Properties

Label 684.2.cf
Level $684$
Weight $2$
Character orbit 684.cf
Rep. character $\chi_{684}(91,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $288$
Newform subspaces $4$
Sturm bound $240$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.cf (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 76 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 4 \)
Sturm bound: \(240\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(684, [\chi])\).

Total New Old
Modular forms 768 312 456
Cusp forms 672 288 384
Eisenstein series 96 24 72

Trace form

\( 288 q + 6 q^{2} - 12 q^{4} + 12 q^{5} + 9 q^{8} + 9 q^{10} - 24 q^{13} + 21 q^{14} - 12 q^{16} + 12 q^{17} - 18 q^{20} - 12 q^{22} - 12 q^{25} - 21 q^{26} + 12 q^{29} + 21 q^{32} + 12 q^{34} + 72 q^{38}+ \cdots - 51 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(684, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
684.2.cf.a 684.cf 76.k $48$ $5.462$ None 76.2.k.a \(6\) \(0\) \(12\) \(0\) $\mathrm{SU}(2)[C_{18}]$
684.2.cf.b 684.cf 76.k $60$ $5.462$ None 228.2.w.a \(-3\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{18}]$
684.2.cf.c 684.cf 76.k $60$ $5.462$ None 228.2.w.a \(3\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{18}]$
684.2.cf.d 684.cf 76.k $120$ $5.462$ None 684.2.cf.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{18}]$

Decomposition of \(S_{2}^{\mathrm{old}}(684, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(684, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(228, [\chi])\)\(^{\oplus 2}\)