\) 0 0
\(52\) 0.00285995 0.230117i 0.000396604 0.0319114i
\(53\) −0.762548 2.09508i −0.104744 0.287782i 0.876239 0.481877i \(-0.160045\pi\)
−0.980983 + 0.194096i \(0.937823\pi\)
\(54\) 0 0
\(55\) 19.8417 3.49863i 2.67546 0.471755i
\(56\) −4.86716 + 2.69036i −0.650402 + 0.359514i
\(57\) 0 0
\(58\) −2.19839 + 0.373565i −0.288662 + 0.0490515i
\(59\) −2.03426 11.5368i −0.264838 1.50197i −0.769497 0.638651i \(-0.779493\pi\)
0.504659 0.863319i \(-0.331618\pi\)
\(60\) 0 0
\(61\) −10.4409 + 3.80016i −1.33682 + 0.486561i −0.908808 0.417214i \(-0.863007\pi\)
−0.428008 + 0.903775i \(0.640784\pi\)
\(62\) 0.332151 1.81761i 0.0421832 0.230836i
\(63\) 0 0
\(64\) −3.73898 7.07249i −0.467372 0.884061i
\(65\) −0.359646 + 0.207642i −0.0446086 + 0.0257548i
\(66\) 0 0
\(67\) 0.935414 5.30500i 0.114279 0.648108i −0.872826 0.488032i \(-0.837715\pi\)
0.987105 0.160076i \(-0.0511740\pi\)
\(68\) −5.06741 4.36052i −0.614514 0.528790i
\(69\) 0 0
\(70\) 8.65955 + 5.07160i 1.03501 + 0.606172i
\(71\) −2.08825 0.760061i −0.247830 0.0902027i 0.215118 0.976588i \(-0.430986\pi\)
−0.462948 + 0.886385i \(0.653208\pi\)
\(72\) 0 0
\(73\) 2.21674 1.86006i 0.259449 0.217704i −0.503779 0.863832i \(-0.668057\pi\)
0.763229 + 0.646129i \(0.223613\pi\)
\(74\) −3.38565 9.48496i −0.393574 1.10260i
\(75\) 0 0
\(76\) 3.78522 + 7.85316i 0.434195 + 0.900819i
\(77\) 10.9764 1.25088
\(78\) 0 0
\(79\) 8.78604 7.37237i 0.988507 0.829456i 0.00315617 0.999995i \(-0.498995\pi\)
0.985351 + 0.170539i \(0.0545509\pi\)
\(80\) −7.52658 + 12.3189i −0.841498 + 1.37729i
\(81\) 0 0
\(82\) 8.92390 + 5.22642i 0.985480 + 0.577161i
\(83\) 15.2741 + 8.81848i 1.67655 + 0.967954i 0.963836 + 0.266495i \(0.0858656\pi\)
0.712710 + 0.701459i \(0.247468\pi\)
\(84\) 0 0
\(85\) −2.09484 + 11.8805i −0.227218 + 1.28862i
\(86\) 0.0294547 4.74012i 0.00317618 0.511141i
\(87\) 0 0
\(88\) −0.294330 + 15.7872i −0.0313757 + 1.68292i
\(89\) −7.41292 + 8.83438i −0.785768 + 0.936442i −0.999179 0.0405206i \(-0.987098\pi\)
0.213411 + 0.976963i \(0.431543\pi\)
\(90\) 0 0
\(91\) −0.212600 + 0.0773800i −0.0222865 + 0.00811163i
\(92\) −10.9004 6.47530i −1.13645 0.675097i
\(93\) 0 0
\(94\) 8.32376 1.41443i 0.858530 0.145887i
\(95\) 8.69512 13.1101i 0.892101 1.34507i
\(96\) 0 0
\(97\) −5.32239 + 0.938482i −0.540407 + 0.0952884i −0.437188 0.899370i \(-0.644025\pi\)
−0.103219 + 0.994659i \(0.532914\pi\)
\(98\) −3.37755 2.87005i −0.341184 0.289919i
\(99\) 0 0
\(100\) 16.0493 + 0.199465i 1.60493 + 0.0199465i
\(101\) 13.7940 + 11.5745i 1.37255 + 1.15171i 0.971878 + 0.235484i \(0.0756676\pi\)
0.400672 + 0.916222i \(0.368777\pi\)
\(102\) 0 0
\(103\) −4.46091 7.72652i −0.439546 0.761317i 0.558108 0.829768i \(-0.311527\pi\)
−0.997654 + 0.0684516i \(0.978194\pi\)
\(104\) −0.105593 0.307853i −0.0103543 0.0301875i
\(105\) 0 0
\(106\) −2.01169 2.42792i −0.195393 0.235820i
\(107\) −3.26682 + 5.65831i −0.315816 + 0.547009i −0.979611 0.200906i \(-0.935612\pi\)
0.663795 + 0.747915i \(0.268945\pi\)
\(108\) 0 0
\(109\) −3.67153 + 10.0875i −0.351669 + 0.966203i 0.630165 + 0.776461i \(0.282987\pi\)
−0.981834 + 0.189741i \(0.939235\pi\)
\(110\) 24.7640 14.0931i 2.36115 1.34372i
\(111\) 0 0
\(112\) −5.20355 + 5.89726i −0.491689 + 0.557239i
\(113\) 14.9055i 1.40219i −0.713066 0.701097i \(-0.752694\pi\)
0.713066 0.701097i \(-0.247306\pi\)
\(114\) 0 0
\(115\) 22.8790i 2.13348i
\(116\) −2.75044 + 1.54272i −0.255372 + 0.143238i
\(117\) 0 0
\(118\) −8.19432 14.3989i −0.754348 1.32552i
\(119\) −2.24784 + 6.17590i −0.206060 + 0.566144i
\(120\) 0 0
\(121\) 10.0826 17.4636i 0.916600 1.58760i
\(122\) −12.0996 + 10.0253i −1.09544 + 0.907647i
\(123\) 0 0
\(124\) −0.421736 2.57879i −0.0378730 0.231582i
\(125\) −5.45914 9.45551i −0.488281 0.845727i
\(126\) 0 0
\(127\) −0.891348 0.747930i −0.0790943 0.0663680i 0.602383 0.798207i \(-0.294218\pi\)
−0.681478 + 0.731839i \(0.738662\pi\)
\(128\) −8.34238 7.64229i −0.737370 0.675490i
\(129\) 0 0
\(130\) −0.380297 + 0.447543i −0.0333542 + 0.0392521i
\(131\) −13.9279 + 2.45587i −1.21689 + 0.214570i −0.744986 0.667081i \(-0.767544\pi\)
−0.471902 + 0.881651i \(0.656433\pi\)
\(132\) 0 0
\(133\) 5.90534 6.21122i 0.512058 0.538581i
\(134\) −1.27623 7.51047i −0.110250 0.648806i
\(135\) 0 0
\(136\) −8.82240 3.39864i −0.756515 0.291431i
\(137\) −17.6840 + 6.43644i −1.51084 + 0.549902i −0.958842 0.283941i \(-0.908358\pi\)
−0.552002 + 0.833843i \(0.686136\pi\)
\(138\) 0 0
\(139\) −4.98537 + 5.94134i −0.422854 + 0.503938i −0.934846 0.355052i \(-0.884463\pi\)
0.511993 + 0.858990i \(0.328908\pi\)
\(140\) 13.9449 + 2.63795i 1.17856 + 0.222947i
\(141\) 0 0
\(142\) −3.14270 0.0195285i −0.263730 0.00163879i
\(143\) −0.111547 + 0.632612i −0.00932800 + 0.0529017i
\(144\) 0 0
\(145\) 4.92827 + 2.84534i 0.409270 + 0.236292i
\(146\) 2.06817 3.53132i 0.171163 0.292254i
\(147\) 0 0
\(148\) −9.01873 11.0235i −0.741335 0.906123i
\(149\) 9.40224 7.88942i 0.770261 0.646326i −0.170514 0.985355i \(-0.554543\pi\)
0.940776 + 0.339029i \(0.110099\pi\)
\(150\) 0 0
\(151\) −5.39650 −0.439161 −0.219580 0.975594i \(-0.570469\pi\)
−0.219580 + 0.975594i \(0.570469\pi\)
\(152\) 8.77513 + 8.66009i 0.711757 + 0.702426i
\(153\) 0 0
\(154\) 14.6196 5.21844i 1.17808 0.420514i
\(155\) −3.61214 + 3.03095i −0.290134 + 0.243451i
\(156\) 0 0
\(157\) −8.88411 3.23355i −0.709029 0.258066i −0.0377683 0.999287i \(-0.512025\pi\)
−0.671261 + 0.741221i \(0.734247\pi\)
\(158\) 8.19719 13.9964i 0.652134 1.11349i
\(159\) 0 0
\(160\) −4.16804 + 19.9859i −0.329512 + 1.58002i
\(161\) −2.16441 + 12.2750i −0.170580 + 0.967405i
\(162\) 0 0
\(163\) 1.61949 0.935013i 0.126848 0.0732359i −0.435233 0.900318i \(-0.643334\pi\)
0.562081 + 0.827082i \(0.310001\pi\)
\(164\) 14.3706 + 2.71848i 1.12215 + 0.212277i
\(165\) 0 0
\(166\) 24.5361 + 4.48376i 1.90437 + 0.348007i
\(167\) 14.4659 5.26515i 1.11940 0.407429i 0.284969 0.958537i \(-0.408017\pi\)
0.834434 + 0.551108i \(0.185795\pi\)
\(168\) 0 0
\(169\) 2.25513 + 12.7895i 0.173471 + 0.983805i
\(170\) 2.85810 + 16.8196i 0.219206 + 1.29000i
\(171\) 0 0
\(172\) −2.21433 6.32740i −0.168841 0.482460i
\(173\) 16.6499 2.93583i 1.26587 0.223207i 0.499899 0.866084i \(-0.333370\pi\)
0.765970 + 0.642877i \(0.222259\pi\)
\(174\) 0 0
\(175\) −5.39680 14.8276i −0.407960 1.12086i
\(176\) 7.11356 + 21.1670i 0.536205 + 1.59552i
\(177\) 0 0
\(178\) −5.67325 + 15.2908i −0.425228 + 1.14610i
\(179\) 4.45014 + 7.70786i 0.332619 + 0.576113i 0.983024 0.183474i \(-0.0587345\pi\)
−0.650406 + 0.759587i \(0.725401\pi\)
\(180\) 0 0
\(181\) −9.01732 1.59000i −0.670252 0.118184i −0.171842 0.985125i \(-0.554972\pi\)
−0.498411 + 0.866941i \(0.666083\pi\)
\(182\) −0.246375 + 0.204138i −0.0182625 + 0.0151317i
\(183\) 0 0
\(184\) −17.5968 3.44218i −1.29726 0.253761i
\(185\) −8.79036 + 24.1513i −0.646280 + 1.77564i
\(186\) 0 0
\(187\) 11.9947 + 14.2948i 0.877143 + 1.04534i
\(188\) 10.4140 5.84119i 0.759520 0.426013i
\(189\) 0 0
\(190\) 5.34825 21.5953i 0.388003 1.56669i
\(191\) 15.5280i 1.12356i −0.827286 0.561782i \(-0.810116\pi\)
0.827286 0.561782i \(-0.189884\pi\)
\(192\) 0 0
\(193\) 3.71827 + 4.43126i 0.267647 + 0.318969i 0.883082 0.469218i \(-0.155464\pi\)
−0.615435 + 0.788187i \(0.711020\pi\)
\(194\) −6.64275 + 3.78036i −0.476922 + 0.271414i
\(195\) 0 0
\(196\) −5.86306 2.21688i −0.418790 0.158348i
\(197\) 2.17496 3.76714i 0.154959 0.268398i −0.778085 0.628159i \(-0.783809\pi\)
0.933044 + 0.359762i \(0.117142\pi\)
\(198\) 0 0
\(199\) −3.06985 0.541297i −0.217616 0.0383715i 0.0637771 0.997964i \(-0.479685\pi\)
−0.281393 + 0.959593i \(0.590796\pi\)
\(200\) 21.4709 7.36451i 1.51822 0.520750i
\(201\) 0 0
\(202\) 23.8750 + 8.85819i 1.67984 + 0.623260i
\(203\) 2.37493 + 1.99280i 0.166687 + 0.139867i
\(204\) 0 0
\(205\) −9.02658 24.8003i −0.630444 1.73213i
\(206\) −9.61487 8.17018i −0.669900 0.569244i
\(207\) 0 0
\(208\) −0.287001 0.359830i −0.0198999 0.0249497i
\(209\) −6.88926 23.3383i −0.476540 1.61434i
\(210\) 0 0
\(211\) −0.910393 5.16309i −0.0626740 0.355442i −0.999976 0.00692381i \(-0.997796\pi\)
0.937302 0.348518i \(-0.113315\pi\)
\(212\) −3.83367 2.27736i −0.263298 0.156410i
\(213\) 0 0
\(214\) −1.66102 + 9.08945i −0.113545 + 0.621342i
\(215\) −7.77577 + 9.26680i −0.530303 + 0.631991i
\(216\) 0 0
\(217\) −2.22471 + 1.28444i −0.151023 + 0.0871934i
\(218\) −0.0943337 + 15.1811i −0.00638908 + 1.02819i
\(219\) 0 0
\(220\) 26.2831 30.5440i 1.77201 2.05927i
\(221\) −0.333097 0.192314i −0.0224065 0.0129364i
\(222\) 0 0
\(223\) −6.80645 2.47734i −0.455794 0.165895i 0.103913 0.994586i \(-0.466864\pi\)
−0.559706 + 0.828691i \(0.689086\pi\)
\(224\) −4.12694 + 10.3285i −0.275743 + 0.690101i
\(225\) 0 0
\(226\) −7.08642 19.8527i −0.471382 1.32059i
\(227\) −12.9028 −0.856391 −0.428195 0.903686i \(-0.640851\pi\)
−0.428195 + 0.903686i \(0.640851\pi\)
\(228\) 0 0
\(229\) 6.50015 0.429542 0.214771 0.976664i \(-0.431099\pi\)
0.214771 + 0.976664i \(0.431099\pi\)
\(230\) 10.8772 + 30.4727i 0.717221 + 2.00931i
\(231\) 0 0
\(232\) −2.92989 + 3.36237i −0.192357 + 0.220751i
\(233\) −9.80942 3.57034i −0.642636 0.233901i 8.56138e−5 1.00000i \(-0.499973\pi\)
−0.642722 + 0.766099i \(0.722195\pi\)
\(234\) 0 0
\(235\) −18.6599 10.7733i −1.21724 0.702773i
\(236\) −17.7596 15.2822i −1.15605 0.994784i
\(237\) 0 0
\(238\) −0.0577545 + 9.29439i −0.00374367 + 0.602466i
\(239\) 24.2728 14.0139i 1.57008 0.906484i 0.573918 0.818913i \(-0.305423\pi\)
0.996158 0.0875716i \(-0.0279107\pi\)
\(240\) 0 0
\(241\) 9.48229 11.3006i 0.610808 0.727933i −0.368653 0.929567i \(-0.620181\pi\)
0.979461 + 0.201634i \(0.0646253\pi\)
\(242\) 5.12650 28.0533i 0.329544 1.80334i
\(243\) 0 0
\(244\) −11.3492 + 19.1051i −0.726561 + 1.22308i
\(245\) 1.96415 + 11.1392i 0.125485 + 0.711661i
\(246\) 0 0
\(247\) 0.297964 + 0.403468i 0.0189590 + 0.0256720i
\(248\) −1.78773 3.23420i −0.113521 0.205372i
\(249\) 0 0
\(250\) −11.7664 9.99845i −0.744174 0.632358i
\(251\) 5.95225 + 16.3537i 0.375702 + 1.03223i 0.973119 + 0.230303i \(0.0739717\pi\)
−0.597417 + 0.801931i \(0.703806\pi\)
\(252\) 0 0
\(253\) 27.1102 + 22.7482i 1.70440 + 1.43016i
\(254\) −1.54277 0.572405i −0.0968023 0.0359159i
\(255\) 0 0
\(256\) −14.7446 6.21266i −0.921537 0.388291i
\(257\) −2.97920 0.525313i −0.185837 0.0327681i 0.0799549 0.996798i \(-0.474522\pi\)
−0.265792 + 0.964030i \(0.585633\pi\)
\(258\) 0 0
\(259\) −7.00097 + 12.1260i −0.435019 + 0.753475i
\(260\) −0.293748 + 0.776887i −0.0182175 + 0.0481805i
\(261\) 0 0
\(262\) −17.3831 + 9.89263i −1.07393 + 0.611169i
\(263\) 0.596660 + 0.711072i 0.0367916 + 0.0438465i 0.784126 0.620601i \(-0.213111\pi\)
−0.747335 + 0.664448i \(0.768667\pi\)
\(264\) 0 0
\(265\) 8.04652i 0.494294i
\(266\) 4.91240 11.0803i 0.301199 0.679376i
\(267\) 0 0
\(268\) −5.27047 9.39649i −0.321945 0.573982i
\(269\) −14.4498 17.2205i −0.881017 1.04995i −0.998382 0.0568661i \(-0.981889\pi\)
0.117365 0.993089i \(-0.462555\pi\)
\(270\) 0 0
\(271\) 2.63856 7.24939i 0.160281 0.440369i −0.833391 0.552683i \(-0.813604\pi\)
0.993673 + 0.112314i \(0.0358262\pi\)
\(272\) −13.3664 0.332294i −0.810457 0.0201483i
\(273\) 0 0
\(274\) −20.4934 + 16.9801i −1.23805 + 1.02580i
\(275\) −44.1210 7.77972i −2.66059 0.469135i
\(276\) 0 0
\(277\) −0.803534 1.39176i −0.0482797 0.0836229i 0.840876 0.541228i \(-0.182041\pi\)
−0.889155 + 0.457605i \(0.848707\pi\)
\(278\) −3.81540 + 10.2835i −0.228833 + 0.616761i
\(279\) 0 0
\(280\) 19.8274 3.11620i 1.18491 0.186229i
\(281\) −3.41959 9.39526i −0.203996 0.560474i 0.794935 0.606694i \(-0.207505\pi\)
−0.998931 + 0.0462199i \(0.985282\pi\)
\(282\) 0 0
\(283\) −10.9910 + 1.93801i −0.653348 + 0.115203i −0.490490 0.871447i \(-0.663182\pi\)
−0.162858 + 0.986650i \(0.552071\pi\)
\(284\) −4.19507 + 1.46810i −0.248932 + 0.0871159i
\(285\) 0 0
\(286\) 0.152189 + 0.895612i 0.00899910 + 0.0529587i
\(287\) −2.49675 14.1598i −0.147378 0.835824i
\(288\) 0 0
\(289\) 5.47541 1.99289i 0.322083 0.117229i
\(290\) 7.91672 + 1.44671i 0.464886 + 0.0849538i
\(291\) 0 0
\(292\) 1.07574 5.68663i 0.0629529 0.332785i
\(293\) −1.70034 + 0.981693i −0.0993351 + 0.0573511i −0.548845 0.835924i \(-0.684932\pi\)
0.449510 + 0.893276i \(0.351599\pi\)
\(294\) 0 0
\(295\) −7.34174 + 41.6371i −0.427453 + 2.42420i
\(296\) −17.2529 10.3945i −1.00280 0.604169i
\(297\) 0 0
\(298\) 8.77209 14.9780i 0.508154 0.867652i
\(299\) −0.685458 0.249486i −0.0396411 0.0144282i
\(300\) 0 0
\(301\) −5.04851 + 4.23620i −0.290991 + 0.244170i
\(302\) −7.18763 + 2.56562i −0.413602 + 0.147635i
\(303\) 0 0
\(304\) 15.8048 + 7.36253i 0.906470 + 0.422270i
\(305\) 40.0999 2.29612
\(306\) 0 0
\(307\) −9.42719 + 7.91035i −0.538038 + 0.451468i −0.870866 0.491520i \(-0.836441\pi\)
0.332828 + 0.942987i \(0.391997\pi\)
\(308\) 16.9909 13.9009i 0.968148 0.792080i
\(309\) 0 0
\(310\) −3.37005 + 5.75423i −0.191406 + 0.326818i
\(311\) −8.74451 5.04865i −0.495856 0.286283i 0.231145 0.972919i \(-0.425753\pi\)
−0.727001 + 0.686637i \(0.759086\pi\)
\(312\) 0 0
\(313\) 0.958695 5.43703i 0.0541887 0.307319i −0.945652 0.325181i \(-0.894575\pi\)
0.999840 + 0.0178618i \(0.00568589\pi\)
\(314\) −13.3701 0.0830806i −0.754519 0.00468851i
\(315\) 0 0
\(316\) 4.26370 22.5390i 0.239852 1.26792i
\(317\) −16.9033 + 20.1446i −0.949385 + 1.13143i 0.0418233 + 0.999125i \(0.486683\pi\)
−0.991209 + 0.132308i \(0.957761\pi\)
\(318\) 0 0
\(319\) 8.27163 3.01063i 0.463122 0.168563i
\(320\) 3.95031 + 28.6009i 0.220829 + 1.59884i
\(321\) 0 0
\(322\) 2.95301 + 17.3781i 0.164565 + 0.968446i
\(323\) 14.5422 + 0.903165i 0.809148 + 0.0502534i
\(324\) 0 0
\(325\) 0.909414 0.160354i 0.0504452 0.00889485i
\(326\) 1.71248 2.01529i 0.0948457 0.111617i
\(327\) 0 0
\(328\) 20.4327 3.21133i 1.12820 0.177316i
\(329\) −8.99220 7.54535i −0.495756 0.415989i
\(330\) 0 0
\(331\) −17.5645 30.4227i −0.965434 1.67218i −0.708443 0.705768i \(-0.750602\pi\)
−0.256991 0.966414i \(-0.582731\pi\)
\(332\) 34.8115 5.69308i 1.91053 0.312448i
\(333\) 0 0
\(334\) 16.7640 13.8901i 0.917286 0.760031i
\(335\) −9.72068 + 16.8367i −0.531097 + 0.919888i
\(336\) 0 0
\(337\) −3.15640 + 8.67213i −0.171940 + 0.472401i −0.995493 0.0948387i \(-0.969766\pi\)
0.823553 + 0.567240i \(0.191989\pi\)
\(338\) 9.08402 + 15.9622i 0.494105 + 0.868230i
\(339\) 0 0
\(340\) 11.8031 + 21.0433i 0.640115 + 1.14123i
\(341\) 7.29378i 0.394980i
\(342\) 0 0
\(343\) 19.9256i 1.07588i
\(344\) −5.95747 7.37476i −0.321205 0.397620i
\(345\) 0 0
\(346\) 20.7804 11.8260i 1.11716 0.635769i
\(347\) −1.33452 + 3.66657i −0.0716408 + 0.196832i −0.970345 0.241723i \(-0.922287\pi\)
0.898704 + 0.438555i \(0.144510\pi\)
\(348\) 0 0
\(349\) −7.75109 + 13.4253i −0.414906 + 0.718639i −0.995419 0.0956128i \(-0.969519\pi\)
0.580512 + 0.814251i \(0.302852\pi\)
\(350\) −14.2374 17.1832i −0.761021 0.918480i
\(351\) 0 0
\(352\) 19.5378 + 24.8105i 1.04137 + 1.32240i
\(353\) −1.90578 3.30091i −0.101435 0.175690i 0.810841 0.585266i \(-0.199010\pi\)
−0.912276 + 0.409576i \(0.865677\pi\)
\(354\) 0 0
\(355\) 6.14390 + 5.15534i 0.326084 + 0.273617i
\(356\) −0.286635 + 23.0631i −0.0151916 + 1.22234i
\(357\) 0 0
\(358\) 9.59165 + 8.15045i 0.506935 + 0.430765i
\(359\) 0.124666 0.0219820i 0.00657961 0.00116016i −0.170357 0.985382i \(-0.554492\pi\)
0.176937 + 0.984222i \(0.443381\pi\)
\(360\) 0 0
\(361\) −16.9129 8.65764i −0.890151 0.455666i
\(362\) −12.7661 + 2.16931i −0.670974 + 0.114016i
\(363\) 0 0
\(364\) −0.231096 + 0.389024i −0.0121127 + 0.0203904i
\(365\) −9.81384 + 3.57195i −0.513680 + 0.186964i
\(366\) 0 0
\(367\) 1.56490 1.86497i 0.0816869 0.0973506i −0.723653 0.690164i \(-0.757538\pi\)
0.805340 + 0.592813i \(0.201983\pi\)
\(368\) −25.0738 + 3.78127i −1.30706 + 0.197112i
\(369\) 0 0
\(370\) −0.225853 + 36.3464i −0.0117416 + 1.88956i
\(371\) −0.761222 + 4.31710i −0.0395207 + 0.224133i
\(372\) 0 0
\(373\) −12.7636 7.36906i −0.660874 0.381556i 0.131736 0.991285i \(-0.457945\pi\)
−0.792610 + 0.609729i \(0.791278\pi\)
\(374\) 22.7719 + 13.3367i 1.17751 + 0.689626i
\(375\) 0 0
\(376\) 11.0935 12.7310i 0.572101 0.656550i
\(377\) −0.138987 + 0.116624i −0.00715822 + 0.00600646i
\(378\) 0 0
\(379\) 27.3596 1.40537 0.702683 0.711503i \(-0.251985\pi\)
0.702683 + 0.711503i \(0.251985\pi\)
\(380\) −3.14351 31.3055i −0.161259 1.60594i
\(381\) 0 0
\(382\) −7.38234 20.6818i −0.377713 1.05817i
\(383\) −6.78984 + 5.69735i −0.346945 + 0.291121i −0.799562 0.600584i \(-0.794935\pi\)
0.452617 + 0.891705i \(0.350490\pi\)
\(384\) 0 0
\(385\) −37.2254 13.5489i −1.89718 0.690518i
\(386\) 7.05910 + 4.13427i 0.359299 + 0.210429i
\(387\) 0 0
\(388\) −7.05026 + 8.19319i −0.357922 + 0.415946i
\(389\) 3.82780 21.7085i 0.194077 1.10067i −0.719650 0.694337i \(-0.755698\pi\)
0.913727 0.406329i \(-0.133191\pi\)
\(390\) 0 0
\(391\) −18.3511 + 10.5950i −0.928057 + 0.535814i
\(392\) −8.86300 0.165239i −0.447649 0.00834581i
\(393\) 0 0
\(394\) 1.10586 6.05150i 0.0557123 0.304870i
\(395\) −38.8972 + 14.1574i −1.95713 + 0.712337i
\(396\) 0 0
\(397\) −2.58993 14.6882i −0.129985 0.737179i −0.978222 0.207563i \(-0.933447\pi\)
0.848237 0.529617i \(-0.177664\pi\)
\(398\) −4.34610 + 0.738518i −0.217850 + 0.0370186i
\(399\) 0 0
\(400\) 25.0960 20.0166i 1.25480 1.00083i
\(401\) 0.0489938 0.00863892i 0.00244663 0.000431407i −0.172425 0.985023i \(-0.555160\pi\)
0.174871 + 0.984591i \(0.444049\pi\)
\(402\) 0 0
\(403\) −0.0514186 0.141272i −0.00256134 0.00703724i
\(404\) 36.0107 + 0.447551i 1.79160 + 0.0222665i
\(405\) 0 0
\(406\) 4.11060 + 1.52513i 0.204006 + 0.0756909i
\(407\) 19.8777 + 34.4293i 0.985303 + 1.70659i
\(408\) 0 0
\(409\) 20.3246 + 3.58378i 1.00499 + 0.177206i 0.651836 0.758360i \(-0.273999\pi\)
0.353151 + 0.935566i \(0.385110\pi\)
\(410\) −23.8132 28.7403i −1.17605 1.41938i
\(411\) 0 0
\(412\) −16.6904 6.31079i −0.822277 0.310910i
\(413\) −7.87795 + 21.6445i −0.387649 + 1.06506i
\(414\) 0 0
\(415\) −40.9152 48.7608i −2.00845 2.39357i
\(416\) −0.553329 0.342813i −0.0271292 0.0168078i
\(417\) 0 0
\(418\) −20.2714 27.8091i −0.991507 1.36019i
\(419\) 17.1879i 0.839685i −0.907597 0.419843i \(-0.862085\pi\)
0.907597 0.419843i \(-0.137915\pi\)
\(420\) 0 0
\(421\) −1.30377 1.55377i −0.0635417 0.0757260i 0.733337 0.679865i \(-0.237962\pi\)
−0.796879 + 0.604139i \(0.793517\pi\)
\(422\) −3.66721 6.44393i −0.178517 0.313686i
\(423\) 0 0
\(424\) −6.18880 1.21061i −0.300555 0.0587926i
\(425\) 13.4127 23.2315i 0.650613 1.12689i
\(426\) 0 0
\(427\) 21.5143 + 3.79356i 1.04115 + 0.183583i
\(428\) 2.10901 + 12.8960i 0.101943 + 0.623351i
\(429\) 0 0
\(430\) −5.95095 + 16.0393i −0.286980 + 0.773483i
\(431\) −25.5727 21.4580i −1.23179 1.03360i −0.998120 0.0612822i \(-0.980481\pi\)
−0.233673 0.972315i \(-0.575075\pi\)
\(432\) 0 0
\(433\) 6.88171 + 18.9073i 0.330714 + 0.908629i 0.987926 + 0.154924i \(0.0495132\pi\)
−0.657212 + 0.753705i \(0.728265\pi\)
\(434\) −2.35246 + 2.76843i −0.112922 + 0.132889i
\(435\) 0 0
\(436\) 7.09178 + 20.2646i 0.339634 + 0.970498i
\(437\) 27.4578 3.10227i 1.31349 0.148402i
\(438\) 0 0
\(439\) 6.34583 + 35.9890i 0.302870 + 1.71766i 0.633365 + 0.773853i \(0.281673\pi\)
−0.330496 + 0.943808i \(0.607216\pi\)
\(440\) 20.4854 53.1773i 0.976602 2.53513i
\(441\) 0 0
\(442\) −0.535084 0.0977818i −0.0254513 0.00465101i
\(443\) −12.4013 + 14.7793i −0.589205 + 0.702187i −0.975453 0.220208i \(-0.929327\pi\)
0.386248 + 0.922395i \(0.373771\pi\)
\(444\) 0 0
\(445\) 36.0451 20.8106i 1.70870 0.986518i
\(446\) −10.2433 0.0636511i −0.485036 0.00301397i
\(447\) 0 0
\(448\) −0.586308 + 15.7186i −0.0277004 + 0.742634i
\(449\) 10.4202 + 6.01610i 0.491759 + 0.283917i 0.725304 0.688429i \(-0.241699\pi\)
−0.233545 + 0.972346i \(0.575033\pi\)
\(450\) 0 0
\(451\) −38.3618 13.9626i −1.80639 0.657471i
\(452\) −18.8769 23.0729i −0.887894 1.08526i
\(453\) 0 0
\(454\) −17.1854 + 6.13430i −0.806549 + 0.287897i
\(455\) 0.816526 0.0382794
\(456\) 0 0
\(457\) 16.6523 0.778960 0.389480 0.921035i \(-0.372655\pi\)
0.389480 + 0.921035i \(0.372655\pi\)
\(458\) 8.65759 3.09032i 0.404543 0.144401i
\(459\) 0 0
\(460\) 28.9748 + 35.4155i 1.35096 + 1.65125i
\(461\) −18.8513 6.86133i −0.877995 0.319564i −0.136594 0.990627i \(-0.543616\pi\)
−0.741400 + 0.671063i \(0.765838\pi\)
\(462\) 0 0
\(463\) 20.5675 + 11.8747i 0.955855 + 0.551863i 0.894895 0.446277i \(-0.147250\pi\)
0.0609600 + 0.998140i \(0.480584\pi\)
\(464\) −2.30379 + 5.87130i −0.106951 + 0.272568i
\(465\) 0 0
\(466\) −14.7626 0.0917337i −0.683866 0.00424948i
\(467\) 17.3535 10.0190i 0.803022 0.463625i −0.0415046 0.999138i \(-0.513215\pi\)
0.844527 + 0.535513i \(0.179882\pi\)
\(468\) 0 0
\(469\) −6.80812 + 8.11360i −0.314370 + 0.374651i
\(470\) −29.9751 5.47769i −1.38265 0.252667i
\(471\) 0 0
\(472\) −30.9196 11.9111i −1.42319 0.548253i
\(473\) 3.24929 + 18.4276i 0.149402 + 0.847303i
\(474\) 0 0
\(475\) −28.1395 + 20.7812i −1.29113 + 0.953507i
\(476\) 4.34184 + 12.4067i 0.199008 + 0.568661i
\(477\) 0 0
\(478\) 25.6666 30.2050i 1.17396 1.38155i
\(479\) 5.26518 + 14.4660i 0.240572 + 0.660966i 0.999947 + 0.0103127i \(0.00328269\pi\)
−0.759375 + 0.650653i \(0.774495\pi\)
\(480\) 0 0
\(481\) −0.627722 0.526721i −0.0286217 0.0240164i
\(482\) 7.25698 19.5594i 0.330546 0.890905i
\(483\) 0 0
\(484\) −6.50917 39.8017i −0.295872 1.80917i
\(485\) 19.2088 + 3.38703i 0.872226 + 0.153797i
\(486\) 0 0
\(487\) 11.3873 19.7235i 0.516010 0.893755i −0.483817 0.875169i \(-0.660750\pi\)
0.999827 0.0185864i \(-0.00591657\pi\)
\(488\) −6.03310 + 30.8419i −0.273106 + 1.39615i
\(489\) 0 0
\(490\) 7.91191 + 13.9026i 0.357424 + 0.628057i
\(491\) −13.5104 16.1011i −0.609716 0.726631i 0.369550 0.929211i \(-0.379512\pi\)
−0.979266 + 0.202580i \(0.935067\pi\)
\(492\) 0 0
\(493\) 5.27059i 0.237375i
\(494\) 0.588677 + 0.395722i 0.0264858 + 0.0178044i
\(495\) 0 0
\(496\) −3.91870 3.45773i −0.175955 0.155257i
\(497\) 2.80860 + 3.34716i 0.125983 + 0.150141i
\(498\) 0 0
\(499\) −6.36184 + 17.4790i −0.284795 + 0.782468i 0.711978 + 0.702201i \(0.247799\pi\)
−0.996773 + 0.0802666i \(0.974423\pi\)
\(500\) −20.4253 7.72298i −0.913446 0.345382i
\(501\) 0 0
\(502\) 15.7027 + 18.9517i 0.700847 + 0.845856i
\(503\) 6.21016 + 1.09502i 0.276897 + 0.0488245i 0.310372 0.950615i \(-0.399546\pi\)
−0.0334750 + 0.999440i \(0.510657\pi\)
\(504\) 0 0
\(505\) −32.4936 56.2806i −1.44595 2.50445i
\(506\) 46.9232 + 17.4096i 2.08599 + 0.773952i
\(507\) 0 0
\(508\) −2.32696 0.0289202i −0.103242 0.00128313i
\(509\) 6.21442 + 17.0740i 0.275449 + 0.756790i 0.997864 + 0.0653302i \(0.0208101\pi\)
−0.722414 + 0.691460i \(0.756968\pi\)
\(510\) 0 0
\(511\) −5.60322 + 0.987998i −0.247872 + 0.0437065i
\(512\) −22.5920 1.26477i −0.998437 0.0558953i
\(513\) 0 0
\(514\) −4.21776 + 0.716711i −0.186037 + 0.0316127i
\(515\) 5.59135 + 31.7101i 0.246384 + 1.39731i
\(516\) 0 0
\(517\) −31.3189 + 11.3992i −1.37740 + 0.501334i
\(518\) −3.55964 + 19.4791i −0.156402 + 0.855865i
\(519\) 0 0
\(520\) −0.0218950 + 1.17439i −0.000960158 + 0.0515006i
\(521\) 25.0420 14.4580i 1.09711 0.633416i 0.161649 0.986848i \(-0.448319\pi\)
0.935460 + 0.353432i \(0.114986\pi\)
\(522\) 0 0
\(523\) 6.34830 36.0030i 0.277592 1.57430i −0.453015 0.891503i \(-0.649652\pi\)
0.730607 0.682799i \(-0.239237\pi\)
\(524\) −18.4495 + 21.4404i −0.805969 + 0.936627i
\(525\) 0 0
\(526\) 1.13275 + 0.663415i 0.0493904 + 0.0289263i
\(527\) −4.10385 1.49368i −0.178767 0.0650658i
\(528\) 0 0
\(529\) −13.1662 + 11.0477i −0.572442 + 0.480336i
\(530\) 3.82550 + 10.7172i 0.166169 + 0.465526i
\(531\) 0 0
\(532\) 1.27504 17.0934i 0.0552799 0.741092i
\(533\) 0.841453 0.0364474
\(534\) 0 0
\(535\) 18.0635 15.1571i 0.780955 0.655299i
\(536\) −11.4871 10.0095i −0.496166 0.432347i
\(537\) 0 0
\(538\) −27.4327 16.0664i −1.18271 0.692672i
\(539\) 15.1522 + 8.74815i 0.652653 + 0.376810i
\(540\) 0 0
\(541\) 7.83058 44.4094i 0.336663 1.90931i −0.0734954 0.997296i \(-0.523415\pi\)
0.410158 0.912014i \(-0.365473\pi\)
\(542\) 0.0677933 10.9099i 0.00291197 0.468622i
\(543\) 0 0
\(544\) −17.9608 + 5.91210i −0.770061 + 0.253479i
\(545\) 24.9033 29.6785i 1.06674 1.27129i
\(546\) 0 0
\(547\) 26.9570 9.81155i 1.15260 0.419512i 0.306151 0.951983i \(-0.400959\pi\)
0.846448 + 0.532471i \(0.178737\pi\)
\(548\) −19.2225 + 32.3589i −0.821145 + 1.38230i
\(549\) 0 0
\(550\) −62.4636 + 10.6143i −2.66346 + 0.452593i
\(551\) 2.74653 6.30039i 0.117006 0.268405i
\(552\) 0 0
\(553\) −22.2084 + 3.91594i −0.944396 + 0.166522i
\(554\) −1.73191 1.47168i −0.0735817 0.0625256i
\(555\) 0 0
\(556\) −0.192769 + 15.5105i −0.00817524 + 0.657793i
\(557\) 14.3725 + 12.0600i 0.608983 + 0.510998i 0.894319 0.447430i \(-0.147661\pi\)
−0.285336 + 0.958428i \(0.592105\pi\)
\(558\) 0 0
\(559\) −0.192843 0.334014i −0.00815640 0.0141273i
\(560\) 24.9267 13.5769i 1.05334 0.573728i
\(561\) 0 0
\(562\) −9.02130 10.8878i −0.380540 0.459276i
\(563\) 13.6287 23.6056i 0.574381 0.994857i −0.421728 0.906723i \(-0.638576\pi\)
0.996109 0.0881344i \(-0.0280905\pi\)
\(564\) 0 0
\(565\) −18.3989 + 50.5506i −0.774047 + 2.12668i
\(566\) −13.7176 + 7.80663i −0.576595 + 0.328137i
\(567\) 0 0
\(568\) −4.88947 + 3.94981i −0.205158 + 0.165730i
\(569\) 13.6814i 0.573554i 0.957997 + 0.286777i \(0.0925839\pi\)
−0.957997 + 0.286777i \(0.907416\pi\)
\(570\) 0 0
\(571\) 4.69406i 0.196440i 0.995165 + 0.0982202i \(0.0313150\pi\)
−0.995165 + 0.0982202i \(0.968685\pi\)
\(572\) 0.628495 + 1.12052i 0.0262787 + 0.0468512i
\(573\) 0 0
\(574\) −10.0573 17.6725i −0.419784 0.737634i
\(575\) 17.4002 47.8067i 0.725639 1.99368i
\(576\) 0 0
\(577\) 3.24677 5.62357i 0.135165 0.234112i −0.790496 0.612468i \(-0.790177\pi\)
0.925660 + 0.378355i \(0.123510\pi\)
\(578\) 6.34527 5.25747i 0.263928 0.218682i
\(579\) 0 0
\(580\) 11.2321 1.83691i 0.466389 0.0762734i
\(581\) −17.3388 30.0317i −0.719336 1.24593i
\(582\) 0 0
\(583\) 9.53464 + 8.00051i 0.394884 + 0.331347i
\(584\) −1.27077 8.08549i −0.0525848 0.334580i
\(585\) 0 0
\(586\) −1.79798 + 2.11590i −0.0742737 + 0.0874072i
\(587\) 0.243914 0.0430085i 0.0100674 0.00177515i −0.168612 0.985682i \(-0.553929\pi\)
0.178680 + 0.983907i \(0.442817\pi\)
\(588\) 0 0
\(589\) 4.12732 + 3.92407i 0.170063 + 0.161688i
\(590\) 10.0167 + 58.9471i 0.412381 + 2.42681i
\(591\) 0 0
\(592\) −27.9210 5.64209i −1.14755 0.231889i
\(593\) −39.5353 + 14.3897i −1.62352 + 0.590913i −0.984048 0.177901i \(-0.943069\pi\)
−0.639473 + 0.768814i \(0.720847\pi\)
\(594\) 0 0
\(595\) 15.2467 18.1703i 0.625053 0.744909i
\(596\) 4.56273 24.1197i 0.186897 0.987983i
\(597\) 0 0
\(598\) −1.03158 0.00641012i −0.0421843 0.000262129i
\(599\) 3.30302 18.7324i 0.134958 0.765384i −0.839931 0.542693i \(-0.817405\pi\)
0.974889 0.222691i \(-0.0714840\pi\)
\(600\) 0 0
\(601\) 35.6278 + 20.5697i 1.45329 + 0.839057i 0.998666 0.0516270i \(-0.0164407\pi\)
0.454623 + 0.890684i \(0.349774\pi\)
\(602\) −4.71015 + 8.04239i −0.191971 + 0.327783i
\(603\) 0 0
\(604\) −8.35350 + 6.83432i −0.339899 + 0.278085i
\(605\) −55.7506 + 46.7803i −2.26658 + 1.90189i
\(606\) 0 0
\(607\) −5.25857 −0.213439 −0.106719 0.994289i \(-0.534035\pi\)
−0.106719 + 0.994289i \(0.534035\pi\)
\(608\) 24.5509 + 2.29222i 0.995670 + 0.0929616i
\(609\) 0 0
\(610\) 53.4094 19.0644i 2.16248 0.771896i
\(611\) 0.526249 0.441575i 0.0212898 0.0178642i
\(612\) 0 0
\(613\) 3.19955 + 1.16454i 0.129229 + 0.0470354i 0.405825 0.913951i \(-0.366984\pi\)
−0.276596 + 0.960986i \(0.589206\pi\)
\(614\) −8.79537 + 15.0177i −0.354952 + 0.606067i
\(615\) 0 0
\(616\) 16.0215 26.5926i 0.645524 1.07145i
\(617\) −0.527489 + 2.99154i −0.0212359 + 0.120435i −0.993583 0.113106i \(-0.963920\pi\)
0.972347 + 0.233541i \(0.0750312\pi\)
\(618\) 0 0
\(619\) 22.1622 12.7953i 0.890773 0.514288i 0.0165776 0.999863i \(-0.494723\pi\)
0.874195 + 0.485575i \(0.161390\pi\)
\(620\) −1.75290 + 9.26629i −0.0703982 + 0.372143i
\(621\) 0 0
\(622\) −14.0471 2.56698i −0.563238 0.102927i
\(623\) 21.3076 7.75532i 0.853669 0.310710i
\(624\) 0 0
\(625\) −0.125305 0.710638i −0.00501219 0.0284255i
\(626\) −1.30800 7.69740i −0.0522780 0.307650i
\(627\) 0 0
\(628\) −17.8472 + 6.24579i −0.712182 + 0.249234i
\(629\) −23.4424 + 4.13353i −0.934710 + 0.164815i
\(630\) 0 0
\(631\) 1.29656 + 3.56226i 0.0516151 + 0.141811i 0.962821 0.270139i \(-0.0870698\pi\)
−0.911206 + 0.411951i \(0.864848\pi\)
\(632\) −5.03670 32.0469i −0.200349 1.27476i
\(633\) 0 0
\(634\) −12.9364 + 34.8669i −0.513772 + 1.38474i
\(635\) 2.09970 + 3.63678i 0.0833239 + 0.144321i
\(636\) 0 0
\(637\) −0.355152 0.0626229i −0.0140716 0.00248121i
\(638\) 9.58571 7.94239i 0.379502 0.314442i
\(639\) 0 0
\(640\) 18.8589 + 36.2156i 0.745465 + 1.43155i
\(641\) 1.34038 3.68267i 0.0529419 0.145457i −0.910403 0.413723i \(-0.864228\pi\)
0.963345 + 0.268266i \(0.0864506\pi\)
\(642\) 0 0
\(643\) 8.07959 + 9.62888i 0.318628 + 0.379726i 0.901457 0.432869i \(-0.142499\pi\)
−0.582829 + 0.812595i \(0.698054\pi\)
\(644\) 12.1951 + 21.7421i 0.480554 + 0.856760i
\(645\) 0 0
\(646\) 19.7982 5.71075i 0.778950 0.224686i
\(647\) 11.1120i 0.436857i 0.975853 + 0.218429i \(0.0700931\pi\)
−0.975853 + 0.218429i \(0.929907\pi\)
\(648\) 0 0
\(649\) 42.0376 + 50.0985i 1.65012 + 1.96654i
\(650\) 1.13502 0.645932i 0.0445190 0.0253356i
\(651\) 0 0
\(652\) 1.32275 3.49833i 0.0518029 0.137005i
\(653\) 7.74378 13.4126i 0.303038 0.524876i −0.673785 0.738928i \(-0.735333\pi\)
0.976822 + 0.214051i \(0.0686659\pi\)
\(654\) 0 0
\(655\) 50.2666 + 8.86335i 1.96408 + 0.346320i
\(656\) 25.6876 13.9913i 1.00293 0.546270i
\(657\) 0 0
\(658\) −15.5640 5.77460i −0.606747 0.225117i
\(659\) 36.7884 + 30.8692i 1.43307 + 1.20249i 0.943868 + 0.330324i \(0.107158\pi\)
0.489207 + 0.872168i \(0.337286\pi\)
\(660\) 0 0
\(661\) 12.7444 + 35.0149i 0.495699 + 1.36192i 0.895395 + 0.445273i \(0.146894\pi\)
−0.399696 + 0.916648i \(0.630884\pi\)
\(662\) −37.8579 32.1696i −1.47139 1.25031i
\(663\) 0 0
\(664\) 43.6590 24.1328i 1.69430 0.936535i
\(665\) −27.6943 + 13.7754i −1.07394 + 0.534186i
\(666\) 0 0
\(667\) 1.73574 + 9.84387i 0.0672081 + 0.381156i
\(668\) 15.7244 26.4703i 0.608396 1.02417i
\(669\) 0 0
\(670\) −4.94248 + 27.0463i −0.190945 + 1.04489i
\(671\) 39.8706 47.5160i 1.53919 1.83433i
\(672\) 0 0
\(673\) 29.1483 16.8288i 1.12358 0.648701i 0.181270 0.983433i \(-0.441979\pi\)
0.942313 + 0.334732i \(0.108646\pi\)
\(674\) −0.0810982 + 13.0511i −0.00312379 + 0.502709i
\(675\) 0 0
\(676\) 19.6879 + 16.9414i 0.757225 + 0.651594i
\(677\) 5.61581 + 3.24229i 0.215833 + 0.124611i 0.604019 0.796970i \(-0.293565\pi\)
−0.388186 + 0.921581i \(0.626898\pi\)
\(678\) 0 0
\(679\) 9.98544 + 3.63440i 0.383206 + 0.139476i
\(680\) 25.7251 + 22.4162i 0.986513 + 0.859623i
\(681\) 0 0
\(682\) 3.46763 + 9.71463i 0.132782 + 0.371992i
\(683\) 46.0289 1.76125 0.880624 0.473815i \(-0.157124\pi\)
0.880624 + 0.473815i \(0.157124\pi\)
\(684\) 0 0
\(685\) 67.9183 2.59503
\(686\) 9.47306 + 26.5390i 0.361683 + 1.01326i
\(687\) 0 0
\(688\) −11.4409 6.99017i −0.436181 0.266498i
\(689\) −0.241075 0.0877442i −0.00918423 0.00334279i
\(690\) 0 0
\(691\) −7.27369 4.19947i −0.276704 0.159755i 0.355226 0.934780i \(-0.384404\pi\)
−0.631930 + 0.775025i \(0.717737\pi\)
\(692\) 22.0551 25.6305i 0.838410 0.974327i
\(693\) 0 0
\(694\) −0.0342882 + 5.51798i −0.00130156 + 0.209460i
\(695\) 24.2412 13.9957i 0.919521 0.530886i
\(696\) 0 0
\(697\) 15.7121 18.7250i 0.595139 0.709258i
\(698\) −3.94104 + 21.5662i −0.149171 + 0.816294i
\(699\) 0 0
\(700\) −27.1321 16.1176i −1.02550 0.609188i
\(701\) −7.46058 42.3111i −0.281782 1.59807i −0.716557 0.697528i \(-0.754283\pi\)
0.434775 0.900539i \(-0.356828\pi\)
\(702\) 0 0
\(703\) 30.1767 + 7.27481i 1.13814 + 0.274375i
\(704\) 37.8180 + 23.7565i 1.42532 + 0.895356i
\(705\) 0 0
\(706\) −4.10765 3.49046i −0.154594 0.131365i
\(707\) −12.1091 33.2695i −0.455410 1.25123i
\(708\) 0 0
\(709\) −10.3902 8.71837i −0.390210 0.327425i 0.426485 0.904495i \(-0.359752\pi\)
−0.816695 + 0.577069i \(0.804196\pi\)
\(710\) 10.6341 + 3.94548i 0.399089 + 0.148071i
\(711\) 0 0
\(712\) 10.5830 + 30.8542i 0.396613 + 1.15631i
\(713\) −8.15667 1.43824i −0.305470 0.0538626i
\(714\) 0 0
\(715\) 1.15918 2.00775i 0.0433507 0.0750857i
\(716\) 16.6501 + 6.29555i 0.622243 + 0.235276i
\(717\) 0 0
\(718\) 0.155593 0.0885469i 0.00580666 0.00330454i
\(719\) 0.441431 + 0.526077i 0.0164626 + 0.0196193i 0.774213 0.632925i \(-0.218146\pi\)
−0.757750 + 0.652545i \(0.773702\pi\)
\(720\) 0 0
\(721\) 17.5420i 0.653298i
\(722\) −26.6424 3.49041i −0.991527 0.129900i
\(723\) 0 0
\(724\) −15.9720 + 8.95863i −0.593593 + 0.332945i
\(725\) −8.13386 9.69355i −0.302084 0.360010i
\(726\) 0 0
\(727\) 13.2285 36.3450i 0.490618 1.34796i −0.409498 0.912311i \(-0.634296\pi\)
0.900116 0.435651i \(-0.143482\pi\)
\(728\) −0.122848 + 0.628012i −0.00455304 + 0.0232757i
\(729\) 0 0
\(730\) −11.3729 + 9.42322i −0.420931 + 0.348769i
\(731\) −11.0337 1.94555i −0.408098 0.0719587i
\(732\) 0 0
\(733\) −2.57626 4.46222i −0.0951564 0.164816i 0.814517 0.580139i \(-0.197002\pi\)
−0.909674 + 0.415323i \(0.863668\pi\)
\(734\) 1.19764 3.22795i 0.0442059 0.119146i
\(735\) 0 0
\(736\) −31.5983 + 16.9570i −1.16473 + 0.625042i
\(737\) 10.2854 + 28.2588i 0.378867 + 1.04093i
\(738\) 0 0
\(739\) 13.9534 2.46035i 0.513283 0.0905056i 0.0889933 0.996032i \(-0.471635\pi\)
0.424289 + 0.905527i \(0.360524\pi\)
\(740\) 16.9791 + 48.5174i 0.624164 + 1.78354i
\(741\) 0 0
\(742\) 1.03857 + 6.11188i 0.0381272 + 0.224374i
\(743\) 3.35200 + 19.0101i 0.122973 + 0.697414i 0.982491 + 0.186309i \(0.0596525\pi\)
−0.859518 + 0.511105i \(0.829236\pi\)
\(744\) 0 0
\(745\) −41.6252 + 15.1503i −1.52503 + 0.555065i
\(746\) −20.5033 3.74680i −0.750680 0.137180i
\(747\) 0 0
\(748\) 36.6707 + 6.93698i 1.34081 + 0.253641i
\(749\) 11.1253 6.42320i 0.406510 0.234699i
\(750\) 0 0
\(751\) 4.44462 25.2067i 0.162186 0.919805i −0.789732 0.613453i \(-0.789780\pi\)
0.951918 0.306353i \(-0.0991087\pi\)
\(752\) 8.72284 22.2305i 0.318089 0.810664i
\(753\) 0 0
\(754\) −0.129672 + 0.221410i −0.00472239 + 0.00806329i
\(755\) 18.3017 + 6.66127i 0.666066 + 0.242428i
\(756\) 0 0
\(757\) −18.0416 + 15.1387i −0.655735 + 0.550227i −0.908805 0.417221i \(-0.863004\pi\)
0.253070 + 0.967448i \(0.418560\pi\)
\(758\) 36.4404 13.0074i 1.32357 0.472448i
\(759\) 0 0
\(760\) −19.0702 40.2016i −0.691750 1.45826i
\(761\) −18.7562 −0.679910 −0.339955 0.940442i \(-0.610412\pi\)
−0.339955 + 0.940442i \(0.610412\pi\)
\(762\) 0 0
\(763\) 16.1687 13.5672i 0.585347 0.491164i
\(764\) −19.6652 24.0364i −0.711461 0.869608i
\(765\) 0 0
\(766\) −6.33478 + 10.8164i −0.228885 + 0.390812i
\(767\) −1.16739 0.673995i −0.0421522 0.0243366i
\(768\) 0 0
\(769\) −0.685755 + 3.88911i −0.0247289 + 0.140245i −0.994673 0.103085i \(-0.967129\pi\)
0.969944 + 0.243330i \(0.0782397\pi\)
\(770\) −56.0222 0.348117i −2.01890 0.0125453i
\(771\) 0 0
\(772\) 11.3676 + 2.15040i 0.409128 + 0.0773948i
\(773\) 20.5063 24.4384i 0.737560 0.878990i −0.258650 0.965971i \(-0.583278\pi\)
0.996210 + 0.0869812i \(0.0277220\pi\)
\(774\) 0 0
\(775\) 9.85285 3.58615i 0.353925 0.128818i
\(776\) −5.49505 + 14.2644i −0.197261 + 0.512063i
\(777\) 0 0
\(778\) −5.22245 30.7335i −0.187234 1.10185i
\(779\) −28.5397 + 14.1959i −1.02254 + 0.508620i
\(780\) 0 0
\(781\) 12.2175 2.15428i 0.437178 0.0770862i
\(782\) −19.4049 + 22.8361i −0.693917 + 0.816619i
\(783\) 0 0
\(784\) −11.8832 + 3.99359i −0.424402 + 0.142628i
\(785\) 26.1382 + 21.9325i 0.932912 + 0.782806i
\(786\) 0 0
\(787\) 23.6234 + 40.9170i 0.842084 + 1.45853i 0.888129 + 0.459594i \(0.152005\pi\)
−0.0460450 + 0.998939i \(0.514662\pi\)
\(788\) −1.40412 8.58578i −0.0500197 0.305856i
\(789\) 0 0
\(790\) −45.0766 + 37.3490i −1.60375 + 1.32882i
\(791\) −14.6536 + 25.3807i −0.521020 + 0.902434i
\(792\) 0 0
\(793\) −0.437274 + 1.20140i −0.0155281 + 0.0426630i
\(794\) −10.4326 18.3320i −0.370240 0.650578i
\(795\) 0 0
\(796\) −5.43748 + 3.04987i −0.192726 + 0.108100i
\(797\) 11.7621i 0.416636i 0.978061 + 0.208318i \(0.0667988\pi\)
−0.978061 + 0.208318i \(0.933201\pi\)
\(798\) 0 0
\(799\) 19.9560i 0.705994i
\(800\) 23.9092 38.5914i 0.845317 1.36441i
\(801\) 0 0
\(802\) 0.0611479 0.0347990i 0.00215921 0.00122879i
\(803\) −5.52518 + 15.1803i −0.194980 + 0.535702i
\(804\) 0 0
\(805\) 22.4922 38.9577i 0.792748 1.37308i
\(806\) −0.135648 0.163715i −0.00477801 0.00576661i
\(807\) 0 0
\(808\) 48.1756 16.5242i 1.69481 0.581319i
\(809\) 2.48471 + 4.30365i 0.0873578 + 0.151308i 0.906393 0.422434i \(-0.138824\pi\)
−0.819036 + 0.573743i \(0.805491\pi\)
\(810\) 0 0
\(811\) −3.51097 2.94606i −0.123287 0.103450i 0.579060 0.815285i \(-0.303420\pi\)
−0.702347 + 0.711835i \(0.747864\pi\)
\(812\) 6.20001 + 0.0770556i 0.217578 + 0.00270412i
\(813\) 0 0
\(814\) 42.8437 + 36.4062i 1.50167 + 1.27604i
\(815\) −6.64649 + 1.17196i −0.232816 + 0.0410518i
\(816\) 0 0
\(817\) 12.1758 + 8.07543i 0.425976 + 0.282524i
\(818\) 28.7743 4.88952i 1.00607 0.170958i
\(819\) 0 0
\(820\) −45.3807 26.9580i −1.58476 0.941414i
\(821\) 13.7267 4.99610i 0.479064 0.174365i −0.0911900 0.995834i \(-0.529067\pi\)
0.570254 + 0.821469i \(0.306845\pi\)
\(822\) 0 0
\(823\) −33.0057 + 39.3347i −1.15051 + 1.37112i −0.233449 + 0.972369i \(0.575001\pi\)
−0.917059 + 0.398753i \(0.869443\pi\)
\(824\) −25.2303 0.470385i −0.878940 0.0163866i
\(825\) 0 0
\(826\) −0.202410 + 32.5738i −0.00704276 + 1.13339i
\(827\) −5.61047 + 31.8185i −0.195095 + 1.10644i 0.717188 + 0.696880i \(0.245429\pi\)
−0.912283 + 0.409560i \(0.865682\pi\)
\(828\) 0 0
\(829\) −3.43948 1.98578i −0.119458 0.0689691i 0.439080 0.898448i \(-0.355304\pi\)
−0.558538 + 0.829479i \(0.688638\pi\)
\(830\) −77.6772 45.4928i −2.69621 1.57908i
\(831\) 0 0
\(832\) −0.899964 0.193530i −0.0312006 0.00670943i
\(833\) −8.02516 + 6.73391i −0.278055 + 0.233316i
\(834\) 0 0
\(835\) −55.5587 −1.92269
\(836\) −40.2207 27.4017i −1.39106 0.947706i
\(837\) 0 0
\(838\) −8.17153 22.8927i −0.282281 0.790815i
\(839\) −25.5691 + 21.4550i −0.882744 + 0.740710i −0.966741 0.255756i \(-0.917676\pi\)
0.0839976 + 0.996466i \(0.473231\pi\)
\(840\) 0 0
\(841\) −24.9148 9.06824i −0.859131 0.312698i
\(842\) −2.47519 1.44963i −0.0853007 0.0499576i
\(843\) 0 0
\(844\) −7.94797 6.83924i −0.273580 0.235416i
\(845\) 8.13887 46.1578i 0.279986 1.58788i
\(846\) 0 0
\(847\) −34.3367 + 19.8243i −1.17982 + 0.681172i
\(848\) −8.81845 + 1.32987i −0.302827 + 0.0456679i
\(849\) 0 0
\(850\) 6.81970 37.3189i 0.233914 1.28003i
\(851\) −42.4221 + 15.4404i −1.45421 + 0.529289i
\(852\) 0 0
\(853\) −2.88646 16.3699i −0.0988304 0.560495i −0.993506 0.113779i \(-0.963704\pi\)
0.894676 0.446716i \(-0.147407\pi\)
\(854\) 30.4586 5.17574i 1.04227 0.177110i
\(855\) 0 0
\(856\) 8.94005 + 16.1736i 0.305565 + 0.552801i
\(857\) 34.9234 6.15794i 1.19296 0.210351i 0.458308 0.888794i \(-0.348456\pi\)
0.734654 + 0.678442i \(0.237345\pi\)
\(858\) 0 0
\(859\) 3.57775 + 9.82980i 0.122071 + 0.335388i 0.985644 0.168836i \(-0.0540008\pi\)
−0.863573 + 0.504224i \(0.831779\pi\)
\(860\) −0.300666 + 24.1920i −0.0102526 + 0.824942i
\(861\) 0 0
\(862\) −44.2621 16.4223i −1.50757 0.559344i
\(863\) −6.08159 10.5336i −0.207020 0.358569i 0.743755 0.668453i \(-0.233043\pi\)
−0.950774 + 0.309884i \(0.899710\pi\)
\(864\) 0 0
\(865\) −60.0904 10.5956i −2.04313 0.360260i
\(866\) 18.1548 + 21.9111i 0.616924 + 0.744569i
\(867\) 0 0
\(868\) −1.81708 + 4.80570i −0.0616757 + 0.163116i
\(869\) −21.8991 + 60.1672i −0.742876 + 2.04103i
\(870\) 0 0
\(871\) −0.398430 0.474831i −0.0135003 0.0160890i
\(872\) 19.0798 + 23.6189i 0.646124 + 0.799839i
\(873\) 0 0
\(874\) 35.0964 17.1860i 1.18715 0.581325i
\(875\) 21.4674i 0.725732i
\(876\) 0 0
\(877\) −5.18825 6.18312i −0.175195 0.208789i 0.671300 0.741185i \(-0.265736\pi\)
−0.846495 + 0.532396i \(0.821292\pi\)
\(878\) 25.5620 + 44.9170i 0.862676 + 1.51587i
\(879\) 0 0
\(880\) 2.00291 80.5664i 0.0675182 2.71589i
\(881\) 12.8256 22.2146i 0.432105 0.748427i −0.564950 0.825125i \(-0.691104\pi\)
0.997054 + 0.0766980i \(0.0244377\pi\)
\(882\) 0 0
\(883\) 13.5357 + 2.38671i 0.455512 + 0.0803191i 0.396697 0.917950i \(-0.370157\pi\)
0.0588155 + 0.998269i \(0.481268\pi\)
\(884\) −0.759169 + 0.124155i −0.0255336 + 0.00417578i
\(885\) 0 0
\(886\) −9.49098 + 25.5806i −0.318856 + 0.859396i
\(887\) −16.7033 14.0157i −0.560842 0.470603i 0.317750 0.948174i \(-0.397073\pi\)
−0.878593 + 0.477572i \(0.841517\pi\)
\(888\) 0 0
\(889\) 0.782476 + 2.14983i 0.0262434 + 0.0721031i
\(890\) 38.1148 44.8544i 1.27761 1.50352i
\(891\) 0 0
\(892\) −13.6734 + 4.78513i −0.457820 + 0.160218i
\(893\) −10.3992 + 23.8552i −0.347996 + 0.798283i
\(894\) 0 0
\(895\) −5.57785 31.6335i −0.186447 1.05739i
\(896\) 6.69207 + 21.2144i 0.223566 + 0.708725i
\(897\) 0 0
\(898\) 16.7389 + 3.05889i 0.558585 + 0.102076i
\(899\) −1.32421 + 1.57813i −0.0441647 + 0.0526335i
\(900\) 0 0
\(901\) −6.45408 + 3.72627i −0.215017 + 0.124140i
\(902\) −57.7324 0.358744i −1.92228 0.0119449i
\(903\) 0 0
\(904\) −36.1116 21.7565i −1.20106 0.723610i
\(905\) 28.6187 + 16.5230i 0.951318 + 0.549244i
\(906\) 0 0
\(907\) −17.3624 6.31941i −0.576510 0.209832i 0.0372759 0.999305i \(-0.488132\pi\)
−0.613786 + 0.789473i \(0.710354\pi\)
\(908\) −19.9729 + 16.3406i −0.662824 + 0.542282i
\(909\) 0 0
\(910\) 1.08754 0.388195i 0.0360515 0.0128685i
\(911\) −7.50876 −0.248776 −0.124388 0.992234i \(-0.539697\pi\)
−0.124388 + 0.992234i \(0.539697\pi\)
\(912\) 0 0
\(913\) −98.4598 −3.25854
\(914\) 22.1792 7.91686i 0.733624 0.261866i
\(915\) 0 0
\(916\) 10.0619 8.23203i 0.332454 0.271994i
\(917\) 26.1304 + 9.51070i 0.862903 + 0.314071i
\(918\) 0 0
\(919\) 16.6207 + 9.59598i 0.548267 + 0.316542i 0.748423 0.663222i \(-0.230811\pi\)
−0.200156 + 0.979764i \(0.564145\pi\)
\(920\) 55.4290 + 33.3948i 1.82744 + 1.10099i
\(921\) 0 0
\(922\) −28.3702 0.176290i −0.934324 0.00580580i
\(923\) −0.221452 + 0.127855i −0.00728917 + 0.00420840i
\(924\) 0 0
\(925\) 36.7357 43.7799i 1.20786 1.43947i
\(926\) 33.0395 + 6.03768i 1.08575 + 0.198410i
\(927\) 0 0
\(928\) −0.277080 + 8.91530i −0.00909558 + 0.292659i
\(929\) −4.66977 26.4836i −0.153210 0.868899i −0.960404 0.278612i \(-0.910126\pi\)
0.807194 0.590287i \(-0.200985\pi\)
\(930\) 0 0
\(931\) 13.1023 3.86767i 0.429409 0.126758i
\(932\) −19.7061 + 6.89631i −0.645494 + 0.225896i
\(933\) 0 0
\(934\) 18.3499 21.5946i 0.600427 0.706598i
\(935\) −23.0339 63.2852i −0.753290 2.06965i
\(936\) 0 0
\(937\) 11.2301 + 9.42315i 0.366871 + 0.307841i 0.807522 0.589837i \(-0.200808\pi\)
−0.440652 + 0.897678i \(0.645253\pi\)
\(938\) −5.21038 + 14.0433i −0.170125 + 0.458529i
\(939\) 0 0
\(940\) −42.5283 + 6.95508i −1.38712 + 0.226850i
\(941\) −41.2808 7.27891i −1.34571 0.237286i −0.546060 0.837746i \(-0.683873\pi\)
−0.799655 + 0.600460i \(0.794984\pi\)
\(942\) 0 0
\(943\) 23.1789 40.1470i 0.754808 1.30737i
\(944\) −46.8448 1.16458i −1.52467 0.0379039i
\(945\) 0 0
\(946\) 13.0887 + 22.9991i 0.425549 + 0.747765i
\(947\) −33.8066 40.2891i −1.09857 1.30922i −0.947164 0.320749i \(-0.896066\pi\)
−0.151402 0.988472i \(-0.548379\pi\)
\(948\) 0 0
\(949\) 0.332975i 0.0108088i
\(950\) −27.5993 + 41.0567i −0.895439 + 1.33206i
\(951\) 0 0
\(952\) 11.6814 + 14.4604i 0.378595 + 0.468663i
\(953\) −6.79493 8.09789i −0.220109 0.262316i 0.644678 0.764454i \(-0.276991\pi\)
−0.864788 + 0.502138i \(0.832547\pi\)
\(954\) 0 0
\(955\) −19.1672 + 52.6615i −0.620236 + 1.70409i
\(956\) 19.8253 52.4327i 0.641195 1.69580i
\(957\) 0 0
\(958\) 13.8902 + 16.7641i 0.448771 + 0.541624i
\(959\) 36.4394 + 6.42525i 1.17669 + 0.207482i
\(960\) 0 0
\(961\) 14.6465 + 25.3685i 0.472468 + 0.818338i
\(962\) −1.08648 0.403110i −0.0350296 0.0129968i
\(963\) 0 0
\(964\) 0.366652 29.5014i 0.0118091 0.950175i
\(965\) −7.14032 19.6179i −0.229855 0.631522i
\(966\) 0 0
\(967\) 39.2804 6.92619i 1.26317 0.222731i 0.498351 0.866975i \(-0.333939\pi\)
0.764820 + 0.644244i \(0.222828\pi\)
\(968\) −27.5922 49.9175i −0.886847 1.60441i
\(969\) 0 0
\(970\) 27.1946 4.62109i 0.873165 0.148374i
\(971\) −6.74557 38.2561i −0.216476 1.22770i −0.878327 0.478060i \(-0.841340\pi\)
0.661851 0.749635i \(-0.269771\pi\)
\(972\) 0 0
\(973\) 14.3299 5.21564i 0.459394 0.167206i
\(974\) 5.78990 31.6836i 0.185520 1.01521i
\(975\) 0 0
\(976\) 6.62742 + 43.9468i 0.212139 + 1.40670i
\(977\) 23.9306 13.8163i 0.765606 0.442023i −0.0656987 0.997840i \(-0.520928\pi\)
0.831305 + 0.555817i \(0.187594\pi\)
\(978\) 0 0
\(979\) 11.1796 63.4028i 0.357302 2.02636i
\(980\) 17.1475 + 14.7555i 0.547758 + 0.471347i
\(981\) 0 0
\(982\) −25.6494 15.0220i −0.818505 0.479370i
\(983\) 55.3082 + 20.1305i 1.76406 + 0.642065i 0.999995 0.00307694i \(-0.000979421\pi\)
0.764063 + 0.645142i \(0.223202\pi\)
\(984\) 0 0
\(985\) −12.0262 + 10.0912i −0.383186 + 0.321531i
\(986\) 2.50576 + 7.01993i 0.0797995 + 0.223560i
\(987\) 0 0
\(988\) 0.972198 + 0.247195i 0.0309297 + 0.00786431i
\(989\) −21.2484 −0.675661
\(990\) 0 0
\(991\) −32.7089 + 27.4460i −1.03903 + 0.871852i −0.991898 0.127037i \(-0.959453\pi\)
−0.0471344 + 0.998889i \(0.515009\pi\)
\(992\) −6.86322 2.74233i −0.217908 0.0870691i
\(993\) 0 0
\(994\) 5.33211 + 3.12283i 0.169124 + 0.0990502i
\(995\) 9.74292 + 5.62508i 0.308871 + 0.178327i
\(996\) 0 0
\(997\) 8.78153 49.8025i 0.278114 1.57726i −0.450781 0.892635i \(-0.648854\pi\)
0.728894 0.684626i \(-0.240035\pi\)
\(998\) −0.163457 + 26.3050i −0.00517413 + 0.832669i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 684.2.cf.c.523.9 60
3.2 odd 2 228.2.w.a.67.2 60
4.3 odd 2 684.2.cf.b.523.10 60
12.11 even 2 228.2.w.b.67.1 yes 60
19.2 odd 18 684.2.cf.b.667.10 60
57.2 even 18 228.2.w.b.211.1 yes 60
76.59 even 18 inner 684.2.cf.c.667.9 60
228.59 odd 18 228.2.w.a.211.2 yes 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
228.2.w.a.67.2 60 3.2 odd 2
228.2.w.a.211.2 yes 60 228.59 odd 18
228.2.w.b.67.1 yes 60 12.11 even 2
228.2.w.b.211.1 yes 60 57.2 even 18
684.2.cf.b.523.10 60 4.3 odd 2
684.2.cf.b.667.10 60 19.2 odd 18
684.2.cf.c.523.9 60 1.1 even 1 trivial
684.2.cf.c.667.9 60 76.59 even 18 inner