Properties

Label 680.2.z.d.89.8
Level $680$
Weight $2$
Character 680.89
Analytic conductor $5.430$
Analytic rank $0$
Dimension $26$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(89,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.89"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.z (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [26,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(26\)
Relative dimension: \(13\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 89.8
Character \(\chi\) \(=\) 680.89
Dual form 680.2.z.d.489.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.513320 + 0.513320i) q^{3} +(-2.10308 + 0.759643i) q^{5} +(-0.542760 + 0.542760i) q^{7} -2.47300i q^{9} +(-2.81475 - 2.81475i) q^{11} -1.01011i q^{13} +(-1.46949 - 0.689613i) q^{15} +(-4.11972 + 0.167144i) q^{17} -2.31195i q^{19} -0.557219 q^{21} +(-4.31128 + 4.31128i) q^{23} +(3.84589 - 3.19518i) q^{25} +(2.80940 - 2.80940i) q^{27} +(2.92939 - 2.92939i) q^{29} +(5.35048 - 5.35048i) q^{31} -2.88974i q^{33} +(0.729164 - 1.55377i) q^{35} +(-7.83837 - 7.83837i) q^{37} +(0.518508 - 0.518508i) q^{39} +(-6.53610 - 6.53610i) q^{41} -2.05627 q^{43} +(1.87860 + 5.20093i) q^{45} +12.2560i q^{47} +6.41082i q^{49} +(-2.20053 - 2.02893i) q^{51} +6.90494 q^{53} +(8.05785 + 3.78144i) q^{55} +(1.18677 - 1.18677i) q^{57} -6.13169i q^{59} +(-10.2985 - 10.2985i) q^{61} +(1.34225 + 1.34225i) q^{63} +(0.767320 + 2.12433i) q^{65} +8.92915i q^{67} -4.42614 q^{69} +(-8.76366 + 8.76366i) q^{71} +(-6.18757 - 6.18757i) q^{73} +(3.61432 + 0.334022i) q^{75} +3.05547 q^{77} +(10.0433 + 10.0433i) q^{79} -4.53477 q^{81} +3.11595 q^{83} +(8.53712 - 3.48103i) q^{85} +3.00743 q^{87} -1.08068 q^{89} +(0.548245 + 0.548245i) q^{91} +5.49302 q^{93} +(1.75626 + 4.86221i) q^{95} +(-3.34215 - 3.34215i) q^{97} +(-6.96090 + 6.96090i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 26 q + 2 q^{3} - 2 q^{5} + 2 q^{7} + 2 q^{11} - 2 q^{15} + 2 q^{17} - 12 q^{21} - 2 q^{23} + 10 q^{25} + 20 q^{27} + 10 q^{29} - 10 q^{31} + 22 q^{35} - 6 q^{37} + 8 q^{39} - 10 q^{41} + 32 q^{43} + 28 q^{45}+ \cdots - 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.513320 + 0.513320i 0.296365 + 0.296365i 0.839588 0.543223i \(-0.182796\pi\)
−0.543223 + 0.839588i \(0.682796\pi\)
\(4\) 0 0
\(5\) −2.10308 + 0.759643i −0.940526 + 0.339722i
\(6\) 0 0
\(7\) −0.542760 + 0.542760i −0.205144 + 0.205144i −0.802200 0.597056i \(-0.796337\pi\)
0.597056 + 0.802200i \(0.296337\pi\)
\(8\) 0 0
\(9\) 2.47300i 0.824335i
\(10\) 0 0
\(11\) −2.81475 2.81475i −0.848680 0.848680i 0.141289 0.989968i \(-0.454875\pi\)
−0.989968 + 0.141289i \(0.954875\pi\)
\(12\) 0 0
\(13\) 1.01011i 0.280153i −0.990141 0.140077i \(-0.955265\pi\)
0.990141 0.140077i \(-0.0447349\pi\)
\(14\) 0 0
\(15\) −1.46949 0.689613i −0.379421 0.178057i
\(16\) 0 0
\(17\) −4.11972 + 0.167144i −0.999178 + 0.0405383i
\(18\) 0 0
\(19\) 2.31195i 0.530398i −0.964194 0.265199i \(-0.914562\pi\)
0.964194 0.265199i \(-0.0854376\pi\)
\(20\) 0 0
\(21\) −0.557219 −0.121595
\(22\) 0 0
\(23\) −4.31128 + 4.31128i −0.898965 + 0.898965i −0.995345 0.0963799i \(-0.969274\pi\)
0.0963799 + 0.995345i \(0.469274\pi\)
\(24\) 0 0
\(25\) 3.84589 3.19518i 0.769177 0.639035i
\(26\) 0 0
\(27\) 2.80940 2.80940i 0.540670 0.540670i
\(28\) 0 0
\(29\) 2.92939 2.92939i 0.543973 0.543973i −0.380718 0.924691i \(-0.624323\pi\)
0.924691 + 0.380718i \(0.124323\pi\)
\(30\) 0 0
\(31\) 5.35048 5.35048i 0.960975 0.960975i −0.0382914 0.999267i \(-0.512192\pi\)
0.999267 + 0.0382914i \(0.0121915\pi\)
\(32\) 0 0
\(33\) 2.88974i 0.503039i
\(34\) 0 0
\(35\) 0.729164 1.55377i 0.123251 0.262635i
\(36\) 0 0
\(37\) −7.83837 7.83837i −1.28862 1.28862i −0.935625 0.352995i \(-0.885163\pi\)
−0.352995 0.935625i \(-0.614837\pi\)
\(38\) 0 0
\(39\) 0.518508 0.518508i 0.0830277 0.0830277i
\(40\) 0 0
\(41\) −6.53610 6.53610i −1.02077 1.02077i −0.999780 0.0209873i \(-0.993319\pi\)
−0.0209873 0.999780i \(-0.506681\pi\)
\(42\) 0 0
\(43\) −2.05627 −0.313578 −0.156789 0.987632i \(-0.550114\pi\)
−0.156789 + 0.987632i \(0.550114\pi\)
\(44\) 0 0
\(45\) 1.87860 + 5.20093i 0.280045 + 0.775308i
\(46\) 0 0
\(47\) 12.2560i 1.78772i 0.448351 + 0.893858i \(0.352011\pi\)
−0.448351 + 0.893858i \(0.647989\pi\)
\(48\) 0 0
\(49\) 6.41082i 0.915832i
\(50\) 0 0
\(51\) −2.20053 2.02893i −0.308136 0.284108i
\(52\) 0 0
\(53\) 6.90494 0.948466 0.474233 0.880399i \(-0.342725\pi\)
0.474233 + 0.880399i \(0.342725\pi\)
\(54\) 0 0
\(55\) 8.05785 + 3.78144i 1.08652 + 0.509890i
\(56\) 0 0
\(57\) 1.18677 1.18677i 0.157192 0.157192i
\(58\) 0 0
\(59\) 6.13169i 0.798277i −0.916891 0.399139i \(-0.869309\pi\)
0.916891 0.399139i \(-0.130691\pi\)
\(60\) 0 0
\(61\) −10.2985 10.2985i −1.31859 1.31859i −0.914896 0.403690i \(-0.867727\pi\)
−0.403690 0.914896i \(-0.632273\pi\)
\(62\) 0 0
\(63\) 1.34225 + 1.34225i 0.169107 + 0.169107i
\(64\) 0 0
\(65\) 0.767320 + 2.12433i 0.0951743 + 0.263491i
\(66\) 0 0
\(67\) 8.92915i 1.09087i 0.838153 + 0.545435i \(0.183635\pi\)
−0.838153 + 0.545435i \(0.816365\pi\)
\(68\) 0 0
\(69\) −4.42614 −0.532844
\(70\) 0 0
\(71\) −8.76366 + 8.76366i −1.04006 + 1.04006i −0.0408921 + 0.999164i \(0.513020\pi\)
−0.999164 + 0.0408921i \(0.986980\pi\)
\(72\) 0 0
\(73\) −6.18757 6.18757i −0.724200 0.724200i 0.245258 0.969458i \(-0.421127\pi\)
−0.969458 + 0.245258i \(0.921127\pi\)
\(74\) 0 0
\(75\) 3.61432 + 0.334022i 0.417346 + 0.0385695i
\(76\) 0 0
\(77\) 3.05547 0.348203
\(78\) 0 0
\(79\) 10.0433 + 10.0433i 1.12996 + 1.12996i 0.990183 + 0.139776i \(0.0446384\pi\)
0.139776 + 0.990183i \(0.455362\pi\)
\(80\) 0 0
\(81\) −4.53477 −0.503863
\(82\) 0 0
\(83\) 3.11595 0.342020 0.171010 0.985269i \(-0.445297\pi\)
0.171010 + 0.985269i \(0.445297\pi\)
\(84\) 0 0
\(85\) 8.53712 3.48103i 0.925981 0.377571i
\(86\) 0 0
\(87\) 3.00743 0.322430
\(88\) 0 0
\(89\) −1.08068 −0.114551 −0.0572757 0.998358i \(-0.518241\pi\)
−0.0572757 + 0.998358i \(0.518241\pi\)
\(90\) 0 0
\(91\) 0.548245 + 0.548245i 0.0574717 + 0.0574717i
\(92\) 0 0
\(93\) 5.49302 0.569600
\(94\) 0 0
\(95\) 1.75626 + 4.86221i 0.180188 + 0.498853i
\(96\) 0 0
\(97\) −3.34215 3.34215i −0.339344 0.339344i 0.516777 0.856120i \(-0.327132\pi\)
−0.856120 + 0.516777i \(0.827132\pi\)
\(98\) 0 0
\(99\) −6.96090 + 6.96090i −0.699597 + 0.699597i
\(100\) 0 0
\(101\) 0.957755 0.0953001 0.0476501 0.998864i \(-0.484827\pi\)
0.0476501 + 0.998864i \(0.484827\pi\)
\(102\) 0 0
\(103\) 5.64097i 0.555821i 0.960607 + 0.277911i \(0.0896419\pi\)
−0.960607 + 0.277911i \(0.910358\pi\)
\(104\) 0 0
\(105\) 1.17188 0.423287i 0.114363 0.0413086i
\(106\) 0 0
\(107\) −9.94418 9.94418i −0.961340 0.961340i 0.0379398 0.999280i \(-0.487920\pi\)
−0.999280 + 0.0379398i \(0.987920\pi\)
\(108\) 0 0
\(109\) 11.8500 + 11.8500i 1.13502 + 1.13502i 0.989330 + 0.145694i \(0.0465414\pi\)
0.145694 + 0.989330i \(0.453459\pi\)
\(110\) 0 0
\(111\) 8.04719i 0.763805i
\(112\) 0 0
\(113\) −1.45022 + 1.45022i −0.136426 + 0.136426i −0.772022 0.635596i \(-0.780754\pi\)
0.635596 + 0.772022i \(0.280754\pi\)
\(114\) 0 0
\(115\) 5.79194 12.3420i 0.540101 1.15090i
\(116\) 0 0
\(117\) −2.49800 −0.230940
\(118\) 0 0
\(119\) 2.14530 2.32674i 0.196659 0.213292i
\(120\) 0 0
\(121\) 4.84567i 0.440515i
\(122\) 0 0
\(123\) 6.71022i 0.605040i
\(124\) 0 0
\(125\) −5.66101 + 9.64121i −0.506336 + 0.862336i
\(126\) 0 0
\(127\) 17.3653 1.54092 0.770462 0.637486i \(-0.220025\pi\)
0.770462 + 0.637486i \(0.220025\pi\)
\(128\) 0 0
\(129\) −1.05553 1.05553i −0.0929338 0.0929338i
\(130\) 0 0
\(131\) 1.26700 1.26700i 0.110699 0.110699i −0.649588 0.760287i \(-0.725059\pi\)
0.760287 + 0.649588i \(0.225059\pi\)
\(132\) 0 0
\(133\) 1.25483 + 1.25483i 0.108808 + 0.108808i
\(134\) 0 0
\(135\) −3.77426 + 8.04254i −0.324836 + 0.692192i
\(136\) 0 0
\(137\) 8.60549i 0.735216i −0.929981 0.367608i \(-0.880177\pi\)
0.929981 0.367608i \(-0.119823\pi\)
\(138\) 0 0
\(139\) −7.34182 + 7.34182i −0.622725 + 0.622725i −0.946227 0.323502i \(-0.895140\pi\)
0.323502 + 0.946227i \(0.395140\pi\)
\(140\) 0 0
\(141\) −6.29123 + 6.29123i −0.529817 + 0.529817i
\(142\) 0 0
\(143\) −2.84320 + 2.84320i −0.237760 + 0.237760i
\(144\) 0 0
\(145\) −3.93545 + 8.38602i −0.326821 + 0.696421i
\(146\) 0 0
\(147\) −3.29080 + 3.29080i −0.271421 + 0.271421i
\(148\) 0 0
\(149\) −0.655665 −0.0537142 −0.0268571 0.999639i \(-0.508550\pi\)
−0.0268571 + 0.999639i \(0.508550\pi\)
\(150\) 0 0
\(151\) 8.33507i 0.678298i −0.940733 0.339149i \(-0.889861\pi\)
0.940733 0.339149i \(-0.110139\pi\)
\(152\) 0 0
\(153\) 0.413347 + 10.1881i 0.0334172 + 0.823657i
\(154\) 0 0
\(155\) −7.18804 + 15.3169i −0.577357 + 1.23029i
\(156\) 0 0
\(157\) 1.35959i 0.108507i −0.998527 0.0542537i \(-0.982722\pi\)
0.998527 0.0542537i \(-0.0172780\pi\)
\(158\) 0 0
\(159\) 3.54444 + 3.54444i 0.281093 + 0.281093i
\(160\) 0 0
\(161\) 4.67998i 0.368834i
\(162\) 0 0
\(163\) 15.6484 15.6484i 1.22568 1.22568i 0.260098 0.965582i \(-0.416245\pi\)
0.965582 0.260098i \(-0.0837549\pi\)
\(164\) 0 0
\(165\) 2.19517 + 6.07735i 0.170894 + 0.473121i
\(166\) 0 0
\(167\) 1.87725 + 1.87725i 0.145266 + 0.145266i 0.776000 0.630733i \(-0.217246\pi\)
−0.630733 + 0.776000i \(0.717246\pi\)
\(168\) 0 0
\(169\) 11.9797 0.921514
\(170\) 0 0
\(171\) −5.71746 −0.437225
\(172\) 0 0
\(173\) −2.63953 2.63953i −0.200680 0.200680i 0.599611 0.800291i \(-0.295322\pi\)
−0.800291 + 0.599611i \(0.795322\pi\)
\(174\) 0 0
\(175\) −0.353179 + 3.82161i −0.0266978 + 0.288886i
\(176\) 0 0
\(177\) 3.14752 3.14752i 0.236582 0.236582i
\(178\) 0 0
\(179\) 11.4469i 0.855581i 0.903878 + 0.427790i \(0.140708\pi\)
−0.903878 + 0.427790i \(0.859292\pi\)
\(180\) 0 0
\(181\) 1.63999 + 1.63999i 0.121899 + 0.121899i 0.765425 0.643525i \(-0.222529\pi\)
−0.643525 + 0.765425i \(0.722529\pi\)
\(182\) 0 0
\(183\) 10.5728i 0.781567i
\(184\) 0 0
\(185\) 22.4391 + 10.5304i 1.64975 + 0.774207i
\(186\) 0 0
\(187\) 12.0665 + 11.1255i 0.882386 + 0.813578i
\(188\) 0 0
\(189\) 3.04966i 0.221830i
\(190\) 0 0
\(191\) −7.99129 −0.578230 −0.289115 0.957294i \(-0.593361\pi\)
−0.289115 + 0.957294i \(0.593361\pi\)
\(192\) 0 0
\(193\) −8.98527 + 8.98527i −0.646774 + 0.646774i −0.952212 0.305438i \(-0.901197\pi\)
0.305438 + 0.952212i \(0.401197\pi\)
\(194\) 0 0
\(195\) −0.696582 + 1.48434i −0.0498833 + 0.106296i
\(196\) 0 0
\(197\) 5.50877 5.50877i 0.392484 0.392484i −0.483088 0.875572i \(-0.660485\pi\)
0.875572 + 0.483088i \(0.160485\pi\)
\(198\) 0 0
\(199\) 5.30971 5.30971i 0.376395 0.376395i −0.493405 0.869800i \(-0.664248\pi\)
0.869800 + 0.493405i \(0.164248\pi\)
\(200\) 0 0
\(201\) −4.58351 + 4.58351i −0.323296 + 0.323296i
\(202\) 0 0
\(203\) 3.17991i 0.223186i
\(204\) 0 0
\(205\) 18.7110 + 8.78084i 1.30684 + 0.613280i
\(206\) 0 0
\(207\) 10.6618 + 10.6618i 0.741048 + 0.741048i
\(208\) 0 0
\(209\) −6.50757 + 6.50757i −0.450138 + 0.450138i
\(210\) 0 0
\(211\) −2.55631 2.55631i −0.175984 0.175984i 0.613619 0.789603i \(-0.289713\pi\)
−0.789603 + 0.613619i \(0.789713\pi\)
\(212\) 0 0
\(213\) −8.99713 −0.616473
\(214\) 0 0
\(215\) 4.32450 1.56203i 0.294929 0.106530i
\(216\) 0 0
\(217\) 5.80806i 0.394277i
\(218\) 0 0
\(219\) 6.35240i 0.429256i
\(220\) 0 0
\(221\) 0.168833 + 4.16135i 0.0113569 + 0.279923i
\(222\) 0 0
\(223\) −13.7656 −0.921811 −0.460906 0.887449i \(-0.652475\pi\)
−0.460906 + 0.887449i \(0.652475\pi\)
\(224\) 0 0
\(225\) −7.90169 9.51090i −0.526779 0.634060i
\(226\) 0 0
\(227\) 0.652728 0.652728i 0.0433231 0.0433231i −0.685113 0.728436i \(-0.740247\pi\)
0.728436 + 0.685113i \(0.240247\pi\)
\(228\) 0 0
\(229\) 6.92309i 0.457491i −0.973486 0.228745i \(-0.926538\pi\)
0.973486 0.228745i \(-0.0734623\pi\)
\(230\) 0 0
\(231\) 1.56843 + 1.56843i 0.103195 + 0.103195i
\(232\) 0 0
\(233\) 18.6098 + 18.6098i 1.21917 + 1.21917i 0.967923 + 0.251248i \(0.0808409\pi\)
0.251248 + 0.967923i \(0.419159\pi\)
\(234\) 0 0
\(235\) −9.31015 25.7753i −0.607327 1.68139i
\(236\) 0 0
\(237\) 10.3109i 0.669762i
\(238\) 0 0
\(239\) 3.92551 0.253920 0.126960 0.991908i \(-0.459478\pi\)
0.126960 + 0.991908i \(0.459478\pi\)
\(240\) 0 0
\(241\) 9.26068 9.26068i 0.596533 0.596533i −0.342855 0.939388i \(-0.611394\pi\)
0.939388 + 0.342855i \(0.111394\pi\)
\(242\) 0 0
\(243\) −10.7560 10.7560i −0.689998 0.689998i
\(244\) 0 0
\(245\) −4.86993 13.4825i −0.311129 0.861363i
\(246\) 0 0
\(247\) −2.33531 −0.148593
\(248\) 0 0
\(249\) 1.59948 + 1.59948i 0.101363 + 0.101363i
\(250\) 0 0
\(251\) −23.2963 −1.47045 −0.735225 0.677823i \(-0.762924\pi\)
−0.735225 + 0.677823i \(0.762924\pi\)
\(252\) 0 0
\(253\) 24.2704 1.52587
\(254\) 0 0
\(255\) 6.16916 + 2.59539i 0.386328 + 0.162530i
\(256\) 0 0
\(257\) 4.37385 0.272833 0.136416 0.990652i \(-0.456441\pi\)
0.136416 + 0.990652i \(0.456441\pi\)
\(258\) 0 0
\(259\) 8.50871 0.528705
\(260\) 0 0
\(261\) −7.24439 7.24439i −0.448416 0.448416i
\(262\) 0 0
\(263\) −3.26609 −0.201396 −0.100698 0.994917i \(-0.532108\pi\)
−0.100698 + 0.994917i \(0.532108\pi\)
\(264\) 0 0
\(265\) −14.5216 + 5.24529i −0.892057 + 0.322215i
\(266\) 0 0
\(267\) −0.554733 0.554733i −0.0339491 0.0339491i
\(268\) 0 0
\(269\) 11.0085 11.0085i 0.671199 0.671199i −0.286794 0.957992i \(-0.592589\pi\)
0.957992 + 0.286794i \(0.0925895\pi\)
\(270\) 0 0
\(271\) −7.12361 −0.432728 −0.216364 0.976313i \(-0.569420\pi\)
−0.216364 + 0.976313i \(0.569420\pi\)
\(272\) 0 0
\(273\) 0.562850i 0.0340653i
\(274\) 0 0
\(275\) −19.8189 1.83158i −1.19512 0.110449i
\(276\) 0 0
\(277\) −22.5702 22.5702i −1.35611 1.35611i −0.878658 0.477451i \(-0.841561\pi\)
−0.477451 0.878658i \(-0.658439\pi\)
\(278\) 0 0
\(279\) −13.2318 13.2318i −0.792165 0.792165i
\(280\) 0 0
\(281\) 14.5037i 0.865217i −0.901582 0.432608i \(-0.857593\pi\)
0.901582 0.432608i \(-0.142407\pi\)
\(282\) 0 0
\(283\) −2.49571 + 2.49571i −0.148355 + 0.148355i −0.777383 0.629028i \(-0.783453\pi\)
0.629028 + 0.777383i \(0.283453\pi\)
\(284\) 0 0
\(285\) −1.59435 + 3.39739i −0.0944412 + 0.201244i
\(286\) 0 0
\(287\) 7.09506 0.418808
\(288\) 0 0
\(289\) 16.9441 1.37717i 0.996713 0.0810100i
\(290\) 0 0
\(291\) 3.43118i 0.201140i
\(292\) 0 0
\(293\) 0.507918i 0.0296729i −0.999890 0.0148364i \(-0.995277\pi\)
0.999890 0.0148364i \(-0.00472276\pi\)
\(294\) 0 0
\(295\) 4.65789 + 12.8954i 0.271193 + 0.750800i
\(296\) 0 0
\(297\) −15.8156 −0.917711
\(298\) 0 0
\(299\) 4.35485 + 4.35485i 0.251848 + 0.251848i
\(300\) 0 0
\(301\) 1.11606 1.11606i 0.0643287 0.0643287i
\(302\) 0 0
\(303\) 0.491635 + 0.491635i 0.0282437 + 0.0282437i
\(304\) 0 0
\(305\) 29.4817 + 13.8354i 1.68812 + 0.792211i
\(306\) 0 0
\(307\) 25.8970i 1.47802i −0.673694 0.739010i \(-0.735293\pi\)
0.673694 0.739010i \(-0.264707\pi\)
\(308\) 0 0
\(309\) −2.89562 + 2.89562i −0.164726 + 0.164726i
\(310\) 0 0
\(311\) 1.97345 1.97345i 0.111904 0.111904i −0.648938 0.760842i \(-0.724786\pi\)
0.760842 + 0.648938i \(0.224786\pi\)
\(312\) 0 0
\(313\) −2.97609 + 2.97609i −0.168219 + 0.168219i −0.786196 0.617977i \(-0.787952\pi\)
0.617977 + 0.786196i \(0.287952\pi\)
\(314\) 0 0
\(315\) −3.84248 1.80323i −0.216499 0.101600i
\(316\) 0 0
\(317\) −14.1844 + 14.1844i −0.796674 + 0.796674i −0.982570 0.185895i \(-0.940482\pi\)
0.185895 + 0.982570i \(0.440482\pi\)
\(318\) 0 0
\(319\) −16.4910 −0.923319
\(320\) 0 0
\(321\) 10.2091i 0.569816i
\(322\) 0 0
\(323\) 0.386428 + 9.52458i 0.0215014 + 0.529962i
\(324\) 0 0
\(325\) −3.22747 3.88475i −0.179028 0.215487i
\(326\) 0 0
\(327\) 12.1657i 0.672764i
\(328\) 0 0
\(329\) −6.65204 6.65204i −0.366739 0.366739i
\(330\) 0 0
\(331\) 20.9239i 1.15008i −0.818124 0.575042i \(-0.804986\pi\)
0.818124 0.575042i \(-0.195014\pi\)
\(332\) 0 0
\(333\) −19.3843 + 19.3843i −1.06225 + 1.06225i
\(334\) 0 0
\(335\) −6.78297 18.7787i −0.370593 1.02599i
\(336\) 0 0
\(337\) −4.17667 4.17667i −0.227518 0.227518i 0.584137 0.811655i \(-0.301433\pi\)
−0.811655 + 0.584137i \(0.801433\pi\)
\(338\) 0 0
\(339\) −1.48886 −0.0808637
\(340\) 0 0
\(341\) −30.1206 −1.63112
\(342\) 0 0
\(343\) −7.27886 7.27886i −0.393021 0.393021i
\(344\) 0 0
\(345\) 9.30852 3.36228i 0.501154 0.181019i
\(346\) 0 0
\(347\) 20.0134 20.0134i 1.07437 1.07437i 0.0773707 0.997002i \(-0.475347\pi\)
0.997002 0.0773707i \(-0.0246525\pi\)
\(348\) 0 0
\(349\) 2.29215i 0.122696i 0.998116 + 0.0613480i \(0.0195399\pi\)
−0.998116 + 0.0613480i \(0.980460\pi\)
\(350\) 0 0
\(351\) −2.83780 2.83780i −0.151470 0.151470i
\(352\) 0 0
\(353\) 31.7369i 1.68918i −0.535412 0.844591i \(-0.679844\pi\)
0.535412 0.844591i \(-0.320156\pi\)
\(354\) 0 0
\(355\) 11.7734 25.0879i 0.624869 1.33153i
\(356\) 0 0
\(357\) 2.29558 0.0931357i 0.121495 0.00492927i
\(358\) 0 0
\(359\) 0.0923824i 0.00487576i −0.999997 0.00243788i \(-0.999224\pi\)
0.999997 0.00243788i \(-0.000776002\pi\)
\(360\) 0 0
\(361\) 13.6549 0.718678
\(362\) 0 0
\(363\) −2.48738 + 2.48738i −0.130553 + 0.130553i
\(364\) 0 0
\(365\) 17.7133 + 8.31260i 0.927155 + 0.435102i
\(366\) 0 0
\(367\) 17.8025 17.8025i 0.929283 0.929283i −0.0683761 0.997660i \(-0.521782\pi\)
0.997660 + 0.0683761i \(0.0217818\pi\)
\(368\) 0 0
\(369\) −16.1638 + 16.1638i −0.841454 + 0.841454i
\(370\) 0 0
\(371\) −3.74772 + 3.74772i −0.194572 + 0.194572i
\(372\) 0 0
\(373\) 6.20258i 0.321157i 0.987023 + 0.160579i \(0.0513361\pi\)
−0.987023 + 0.160579i \(0.948664\pi\)
\(374\) 0 0
\(375\) −7.85494 + 2.04312i −0.405627 + 0.105506i
\(376\) 0 0
\(377\) −2.95899 2.95899i −0.152396 0.152396i
\(378\) 0 0
\(379\) 12.7850 12.7850i 0.656723 0.656723i −0.297880 0.954603i \(-0.596280\pi\)
0.954603 + 0.297880i \(0.0962796\pi\)
\(380\) 0 0
\(381\) 8.91398 + 8.91398i 0.456677 + 0.456677i
\(382\) 0 0
\(383\) −36.0180 −1.84043 −0.920217 0.391410i \(-0.871988\pi\)
−0.920217 + 0.391410i \(0.871988\pi\)
\(384\) 0 0
\(385\) −6.42590 + 2.32107i −0.327494 + 0.118292i
\(386\) 0 0
\(387\) 5.08517i 0.258494i
\(388\) 0 0
\(389\) 21.6773i 1.09908i −0.835466 0.549542i \(-0.814802\pi\)
0.835466 0.549542i \(-0.185198\pi\)
\(390\) 0 0
\(391\) 17.0407 18.4819i 0.861783 0.934668i
\(392\) 0 0
\(393\) 1.30076 0.0656145
\(394\) 0 0
\(395\) −28.7512 13.4925i −1.44663 0.678883i
\(396\) 0 0
\(397\) −21.3015 + 21.3015i −1.06909 + 1.06909i −0.0716629 + 0.997429i \(0.522831\pi\)
−0.997429 + 0.0716629i \(0.977169\pi\)
\(398\) 0 0
\(399\) 1.28826i 0.0644938i
\(400\) 0 0
\(401\) −0.317358 0.317358i −0.0158481 0.0158481i 0.699138 0.714986i \(-0.253567\pi\)
−0.714986 + 0.699138i \(0.753567\pi\)
\(402\) 0 0
\(403\) −5.40456 5.40456i −0.269220 0.269220i
\(404\) 0 0
\(405\) 9.53698 3.44480i 0.473896 0.171174i
\(406\) 0 0
\(407\) 44.1262i 2.18725i
\(408\) 0 0
\(409\) −13.8309 −0.683896 −0.341948 0.939719i \(-0.611087\pi\)
−0.341948 + 0.939719i \(0.611087\pi\)
\(410\) 0 0
\(411\) 4.41737 4.41737i 0.217893 0.217893i
\(412\) 0 0
\(413\) 3.32803 + 3.32803i 0.163762 + 0.163762i
\(414\) 0 0
\(415\) −6.55310 + 2.36701i −0.321679 + 0.116192i
\(416\) 0 0
\(417\) −7.53741 −0.369109
\(418\) 0 0
\(419\) −10.3186 10.3186i −0.504098 0.504098i 0.408610 0.912709i \(-0.366013\pi\)
−0.912709 + 0.408610i \(0.866013\pi\)
\(420\) 0 0
\(421\) 15.5241 0.756601 0.378300 0.925683i \(-0.376509\pi\)
0.378300 + 0.925683i \(0.376509\pi\)
\(422\) 0 0
\(423\) 30.3090 1.47368
\(424\) 0 0
\(425\) −15.3099 + 13.8060i −0.742640 + 0.669691i
\(426\) 0 0
\(427\) 11.1792 0.541000
\(428\) 0 0
\(429\) −2.91894 −0.140928
\(430\) 0 0
\(431\) 22.5522 + 22.5522i 1.08630 + 1.08630i 0.995906 + 0.0903937i \(0.0288125\pi\)
0.0903937 + 0.995906i \(0.471187\pi\)
\(432\) 0 0
\(433\) 23.9756 1.15219 0.576097 0.817382i \(-0.304575\pi\)
0.576097 + 0.817382i \(0.304575\pi\)
\(434\) 0 0
\(435\) −6.32486 + 2.28457i −0.303254 + 0.109537i
\(436\) 0 0
\(437\) 9.96747 + 9.96747i 0.476809 + 0.476809i
\(438\) 0 0
\(439\) −17.8069 + 17.8069i −0.849878 + 0.849878i −0.990118 0.140240i \(-0.955213\pi\)
0.140240 + 0.990118i \(0.455213\pi\)
\(440\) 0 0
\(441\) 15.8540 0.754952
\(442\) 0 0
\(443\) 19.7784i 0.939700i −0.882746 0.469850i \(-0.844308\pi\)
0.882746 0.469850i \(-0.155692\pi\)
\(444\) 0 0
\(445\) 2.27275 0.820928i 0.107739 0.0389157i
\(446\) 0 0
\(447\) −0.336566 0.336566i −0.0159190 0.0159190i
\(448\) 0 0
\(449\) −0.857444 0.857444i −0.0404653 0.0404653i 0.686585 0.727050i \(-0.259109\pi\)
−0.727050 + 0.686585i \(0.759109\pi\)
\(450\) 0 0
\(451\) 36.7950i 1.73261i
\(452\) 0 0
\(453\) 4.27856 4.27856i 0.201024 0.201024i
\(454\) 0 0
\(455\) −1.56947 0.736533i −0.0735780 0.0345292i
\(456\) 0 0
\(457\) −7.32015 −0.342422 −0.171211 0.985234i \(-0.554768\pi\)
−0.171211 + 0.985234i \(0.554768\pi\)
\(458\) 0 0
\(459\) −11.1044 + 12.0435i −0.518308 + 0.562143i
\(460\) 0 0
\(461\) 19.1994i 0.894206i −0.894482 0.447103i \(-0.852456\pi\)
0.894482 0.447103i \(-0.147544\pi\)
\(462\) 0 0
\(463\) 22.5776i 1.04927i −0.851327 0.524635i \(-0.824202\pi\)
0.851327 0.524635i \(-0.175798\pi\)
\(464\) 0 0
\(465\) −11.5523 + 4.17273i −0.535723 + 0.193506i
\(466\) 0 0
\(467\) −16.4171 −0.759691 −0.379845 0.925050i \(-0.624023\pi\)
−0.379845 + 0.925050i \(0.624023\pi\)
\(468\) 0 0
\(469\) −4.84639 4.84639i −0.223785 0.223785i
\(470\) 0 0
\(471\) 0.697907 0.697907i 0.0321579 0.0321579i
\(472\) 0 0
\(473\) 5.78790 + 5.78790i 0.266128 + 0.266128i
\(474\) 0 0
\(475\) −7.38709 8.89150i −0.338943 0.407970i
\(476\) 0 0
\(477\) 17.0759i 0.781854i
\(478\) 0 0
\(479\) 27.0509 27.0509i 1.23599 1.23599i 0.274357 0.961628i \(-0.411535\pi\)
0.961628 0.274357i \(-0.0884651\pi\)
\(480\) 0 0
\(481\) −7.91759 + 7.91759i −0.361011 + 0.361011i
\(482\) 0 0
\(483\) 2.40233 2.40233i 0.109310 0.109310i
\(484\) 0 0
\(485\) 9.56764 + 4.48997i 0.434444 + 0.203879i
\(486\) 0 0
\(487\) −6.76648 + 6.76648i −0.306619 + 0.306619i −0.843596 0.536978i \(-0.819566\pi\)
0.536978 + 0.843596i \(0.319566\pi\)
\(488\) 0 0
\(489\) 16.0653 0.726499
\(490\) 0 0
\(491\) 1.50223i 0.0677946i −0.999425 0.0338973i \(-0.989208\pi\)
0.999425 0.0338973i \(-0.0107919\pi\)
\(492\) 0 0
\(493\) −11.5786 + 12.5579i −0.521475 + 0.565578i
\(494\) 0 0
\(495\) 9.35153 19.9271i 0.420320 0.895657i
\(496\) 0 0
\(497\) 9.51313i 0.426722i
\(498\) 0 0
\(499\) 16.9850 + 16.9850i 0.760353 + 0.760353i 0.976386 0.216033i \(-0.0693118\pi\)
−0.216033 + 0.976386i \(0.569312\pi\)
\(500\) 0 0
\(501\) 1.92726i 0.0861038i
\(502\) 0 0
\(503\) −10.2153 + 10.2153i −0.455476 + 0.455476i −0.897167 0.441691i \(-0.854379\pi\)
0.441691 + 0.897167i \(0.354379\pi\)
\(504\) 0 0
\(505\) −2.01423 + 0.727551i −0.0896322 + 0.0323756i
\(506\) 0 0
\(507\) 6.14941 + 6.14941i 0.273105 + 0.273105i
\(508\) 0 0
\(509\) −6.25617 −0.277300 −0.138650 0.990341i \(-0.544276\pi\)
−0.138650 + 0.990341i \(0.544276\pi\)
\(510\) 0 0
\(511\) 6.71673 0.297130
\(512\) 0 0
\(513\) −6.49520 6.49520i −0.286770 0.286770i
\(514\) 0 0
\(515\) −4.28512 11.8634i −0.188825 0.522764i
\(516\) 0 0
\(517\) 34.4975 34.4975i 1.51720 1.51720i
\(518\) 0 0
\(519\) 2.70985i 0.118949i
\(520\) 0 0
\(521\) 24.7142 + 24.7142i 1.08275 + 1.08275i 0.996252 + 0.0864967i \(0.0275672\pi\)
0.0864967 + 0.996252i \(0.472433\pi\)
\(522\) 0 0
\(523\) 39.5509i 1.72944i 0.502253 + 0.864721i \(0.332505\pi\)
−0.502253 + 0.864721i \(0.667495\pi\)
\(524\) 0 0
\(525\) −2.14300 + 1.78041i −0.0935282 + 0.0777036i
\(526\) 0 0
\(527\) −21.1482 + 22.9368i −0.921229 + 0.999142i
\(528\) 0 0
\(529\) 14.1743i 0.616275i
\(530\) 0 0
\(531\) −15.1637 −0.658048
\(532\) 0 0
\(533\) −6.60215 + 6.60215i −0.285971 + 0.285971i
\(534\) 0 0
\(535\) 28.4674 + 13.3594i 1.23075 + 0.577576i
\(536\) 0 0
\(537\) −5.87592 + 5.87592i −0.253565 + 0.253565i
\(538\) 0 0
\(539\) 18.0449 18.0449i 0.777248 0.777248i
\(540\) 0 0
\(541\) 14.8850 14.8850i 0.639955 0.639955i −0.310589 0.950544i \(-0.600526\pi\)
0.950544 + 0.310589i \(0.100526\pi\)
\(542\) 0 0
\(543\) 1.68368i 0.0722535i
\(544\) 0 0
\(545\) −33.9232 15.9197i −1.45311 0.681926i
\(546\) 0 0
\(547\) −17.2857 17.2857i −0.739084 0.739084i 0.233317 0.972401i \(-0.425042\pi\)
−0.972401 + 0.233317i \(0.925042\pi\)
\(548\) 0 0
\(549\) −25.4682 + 25.4682i −1.08696 + 1.08696i
\(550\) 0 0
\(551\) −6.77260 6.77260i −0.288522 0.288522i
\(552\) 0 0
\(553\) −10.9022 −0.463609
\(554\) 0 0
\(555\) 6.11299 + 16.9239i 0.259482 + 0.718378i
\(556\) 0 0
\(557\) 4.34727i 0.184200i 0.995750 + 0.0920999i \(0.0293579\pi\)
−0.995750 + 0.0920999i \(0.970642\pi\)
\(558\) 0 0
\(559\) 2.07705i 0.0878500i
\(560\) 0 0
\(561\) 0.483002 + 11.9049i 0.0203924 + 0.502625i
\(562\) 0 0
\(563\) 33.9959 1.43276 0.716379 0.697712i \(-0.245798\pi\)
0.716379 + 0.697712i \(0.245798\pi\)
\(564\) 0 0
\(565\) 1.94828 4.15159i 0.0819649 0.174659i
\(566\) 0 0
\(567\) 2.46129 2.46129i 0.103364 0.103364i
\(568\) 0 0
\(569\) 16.8690i 0.707185i −0.935400 0.353592i \(-0.884960\pi\)
0.935400 0.353592i \(-0.115040\pi\)
\(570\) 0 0
\(571\) 25.7752 + 25.7752i 1.07866 + 1.07866i 0.996630 + 0.0820281i \(0.0261397\pi\)
0.0820281 + 0.996630i \(0.473860\pi\)
\(572\) 0 0
\(573\) −4.10209 4.10209i −0.171367 0.171367i
\(574\) 0 0
\(575\) −2.80539 + 30.3560i −0.116993 + 1.26593i
\(576\) 0 0
\(577\) 16.4536i 0.684971i −0.939523 0.342485i \(-0.888731\pi\)
0.939523 0.342485i \(-0.111269\pi\)
\(578\) 0 0
\(579\) −9.22464 −0.383363
\(580\) 0 0
\(581\) −1.69121 + 1.69121i −0.0701634 + 0.0701634i
\(582\) 0 0
\(583\) −19.4357 19.4357i −0.804944 0.804944i
\(584\) 0 0
\(585\) 5.25349 1.89759i 0.217205 0.0784555i
\(586\) 0 0
\(587\) 0.0736793 0.00304107 0.00152054 0.999999i \(-0.499516\pi\)
0.00152054 + 0.999999i \(0.499516\pi\)
\(588\) 0 0
\(589\) −12.3700 12.3700i −0.509699 0.509699i
\(590\) 0 0
\(591\) 5.65553 0.232637
\(592\) 0 0
\(593\) 21.0562 0.864675 0.432337 0.901712i \(-0.357689\pi\)
0.432337 + 0.901712i \(0.357689\pi\)
\(594\) 0 0
\(595\) −2.74424 + 6.52297i −0.112503 + 0.267416i
\(596\) 0 0
\(597\) 5.45116 0.223101
\(598\) 0 0
\(599\) 24.0976 0.984601 0.492301 0.870425i \(-0.336156\pi\)
0.492301 + 0.870425i \(0.336156\pi\)
\(600\) 0 0
\(601\) 15.2285 + 15.2285i 0.621185 + 0.621185i 0.945834 0.324650i \(-0.105246\pi\)
−0.324650 + 0.945834i \(0.605246\pi\)
\(602\) 0 0
\(603\) 22.0818 0.899242
\(604\) 0 0
\(605\) −3.68097 10.1908i −0.149653 0.414316i
\(606\) 0 0
\(607\) 21.6109 + 21.6109i 0.877160 + 0.877160i 0.993240 0.116080i \(-0.0370330\pi\)
−0.116080 + 0.993240i \(0.537033\pi\)
\(608\) 0 0
\(609\) −1.63231 + 1.63231i −0.0661446 + 0.0661446i
\(610\) 0 0
\(611\) 12.3798 0.500834
\(612\) 0 0
\(613\) 29.0645i 1.17390i −0.809622 0.586952i \(-0.800328\pi\)
0.809622 0.586952i \(-0.199672\pi\)
\(614\) 0 0
\(615\) 5.09737 + 14.1121i 0.205546 + 0.569056i
\(616\) 0 0
\(617\) −15.7172 15.7172i −0.632749 0.632749i 0.316008 0.948757i \(-0.397658\pi\)
−0.948757 + 0.316008i \(0.897658\pi\)
\(618\) 0 0
\(619\) −19.0808 19.0808i −0.766923 0.766923i 0.210641 0.977564i \(-0.432445\pi\)
−0.977564 + 0.210641i \(0.932445\pi\)
\(620\) 0 0
\(621\) 24.2243i 0.972086i
\(622\) 0 0
\(623\) 0.586548 0.586548i 0.0234995 0.0234995i
\(624\) 0 0
\(625\) 4.58168 24.5766i 0.183267 0.983063i
\(626\) 0 0
\(627\) −6.68093 −0.266811
\(628\) 0 0
\(629\) 33.6020 + 30.9817i 1.33980 + 1.23532i
\(630\) 0 0
\(631\) 28.3829i 1.12991i 0.825123 + 0.564953i \(0.191106\pi\)
−0.825123 + 0.564953i \(0.808894\pi\)
\(632\) 0 0
\(633\) 2.62441i 0.104311i
\(634\) 0 0
\(635\) −36.5207 + 13.1915i −1.44928 + 0.523487i
\(636\) 0 0
\(637\) 6.47561 0.256573
\(638\) 0 0
\(639\) 21.6726 + 21.6726i 0.857354 + 0.857354i
\(640\) 0 0
\(641\) −25.0393 + 25.0393i −0.988994 + 0.988994i −0.999940 0.0109456i \(-0.996516\pi\)
0.0109456 + 0.999940i \(0.496516\pi\)
\(642\) 0 0
\(643\) 26.0861 + 26.0861i 1.02873 + 1.02873i 0.999575 + 0.0291592i \(0.00928299\pi\)
0.0291592 + 0.999575i \(0.490717\pi\)
\(644\) 0 0
\(645\) 3.02168 + 1.41803i 0.118978 + 0.0558350i
\(646\) 0 0
\(647\) 14.1949i 0.558061i −0.960282 0.279030i \(-0.909987\pi\)
0.960282 0.279030i \(-0.0900130\pi\)
\(648\) 0 0
\(649\) −17.2592 + 17.2592i −0.677482 + 0.677482i
\(650\) 0 0
\(651\) −2.98139 + 2.98139i −0.116850 + 0.116850i
\(652\) 0 0
\(653\) 0.793576 0.793576i 0.0310550 0.0310550i −0.691409 0.722464i \(-0.743010\pi\)
0.722464 + 0.691409i \(0.243010\pi\)
\(654\) 0 0
\(655\) −1.70214 + 3.62708i −0.0665081 + 0.141722i
\(656\) 0 0
\(657\) −15.3019 + 15.3019i −0.596983 + 0.596983i
\(658\) 0 0
\(659\) −19.8424 −0.772951 −0.386476 0.922300i \(-0.626308\pi\)
−0.386476 + 0.922300i \(0.626308\pi\)
\(660\) 0 0
\(661\) 27.7888i 1.08086i 0.841389 + 0.540430i \(0.181738\pi\)
−0.841389 + 0.540430i \(0.818262\pi\)
\(662\) 0 0
\(663\) −2.04944 + 2.22277i −0.0795936 + 0.0863252i
\(664\) 0 0
\(665\) −3.59224 1.68579i −0.139301 0.0653721i
\(666\) 0 0
\(667\) 25.2588i 0.978026i
\(668\) 0 0
\(669\) −7.06615 7.06615i −0.273193 0.273193i
\(670\) 0 0
\(671\) 57.9754i 2.23811i
\(672\) 0 0
\(673\) 30.7340 30.7340i 1.18471 1.18471i 0.206200 0.978510i \(-0.433890\pi\)
0.978510 0.206200i \(-0.0661097\pi\)
\(674\) 0 0
\(675\) 1.82810 19.7812i 0.0703637 0.761378i
\(676\) 0 0
\(677\) −22.0723 22.0723i −0.848308 0.848308i 0.141614 0.989922i \(-0.454771\pi\)
−0.989922 + 0.141614i \(0.954771\pi\)
\(678\) 0 0
\(679\) 3.62797 0.139229
\(680\) 0 0
\(681\) 0.670117 0.0256789
\(682\) 0 0
\(683\) 18.1924 + 18.1924i 0.696111 + 0.696111i 0.963569 0.267458i \(-0.0861838\pi\)
−0.267458 + 0.963569i \(0.586184\pi\)
\(684\) 0 0
\(685\) 6.53709 + 18.0980i 0.249770 + 0.691490i
\(686\) 0 0
\(687\) 3.55376 3.55376i 0.135584 0.135584i
\(688\) 0 0
\(689\) 6.97472i 0.265716i
\(690\) 0 0
\(691\) −6.41681 6.41681i −0.244107 0.244107i 0.574440 0.818547i \(-0.305220\pi\)
−0.818547 + 0.574440i \(0.805220\pi\)
\(692\) 0 0
\(693\) 7.55619i 0.287036i
\(694\) 0 0
\(695\) 9.86328 21.0176i 0.374135 0.797243i
\(696\) 0 0
\(697\) 28.0193 + 25.8344i 1.06131 + 0.978548i
\(698\) 0 0
\(699\) 19.1056i 0.722640i
\(700\) 0 0
\(701\) −24.5605 −0.927639 −0.463819 0.885930i \(-0.653521\pi\)
−0.463819 + 0.885930i \(0.653521\pi\)
\(702\) 0 0
\(703\) −18.1219 + 18.1219i −0.683481 + 0.683481i
\(704\) 0 0
\(705\) 8.45187 18.0100i 0.318316 0.678297i
\(706\) 0 0
\(707\) −0.519831 + 0.519831i −0.0195502 + 0.0195502i
\(708\) 0 0
\(709\) −23.2572 + 23.2572i −0.873441 + 0.873441i −0.992846 0.119404i \(-0.961902\pi\)
0.119404 + 0.992846i \(0.461902\pi\)
\(710\) 0 0
\(711\) 24.8371 24.8371i 0.931465 0.931465i
\(712\) 0 0
\(713\) 46.1349i 1.72777i
\(714\) 0 0
\(715\) 3.81966 8.13929i 0.142847 0.304392i
\(716\) 0 0
\(717\) 2.01505 + 2.01505i 0.0752532 + 0.0752532i
\(718\) 0 0
\(719\) −27.1660 + 27.1660i −1.01312 + 1.01312i −0.0132092 + 0.999913i \(0.504205\pi\)
−0.999913 + 0.0132092i \(0.995795\pi\)
\(720\) 0 0
\(721\) −3.06169 3.06169i −0.114023 0.114023i
\(722\) 0 0
\(723\) 9.50739 0.353584
\(724\) 0 0
\(725\) 1.90618 20.6260i 0.0707937 0.766030i
\(726\) 0 0
\(727\) 22.5490i 0.836297i 0.908379 + 0.418148i \(0.137321\pi\)
−0.908379 + 0.418148i \(0.862679\pi\)
\(728\) 0 0
\(729\) 2.56177i 0.0948802i
\(730\) 0 0
\(731\) 8.47126 0.343693i 0.313321 0.0127119i
\(732\) 0 0
\(733\) −2.15899 −0.0797440 −0.0398720 0.999205i \(-0.512695\pi\)
−0.0398720 + 0.999205i \(0.512695\pi\)
\(734\) 0 0
\(735\) 4.42099 9.42066i 0.163071 0.347486i
\(736\) 0 0
\(737\) 25.1334 25.1334i 0.925799 0.925799i
\(738\) 0 0
\(739\) 26.5102i 0.975193i −0.873069 0.487597i \(-0.837874\pi\)
0.873069 0.487597i \(-0.162126\pi\)
\(740\) 0 0
\(741\) −1.19876 1.19876i −0.0440377 0.0440377i
\(742\) 0 0
\(743\) −27.2833 27.2833i −1.00093 1.00093i −1.00000 0.000926218i \(-0.999705\pi\)
−0.000926218 1.00000i \(-0.500295\pi\)
\(744\) 0 0
\(745\) 1.37892 0.498071i 0.0505196 0.0182479i
\(746\) 0 0
\(747\) 7.70577i 0.281939i
\(748\) 0 0
\(749\) 10.7946 0.394426
\(750\) 0 0
\(751\) −14.6118 + 14.6118i −0.533192 + 0.533192i −0.921521 0.388329i \(-0.873052\pi\)
0.388329 + 0.921521i \(0.373052\pi\)
\(752\) 0 0
\(753\) −11.9585 11.9585i −0.435791 0.435791i
\(754\) 0 0
\(755\) 6.33167 + 17.5293i 0.230433 + 0.637957i
\(756\) 0 0
\(757\) −31.1450 −1.13199 −0.565993 0.824410i \(-0.691507\pi\)
−0.565993 + 0.824410i \(0.691507\pi\)
\(758\) 0 0
\(759\) 12.4585 + 12.4585i 0.452214 + 0.452214i
\(760\) 0 0
\(761\) 34.9225 1.26594 0.632970 0.774177i \(-0.281836\pi\)
0.632970 + 0.774177i \(0.281836\pi\)
\(762\) 0 0
\(763\) −12.8634 −0.465686
\(764\) 0 0
\(765\) −8.60860 21.1123i −0.311245 0.763318i
\(766\) 0 0
\(767\) −6.19365 −0.223640
\(768\) 0 0
\(769\) −12.1337 −0.437554 −0.218777 0.975775i \(-0.570207\pi\)
−0.218777 + 0.975775i \(0.570207\pi\)
\(770\) 0 0
\(771\) 2.24518 + 2.24518i 0.0808583 + 0.0808583i
\(772\) 0 0
\(773\) −24.3094 −0.874350 −0.437175 0.899376i \(-0.644021\pi\)
−0.437175 + 0.899376i \(0.644021\pi\)
\(774\) 0 0
\(775\) 3.48161 37.6731i 0.125063 1.35326i
\(776\) 0 0
\(777\) 4.36769 + 4.36769i 0.156690 + 0.156690i
\(778\) 0 0
\(779\) −15.1111 + 15.1111i −0.541412 + 0.541412i
\(780\) 0 0
\(781\) 49.3351 1.76535
\(782\) 0 0
\(783\) 16.4597i 0.588220i
\(784\) 0 0
\(785\) 1.03281 + 2.85934i 0.0368624 + 0.102054i
\(786\) 0 0
\(787\) −8.51407 8.51407i −0.303494 0.303494i 0.538885 0.842379i \(-0.318846\pi\)
−0.842379 + 0.538885i \(0.818846\pi\)
\(788\) 0 0
\(789\) −1.67655 1.67655i −0.0596867 0.0596867i
\(790\) 0 0
\(791\) 1.57425i 0.0559738i
\(792\) 0 0
\(793\) −10.4026 + 10.4026i −0.369406 + 0.369406i
\(794\) 0 0
\(795\) −10.1468 4.76174i −0.359868 0.168881i
\(796\) 0 0
\(797\) 49.6699 1.75940 0.879699 0.475531i \(-0.157744\pi\)
0.879699 + 0.475531i \(0.157744\pi\)
\(798\) 0 0
\(799\) −2.04851 50.4911i −0.0724710 1.78625i
\(800\) 0 0
\(801\) 2.67252i 0.0944288i
\(802\) 0 0
\(803\) 34.8329i 1.22923i
\(804\) 0 0
\(805\) 3.55511 + 9.84238i 0.125301 + 0.346898i
\(806\) 0 0
\(807\) 11.3017 0.397840
\(808\) 0 0
\(809\) −2.77212 2.77212i −0.0974627 0.0974627i 0.656694 0.754157i \(-0.271954\pi\)
−0.754157 + 0.656694i \(0.771954\pi\)
\(810\) 0 0
\(811\) 16.0507 16.0507i 0.563616 0.563616i −0.366717 0.930333i \(-0.619518\pi\)
0.930333 + 0.366717i \(0.119518\pi\)
\(812\) 0 0
\(813\) −3.65669 3.65669i −0.128246 0.128246i
\(814\) 0 0
\(815\) −21.0227 + 44.7971i −0.736393 + 1.56918i
\(816\) 0 0
\(817\) 4.75400i 0.166321i
\(818\) 0 0
\(819\) 1.35581 1.35581i 0.0473759 0.0473759i
\(820\) 0 0
\(821\) 0.287700 0.287700i 0.0100408 0.0100408i −0.702069 0.712109i \(-0.747740\pi\)
0.712109 + 0.702069i \(0.247740\pi\)
\(822\) 0 0
\(823\) −3.92073 + 3.92073i −0.136668 + 0.136668i −0.772131 0.635463i \(-0.780809\pi\)
0.635463 + 0.772131i \(0.280809\pi\)
\(824\) 0 0
\(825\) −9.23323 11.1136i −0.321460 0.386926i
\(826\) 0 0
\(827\) −4.94680 + 4.94680i −0.172017 + 0.172017i −0.787865 0.615848i \(-0.788814\pi\)
0.615848 + 0.787865i \(0.288814\pi\)
\(828\) 0 0
\(829\) 25.8818 0.898912 0.449456 0.893302i \(-0.351618\pi\)
0.449456 + 0.893302i \(0.351618\pi\)
\(830\) 0 0
\(831\) 23.1714i 0.803808i
\(832\) 0 0
\(833\) −1.07153 26.4108i −0.0371263 0.915079i
\(834\) 0 0
\(835\) −5.37405 2.52197i −0.185977 0.0872764i
\(836\) 0 0
\(837\) 30.0633i 1.03914i
\(838\) 0 0
\(839\) −2.22482 2.22482i −0.0768093 0.0768093i 0.667658 0.744468i \(-0.267297\pi\)
−0.744468 + 0.667658i \(0.767297\pi\)
\(840\) 0 0
\(841\) 11.8374i 0.408186i
\(842\) 0 0
\(843\) 7.44503 7.44503i 0.256420 0.256420i
\(844\) 0 0
\(845\) −25.1942 + 9.10028i −0.866708 + 0.313059i
\(846\) 0 0
\(847\) −2.63003 2.63003i −0.0903690 0.0903690i
\(848\) 0 0
\(849\) −2.56220 −0.0879345
\(850\) 0 0
\(851\) 67.5869 2.31685
\(852\) 0 0
\(853\) −8.62929 8.62929i −0.295461 0.295461i 0.543772 0.839233i \(-0.316996\pi\)
−0.839233 + 0.543772i \(0.816996\pi\)
\(854\) 0 0
\(855\) 12.0243 4.34323i 0.411222 0.148535i
\(856\) 0 0
\(857\) 2.93117 2.93117i 0.100127 0.100127i −0.655269 0.755396i \(-0.727445\pi\)
0.755396 + 0.655269i \(0.227445\pi\)
\(858\) 0 0
\(859\) 23.4075i 0.798655i 0.916808 + 0.399327i \(0.130756\pi\)
−0.916808 + 0.399327i \(0.869244\pi\)
\(860\) 0 0
\(861\) 3.64204 + 3.64204i 0.124120 + 0.124120i
\(862\) 0 0
\(863\) 46.4610i 1.58155i −0.612106 0.790776i \(-0.709677\pi\)
0.612106 0.790776i \(-0.290323\pi\)
\(864\) 0 0
\(865\) 7.55624 + 3.54604i 0.256920 + 0.120569i
\(866\) 0 0
\(867\) 9.40469 + 7.99083i 0.319400 + 0.271383i
\(868\) 0 0
\(869\) 56.5388i 1.91795i
\(870\) 0 0
\(871\) 9.01939 0.305610
\(872\) 0 0
\(873\) −8.26515 + 8.26515i −0.279733 + 0.279733i
\(874\) 0 0
\(875\) −2.16029 8.30543i −0.0730312 0.280775i
\(876\) 0 0
\(877\) −21.0150 + 21.0150i −0.709627 + 0.709627i −0.966457 0.256829i \(-0.917322\pi\)
0.256829 + 0.966457i \(0.417322\pi\)
\(878\) 0 0
\(879\) 0.260724 0.260724i 0.00879401 0.00879401i
\(880\) 0 0
\(881\) −6.42119 + 6.42119i −0.216335 + 0.216335i −0.806952 0.590617i \(-0.798885\pi\)
0.590617 + 0.806952i \(0.298885\pi\)
\(882\) 0 0
\(883\) 34.0674i 1.14646i 0.819394 + 0.573230i \(0.194310\pi\)
−0.819394 + 0.573230i \(0.805690\pi\)
\(884\) 0 0
\(885\) −4.22849 + 9.01047i −0.142139 + 0.302884i
\(886\) 0 0
\(887\) −30.5748 30.5748i −1.02660 1.02660i −0.999636 0.0269645i \(-0.991416\pi\)
−0.0269645 0.999636i \(-0.508584\pi\)
\(888\) 0 0
\(889\) −9.42521 + 9.42521i −0.316111 + 0.316111i
\(890\) 0 0
\(891\) 12.7643 + 12.7643i 0.427619 + 0.427619i
\(892\) 0 0
\(893\) 28.3352 0.948200
\(894\) 0 0
\(895\) −8.69554 24.0737i −0.290660 0.804696i
\(896\) 0 0
\(897\) 4.47087i 0.149278i
\(898\) 0 0
\(899\) 31.3473i 1.04549i
\(900\) 0 0
\(901\) −28.4464 + 1.15412i −0.947687 + 0.0384492i
\(902\) 0 0
\(903\) 1.14579 0.0381296
\(904\) 0 0
\(905\) −4.69483 2.20322i −0.156061 0.0732375i
\(906\) 0 0
\(907\) 10.4775 10.4775i 0.347898 0.347898i −0.511428 0.859326i \(-0.670883\pi\)
0.859326 + 0.511428i \(0.170883\pi\)
\(908\) 0 0
\(909\) 2.36853i 0.0785592i
\(910\) 0 0
\(911\) −13.6008 13.6008i −0.450614 0.450614i 0.444945 0.895558i \(-0.353223\pi\)
−0.895558 + 0.444945i \(0.853223\pi\)
\(912\) 0 0
\(913\) −8.77064 8.77064i −0.290266 0.290266i
\(914\) 0 0
\(915\) 8.03158 + 22.2355i 0.265516 + 0.735084i
\(916\) 0 0
\(917\) 1.37536i 0.0454183i
\(918\) 0 0
\(919\) −29.2119 −0.963612 −0.481806 0.876278i \(-0.660019\pi\)
−0.481806 + 0.876278i \(0.660019\pi\)
\(920\) 0 0
\(921\) 13.2935 13.2935i 0.438034 0.438034i
\(922\) 0 0
\(923\) 8.85223 + 8.85223i 0.291375 + 0.291375i
\(924\) 0 0
\(925\) −55.1905 5.10050i −1.81465 0.167703i
\(926\) 0 0
\(927\) 13.9501 0.458183
\(928\) 0 0
\(929\) −25.4859 25.4859i −0.836165 0.836165i 0.152186 0.988352i \(-0.451369\pi\)
−0.988352 + 0.152186i \(0.951369\pi\)
\(930\) 0 0
\(931\) 14.8215 0.485755
\(932\) 0 0
\(933\) 2.02602 0.0663289
\(934\) 0 0
\(935\) −33.8281 14.2317i −1.10630 0.465425i
\(936\) 0 0
\(937\) −40.5097 −1.32339 −0.661697 0.749771i \(-0.730164\pi\)
−0.661697 + 0.749771i \(0.730164\pi\)
\(938\) 0 0
\(939\) −3.05538 −0.0997085
\(940\) 0 0
\(941\) 22.2677 + 22.2677i 0.725905 + 0.725905i 0.969801 0.243896i \(-0.0784256\pi\)
−0.243896 + 0.969801i \(0.578426\pi\)
\(942\) 0 0
\(943\) 56.3579 1.83527
\(944\) 0 0
\(945\) −2.31665 6.41368i −0.0753608 0.208637i
\(946\) 0 0
\(947\) 32.3931 + 32.3931i 1.05263 + 1.05263i 0.998536 + 0.0540971i \(0.0172280\pi\)
0.0540971 + 0.998536i \(0.482772\pi\)
\(948\) 0 0
\(949\) −6.25010 + 6.25010i −0.202887 + 0.202887i
\(950\) 0 0
\(951\) −14.5623 −0.472214
\(952\) 0 0
\(953\) 57.2852i 1.85565i 0.373014 + 0.927826i \(0.378324\pi\)
−0.373014 + 0.927826i \(0.621676\pi\)
\(954\) 0 0
\(955\) 16.8063 6.07053i 0.543840 0.196438i
\(956\) 0 0
\(957\) −8.46516 8.46516i −0.273640 0.273640i
\(958\) 0 0
\(959\) 4.67071 + 4.67071i 0.150825 + 0.150825i
\(960\) 0 0
\(961\) 26.2553i 0.846947i
\(962\) 0 0
\(963\) −24.5920 + 24.5920i −0.792466 + 0.792466i
\(964\) 0 0
\(965\) 12.0711 25.7223i 0.388584 0.828031i
\(966\) 0 0
\(967\) −3.21512 −0.103391 −0.0516956 0.998663i \(-0.516463\pi\)
−0.0516956 + 0.998663i \(0.516463\pi\)
\(968\) 0 0
\(969\) −4.69080 + 5.08752i −0.150690 + 0.163435i
\(970\) 0 0
\(971\) 5.32370i 0.170846i 0.996345 + 0.0854229i \(0.0272241\pi\)
−0.996345 + 0.0854229i \(0.972776\pi\)
\(972\) 0 0
\(973\) 7.96970i 0.255497i
\(974\) 0 0
\(975\) 0.337398 3.65085i 0.0108054 0.116921i
\(976\) 0 0
\(977\) −13.4000 −0.428704 −0.214352 0.976756i \(-0.568764\pi\)
−0.214352 + 0.976756i \(0.568764\pi\)
\(978\) 0 0
\(979\) 3.04184 + 3.04184i 0.0972176 + 0.0972176i
\(980\) 0 0
\(981\) 29.3051 29.3051i 0.935640 0.935640i
\(982\) 0 0
\(983\) −28.9134 28.9134i −0.922196 0.922196i 0.0749887 0.997184i \(-0.476108\pi\)
−0.997184 + 0.0749887i \(0.976108\pi\)
\(984\) 0 0
\(985\) −7.40069 + 15.7701i −0.235806 + 0.502477i
\(986\) 0 0
\(987\) 6.82925i 0.217378i
\(988\) 0 0
\(989\) 8.86517 8.86517i 0.281896 0.281896i
\(990\) 0 0
\(991\) 0.269862 0.269862i 0.00857244 0.00857244i −0.702808 0.711380i \(-0.748071\pi\)
0.711380 + 0.702808i \(0.248071\pi\)
\(992\) 0 0
\(993\) 10.7407 10.7407i 0.340845 0.340845i
\(994\) 0 0
\(995\) −7.13325 + 15.2002i −0.226139 + 0.481879i
\(996\) 0 0
\(997\) −22.6148 + 22.6148i −0.716219 + 0.716219i −0.967829 0.251609i \(-0.919040\pi\)
0.251609 + 0.967829i \(0.419040\pi\)
\(998\) 0 0
\(999\) −44.0423 −1.39344
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.z.d.89.8 yes 26
5.4 even 2 680.2.z.c.89.6 26
17.13 even 4 680.2.z.c.489.6 yes 26
85.64 even 4 inner 680.2.z.d.489.8 yes 26
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.z.c.89.6 26 5.4 even 2
680.2.z.c.489.6 yes 26 17.13 even 4
680.2.z.d.89.8 yes 26 1.1 even 1 trivial
680.2.z.d.489.8 yes 26 85.64 even 4 inner