Properties

Label 684.2.cf.c.523.10
Level $684$
Weight $2$
Character 684.523
Analytic conductor $5.462$
Analytic rank $0$
Dimension $60$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [684,2,Mod(91,684)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(684, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 0, 11])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("684.91"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 684 = 2^{2} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 684.cf (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [60,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.46176749826\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(10\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 228)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 523.10
Character \(\chi\) \(=\) 684.523
Dual form 684.2.cf.c.667.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.37612 + 0.326044i) q^{2} +(1.78739 + 0.897349i) q^{4} +(1.25586 + 0.457097i) q^{5} +(-1.18216 - 0.682521i) q^{7} +(2.16708 + 1.81762i) q^{8} +(1.57918 + 1.03849i) q^{10} +(1.56682 - 0.904604i) q^{11} +(3.73606 - 4.45246i) q^{13} +(-1.40426 - 1.32467i) q^{14} +(2.38953 + 3.20783i) q^{16} +(0.927369 + 5.25937i) q^{17} +(-4.15334 - 1.32280i) q^{19} +(1.83454 + 1.94396i) q^{20} +(2.45107 - 0.733988i) q^{22} +(2.07944 + 5.71321i) q^{23} +(-2.46197 - 2.06583i) q^{25} +(6.59294 - 4.90898i) q^{26} +(-1.50052 - 2.28074i) q^{28} +(-0.589123 - 0.103878i) q^{29} +(-0.450194 + 0.779760i) q^{31} +(2.24238 + 5.19343i) q^{32} +(-0.438619 + 7.53987i) q^{34} +(-1.17266 - 1.39752i) q^{35} +7.89511i q^{37} +(-5.28418 - 3.17450i) q^{38} +(1.89073 + 3.27326i) q^{40} +(0.449691 + 0.535921i) q^{41} +(2.55877 - 7.03016i) q^{43} +(3.61227 - 0.210897i) q^{44} +(0.998791 + 8.54003i) q^{46} +(-6.84854 - 1.20758i) q^{47} +(-2.56833 - 4.44848i) q^{49} +(-2.71440 - 3.64554i) q^{50} +(10.6732 - 4.60574i) q^{52} +(-3.67511 - 10.0973i) q^{53} +(2.38121 - 0.419871i) q^{55} +(-1.32127 - 3.62780i) q^{56} +(-0.776832 - 0.335028i) q^{58} +(-1.38285 - 7.84254i) q^{59} +(-9.66972 + 3.51949i) q^{61} +(-0.873756 + 0.926257i) q^{62} +(1.39249 + 7.87788i) q^{64} +(6.72719 - 3.88394i) q^{65} +(0.147890 - 0.838725i) q^{67} +(-3.06192 + 10.2327i) q^{68} +(-1.15806 - 2.30548i) q^{70} +(-0.630487 - 0.229479i) q^{71} +(-2.99543 + 2.51346i) q^{73} +(-2.57415 + 10.8646i) q^{74} +(-6.23662 - 6.09135i) q^{76} -2.46965 q^{77} +(2.83807 - 2.38143i) q^{79} +(1.53464 + 5.12084i) q^{80} +(0.444093 + 0.884109i) q^{82} +(8.34975 + 4.82073i) q^{83} +(-1.23939 + 7.02896i) q^{85} +(5.81331 - 8.84005i) q^{86} +(5.03966 + 0.887540i) q^{88} +(-2.69672 + 3.21383i) q^{89} +(-7.45552 + 2.71359i) q^{91} +(-1.40997 + 12.0777i) q^{92} +(-9.03066 - 3.89470i) q^{94} +(-4.61138 - 3.55973i) q^{95} +(7.53165 - 1.32803i) q^{97} +(-2.08392 - 6.95901i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 60 q + 3 q^{2} - 3 q^{4} - 3 q^{8} - 6 q^{10} - 6 q^{13} + 9 q^{14} - 27 q^{16} - 18 q^{19} - 30 q^{20} + 12 q^{22} - 18 q^{28} + 12 q^{31} + 63 q^{32} - 39 q^{34} + 48 q^{38} + 33 q^{40} + 12 q^{41} + 18 q^{43}+ \cdots - 117 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/684\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(343\) \(533\)
\(\chi(n)\) \(e\left(\frac{17}{18}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.37612 + 0.326044i 0.973061 + 0.230548i
\(3\) 0 0
\(4\) 1.78739 + 0.897349i 0.893695 + 0.448674i
\(5\) 1.25586 + 0.457097i 0.561640 + 0.204420i 0.607210 0.794541i \(-0.292288\pi\)
−0.0455709 + 0.998961i \(0.514511\pi\)
\(6\) 0 0
\(7\) −1.18216 0.682521i −0.446815 0.257969i 0.259669 0.965698i \(-0.416387\pi\)
−0.706484 + 0.707729i \(0.749720\pi\)
\(8\) 2.16708 + 1.81762i 0.766179 + 0.642627i
\(9\) 0 0
\(10\) 1.57918 + 1.03849i 0.499381 + 0.328398i
\(11\) 1.56682 0.904604i 0.472414 0.272748i −0.244836 0.969565i \(-0.578734\pi\)
0.717250 + 0.696816i \(0.245401\pi\)
\(12\) 0 0
\(13\) 3.73606 4.45246i 1.03620 1.23489i 0.0646821 0.997906i \(-0.479397\pi\)
0.971514 0.236984i \(-0.0761589\pi\)
\(14\) −1.40426 1.32467i −0.375304 0.354032i
\(15\) 0 0
\(16\) 2.38953 + 3.20783i 0.597383 + 0.801956i
\(17\) 0.927369 + 5.25937i 0.224920 + 1.27559i 0.862838 + 0.505481i \(0.168685\pi\)
−0.637918 + 0.770104i \(0.720204\pi\)
\(18\) 0 0
\(19\) −4.15334 1.32280i −0.952841 0.303471i
\(20\) 1.83454 + 1.94396i 0.410217 + 0.434683i
\(21\) 0 0
\(22\) 2.45107 0.733988i 0.522569 0.156487i
\(23\) 2.07944 + 5.71321i 0.433593 + 1.19129i 0.943591 + 0.331112i \(0.107424\pi\)
−0.509998 + 0.860175i \(0.670354\pi\)
\(24\) 0 0
\(25\) −2.46197 2.06583i −0.492393 0.413167i
\(26\) 6.59294 4.90898i 1.29298 0.962730i
\(27\) 0 0
\(28\) −1.50052 2.28074i −0.283572 0.431020i
\(29\) −0.589123 0.103878i −0.109397 0.0192897i 0.118681 0.992932i \(-0.462133\pi\)
−0.228079 + 0.973643i \(0.573244\pi\)
\(30\) 0 0
\(31\) −0.450194 + 0.779760i −0.0808573 + 0.140049i −0.903618 0.428338i \(-0.859099\pi\)
0.822761 + 0.568387i \(0.192432\pi\)
\(32\) 2.24238 + 5.19343i 0.396400 + 0.918078i
\(33\) 0 0
\(34\) −0.438619 + 7.53987i −0.0752226 + 1.29308i
\(35\) −1.17266 1.39752i −0.198215 0.236223i
\(36\) 0 0
\(37\) 7.89511i 1.29795i 0.760811 + 0.648974i \(0.224802\pi\)
−0.760811 + 0.648974i \(0.775198\pi\)
\(38\) −5.28418 3.17450i −0.857208 0.514971i
\(39\) 0 0
\(40\) 1.89073 + 3.27326i 0.298951 + 0.517547i
\(41\) 0.449691 + 0.535921i 0.0702300 + 0.0836968i 0.800015 0.599979i \(-0.204825\pi\)
−0.729786 + 0.683676i \(0.760380\pi\)
\(42\) 0 0
\(43\) 2.55877 7.03016i 0.390209 1.07209i −0.576697 0.816958i \(-0.695659\pi\)
0.966906 0.255132i \(-0.0821189\pi\)
\(44\) 3.61227 0.210897i 0.544570 0.0317939i
\(45\) 0 0
\(46\) 0.998791 + 8.54003i 0.147264 + 1.25916i
\(47\) −6.84854 1.20758i −0.998962 0.176144i −0.349824 0.936815i \(-0.613759\pi\)
−0.649137 + 0.760671i \(0.724870\pi\)
\(48\) 0 0
\(49\) −2.56833 4.44848i −0.366904 0.635497i
\(50\) −2.71440 3.64554i −0.383874 0.515557i
\(51\) 0 0
\(52\) 10.6732 4.60574i 1.48011 0.638701i
\(53\) −3.67511 10.0973i −0.504815 1.38697i −0.886522 0.462686i \(-0.846886\pi\)
0.381707 0.924283i \(-0.375336\pi\)
\(54\) 0 0
\(55\) 2.38121 0.419871i 0.321082 0.0566154i
\(56\) −1.32127 3.62780i −0.176563 0.484786i
\(57\) 0 0
\(58\) −0.776832 0.335028i −0.102003 0.0439914i
\(59\) −1.38285 7.84254i −0.180032 1.02101i −0.932174 0.362011i \(-0.882090\pi\)
0.752142 0.659001i \(-0.229021\pi\)
\(60\) 0 0
\(61\) −9.66972 + 3.51949i −1.23808 + 0.450624i −0.876357 0.481661i \(-0.840034\pi\)
−0.361723 + 0.932286i \(0.617811\pi\)
\(62\) −0.873756 + 0.926257i −0.110967 + 0.117635i
\(63\) 0 0
\(64\) 1.39249 + 7.87788i 0.174061 + 0.984735i
\(65\) 6.72719 3.88394i 0.834405 0.481744i
\(66\) 0 0
\(67\) 0.147890 0.838725i 0.0180676 0.102467i −0.974440 0.224646i \(-0.927877\pi\)
0.992508 + 0.122180i \(0.0389884\pi\)
\(68\) −3.06192 + 10.2327i −0.371312 + 1.24090i
\(69\) 0 0
\(70\) −1.15806 2.30548i −0.138414 0.275558i
\(71\) −0.630487 0.229479i −0.0748251 0.0272341i 0.304336 0.952565i \(-0.401565\pi\)
−0.379162 + 0.925331i \(0.623788\pi\)
\(72\) 0 0
\(73\) −2.99543 + 2.51346i −0.350588 + 0.294178i −0.801026 0.598629i \(-0.795712\pi\)
0.450438 + 0.892808i \(0.351268\pi\)
\(74\) −2.57415 + 10.8646i −0.299239 + 1.26298i
\(75\) 0 0
\(76\) −6.23662 6.09135i −0.715390 0.698726i
\(77\) −2.46965 −0.281442
\(78\) 0 0
\(79\) 2.83807 2.38143i 0.319308 0.267932i −0.469018 0.883188i \(-0.655392\pi\)
0.788327 + 0.615257i \(0.210948\pi\)
\(80\) 1.53464 + 5.12084i 0.171578 + 0.572527i
\(81\) 0 0
\(82\) 0.444093 + 0.884109i 0.0490419 + 0.0976335i
\(83\) 8.34975 + 4.82073i 0.916504 + 0.529144i 0.882518 0.470278i \(-0.155847\pi\)
0.0339859 + 0.999422i \(0.489180\pi\)
\(84\) 0 0
\(85\) −1.23939 + 7.02896i −0.134431 + 0.762397i
\(86\) 5.81331 8.84005i 0.626865 0.953247i
\(87\) 0 0
\(88\) 5.03966 + 0.887540i 0.537229 + 0.0946120i
\(89\) −2.69672 + 3.21383i −0.285852 + 0.340665i −0.889793 0.456363i \(-0.849152\pi\)
0.603941 + 0.797029i \(0.293596\pi\)
\(90\) 0 0
\(91\) −7.45552 + 2.71359i −0.781551 + 0.284461i
\(92\) −1.40997 + 12.0777i −0.147000 + 1.25919i
\(93\) 0 0
\(94\) −9.03066 3.89470i −0.931441 0.401707i
\(95\) −4.61138 3.55973i −0.473117 0.365221i
\(96\) 0 0
\(97\) 7.53165 1.32803i 0.764723 0.134841i 0.222336 0.974970i \(-0.428632\pi\)
0.542387 + 0.840129i \(0.317521\pi\)
\(98\) −2.08392 6.95901i −0.210508 0.702966i
\(99\) 0 0
\(100\) −2.54672 5.90169i −0.254672 0.590169i
\(101\) −0.403018 0.338172i −0.0401018 0.0336494i 0.622517 0.782607i \(-0.286110\pi\)
−0.662618 + 0.748957i \(0.730555\pi\)
\(102\) 0 0
\(103\) −8.31062 14.3944i −0.818870 1.41832i −0.906515 0.422173i \(-0.861268\pi\)
0.0876453 0.996152i \(-0.472066\pi\)
\(104\) 16.1892 2.85810i 1.58749 0.280259i
\(105\) 0 0
\(106\) −1.76522 15.0933i −0.171453 1.46599i
\(107\) 2.53421 4.38938i 0.244991 0.424337i −0.717138 0.696931i \(-0.754548\pi\)
0.962129 + 0.272594i \(0.0878816\pi\)
\(108\) 0 0
\(109\) −0.783126 + 2.15162i −0.0750099 + 0.206088i −0.971531 0.236914i \(-0.923864\pi\)
0.896521 + 0.443002i \(0.146086\pi\)
\(110\) 3.41371 + 0.198587i 0.325485 + 0.0189345i
\(111\) 0 0
\(112\) −0.635402 5.42307i −0.0600398 0.512432i
\(113\) 11.5712i 1.08852i 0.838915 + 0.544262i \(0.183190\pi\)
−0.838915 + 0.544262i \(0.816810\pi\)
\(114\) 0 0
\(115\) 8.12553i 0.757709i
\(116\) −0.959777 0.714319i −0.0891131 0.0663229i
\(117\) 0 0
\(118\) 0.654049 11.2431i 0.0602101 1.03501i
\(119\) 2.49333 6.85038i 0.228563 0.627973i
\(120\) 0 0
\(121\) −3.86338 + 6.69157i −0.351217 + 0.608325i
\(122\) −14.4542 + 1.69047i −1.30862 + 0.153048i
\(123\) 0 0
\(124\) −1.50439 + 0.989754i −0.135098 + 0.0888825i
\(125\) −5.48876 9.50682i −0.490930 0.850316i
\(126\) 0 0
\(127\) −7.85651 6.59239i −0.697153 0.584980i 0.223809 0.974633i \(-0.428151\pi\)
−0.920962 + 0.389652i \(0.872595\pi\)
\(128\) −0.652313 + 11.2949i −0.0576569 + 0.998336i
\(129\) 0 0
\(130\) 10.5237 3.15140i 0.922992 0.276396i
\(131\) −16.8151 + 2.96495i −1.46914 + 0.259049i −0.850229 0.526413i \(-0.823536\pi\)
−0.618910 + 0.785462i \(0.712425\pi\)
\(132\) 0 0
\(133\) 4.00708 + 4.39850i 0.347458 + 0.381398i
\(134\) 0.476975 1.10596i 0.0412043 0.0955407i
\(135\) 0 0
\(136\) −7.54988 + 13.0831i −0.647397 + 1.12187i
\(137\) 1.40505 0.511397i 0.120042 0.0436916i −0.281301 0.959620i \(-0.590766\pi\)
0.401343 + 0.915928i \(0.368544\pi\)
\(138\) 0 0
\(139\) 11.9953 14.2955i 1.01743 1.21253i 0.0404549 0.999181i \(-0.487119\pi\)
0.976977 0.213346i \(-0.0684363\pi\)
\(140\) −0.841934 3.55019i −0.0711564 0.300046i
\(141\) 0 0
\(142\) −0.792804 0.521356i −0.0665306 0.0437512i
\(143\) 1.82602 10.3559i 0.152699 0.866000i
\(144\) 0 0
\(145\) −0.692376 0.399743i −0.0574987 0.0331969i
\(146\) −4.94155 + 2.48217i −0.408966 + 0.205426i
\(147\) 0 0
\(148\) −7.08467 + 14.1116i −0.582356 + 1.15997i
\(149\) −9.83882 + 8.25575i −0.806028 + 0.676337i −0.949656 0.313294i \(-0.898567\pi\)
0.143629 + 0.989632i \(0.454123\pi\)
\(150\) 0 0
\(151\) 12.7827 1.04024 0.520122 0.854092i \(-0.325887\pi\)
0.520122 + 0.854092i \(0.325887\pi\)
\(152\) −6.59627 10.4158i −0.535028 0.844834i
\(153\) 0 0
\(154\) −3.39852 0.805214i −0.273861 0.0648860i
\(155\) −0.921809 + 0.773490i −0.0740415 + 0.0621282i
\(156\) 0 0
\(157\) −13.2613 4.82672i −1.05837 0.385214i −0.246553 0.969129i \(-0.579298\pi\)
−0.811815 + 0.583915i \(0.801520\pi\)
\(158\) 4.68197 2.35178i 0.372478 0.187098i
\(159\) 0 0
\(160\) 0.442220 + 7.54723i 0.0349605 + 0.596661i
\(161\) 1.44116 8.17320i 0.113579 0.644139i
\(162\) 0 0
\(163\) −15.4400 + 8.91427i −1.20935 + 0.698219i −0.962618 0.270864i \(-0.912691\pi\)
−0.246734 + 0.969083i \(0.579357\pi\)
\(164\) 0.322866 + 1.36143i 0.0252116 + 0.106310i
\(165\) 0 0
\(166\) 9.91845 + 9.35627i 0.769821 + 0.726187i
\(167\) −9.72858 + 3.54091i −0.752820 + 0.274004i −0.689792 0.724008i \(-0.742298\pi\)
−0.0630280 + 0.998012i \(0.520076\pi\)
\(168\) 0 0
\(169\) −3.60884 20.4668i −0.277603 1.57437i
\(170\) −3.99730 + 9.26856i −0.306579 + 0.710866i
\(171\) 0 0
\(172\) 10.8820 10.2695i 0.829747 0.783045i
\(173\) −14.4030 + 2.53963i −1.09504 + 0.193085i −0.691856 0.722035i \(-0.743207\pi\)
−0.403182 + 0.915120i \(0.632096\pi\)
\(174\) 0 0
\(175\) 1.50046 + 4.12249i 0.113424 + 0.311631i
\(176\) 6.64578 + 2.86451i 0.500944 + 0.215920i
\(177\) 0 0
\(178\) −4.75885 + 3.54335i −0.356691 + 0.265585i
\(179\) 11.7089 + 20.2804i 0.875164 + 1.51583i 0.856588 + 0.516001i \(0.172580\pi\)
0.0185761 + 0.999827i \(0.494087\pi\)
\(180\) 0 0
\(181\) 11.7776 + 2.07670i 0.875420 + 0.154360i 0.593264 0.805008i \(-0.297839\pi\)
0.282156 + 0.959368i \(0.408950\pi\)
\(182\) −11.1444 + 1.30338i −0.826079 + 0.0966132i
\(183\) 0 0
\(184\) −5.87816 + 16.1606i −0.433344 + 1.19138i
\(185\) −3.60883 + 9.91518i −0.265327 + 0.728979i
\(186\) 0 0
\(187\) 6.21067 + 7.40159i 0.454169 + 0.541258i
\(188\) −11.1574 8.30395i −0.813736 0.605627i
\(189\) 0 0
\(190\) −5.18516 6.40212i −0.376171 0.464459i
\(191\) 24.0981i 1.74368i −0.489792 0.871839i \(-0.662927\pi\)
0.489792 0.871839i \(-0.337073\pi\)
\(192\) 0 0
\(193\) −0.142369 0.169668i −0.0102479 0.0122130i 0.760896 0.648874i \(-0.224760\pi\)
−0.771144 + 0.636661i \(0.780315\pi\)
\(194\) 10.7974 + 0.628121i 0.775209 + 0.0450965i
\(195\) 0 0
\(196\) −0.598772 10.2559i −0.0427695 0.732561i
\(197\) 10.6034 18.3656i 0.755458 1.30849i −0.189688 0.981844i \(-0.560748\pi\)
0.945146 0.326648i \(-0.105919\pi\)
\(198\) 0 0
\(199\) 9.96742 + 1.75752i 0.706572 + 0.124588i 0.515376 0.856964i \(-0.327652\pi\)
0.191196 + 0.981552i \(0.438763\pi\)
\(200\) −1.58037 8.95176i −0.111749 0.632985i
\(201\) 0 0
\(202\) −0.444340 0.596765i −0.0312637 0.0419883i
\(203\) 0.625539 + 0.524890i 0.0439042 + 0.0368400i
\(204\) 0 0
\(205\) 0.319783 + 0.878597i 0.0223346 + 0.0613638i
\(206\) −6.74317 22.5180i −0.469819 1.56891i
\(207\) 0 0
\(208\) 23.2101 + 1.34533i 1.60933 + 0.0932820i
\(209\) −7.70414 + 1.68454i −0.532907 + 0.116522i
\(210\) 0 0
\(211\) 4.68568 + 26.5738i 0.322576 + 1.82942i 0.526191 + 0.850367i \(0.323620\pi\)
−0.203615 + 0.979051i \(0.565269\pi\)
\(212\) 2.49193 21.3457i 0.171146 1.46603i
\(213\) 0 0
\(214\) 4.91850 5.21403i 0.336221 0.356424i
\(215\) 6.42694 7.65932i 0.438313 0.522362i
\(216\) 0 0
\(217\) 1.06441 0.614535i 0.0722565 0.0417173i
\(218\) −1.77920 + 2.70555i −0.120502 + 0.183243i
\(219\) 0 0
\(220\) 4.63292 + 1.38630i 0.312351 + 0.0934643i
\(221\) 26.8818 + 15.5202i 1.80827 + 1.04400i
\(222\) 0 0
\(223\) 0.0346307 + 0.0126046i 0.00231905 + 0.000844064i 0.343179 0.939270i \(-0.388496\pi\)
−0.340860 + 0.940114i \(0.610718\pi\)
\(224\) 0.893774 7.66995i 0.0597178 0.512470i
\(225\) 0 0
\(226\) −3.77271 + 15.9233i −0.250957 + 1.05920i
\(227\) 13.2865 0.881859 0.440929 0.897542i \(-0.354649\pi\)
0.440929 + 0.897542i \(0.354649\pi\)
\(228\) 0 0
\(229\) 28.8285 1.90504 0.952520 0.304477i \(-0.0984816\pi\)
0.952520 + 0.304477i \(0.0984816\pi\)
\(230\) −2.64928 + 11.1817i −0.174688 + 0.737297i
\(231\) 0 0
\(232\) −1.08787 1.29592i −0.0714219 0.0850811i
\(233\) 14.3124 + 5.20928i 0.937636 + 0.341272i 0.765232 0.643755i \(-0.222624\pi\)
0.172404 + 0.985026i \(0.444847\pi\)
\(234\) 0 0
\(235\) −8.04885 4.64701i −0.525049 0.303137i
\(236\) 4.56580 15.2586i 0.297208 0.993249i
\(237\) 0 0
\(238\) 5.66464 8.61398i 0.367184 0.558361i
\(239\) −18.8499 + 10.8830i −1.21930 + 0.703964i −0.964768 0.263100i \(-0.915255\pi\)
−0.254533 + 0.967064i \(0.581922\pi\)
\(240\) 0 0
\(241\) 4.70691 5.60947i 0.303198 0.361338i −0.592835 0.805324i \(-0.701992\pi\)
0.896034 + 0.443986i \(0.146436\pi\)
\(242\) −7.49821 + 7.94875i −0.482003 + 0.510965i
\(243\) 0 0
\(244\) −20.4418 2.38641i −1.30865 0.152774i
\(245\) −1.19209 6.76066i −0.0761596 0.431923i
\(246\) 0 0
\(247\) −21.4068 + 13.5505i −1.36208 + 0.862198i
\(248\) −2.39292 + 0.871519i −0.151950 + 0.0553415i
\(249\) 0 0
\(250\) −4.45353 14.8721i −0.281666 0.940592i
\(251\) 10.3774 + 28.5117i 0.655017 + 1.79964i 0.598327 + 0.801252i \(0.295833\pi\)
0.0566903 + 0.998392i \(0.481945\pi\)
\(252\) 0 0
\(253\) 8.42631 + 7.07051i 0.529757 + 0.444519i
\(254\) −8.66206 11.6335i −0.543506 0.729949i
\(255\) 0 0
\(256\) −4.58029 + 15.3304i −0.286268 + 0.958150i
\(257\) −13.8423 2.44078i −0.863461 0.152251i −0.275658 0.961256i \(-0.588896\pi\)
−0.587803 + 0.809004i \(0.700007\pi\)
\(258\) 0 0
\(259\) 5.38858 9.33329i 0.334830 0.579943i
\(260\) 15.5094 0.905490i 0.961850 0.0561561i
\(261\) 0 0
\(262\) −24.1062 1.40234i −1.48928 0.0866366i
\(263\) 10.9130 + 13.0056i 0.672925 + 0.801961i 0.989179 0.146713i \(-0.0468695\pi\)
−0.316254 + 0.948675i \(0.602425\pi\)
\(264\) 0 0
\(265\) 14.3607i 0.882171i
\(266\) 4.08010 + 7.35933i 0.250167 + 0.451230i
\(267\) 0 0
\(268\) 1.01697 1.36642i 0.0621210 0.0834674i
\(269\) 2.93895 + 3.50250i 0.179191 + 0.213551i 0.848162 0.529737i \(-0.177709\pi\)
−0.668971 + 0.743288i \(0.733265\pi\)
\(270\) 0 0
\(271\) −7.27616 + 19.9911i −0.441995 + 1.21437i 0.496183 + 0.868218i \(0.334735\pi\)
−0.938178 + 0.346153i \(0.887488\pi\)
\(272\) −14.6552 + 15.5423i −0.888600 + 0.942389i
\(273\) 0 0
\(274\) 2.10025 0.245633i 0.126881 0.0148392i
\(275\) −5.72622 1.00969i −0.345304 0.0608864i
\(276\) 0 0
\(277\) −2.28795 3.96285i −0.137470 0.238104i 0.789069 0.614305i \(-0.210564\pi\)
−0.926538 + 0.376201i \(0.877230\pi\)
\(278\) 21.1679 15.7612i 1.26957 0.945297i
\(279\) 0 0
\(280\) −0.00108081 5.15998i −6.45910e−5 0.308368i
\(281\) 6.42344 + 17.6482i 0.383190 + 1.05281i 0.970005 + 0.243085i \(0.0781594\pi\)
−0.586815 + 0.809721i \(0.699618\pi\)
\(282\) 0 0
\(283\) 24.9211 4.39427i 1.48141 0.261212i 0.626268 0.779608i \(-0.284582\pi\)
0.855141 + 0.518396i \(0.173471\pi\)
\(284\) −0.921005 0.975935i −0.0546516 0.0579111i
\(285\) 0 0
\(286\) 5.88928 13.6555i 0.348240 0.807467i
\(287\) −0.165830 0.940469i −0.00978864 0.0555141i
\(288\) 0 0
\(289\) −10.8262 + 3.94042i −0.636836 + 0.231789i
\(290\) −0.822455 0.775838i −0.0482962 0.0455588i
\(291\) 0 0
\(292\) −7.60945 + 1.80459i −0.445309 + 0.105606i
\(293\) −0.535807 + 0.309349i −0.0313022 + 0.0180723i −0.515569 0.856848i \(-0.672420\pi\)
0.484267 + 0.874920i \(0.339086\pi\)
\(294\) 0 0
\(295\) 1.84813 10.4813i 0.107602 0.610242i
\(296\) −14.3503 + 17.1093i −0.834097 + 0.994460i
\(297\) 0 0
\(298\) −16.2311 + 8.15298i −0.940242 + 0.472290i
\(299\) 33.2068 + 12.0863i 1.92040 + 0.698967i
\(300\) 0 0
\(301\) −7.82312 + 6.56437i −0.450917 + 0.378364i
\(302\) 17.5905 + 4.16773i 1.01222 + 0.239826i
\(303\) 0 0
\(304\) −5.68121 16.4840i −0.325840 0.945425i
\(305\) −13.7526 −0.787472
\(306\) 0 0
\(307\) 14.7710 12.3943i 0.843024 0.707381i −0.115218 0.993340i \(-0.536757\pi\)
0.958242 + 0.285959i \(0.0923122\pi\)
\(308\) −4.41422 2.21613i −0.251524 0.126276i
\(309\) 0 0
\(310\) −1.52071 + 0.763861i −0.0863704 + 0.0433844i
\(311\) −7.47317 4.31464i −0.423765 0.244661i 0.272922 0.962036i \(-0.412010\pi\)
−0.696687 + 0.717375i \(0.745343\pi\)
\(312\) 0 0
\(313\) 5.84370 33.1413i 0.330305 1.87326i −0.139109 0.990277i \(-0.544424\pi\)
0.469414 0.882978i \(-0.344465\pi\)
\(314\) −16.6754 10.9659i −0.941046 0.618841i
\(315\) 0 0
\(316\) 7.20972 1.70980i 0.405578 0.0961837i
\(317\) 15.3580 18.3030i 0.862592 1.02800i −0.136709 0.990611i \(-0.543653\pi\)
0.999301 0.0373855i \(-0.0119030\pi\)
\(318\) 0 0
\(319\) −1.01702 + 0.370164i −0.0569421 + 0.0207252i
\(320\) −1.85218 + 10.5300i −0.103540 + 0.588648i
\(321\) 0 0
\(322\) 4.64802 10.7774i 0.259024 0.600601i
\(323\) 3.10542 23.0707i 0.172790 1.28369i
\(324\) 0 0
\(325\) −18.3961 + 3.24373i −1.02043 + 0.179930i
\(326\) −24.1536 + 7.23296i −1.33775 + 0.400596i
\(327\) 0 0
\(328\) 0.000414471 1.97875i 2.28854e−5 0.109258i
\(329\) 7.27187 + 6.10183i 0.400911 + 0.336405i
\(330\) 0 0
\(331\) 11.1872 + 19.3767i 0.614902 + 1.06504i 0.990402 + 0.138219i \(0.0441379\pi\)
−0.375499 + 0.926823i \(0.622529\pi\)
\(332\) 10.5984 + 16.1092i 0.581662 + 0.884105i
\(333\) 0 0
\(334\) −14.5421 + 1.70076i −0.795711 + 0.0930615i
\(335\) 0.569108 0.985724i 0.0310937 0.0538559i
\(336\) 0 0
\(337\) −7.67933 + 21.0988i −0.418320 + 1.14932i 0.534336 + 0.845272i \(0.320562\pi\)
−0.952656 + 0.304051i \(0.901661\pi\)
\(338\) 1.70688 29.3413i 0.0928421 1.59596i
\(339\) 0 0
\(340\) −8.52271 + 11.4513i −0.462209 + 0.621035i
\(341\) 1.62899i 0.0882148i
\(342\) 0 0
\(343\) 16.5671i 0.894537i
\(344\) 18.3233 10.5841i 0.987924 0.570654i
\(345\) 0 0
\(346\) −20.6482 1.20117i −1.11005 0.0645755i
\(347\) −6.73751 + 18.5112i −0.361689 + 0.993731i 0.616744 + 0.787164i \(0.288451\pi\)
−0.978432 + 0.206567i \(0.933771\pi\)
\(348\) 0 0
\(349\) 11.0085 19.0672i 0.589270 1.02064i −0.405059 0.914291i \(-0.632749\pi\)
0.994328 0.106354i \(-0.0339177\pi\)
\(350\) 0.720699 + 6.16225i 0.0385230 + 0.329386i
\(351\) 0 0
\(352\) 8.21141 + 6.10871i 0.437669 + 0.325595i
\(353\) −10.2460 17.7465i −0.545338 0.944553i −0.998586 0.0531686i \(-0.983068\pi\)
0.453247 0.891385i \(-0.350265\pi\)
\(354\) 0 0
\(355\) −0.686912 0.576388i −0.0364575 0.0305915i
\(356\) −7.70402 + 3.32447i −0.408312 + 0.176196i
\(357\) 0 0
\(358\) 9.50050 + 31.7258i 0.502117 + 1.67676i
\(359\) −11.1171 + 1.96024i −0.586738 + 0.103458i −0.459133 0.888367i \(-0.651840\pi\)
−0.127605 + 0.991825i \(0.540729\pi\)
\(360\) 0 0
\(361\) 15.5004 + 10.9881i 0.815811 + 0.578319i
\(362\) 15.5302 + 6.69779i 0.816249 + 0.352028i
\(363\) 0 0
\(364\) −15.7610 1.83996i −0.826099 0.0964402i
\(365\) −4.91074 + 1.78736i −0.257040 + 0.0935549i
\(366\) 0 0
\(367\) 4.93537 5.88174i 0.257624 0.307025i −0.621693 0.783261i \(-0.713555\pi\)
0.879317 + 0.476236i \(0.157999\pi\)
\(368\) −13.3581 + 20.3224i −0.696340 + 1.05938i
\(369\) 0 0
\(370\) −8.19896 + 12.4678i −0.426244 + 0.648170i
\(371\) −2.54704 + 14.4450i −0.132236 + 0.749945i
\(372\) 0 0
\(373\) 10.6167 + 6.12955i 0.549711 + 0.317376i 0.749005 0.662564i \(-0.230532\pi\)
−0.199294 + 0.979940i \(0.563865\pi\)
\(374\) 6.13336 + 12.2104i 0.317149 + 0.631385i
\(375\) 0 0
\(376\) −12.6464 15.0650i −0.652189 0.776918i
\(377\) −2.66351 + 2.23495i −0.137178 + 0.115106i
\(378\) 0 0
\(379\) −8.64524 −0.444076 −0.222038 0.975038i \(-0.571271\pi\)
−0.222038 + 0.975038i \(0.571271\pi\)
\(380\) −5.04801 10.5007i −0.258958 0.538672i
\(381\) 0 0
\(382\) 7.85705 33.1618i 0.402001 1.69671i
\(383\) −14.4544 + 12.1287i −0.738584 + 0.619745i −0.932457 0.361281i \(-0.882339\pi\)
0.193873 + 0.981027i \(0.437895\pi\)
\(384\) 0 0
\(385\) −3.10154 1.12887i −0.158069 0.0575325i
\(386\) −0.140596 0.279902i −0.00715617 0.0142466i
\(387\) 0 0
\(388\) 14.6537 + 4.38480i 0.743929 + 0.222605i
\(389\) −0.467114 + 2.64914i −0.0236836 + 0.134317i −0.994357 0.106086i \(-0.966168\pi\)
0.970673 + 0.240402i \(0.0772793\pi\)
\(390\) 0 0
\(391\) −28.1195 + 16.2348i −1.42206 + 0.821030i
\(392\) 2.51988 14.3085i 0.127273 0.722687i
\(393\) 0 0
\(394\) 20.5794 21.8160i 1.03678 1.09907i
\(395\) 4.65278 1.69347i 0.234107 0.0852079i
\(396\) 0 0
\(397\) −0.105492 0.598277i −0.00529451 0.0300267i 0.982046 0.188641i \(-0.0604084\pi\)
−0.987341 + 0.158615i \(0.949297\pi\)
\(398\) 13.1433 + 5.66838i 0.658814 + 0.284130i
\(399\) 0 0
\(400\) 0.743895 12.8339i 0.0371947 0.641696i
\(401\) 37.4771 6.60822i 1.87152 0.329999i 0.881639 0.471924i \(-0.156440\pi\)
0.989877 + 0.141925i \(0.0453293\pi\)
\(402\) 0 0
\(403\) 1.78990 + 4.91770i 0.0891611 + 0.244968i
\(404\) −0.416892 0.966093i −0.0207411 0.0480649i
\(405\) 0 0
\(406\) 0.689677 + 0.926262i 0.0342281 + 0.0459696i
\(407\) 7.14195 + 12.3702i 0.354013 + 0.613169i
\(408\) 0 0
\(409\) −8.87907 1.56562i −0.439042 0.0774149i −0.0502417 0.998737i \(-0.515999\pi\)
−0.388800 + 0.921322i \(0.627110\pi\)
\(410\) 0.153597 + 1.31331i 0.00758563 + 0.0648600i
\(411\) 0 0
\(412\) −1.93751 33.1860i −0.0954544 1.63496i
\(413\) −3.71795 + 10.2150i −0.182948 + 0.502646i
\(414\) 0 0
\(415\) 8.28261 + 9.87083i 0.406577 + 0.484540i
\(416\) 31.5012 + 9.41886i 1.54447 + 0.461797i
\(417\) 0 0
\(418\) −11.1510 0.193771i −0.545415 0.00947765i
\(419\) 8.75167i 0.427547i −0.976883 0.213774i \(-0.931425\pi\)
0.976883 0.213774i \(-0.0685755\pi\)
\(420\) 0 0
\(421\) 8.76572 + 10.4466i 0.427215 + 0.509135i 0.936117 0.351690i \(-0.114393\pi\)
−0.508902 + 0.860825i \(0.669948\pi\)
\(422\) −2.21619 + 38.0964i −0.107883 + 1.85450i
\(423\) 0 0
\(424\) 10.3888 28.5616i 0.504525 1.38707i
\(425\) 8.58184 14.8642i 0.416280 0.721019i
\(426\) 0 0
\(427\) 13.8333 + 2.43918i 0.669440 + 0.118040i
\(428\) 8.46843 5.57147i 0.409337 0.269307i
\(429\) 0 0
\(430\) 11.3415 8.44465i 0.546935 0.407237i
\(431\) 2.79520 + 2.34545i 0.134640 + 0.112977i 0.707621 0.706592i \(-0.249769\pi\)
−0.572981 + 0.819569i \(0.694213\pi\)
\(432\) 0 0
\(433\) 4.79840 + 13.1835i 0.230596 + 0.633558i 0.999986 0.00522103i \(-0.00166191\pi\)
−0.769390 + 0.638779i \(0.779440\pi\)
\(434\) 1.66511 0.498628i 0.0799278 0.0239349i
\(435\) 0 0
\(436\) −3.33051 + 3.14305i −0.159502 + 0.150525i
\(437\) −1.07918 26.4796i −0.0516241 1.26669i
\(438\) 0 0
\(439\) −0.314211 1.78198i −0.0149965 0.0850492i 0.976391 0.216011i \(-0.0693046\pi\)
−0.991387 + 0.130962i \(0.958194\pi\)
\(440\) 5.92344 + 3.41824i 0.282389 + 0.162958i
\(441\) 0 0
\(442\) 31.9323 + 30.1223i 1.51886 + 1.43277i
\(443\) 7.88486 9.39682i 0.374621 0.446456i −0.545488 0.838119i \(-0.683656\pi\)
0.920109 + 0.391663i \(0.128100\pi\)
\(444\) 0 0
\(445\) −4.85575 + 2.80347i −0.230185 + 0.132897i
\(446\) 0.0435463 + 0.0286365i 0.00206198 + 0.00135598i
\(447\) 0 0
\(448\) 3.73068 10.2633i 0.176258 0.484897i
\(449\) −5.13353 2.96384i −0.242266 0.139872i 0.373952 0.927448i \(-0.378003\pi\)
−0.616218 + 0.787576i \(0.711336\pi\)
\(450\) 0 0
\(451\) 1.18938 + 0.432900i 0.0560058 + 0.0203844i
\(452\) −10.3834 + 20.6822i −0.488393 + 0.972809i
\(453\) 0 0
\(454\) 18.2838 + 4.33200i 0.858102 + 0.203311i
\(455\) −10.6035 −0.497099
\(456\) 0 0
\(457\) −19.0703 −0.892069 −0.446034 0.895016i \(-0.647164\pi\)
−0.446034 + 0.895016i \(0.647164\pi\)
\(458\) 39.6713 + 9.39935i 1.85372 + 0.439203i
\(459\) 0 0
\(460\) −7.29143 + 14.5235i −0.339965 + 0.677161i
\(461\) −19.6569 7.15452i −0.915512 0.333219i −0.159060 0.987269i \(-0.550846\pi\)
−0.756451 + 0.654050i \(0.773069\pi\)
\(462\) 0 0
\(463\) −8.52005 4.91905i −0.395960 0.228608i 0.288779 0.957396i \(-0.406751\pi\)
−0.684740 + 0.728788i \(0.740084\pi\)
\(464\) −1.07450 2.13802i −0.0498826 0.0992552i
\(465\) 0 0
\(466\) 17.9971 + 11.8350i 0.833698 + 0.548248i
\(467\) 3.88633 2.24377i 0.179838 0.103829i −0.407379 0.913259i \(-0.633557\pi\)
0.587216 + 0.809430i \(0.300224\pi\)
\(468\) 0 0
\(469\) −0.747277 + 0.890570i −0.0345060 + 0.0411227i
\(470\) −9.56102 9.01910i −0.441017 0.416020i
\(471\) 0 0
\(472\) 11.2580 19.5089i 0.518193 0.897971i
\(473\) −2.35038 13.3297i −0.108071 0.612899i
\(474\) 0 0
\(475\) 7.49269 + 11.8368i 0.343788 + 0.543109i
\(476\) 10.6037 10.0069i 0.486022 0.458666i
\(477\) 0 0
\(478\) −29.4880 + 8.83038i −1.34875 + 0.403892i
\(479\) −7.66192 21.0509i −0.350082 0.961842i −0.982343 0.187087i \(-0.940095\pi\)
0.632261 0.774755i \(-0.282127\pi\)
\(480\) 0 0
\(481\) 35.1526 + 29.4966i 1.60282 + 1.34493i
\(482\) 8.30618 6.18463i 0.378336 0.281702i
\(483\) 0 0
\(484\) −12.9100 + 8.49365i −0.586820 + 0.386075i
\(485\) 10.0658 + 1.77487i 0.457063 + 0.0805925i
\(486\) 0 0
\(487\) 16.6226 28.7912i 0.753242 1.30465i −0.193001 0.981199i \(-0.561822\pi\)
0.946243 0.323455i \(-0.104845\pi\)
\(488\) −27.3522 9.94889i −1.23817 0.450365i
\(489\) 0 0
\(490\) 0.563823 9.69212i 0.0254709 0.437846i
\(491\) 16.0502 + 19.1279i 0.724335 + 0.863228i 0.995044 0.0994326i \(-0.0317028\pi\)
−0.270710 + 0.962661i \(0.587258\pi\)
\(492\) 0 0
\(493\) 3.19475i 0.143884i
\(494\) −33.8763 + 11.6675i −1.52417 + 0.524946i
\(495\) 0 0
\(496\) −3.57709 + 0.419114i −0.160616 + 0.0188188i
\(497\) 0.588714 + 0.701602i 0.0264074 + 0.0314711i
\(498\) 0 0
\(499\) −1.81073 + 4.97495i −0.0810595 + 0.222709i −0.973601 0.228256i \(-0.926698\pi\)
0.892542 + 0.450965i \(0.148920\pi\)
\(500\) −1.27963 21.9177i −0.0572270 0.980191i
\(501\) 0 0
\(502\) 4.98446 + 42.6189i 0.222467 + 1.90218i
\(503\) −36.9767 6.52000i −1.64871 0.290712i −0.729354 0.684136i \(-0.760179\pi\)
−0.919357 + 0.393424i \(0.871290\pi\)
\(504\) 0 0
\(505\) −0.351558 0.608916i −0.0156441 0.0270964i
\(506\) 9.29028 + 12.4772i 0.413003 + 0.554679i
\(507\) 0 0
\(508\) −8.12697 18.8332i −0.360576 0.835589i
\(509\) 5.95327 + 16.3565i 0.263874 + 0.724988i 0.998897 + 0.0469459i \(0.0149488\pi\)
−0.735024 + 0.678042i \(0.762829\pi\)
\(510\) 0 0
\(511\) 5.25657 0.926874i 0.232537 0.0410025i
\(512\) −11.3014 + 19.6030i −0.499456 + 0.866339i
\(513\) 0 0
\(514\) −18.2529 7.87200i −0.805099 0.347219i
\(515\) −3.85736 21.8762i −0.169976 0.963981i
\(516\) 0 0
\(517\) −11.8228 + 4.30315i −0.519967 + 0.189252i
\(518\) 10.4584 11.0868i 0.459515 0.487125i
\(519\) 0 0
\(520\) 21.6379 + 3.81067i 0.948885 + 0.167109i
\(521\) 20.0104 11.5530i 0.876671 0.506146i 0.00711171 0.999975i \(-0.497736\pi\)
0.869559 + 0.493828i \(0.164403\pi\)
\(522\) 0 0
\(523\) −3.96812 + 22.5043i −0.173514 + 0.984046i 0.766331 + 0.642446i \(0.222080\pi\)
−0.939845 + 0.341601i \(0.889031\pi\)
\(524\) −32.7157 9.78945i −1.42919 0.427654i
\(525\) 0 0
\(526\) 10.7772 + 21.4554i 0.469907 + 0.935499i
\(527\) −4.51854 1.64462i −0.196831 0.0716406i
\(528\) 0 0
\(529\) −10.6977 + 8.97645i −0.465118 + 0.390281i
\(530\) 4.68222 19.7620i 0.203383 0.858406i
\(531\) 0 0
\(532\) 3.21522 + 11.4576i 0.139397 + 0.496749i
\(533\) 4.06624 0.176128
\(534\) 0 0
\(535\) 5.18900 4.35408i 0.224340 0.188243i
\(536\) 1.84498 1.54878i 0.0796908 0.0668970i
\(537\) 0 0
\(538\) 2.90236 + 5.77807i 0.125130 + 0.249110i
\(539\) −8.04822 4.64664i −0.346662 0.200145i
\(540\) 0 0
\(541\) 4.71561 26.7436i 0.202740 1.14980i −0.698217 0.715886i \(-0.746023\pi\)
0.900957 0.433909i \(-0.142866\pi\)
\(542\) −16.5308 + 25.1377i −0.710059 + 1.07976i
\(543\) 0 0
\(544\) −25.2347 + 16.6097i −1.08193 + 0.712137i
\(545\) −1.96700 + 2.34418i −0.0842571 + 0.100414i
\(546\) 0 0
\(547\) 20.4989 7.46099i 0.876469 0.319009i 0.135685 0.990752i \(-0.456676\pi\)
0.740784 + 0.671743i \(0.234454\pi\)
\(548\) 2.97028 + 0.346755i 0.126884 + 0.0148126i
\(549\) 0 0
\(550\) −7.55074 3.25645i −0.321965 0.138855i
\(551\) 2.30941 + 1.21073i 0.0983844 + 0.0515789i
\(552\) 0 0
\(553\) −4.98044 + 0.878185i −0.211790 + 0.0373442i
\(554\) −1.85642 6.19931i −0.0788719 0.263383i
\(555\) 0 0
\(556\) 34.2684 14.7876i 1.45330 0.627135i
\(557\) 25.3187 + 21.2449i 1.07279 + 0.900176i 0.995302 0.0968178i \(-0.0308664\pi\)
0.0774855 + 0.996993i \(0.475311\pi\)
\(558\) 0 0
\(559\) −21.7418 37.6579i −0.919580 1.59276i
\(560\) 1.68089 7.10108i 0.0710307 0.300076i
\(561\) 0 0
\(562\) 3.08529 + 26.3804i 0.130145 + 1.11279i
\(563\) 6.93499 12.0118i 0.292275 0.506235i −0.682072 0.731285i \(-0.738921\pi\)
0.974347 + 0.225049i \(0.0722544\pi\)
\(564\) 0 0
\(565\) −5.28915 + 14.5318i −0.222516 + 0.611359i
\(566\) 35.7271 + 2.07836i 1.50172 + 0.0873602i
\(567\) 0 0
\(568\) −0.949212 1.64329i −0.0398280 0.0689508i
\(569\) 3.92803i 0.164672i −0.996605 0.0823358i \(-0.973762\pi\)
0.996605 0.0823358i \(-0.0262380\pi\)
\(570\) 0 0
\(571\) 10.5601i 0.441928i −0.975282 0.220964i \(-0.929080\pi\)
0.975282 0.220964i \(-0.0709203\pi\)
\(572\) 12.5566 16.8714i 0.525019 0.705428i
\(573\) 0 0
\(574\) 0.0784329 1.34826i 0.00327373 0.0562754i
\(575\) 6.68304 18.3615i 0.278702 0.765728i
\(576\) 0 0
\(577\) 8.16413 14.1407i 0.339877 0.588685i −0.644532 0.764577i \(-0.722948\pi\)
0.984409 + 0.175893i \(0.0562811\pi\)
\(578\) −16.1829 + 1.89265i −0.673119 + 0.0787239i
\(579\) 0 0
\(580\) −0.878837 1.33580i −0.0364917 0.0554661i
\(581\) −6.58050 11.3978i −0.273005 0.472859i
\(582\) 0 0
\(583\) −14.8923 12.4961i −0.616776 0.517536i
\(584\) −11.0599 + 0.00231661i −0.457660 + 9.58619e-5i
\(585\) 0 0
\(586\) −0.838194 + 0.251003i −0.0346255 + 0.0103688i
\(587\) 29.6611 5.23004i 1.22424 0.215867i 0.476092 0.879396i \(-0.342053\pi\)
0.748151 + 0.663529i \(0.230942\pi\)
\(588\) 0 0
\(589\) 2.90127 2.64309i 0.119545 0.108907i
\(590\) 5.96059 13.8209i 0.245394 0.568996i
\(591\) 0 0
\(592\) −25.3261 + 18.8656i −1.04090 + 0.775371i
\(593\) −40.3277 + 14.6781i −1.65606 + 0.602756i −0.989736 0.142907i \(-0.954355\pi\)
−0.666323 + 0.745663i \(0.732133\pi\)
\(594\) 0 0
\(595\) 6.26258 7.46345i 0.256741 0.305972i
\(596\) −24.9941 + 5.92740i −1.02380 + 0.242796i
\(597\) 0 0
\(598\) 41.7557 + 27.4590i 1.70752 + 1.12288i
\(599\) −3.44329 + 19.5279i −0.140689 + 0.797887i 0.830039 + 0.557705i \(0.188318\pi\)
−0.970728 + 0.240182i \(0.922793\pi\)
\(600\) 0 0
\(601\) 23.4312 + 13.5280i 0.955778 + 0.551819i 0.894871 0.446325i \(-0.147267\pi\)
0.0609068 + 0.998143i \(0.480601\pi\)
\(602\) −12.9058 + 6.48266i −0.526001 + 0.264213i
\(603\) 0 0
\(604\) 22.8477 + 11.4706i 0.929661 + 0.466731i
\(605\) −7.91058 + 6.63777i −0.321611 + 0.269864i
\(606\) 0 0
\(607\) −5.36045 −0.217574 −0.108787 0.994065i \(-0.534697\pi\)
−0.108787 + 0.994065i \(0.534697\pi\)
\(608\) −2.44349 24.5363i −0.0990964 0.995078i
\(609\) 0 0
\(610\) −18.9252 4.48395i −0.766258 0.181550i
\(611\) −30.9632 + 25.9812i −1.25264 + 1.05109i
\(612\) 0 0
\(613\) −13.2066 4.80681i −0.533410 0.194145i 0.0612502 0.998122i \(-0.480491\pi\)
−0.594660 + 0.803977i \(0.702713\pi\)
\(614\) 24.3677 12.2400i 0.983399 0.493967i
\(615\) 0 0
\(616\) −5.35193 4.48889i −0.215635 0.180863i
\(617\) −4.11256 + 23.3235i −0.165565 + 0.938967i 0.782914 + 0.622129i \(0.213732\pi\)
−0.948480 + 0.316838i \(0.897379\pi\)
\(618\) 0 0
\(619\) −17.2160 + 9.93966i −0.691969 + 0.399509i −0.804349 0.594157i \(-0.797486\pi\)
0.112380 + 0.993665i \(0.464153\pi\)
\(620\) −2.34172 + 0.555344i −0.0940459 + 0.0223031i
\(621\) 0 0
\(622\) −8.87719 8.37403i −0.355943 0.335768i
\(623\) 5.38147 1.95869i 0.215604 0.0784734i
\(624\) 0 0
\(625\) 0.242809 + 1.37704i 0.00971235 + 0.0550815i
\(626\) 18.8471 43.7009i 0.753282 1.74664i
\(627\) 0 0
\(628\) −19.3719 20.5273i −0.773022 0.819127i
\(629\) −41.5233 + 7.32168i −1.65564 + 0.291935i
\(630\) 0 0
\(631\) −0.440226 1.20951i −0.0175251 0.0481499i 0.930622 0.365983i \(-0.119267\pi\)
−0.948147 + 0.317833i \(0.897045\pi\)
\(632\) 10.4789 0.00219491i 0.416827 8.73090e-5i
\(633\) 0 0
\(634\) 27.1020 20.1796i 1.07636 0.801435i
\(635\) −6.85334 11.8703i −0.271967 0.471060i
\(636\) 0 0
\(637\) −29.4021 5.18438i −1.16495 0.205413i
\(638\) −1.52023 + 0.177796i −0.0601863 + 0.00703903i
\(639\) 0 0
\(640\) −5.98208 + 13.8867i −0.236462 + 0.548919i
\(641\) −1.62727 + 4.47089i −0.0642733 + 0.176590i −0.967672 0.252212i \(-0.918842\pi\)
0.903399 + 0.428802i \(0.141064\pi\)
\(642\) 0 0
\(643\) −13.4534 16.0331i −0.530550 0.632285i 0.432492 0.901638i \(-0.357635\pi\)
−0.963041 + 0.269353i \(0.913190\pi\)
\(644\) 9.91012 13.3155i 0.390514 0.524704i
\(645\) 0 0
\(646\) 11.7955 30.7354i 0.464086 1.20927i
\(647\) 33.1116i 1.30175i −0.759184 0.650875i \(-0.774402\pi\)
0.759184 0.650875i \(-0.225598\pi\)
\(648\) 0 0
\(649\) −9.26107 11.0369i −0.363529 0.433237i
\(650\) −26.3727 1.53419i −1.03442 0.0601759i
\(651\) 0 0
\(652\) −35.5964 + 2.07824i −1.39406 + 0.0813903i
\(653\) −8.60908 + 14.9114i −0.336899 + 0.583527i −0.983848 0.179007i \(-0.942712\pi\)
0.646949 + 0.762534i \(0.276045\pi\)
\(654\) 0 0
\(655\) −22.4727 3.96254i −0.878081 0.154829i
\(656\) −0.644591 + 2.72313i −0.0251670 + 0.106320i
\(657\) 0 0
\(658\) 8.01748 + 10.7678i 0.312554 + 0.419772i
\(659\) −0.609150 0.511137i −0.0237291 0.0199111i 0.630846 0.775908i \(-0.282708\pi\)
−0.654575 + 0.755997i \(0.727152\pi\)
\(660\) 0 0
\(661\) −15.1036 41.4969i −0.587463 1.61404i −0.775125 0.631808i \(-0.782313\pi\)
0.187662 0.982234i \(-0.439909\pi\)
\(662\) 9.07717 + 30.3122i 0.352794 + 1.17812i
\(663\) 0 0
\(664\) 9.33231 + 25.6236i 0.362164 + 0.994389i
\(665\) 3.02180 + 7.35554i 0.117180 + 0.285236i
\(666\) 0 0
\(667\) −0.631567 3.58179i −0.0244544 0.138688i
\(668\) −20.5662 2.40093i −0.795730 0.0928949i
\(669\) 0 0
\(670\) 1.10455 1.17092i 0.0426724 0.0452365i
\(671\) −11.9670 + 14.2617i −0.461980 + 0.550566i
\(672\) 0 0
\(673\) 12.4476 7.18661i 0.479819 0.277024i −0.240522 0.970644i \(-0.577319\pi\)
0.720341 + 0.693620i \(0.243985\pi\)
\(674\) −17.4468 + 26.5306i −0.672025 + 1.02192i
\(675\) 0 0
\(676\) 11.9154 39.8205i 0.458285 1.53156i
\(677\) 15.3724 + 8.87525i 0.590809 + 0.341104i 0.765417 0.643534i \(-0.222533\pi\)
−0.174609 + 0.984638i \(0.555866\pi\)
\(678\) 0 0
\(679\) −9.81003 3.57056i −0.376474 0.137025i
\(680\) −15.4619 + 12.9796i −0.592936 + 0.497744i
\(681\) 0 0
\(682\) −0.531123 + 2.24168i −0.0203377 + 0.0858384i
\(683\) 16.5441 0.633042 0.316521 0.948585i \(-0.397485\pi\)
0.316521 + 0.948585i \(0.397485\pi\)
\(684\) 0 0
\(685\) 1.99831 0.0763515
\(686\) −5.40159 + 22.7982i −0.206234 + 0.870439i
\(687\) 0 0
\(688\) 28.6658 8.59070i 1.09287 0.327517i
\(689\) −58.6882 21.3608i −2.23584 0.813780i
\(690\) 0 0
\(691\) −19.6705 11.3568i −0.748302 0.432032i 0.0767783 0.997048i \(-0.475537\pi\)
−0.825080 + 0.565016i \(0.808870\pi\)
\(692\) −28.0227 8.38518i −1.06526 0.318757i
\(693\) 0 0
\(694\) −15.3071 + 23.2768i −0.581048 + 0.883575i
\(695\) 21.5989 12.4702i 0.819295 0.473020i
\(696\) 0 0
\(697\) −2.40158 + 2.86209i −0.0909663 + 0.108409i
\(698\) 21.3657 22.6495i 0.808703 0.857295i
\(699\) 0 0
\(700\) −1.01740 + 8.71494i −0.0384540 + 0.329394i
\(701\) 5.86111 + 33.2400i 0.221371 + 1.25546i 0.869503 + 0.493928i \(0.164440\pi\)
−0.648132 + 0.761528i \(0.724449\pi\)
\(702\) 0 0
\(703\) 10.4436 32.7910i 0.393889 1.23674i
\(704\) 9.30814 + 11.0836i 0.350814 + 0.417728i
\(705\) 0 0
\(706\) −8.31349 27.7619i −0.312882 1.04483i
\(707\) 0.245622 + 0.674842i 0.00923758 + 0.0253800i
\(708\) 0 0
\(709\) −2.99281 2.51127i −0.112397 0.0943126i 0.584857 0.811137i \(-0.301151\pi\)
−0.697254 + 0.716824i \(0.745595\pi\)
\(710\) −0.757343 1.01714i −0.0284226 0.0381726i
\(711\) 0 0
\(712\) −11.6856 + 2.06300i −0.437935 + 0.0773143i
\(713\) −5.39109 0.950594i −0.201898 0.0356000i
\(714\) 0 0
\(715\) 7.02686 12.1709i 0.262790 0.455165i
\(716\) 2.72978 + 46.7560i 0.102017 + 1.74735i
\(717\) 0 0
\(718\) −15.9375 0.927140i −0.594784 0.0346005i
\(719\) 10.7238 + 12.7801i 0.399930 + 0.476619i 0.927999 0.372583i \(-0.121528\pi\)
−0.528068 + 0.849202i \(0.677083\pi\)
\(720\) 0 0
\(721\) 22.6887i 0.844972i
\(722\) 17.7478 + 20.1747i 0.660503 + 0.750823i
\(723\) 0 0
\(724\) 19.1876 + 14.2805i 0.713101 + 0.530729i
\(725\) 1.23580 + 1.47277i 0.0458966 + 0.0546975i
\(726\) 0 0
\(727\) −5.04395 + 13.8581i −0.187070 + 0.513970i −0.997405 0.0719967i \(-0.977063\pi\)
0.810335 + 0.585967i \(0.199285\pi\)
\(728\) −21.0890 7.67077i −0.781610 0.284298i
\(729\) 0 0
\(730\) −7.34051 + 0.858502i −0.271685 + 0.0317746i
\(731\) 39.3472 + 6.93797i 1.45531 + 0.256610i
\(732\) 0 0
\(733\) −21.8482 37.8423i −0.806983 1.39774i −0.914944 0.403581i \(-0.867765\pi\)
0.107961 0.994155i \(-0.465568\pi\)
\(734\) 8.70935 6.48482i 0.321468 0.239359i
\(735\) 0 0
\(736\) −25.0083 + 23.6106i −0.921818 + 0.870299i
\(737\) −0.526997 1.44791i −0.0194122 0.0533346i
\(738\) 0 0
\(739\) −40.8384 + 7.20091i −1.50227 + 0.264890i −0.863436 0.504458i \(-0.831692\pi\)
−0.638829 + 0.769348i \(0.720581\pi\)
\(740\) −15.3478 + 14.4839i −0.564195 + 0.532440i
\(741\) 0 0
\(742\) −8.21471 + 19.0475i −0.301572 + 0.699256i
\(743\) −8.77287 49.7534i −0.321845 1.82528i −0.530975 0.847387i \(-0.678174\pi\)
0.209130 0.977888i \(-0.432937\pi\)
\(744\) 0 0
\(745\) −16.1299 + 5.87080i −0.590954 + 0.215090i
\(746\) 12.6113 + 11.8965i 0.461732 + 0.435561i
\(747\) 0 0
\(748\) 4.45909 + 18.8027i 0.163040 + 0.687494i
\(749\) −5.99169 + 3.45930i −0.218932 + 0.126400i
\(750\) 0 0
\(751\) 3.78440 21.4624i 0.138095 0.783174i −0.834560 0.550917i \(-0.814278\pi\)
0.972655 0.232256i \(-0.0746109\pi\)
\(752\) −12.4911 24.8545i −0.455503 0.906349i
\(753\) 0 0
\(754\) −4.39399 + 2.20713i −0.160020 + 0.0803789i
\(755\) 16.0534 + 5.84295i 0.584242 + 0.212647i
\(756\) 0 0
\(757\) 0.0722766 0.0606473i 0.00262694 0.00220426i −0.641473 0.767145i \(-0.721676\pi\)
0.644100 + 0.764941i \(0.277232\pi\)
\(758\) −11.8969 2.81873i −0.432113 0.102381i
\(759\) 0 0
\(760\) −3.52298 16.0960i −0.127792 0.583863i
\(761\) 3.56523 0.129240 0.0646198 0.997910i \(-0.479417\pi\)
0.0646198 + 0.997910i \(0.479417\pi\)
\(762\) 0 0
\(763\) 2.39431 2.00906i 0.0866798 0.0727330i
\(764\) 21.6244 43.0727i 0.782344 1.55832i
\(765\) 0 0
\(766\) −23.8454 + 11.9777i −0.861568 + 0.432771i
\(767\) −40.0850 23.1431i −1.44738 0.835648i
\(768\) 0 0
\(769\) 3.64181 20.6537i 0.131327 0.744793i −0.846020 0.533151i \(-0.821008\pi\)
0.977347 0.211642i \(-0.0678811\pi\)
\(770\) −3.90002 2.56469i −0.140547 0.0924251i
\(771\) 0 0
\(772\) −0.102217 0.431018i −0.00367886 0.0155127i
\(773\) −14.7529 + 17.5818i −0.530625 + 0.632375i −0.963059 0.269291i \(-0.913211\pi\)
0.432433 + 0.901666i \(0.357655\pi\)
\(774\) 0 0
\(775\) 2.71922 0.989714i 0.0976772 0.0355516i
\(776\) 18.7356 + 10.8117i 0.672567 + 0.388119i
\(777\) 0 0
\(778\) −1.50654 + 3.49322i −0.0540120 + 0.125238i
\(779\) −1.15880 2.82071i −0.0415184 0.101062i
\(780\) 0 0
\(781\) −1.19545 + 0.210790i −0.0427765 + 0.00754265i
\(782\) −43.9890 + 13.1728i −1.57304 + 0.471058i
\(783\) 0 0
\(784\) 8.13284 18.8685i 0.290458 0.673876i
\(785\) −14.4481 12.1234i −0.515676 0.432703i
\(786\) 0 0
\(787\) −19.7759 34.2528i −0.704933 1.22098i −0.966716 0.255853i \(-0.917644\pi\)
0.261782 0.965127i \(-0.415690\pi\)
\(788\) 35.4327 23.3115i 1.26224 0.830439i
\(789\) 0 0
\(790\) 6.95491 0.813405i 0.247445 0.0289396i
\(791\) 7.89757 13.6790i 0.280805 0.486369i
\(792\) 0 0
\(793\) −20.4562 + 56.2030i −0.726422 + 1.99583i
\(794\) 0.0498949 0.857694i 0.00177070 0.0304384i
\(795\) 0 0
\(796\) 16.2386 + 12.0856i 0.575560 + 0.428364i
\(797\) 13.4187i 0.475316i 0.971349 + 0.237658i \(0.0763798\pi\)
−0.971349 + 0.237658i \(0.923620\pi\)
\(798\) 0 0
\(799\) 37.1389i 1.31388i
\(800\) 5.20811 17.4184i 0.184135 0.615835i
\(801\) 0 0
\(802\) 53.7274 + 3.12550i 1.89718 + 0.110365i
\(803\) −2.41961 + 6.64782i −0.0853861 + 0.234596i
\(804\) 0 0
\(805\) 5.54584 9.60568i 0.195465 0.338556i
\(806\) 0.859718 + 7.35091i 0.0302823 + 0.258925i
\(807\) 0 0
\(808\) −0.258703 1.46538i −0.00910113 0.0515519i
\(809\) 4.70080 + 8.14202i 0.165271 + 0.286258i 0.936752 0.349995i \(-0.113817\pi\)
−0.771480 + 0.636253i \(0.780483\pi\)
\(810\) 0 0
\(811\) 19.1736 + 16.0885i 0.673275 + 0.564945i 0.914033 0.405640i \(-0.132951\pi\)
−0.240758 + 0.970585i \(0.577396\pi\)
\(812\) 0.647074 + 1.49951i 0.0227078 + 0.0526225i
\(813\) 0 0
\(814\) 5.79492 + 19.3514i 0.203112 + 0.678268i
\(815\) −23.4652 + 4.13754i −0.821949 + 0.144932i
\(816\) 0 0
\(817\) −19.9269 + 25.8139i −0.697155 + 0.903114i
\(818\) −11.7082 5.04944i −0.409366 0.176550i
\(819\) 0 0
\(820\) −0.216830 + 1.85735i −0.00757205 + 0.0648616i
\(821\) −24.7423 + 9.00545i −0.863511 + 0.314292i −0.735537 0.677485i \(-0.763070\pi\)
−0.127975 + 0.991777i \(0.540848\pi\)
\(822\) 0 0
\(823\) −5.76680 + 6.87260i −0.201018 + 0.239564i −0.857131 0.515099i \(-0.827755\pi\)
0.656113 + 0.754663i \(0.272200\pi\)
\(824\) 8.15385 46.2995i 0.284053 1.61292i
\(825\) 0 0
\(826\) −8.44685 + 12.8448i −0.293904 + 0.446927i
\(827\) 1.44344 8.18615i 0.0501933 0.284660i −0.949372 0.314155i \(-0.898279\pi\)
0.999565 + 0.0294949i \(0.00938989\pi\)
\(828\) 0 0
\(829\) −20.1777 11.6496i −0.700801 0.404608i 0.106845 0.994276i \(-0.465925\pi\)
−0.807646 + 0.589668i \(0.799259\pi\)
\(830\) 8.17951 + 16.2839i 0.283915 + 0.565222i
\(831\) 0 0
\(832\) 40.2783 + 23.2322i 1.39640 + 0.805432i
\(833\) 21.0144 17.6332i 0.728106 0.610954i
\(834\) 0 0
\(835\) −13.8363 −0.478825
\(836\) −15.2819 3.90238i −0.528537 0.134967i
\(837\) 0 0
\(838\) 2.85343 12.0433i 0.0985701 0.416030i
\(839\) −0.765232 + 0.642106i −0.0264188 + 0.0221680i −0.655901 0.754847i \(-0.727711\pi\)
0.629483 + 0.777015i \(0.283267\pi\)
\(840\) 0 0
\(841\) −26.9148 9.79619i −0.928097 0.337800i
\(842\) 8.65660 + 17.2337i 0.298326 + 0.593913i
\(843\) 0 0
\(844\) −15.4708 + 51.7025i −0.532529 + 1.77967i
\(845\) 4.82309 27.3531i 0.165919 0.940975i
\(846\) 0 0
\(847\) 9.13428 5.27368i 0.313858 0.181206i
\(848\) 23.6085 35.9169i 0.810721 1.23339i
\(849\) 0 0
\(850\) 16.6560 17.6568i 0.571296 0.605623i
\(851\) −45.1064 + 16.4174i −1.54623 + 0.562781i
\(852\) 0 0
\(853\) 4.28670 + 24.3111i 0.146774 + 0.832396i 0.965926 + 0.258820i \(0.0833335\pi\)
−0.819152 + 0.573577i \(0.805555\pi\)
\(854\) 18.2409 + 7.86686i 0.624192 + 0.269198i
\(855\) 0 0
\(856\) 13.4701 4.90590i 0.460398 0.167680i
\(857\) 28.8784 5.09204i 0.986467 0.173941i 0.342934 0.939359i \(-0.388579\pi\)
0.643533 + 0.765419i \(0.277468\pi\)
\(858\) 0 0
\(859\) 7.42637 + 20.4038i 0.253385 + 0.696168i 0.999538 + 0.0303943i \(0.00967631\pi\)
−0.746153 + 0.665774i \(0.768101\pi\)
\(860\) 18.3605 7.92300i 0.626089 0.270172i
\(861\) 0 0
\(862\) 3.08180 + 4.13898i 0.104967 + 0.140974i
\(863\) −13.3261 23.0815i −0.453626 0.785703i 0.544982 0.838448i \(-0.316536\pi\)
−0.998608 + 0.0527447i \(0.983203\pi\)
\(864\) 0 0
\(865\) −19.2490 3.39413i −0.654487 0.115404i
\(866\) 2.30475 + 19.7065i 0.0783188 + 0.669654i
\(867\) 0 0
\(868\) 2.45396 0.143271i 0.0832928 0.00486292i
\(869\) 2.29250 6.29860i 0.0777679 0.213666i
\(870\) 0 0
\(871\) −3.18186 3.79200i −0.107813 0.128487i
\(872\) −5.60794 + 3.23931i −0.189909 + 0.109697i
\(873\) 0 0
\(874\) 7.14843 36.7908i 0.241799 1.24447i
\(875\) 14.9848i 0.506578i
\(876\) 0 0
\(877\) 34.9016 + 41.5942i 1.17854 + 1.40454i 0.895286 + 0.445492i \(0.146971\pi\)
0.283259 + 0.959044i \(0.408584\pi\)
\(878\) 0.148613 2.55466i 0.00501544 0.0862155i
\(879\) 0 0
\(880\) 7.03684 + 6.63520i 0.237212 + 0.223673i
\(881\) 16.7722 29.0502i 0.565068 0.978727i −0.431975 0.901886i \(-0.642183\pi\)
0.997043 0.0768413i \(-0.0244835\pi\)
\(882\) 0 0
\(883\) 36.0797 + 6.36182i 1.21418 + 0.214092i 0.743818 0.668383i \(-0.233013\pi\)
0.470360 + 0.882475i \(0.344124\pi\)
\(884\) 34.1213 + 51.8631i 1.14762 + 1.74435i
\(885\) 0 0
\(886\) 13.9143 10.3603i 0.467459 0.348061i
\(887\) −20.9279 17.5606i −0.702690 0.589627i 0.219848 0.975534i \(-0.429444\pi\)
−0.922538 + 0.385907i \(0.873888\pi\)
\(888\) 0 0
\(889\) 4.78821 + 13.1555i 0.160592 + 0.441222i
\(890\) −7.59613 + 2.27471i −0.254623 + 0.0762485i
\(891\) 0 0
\(892\) 0.0505880 + 0.0536051i 0.00169381 + 0.00179483i
\(893\) 26.8469 + 14.0747i 0.898397 + 0.470993i
\(894\) 0 0
\(895\) 5.43467 + 30.8215i 0.181661 + 1.03025i
\(896\) 8.48014 12.9072i 0.283302 0.431198i
\(897\) 0 0
\(898\) −6.09798 5.75235i −0.203492 0.191958i
\(899\) 0.346220 0.412609i 0.0115471 0.0137613i
\(900\) 0 0
\(901\) 49.6972 28.6927i 1.65565 0.955892i
\(902\) 1.49558 + 0.983511i 0.0497975 + 0.0327473i
\(903\) 0 0
\(904\) −21.0320 + 25.0757i −0.699516 + 0.834005i
\(905\) 13.8418 + 7.99155i 0.460116 + 0.265648i
\(906\) 0 0
\(907\) 23.1259 + 8.41712i 0.767882 + 0.279486i 0.696110 0.717935i \(-0.254913\pi\)
0.0717715 + 0.997421i \(0.477135\pi\)
\(908\) 23.7482 + 11.9227i 0.788113 + 0.395667i
\(909\) 0 0
\(910\) −14.5916 3.45721i −0.483708 0.114605i
\(911\) −12.3194 −0.408160 −0.204080 0.978954i \(-0.565420\pi\)
−0.204080 + 0.978954i \(0.565420\pi\)
\(912\) 0 0
\(913\) 17.4434 0.577293
\(914\) −26.2429 6.21774i −0.868037 0.205665i
\(915\) 0 0
\(916\) 51.5278 + 25.8692i 1.70252 + 0.854742i
\(917\) 21.9018 + 7.97159i 0.723260 + 0.263245i
\(918\) 0 0
\(919\) 17.7965 + 10.2748i 0.587054 + 0.338936i 0.763932 0.645297i \(-0.223266\pi\)
−0.176878 + 0.984233i \(0.556600\pi\)
\(920\) −14.7692 + 17.6087i −0.486925 + 0.580541i
\(921\) 0 0
\(922\) −24.7174 16.2544i −0.814026 0.535312i
\(923\) −3.37728 + 1.94987i −0.111165 + 0.0641809i
\(924\) 0 0
\(925\) 16.3100 19.4375i 0.536269 0.639101i
\(926\) −10.1208 9.54710i −0.332589 0.313737i
\(927\) 0 0
\(928\) −0.781552 3.29250i −0.0256557 0.108082i
\(929\) −8.88754 50.4037i −0.291591 1.65369i −0.680745 0.732521i \(-0.738344\pi\)
0.389154 0.921173i \(-0.372767\pi\)
\(930\) 0 0
\(931\) 4.78270 + 21.8734i 0.156747 + 0.716872i
\(932\) 20.9073 + 22.1542i 0.684841 + 0.725686i
\(933\) 0 0
\(934\) 6.07961 1.82058i 0.198931 0.0595711i
\(935\) 4.41652 + 12.1343i 0.144435 + 0.396833i
\(936\) 0 0
\(937\) 6.61304 + 5.54900i 0.216039 + 0.181278i 0.744384 0.667751i \(-0.232743\pi\)
−0.528346 + 0.849029i \(0.677188\pi\)
\(938\) −1.31870 + 0.981883i −0.0430572 + 0.0320596i
\(939\) 0 0
\(940\) −10.2165 15.5286i −0.333224 0.506488i
\(941\) 26.3412 + 4.64466i 0.858697 + 0.151412i 0.585625 0.810582i \(-0.300849\pi\)
0.273072 + 0.961994i \(0.411960\pi\)
\(942\) 0 0
\(943\) −2.12673 + 3.68360i −0.0692557 + 0.119954i
\(944\) 21.8531 23.1759i 0.711259 0.754312i
\(945\) 0 0
\(946\) 1.11166 19.1095i 0.0361433 0.621304i
\(947\) −14.3653 17.1199i −0.466809 0.556322i 0.480354 0.877075i \(-0.340508\pi\)
−0.947163 + 0.320753i \(0.896064\pi\)
\(948\) 0 0
\(949\) 22.7274i 0.737764i
\(950\) 6.45149 + 18.7317i 0.209314 + 0.607738i
\(951\) 0 0
\(952\) 17.8547 10.3134i 0.578673 0.334259i
\(953\) −20.5766 24.5223i −0.666542 0.794354i 0.321767 0.946819i \(-0.395723\pi\)
−0.988309 + 0.152465i \(0.951279\pi\)
\(954\) 0 0
\(955\) 11.0152 30.2640i 0.356443 0.979319i
\(956\) −43.4581 + 2.53723i −1.40553 + 0.0820600i
\(957\) 0 0
\(958\) −3.68015 31.4667i −0.118900 1.01664i
\(959\) −2.01004 0.354424i −0.0649074 0.0114449i
\(960\) 0 0
\(961\) 15.0946 + 26.1447i 0.486924 + 0.843377i
\(962\) 38.7569 + 52.0520i 1.24957 + 1.67822i
\(963\) 0 0
\(964\) 13.4467 5.80258i 0.433090 0.186889i
\(965\) −0.101241 0.278157i −0.00325905 0.00895418i
\(966\) 0 0
\(967\) −0.553021 + 0.0975125i −0.0177840 + 0.00313579i −0.182533 0.983200i \(-0.558430\pi\)
0.164749 + 0.986336i \(0.447319\pi\)
\(968\) −20.5350 + 7.47901i −0.660021 + 0.240385i
\(969\) 0 0
\(970\) 13.2730 + 5.72430i 0.426170 + 0.183796i
\(971\) 10.5773 + 59.9870i 0.339443 + 1.92508i 0.377970 + 0.925818i \(0.376622\pi\)
−0.0385275 + 0.999258i \(0.512267\pi\)
\(972\) 0 0
\(973\) −23.9374 + 8.71250i −0.767398 + 0.279310i
\(974\) 32.2618 34.2003i 1.03374 1.09585i
\(975\) 0 0
\(976\) −34.3960 22.6088i −1.10099 0.723691i
\(977\) 43.4749 25.1002i 1.39089 0.803028i 0.397472 0.917614i \(-0.369888\pi\)
0.993413 + 0.114586i \(0.0365542\pi\)
\(978\) 0 0
\(979\) −1.31804 + 7.47496i −0.0421247 + 0.238901i
\(980\) 3.93595 13.1537i 0.125729 0.420178i
\(981\) 0 0
\(982\) 15.8504 + 31.5552i 0.505806 + 1.00697i
\(983\) 49.1688 + 17.8960i 1.56824 + 0.570793i 0.972606 0.232462i \(-0.0746780\pi\)
0.595636 + 0.803255i \(0.296900\pi\)
\(984\) 0 0
\(985\) 21.7112 18.2179i 0.691777 0.580470i
\(986\) 1.04163 4.39635i 0.0331722 0.140008i
\(987\) 0 0
\(988\) −50.4219 + 5.01068i −1.60413 + 0.159411i
\(989\) 45.4856 1.44636
\(990\) 0 0
\(991\) −41.7459 + 35.0290i −1.32610 + 1.11273i −0.341132 + 0.940015i \(0.610810\pi\)
−0.984971 + 0.172718i \(0.944745\pi\)
\(992\) −5.05914 0.589538i −0.160628 0.0187178i
\(993\) 0 0
\(994\) 0.581385 + 1.15743i 0.0184404 + 0.0367115i
\(995\) 11.7144 + 6.76329i 0.371370 + 0.214411i
\(996\) 0 0
\(997\) −4.37523 + 24.8131i −0.138565 + 0.785840i 0.833746 + 0.552148i \(0.186192\pi\)
−0.972311 + 0.233692i \(0.924919\pi\)
\(998\) −4.11383 + 6.25573i −0.130221 + 0.198022i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 684.2.cf.c.523.10 60
3.2 odd 2 228.2.w.a.67.1 60
4.3 odd 2 684.2.cf.b.523.9 60
12.11 even 2 228.2.w.b.67.2 yes 60
19.2 odd 18 684.2.cf.b.667.9 60
57.2 even 18 228.2.w.b.211.2 yes 60
76.59 even 18 inner 684.2.cf.c.667.10 60
228.59 odd 18 228.2.w.a.211.1 yes 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
228.2.w.a.67.1 60 3.2 odd 2
228.2.w.a.211.1 yes 60 228.59 odd 18
228.2.w.b.67.2 yes 60 12.11 even 2
228.2.w.b.211.2 yes 60 57.2 even 18
684.2.cf.b.523.9 60 4.3 odd 2
684.2.cf.b.667.9 60 19.2 odd 18
684.2.cf.c.523.10 60 1.1 even 1 trivial
684.2.cf.c.667.10 60 76.59 even 18 inner