Properties

Label 680.2.z.d.89.7
Level $680$
Weight $2$
Character 680.89
Analytic conductor $5.430$
Analytic rank $0$
Dimension $26$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(89,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.89"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.z (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [26,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(26\)
Relative dimension: \(13\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 89.7
Character \(\chi\) \(=\) 680.89
Dual form 680.2.z.d.489.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.258828 + 0.258828i) q^{3} +(1.90450 + 1.17169i) q^{5} +(2.27901 - 2.27901i) q^{7} -2.86602i q^{9} +(-1.92326 - 1.92326i) q^{11} -6.34245i q^{13} +(0.189671 + 0.796206i) q^{15} +(-2.80581 - 3.02116i) q^{17} +5.72664i q^{19} +1.17974 q^{21} +(0.702808 - 0.702808i) q^{23} +(2.25426 + 4.46299i) q^{25} +(1.51829 - 1.51829i) q^{27} +(3.41223 - 3.41223i) q^{29} +(-7.01003 + 7.01003i) q^{31} -0.995585i q^{33} +(7.01069 - 1.67008i) q^{35} +(8.12179 + 8.12179i) q^{37} +(1.64160 - 1.64160i) q^{39} +(0.982537 + 0.982537i) q^{41} -4.73645 q^{43} +(3.35810 - 5.45834i) q^{45} -6.21775i q^{47} -3.38779i q^{49} +(0.0557394 - 1.50818i) q^{51} +5.21846 q^{53} +(-1.40938 - 5.91631i) q^{55} +(-1.48222 + 1.48222i) q^{57} +2.16403i q^{59} +(0.886240 + 0.886240i) q^{61} +(-6.53169 - 6.53169i) q^{63} +(7.43142 - 12.0792i) q^{65} +6.93450i q^{67} +0.363813 q^{69} +(-6.21183 + 6.21183i) q^{71} +(5.64384 + 5.64384i) q^{73} +(-0.571680 + 1.73861i) q^{75} -8.76624 q^{77} +(5.28312 + 5.28312i) q^{79} -7.81210 q^{81} +15.1635 q^{83} +(-1.80379 - 9.04137i) q^{85} +1.76636 q^{87} +7.17462 q^{89} +(-14.4545 - 14.4545i) q^{91} -3.62879 q^{93} +(-6.70987 + 10.9064i) q^{95} +(-2.90252 - 2.90252i) q^{97} +(-5.51208 + 5.51208i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 26 q + 2 q^{3} - 2 q^{5} + 2 q^{7} + 2 q^{11} - 2 q^{15} + 2 q^{17} - 12 q^{21} - 2 q^{23} + 10 q^{25} + 20 q^{27} + 10 q^{29} - 10 q^{31} + 22 q^{35} - 6 q^{37} + 8 q^{39} - 10 q^{41} + 32 q^{43} + 28 q^{45}+ \cdots - 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.258828 + 0.258828i 0.149434 + 0.149434i 0.777865 0.628431i \(-0.216303\pi\)
−0.628431 + 0.777865i \(0.716303\pi\)
\(4\) 0 0
\(5\) 1.90450 + 1.17169i 0.851720 + 0.523998i
\(6\) 0 0
\(7\) 2.27901 2.27901i 0.861386 0.861386i −0.130114 0.991499i \(-0.541534\pi\)
0.991499 + 0.130114i \(0.0415342\pi\)
\(8\) 0 0
\(9\) 2.86602i 0.955339i
\(10\) 0 0
\(11\) −1.92326 1.92326i −0.579883 0.579883i 0.354988 0.934871i \(-0.384485\pi\)
−0.934871 + 0.354988i \(0.884485\pi\)
\(12\) 0 0
\(13\) 6.34245i 1.75908i −0.475825 0.879540i \(-0.657851\pi\)
0.475825 0.879540i \(-0.342149\pi\)
\(14\) 0 0
\(15\) 0.189671 + 0.796206i 0.0489730 + 0.205580i
\(16\) 0 0
\(17\) −2.80581 3.02116i −0.680509 0.732740i
\(18\) 0 0
\(19\) 5.72664i 1.31378i 0.753986 + 0.656891i \(0.228129\pi\)
−0.753986 + 0.656891i \(0.771871\pi\)
\(20\) 0 0
\(21\) 1.17974 0.257441
\(22\) 0 0
\(23\) 0.702808 0.702808i 0.146546 0.146546i −0.630027 0.776573i \(-0.716956\pi\)
0.776573 + 0.630027i \(0.216956\pi\)
\(24\) 0 0
\(25\) 2.25426 + 4.46299i 0.450853 + 0.892598i
\(26\) 0 0
\(27\) 1.51829 1.51829i 0.292195 0.292195i
\(28\) 0 0
\(29\) 3.41223 3.41223i 0.633635 0.633635i −0.315342 0.948978i \(-0.602119\pi\)
0.948978 + 0.315342i \(0.102119\pi\)
\(30\) 0 0
\(31\) −7.01003 + 7.01003i −1.25904 + 1.25904i −0.307486 + 0.951552i \(0.599488\pi\)
−0.951552 + 0.307486i \(0.900512\pi\)
\(32\) 0 0
\(33\) 0.995585i 0.173309i
\(34\) 0 0
\(35\) 7.01069 1.67008i 1.18502 0.282295i
\(36\) 0 0
\(37\) 8.12179 + 8.12179i 1.33521 + 1.33521i 0.900633 + 0.434580i \(0.143103\pi\)
0.434580 + 0.900633i \(0.356897\pi\)
\(38\) 0 0
\(39\) 1.64160 1.64160i 0.262867 0.262867i
\(40\) 0 0
\(41\) 0.982537 + 0.982537i 0.153447 + 0.153447i 0.779655 0.626209i \(-0.215394\pi\)
−0.626209 + 0.779655i \(0.715394\pi\)
\(42\) 0 0
\(43\) −4.73645 −0.722301 −0.361151 0.932507i \(-0.617616\pi\)
−0.361151 + 0.932507i \(0.617616\pi\)
\(44\) 0 0
\(45\) 3.35810 5.45834i 0.500595 0.813681i
\(46\) 0 0
\(47\) 6.21775i 0.906952i −0.891269 0.453476i \(-0.850184\pi\)
0.891269 0.453476i \(-0.149816\pi\)
\(48\) 0 0
\(49\) 3.38779i 0.483970i
\(50\) 0 0
\(51\) 0.0557394 1.50818i 0.00780508 0.211188i
\(52\) 0 0
\(53\) 5.21846 0.716810 0.358405 0.933566i \(-0.383321\pi\)
0.358405 + 0.933566i \(0.383321\pi\)
\(54\) 0 0
\(55\) −1.40938 5.91631i −0.190041 0.797756i
\(56\) 0 0
\(57\) −1.48222 + 1.48222i −0.196324 + 0.196324i
\(58\) 0 0
\(59\) 2.16403i 0.281733i 0.990029 + 0.140866i \(0.0449888\pi\)
−0.990029 + 0.140866i \(0.955011\pi\)
\(60\) 0 0
\(61\) 0.886240 + 0.886240i 0.113471 + 0.113471i 0.761563 0.648091i \(-0.224432\pi\)
−0.648091 + 0.761563i \(0.724432\pi\)
\(62\) 0 0
\(63\) −6.53169 6.53169i −0.822915 0.822915i
\(64\) 0 0
\(65\) 7.43142 12.0792i 0.921754 1.49824i
\(66\) 0 0
\(67\) 6.93450i 0.847185i 0.905853 + 0.423592i \(0.139231\pi\)
−0.905853 + 0.423592i \(0.860769\pi\)
\(68\) 0 0
\(69\) 0.363813 0.0437979
\(70\) 0 0
\(71\) −6.21183 + 6.21183i −0.737208 + 0.737208i −0.972037 0.234829i \(-0.924547\pi\)
0.234829 + 0.972037i \(0.424547\pi\)
\(72\) 0 0
\(73\) 5.64384 + 5.64384i 0.660561 + 0.660561i 0.955512 0.294951i \(-0.0953034\pi\)
−0.294951 + 0.955512i \(0.595303\pi\)
\(74\) 0 0
\(75\) −0.571680 + 1.73861i −0.0660120 + 0.200758i
\(76\) 0 0
\(77\) −8.76624 −0.999006
\(78\) 0 0
\(79\) 5.28312 + 5.28312i 0.594398 + 0.594398i 0.938816 0.344418i \(-0.111924\pi\)
−0.344418 + 0.938816i \(0.611924\pi\)
\(80\) 0 0
\(81\) −7.81210 −0.868011
\(82\) 0 0
\(83\) 15.1635 1.66441 0.832203 0.554471i \(-0.187079\pi\)
0.832203 + 0.554471i \(0.187079\pi\)
\(84\) 0 0
\(85\) −1.80379 9.04137i −0.195649 0.980674i
\(86\) 0 0
\(87\) 1.76636 0.189374
\(88\) 0 0
\(89\) 7.17462 0.760508 0.380254 0.924882i \(-0.375836\pi\)
0.380254 + 0.924882i \(0.375836\pi\)
\(90\) 0 0
\(91\) −14.4545 14.4545i −1.51525 1.51525i
\(92\) 0 0
\(93\) −3.62879 −0.376288
\(94\) 0 0
\(95\) −6.70987 + 10.9064i −0.688419 + 1.11897i
\(96\) 0 0
\(97\) −2.90252 2.90252i −0.294707 0.294707i 0.544230 0.838936i \(-0.316822\pi\)
−0.838936 + 0.544230i \(0.816822\pi\)
\(98\) 0 0
\(99\) −5.51208 + 5.51208i −0.553985 + 0.553985i
\(100\) 0 0
\(101\) −15.9495 −1.58704 −0.793518 0.608547i \(-0.791753\pi\)
−0.793518 + 0.608547i \(0.791753\pi\)
\(102\) 0 0
\(103\) 4.47989i 0.441416i 0.975340 + 0.220708i \(0.0708369\pi\)
−0.975340 + 0.220708i \(0.929163\pi\)
\(104\) 0 0
\(105\) 2.24683 + 1.38230i 0.219268 + 0.134899i
\(106\) 0 0
\(107\) 7.10141 + 7.10141i 0.686520 + 0.686520i 0.961461 0.274941i \(-0.0886584\pi\)
−0.274941 + 0.961461i \(0.588658\pi\)
\(108\) 0 0
\(109\) 8.76599 + 8.76599i 0.839629 + 0.839629i 0.988810 0.149181i \(-0.0476636\pi\)
−0.149181 + 0.988810i \(0.547664\pi\)
\(110\) 0 0
\(111\) 4.20429i 0.399054i
\(112\) 0 0
\(113\) −3.28122 + 3.28122i −0.308671 + 0.308671i −0.844394 0.535723i \(-0.820039\pi\)
0.535723 + 0.844394i \(0.320039\pi\)
\(114\) 0 0
\(115\) 2.16198 0.515024i 0.201605 0.0480262i
\(116\) 0 0
\(117\) −18.1776 −1.68052
\(118\) 0 0
\(119\) −13.2797 0.490792i −1.21735 0.0449908i
\(120\) 0 0
\(121\) 3.60218i 0.327471i
\(122\) 0 0
\(123\) 0.508616i 0.0458604i
\(124\) 0 0
\(125\) −0.936008 + 11.1411i −0.0837191 + 0.996489i
\(126\) 0 0
\(127\) −2.43753 −0.216296 −0.108148 0.994135i \(-0.534492\pi\)
−0.108148 + 0.994135i \(0.534492\pi\)
\(128\) 0 0
\(129\) −1.22593 1.22593i −0.107937 0.107937i
\(130\) 0 0
\(131\) −0.786050 + 0.786050i −0.0686775 + 0.0686775i −0.740611 0.671934i \(-0.765464\pi\)
0.671934 + 0.740611i \(0.265464\pi\)
\(132\) 0 0
\(133\) 13.0511 + 13.0511i 1.13167 + 1.13167i
\(134\) 0 0
\(135\) 4.67056 1.11262i 0.401978 0.0957587i
\(136\) 0 0
\(137\) 11.2431i 0.960564i −0.877114 0.480282i \(-0.840534\pi\)
0.877114 0.480282i \(-0.159466\pi\)
\(138\) 0 0
\(139\) 15.5391 15.5391i 1.31801 1.31801i 0.402663 0.915348i \(-0.368085\pi\)
0.915348 0.402663i \(-0.131915\pi\)
\(140\) 0 0
\(141\) 1.60933 1.60933i 0.135530 0.135530i
\(142\) 0 0
\(143\) −12.1982 + 12.1982i −1.02006 + 1.02006i
\(144\) 0 0
\(145\) 10.4967 2.50051i 0.871703 0.207656i
\(146\) 0 0
\(147\) 0.876856 0.876856i 0.0723218 0.0723218i
\(148\) 0 0
\(149\) 13.7276 1.12461 0.562305 0.826930i \(-0.309915\pi\)
0.562305 + 0.826930i \(0.309915\pi\)
\(150\) 0 0
\(151\) 20.8628i 1.69779i 0.528561 + 0.848896i \(0.322732\pi\)
−0.528561 + 0.848896i \(0.677268\pi\)
\(152\) 0 0
\(153\) −8.65870 + 8.04150i −0.700015 + 0.650117i
\(154\) 0 0
\(155\) −21.5642 + 5.13701i −1.73208 + 0.412615i
\(156\) 0 0
\(157\) 0.522998i 0.0417398i −0.999782 0.0208699i \(-0.993356\pi\)
0.999782 0.0208699i \(-0.00664358\pi\)
\(158\) 0 0
\(159\) 1.35068 + 1.35068i 0.107116 + 0.107116i
\(160\) 0 0
\(161\) 3.20341i 0.252464i
\(162\) 0 0
\(163\) −11.0348 + 11.0348i −0.864314 + 0.864314i −0.991836 0.127522i \(-0.959298\pi\)
0.127522 + 0.991836i \(0.459298\pi\)
\(164\) 0 0
\(165\) 1.16652 1.89609i 0.0908136 0.147611i
\(166\) 0 0
\(167\) −1.88585 1.88585i −0.145931 0.145931i 0.630366 0.776298i \(-0.282905\pi\)
−0.776298 + 0.630366i \(0.782905\pi\)
\(168\) 0 0
\(169\) −27.2267 −2.09436
\(170\) 0 0
\(171\) 16.4126 1.25511
\(172\) 0 0
\(173\) −6.08455 6.08455i −0.462600 0.462600i 0.436907 0.899507i \(-0.356074\pi\)
−0.899507 + 0.436907i \(0.856074\pi\)
\(174\) 0 0
\(175\) 15.3087 + 5.03372i 1.15723 + 0.380513i
\(176\) 0 0
\(177\) −0.560111 + 0.560111i −0.0421005 + 0.0421005i
\(178\) 0 0
\(179\) 24.3489i 1.81993i −0.414689 0.909963i \(-0.636110\pi\)
0.414689 0.909963i \(-0.363890\pi\)
\(180\) 0 0
\(181\) −10.7537 10.7537i −0.799319 0.799319i 0.183669 0.982988i \(-0.441202\pi\)
−0.982988 + 0.183669i \(0.941202\pi\)
\(182\) 0 0
\(183\) 0.458767i 0.0339131i
\(184\) 0 0
\(185\) 5.95171 + 24.9842i 0.437579 + 1.83688i
\(186\) 0 0
\(187\) −0.414179 + 11.2068i −0.0302878 + 0.819519i
\(188\) 0 0
\(189\) 6.92040i 0.503385i
\(190\) 0 0
\(191\) −20.4147 −1.47716 −0.738580 0.674166i \(-0.764503\pi\)
−0.738580 + 0.674166i \(0.764503\pi\)
\(192\) 0 0
\(193\) 9.00682 9.00682i 0.648325 0.648325i −0.304263 0.952588i \(-0.598410\pi\)
0.952588 + 0.304263i \(0.0984102\pi\)
\(194\) 0 0
\(195\) 5.04990 1.20298i 0.361631 0.0861473i
\(196\) 0 0
\(197\) −2.23975 + 2.23975i −0.159576 + 0.159576i −0.782379 0.622803i \(-0.785994\pi\)
0.622803 + 0.782379i \(0.285994\pi\)
\(198\) 0 0
\(199\) −5.78576 + 5.78576i −0.410142 + 0.410142i −0.881788 0.471646i \(-0.843660\pi\)
0.471646 + 0.881788i \(0.343660\pi\)
\(200\) 0 0
\(201\) −1.79484 + 1.79484i −0.126599 + 0.126599i
\(202\) 0 0
\(203\) 15.5530i 1.09161i
\(204\) 0 0
\(205\) 0.720012 + 3.02248i 0.0502878 + 0.211099i
\(206\) 0 0
\(207\) −2.01426 2.01426i −0.140001 0.140001i
\(208\) 0 0
\(209\) 11.0138 11.0138i 0.761840 0.761840i
\(210\) 0 0
\(211\) −13.1554 13.1554i −0.905657 0.905657i 0.0902609 0.995918i \(-0.471230\pi\)
−0.995918 + 0.0902609i \(0.971230\pi\)
\(212\) 0 0
\(213\) −3.21559 −0.220329
\(214\) 0 0
\(215\) −9.02058 5.54967i −0.615198 0.378484i
\(216\) 0 0
\(217\) 31.9519i 2.16904i
\(218\) 0 0
\(219\) 2.92157i 0.197421i
\(220\) 0 0
\(221\) −19.1616 + 17.7957i −1.28895 + 1.19707i
\(222\) 0 0
\(223\) 3.07654 0.206021 0.103010 0.994680i \(-0.467153\pi\)
0.103010 + 0.994680i \(0.467153\pi\)
\(224\) 0 0
\(225\) 12.7910 6.46076i 0.852734 0.430717i
\(226\) 0 0
\(227\) 12.9209 12.9209i 0.857591 0.857591i −0.133463 0.991054i \(-0.542610\pi\)
0.991054 + 0.133463i \(0.0426097\pi\)
\(228\) 0 0
\(229\) 11.0544i 0.730497i 0.930910 + 0.365248i \(0.119016\pi\)
−0.930910 + 0.365248i \(0.880984\pi\)
\(230\) 0 0
\(231\) −2.26895 2.26895i −0.149286 0.149286i
\(232\) 0 0
\(233\) −3.58159 3.58159i −0.234638 0.234638i 0.579988 0.814625i \(-0.303057\pi\)
−0.814625 + 0.579988i \(0.803057\pi\)
\(234\) 0 0
\(235\) 7.28530 11.8417i 0.475241 0.772469i
\(236\) 0 0
\(237\) 2.73484i 0.177647i
\(238\) 0 0
\(239\) −12.0389 −0.778731 −0.389366 0.921083i \(-0.627306\pi\)
−0.389366 + 0.921083i \(0.627306\pi\)
\(240\) 0 0
\(241\) −7.97689 + 7.97689i −0.513836 + 0.513836i −0.915700 0.401863i \(-0.868363\pi\)
0.401863 + 0.915700i \(0.368363\pi\)
\(242\) 0 0
\(243\) −6.57686 6.57686i −0.421906 0.421906i
\(244\) 0 0
\(245\) 3.96946 6.45206i 0.253599 0.412207i
\(246\) 0 0
\(247\) 36.3210 2.31105
\(248\) 0 0
\(249\) 3.92473 + 3.92473i 0.248720 + 0.248720i
\(250\) 0 0
\(251\) 19.9948 1.26206 0.631030 0.775758i \(-0.282632\pi\)
0.631030 + 0.775758i \(0.282632\pi\)
\(252\) 0 0
\(253\) −2.70336 −0.169959
\(254\) 0 0
\(255\) 1.87329 2.80703i 0.117310 0.175783i
\(256\) 0 0
\(257\) −6.55828 −0.409094 −0.204547 0.978857i \(-0.565572\pi\)
−0.204547 + 0.978857i \(0.565572\pi\)
\(258\) 0 0
\(259\) 37.0193 2.30027
\(260\) 0 0
\(261\) −9.77951 9.77951i −0.605336 0.605336i
\(262\) 0 0
\(263\) −21.2633 −1.31115 −0.655575 0.755130i \(-0.727573\pi\)
−0.655575 + 0.755130i \(0.727573\pi\)
\(264\) 0 0
\(265\) 9.93857 + 6.11444i 0.610521 + 0.375607i
\(266\) 0 0
\(267\) 1.85699 + 1.85699i 0.113646 + 0.113646i
\(268\) 0 0
\(269\) −1.03268 + 1.03268i −0.0629638 + 0.0629638i −0.737888 0.674924i \(-0.764177\pi\)
0.674924 + 0.737888i \(0.264177\pi\)
\(270\) 0 0
\(271\) 4.24432 0.257824 0.128912 0.991656i \(-0.458852\pi\)
0.128912 + 0.991656i \(0.458852\pi\)
\(272\) 0 0
\(273\) 7.48247i 0.452860i
\(274\) 0 0
\(275\) 4.24795 12.9190i 0.256161 0.779045i
\(276\) 0 0
\(277\) −16.8090 16.8090i −1.00995 1.00995i −0.999950 0.0100028i \(-0.996816\pi\)
−0.0100028 0.999950i \(-0.503184\pi\)
\(278\) 0 0
\(279\) 20.0909 + 20.0909i 1.20281 + 1.20281i
\(280\) 0 0
\(281\) 13.4960i 0.805103i 0.915397 + 0.402551i \(0.131877\pi\)
−0.915397 + 0.402551i \(0.868123\pi\)
\(282\) 0 0
\(283\) 10.1398 10.1398i 0.602749 0.602749i −0.338292 0.941041i \(-0.609849\pi\)
0.941041 + 0.338292i \(0.109849\pi\)
\(284\) 0 0
\(285\) −4.55959 + 1.08618i −0.270087 + 0.0643398i
\(286\) 0 0
\(287\) 4.47843 0.264353
\(288\) 0 0
\(289\) −1.25486 + 16.9536i −0.0738151 + 0.997272i
\(290\) 0 0
\(291\) 1.50251i 0.0880787i
\(292\) 0 0
\(293\) 13.1804i 0.770005i 0.922916 + 0.385002i \(0.125799\pi\)
−0.922916 + 0.385002i \(0.874201\pi\)
\(294\) 0 0
\(295\) −2.53558 + 4.12140i −0.147627 + 0.239957i
\(296\) 0 0
\(297\) −5.84012 −0.338878
\(298\) 0 0
\(299\) −4.45752 4.45752i −0.257785 0.257785i
\(300\) 0 0
\(301\) −10.7944 + 10.7944i −0.622180 + 0.622180i
\(302\) 0 0
\(303\) −4.12818 4.12818i −0.237158 0.237158i
\(304\) 0 0
\(305\) 0.649444 + 2.72625i 0.0371871 + 0.156105i
\(306\) 0 0
\(307\) 1.49316i 0.0852193i −0.999092 0.0426096i \(-0.986433\pi\)
0.999092 0.0426096i \(-0.0135672\pi\)
\(308\) 0 0
\(309\) −1.15952 + 1.15952i −0.0659628 + 0.0659628i
\(310\) 0 0
\(311\) 13.3292 13.3292i 0.755830 0.755830i −0.219731 0.975561i \(-0.570518\pi\)
0.975561 + 0.219731i \(0.0705179\pi\)
\(312\) 0 0
\(313\) 0.964982 0.964982i 0.0545440 0.0545440i −0.679309 0.733853i \(-0.737720\pi\)
0.733853 + 0.679309i \(0.237720\pi\)
\(314\) 0 0
\(315\) −4.78648 20.0928i −0.269687 1.13210i
\(316\) 0 0
\(317\) −2.67517 + 2.67517i −0.150253 + 0.150253i −0.778231 0.627978i \(-0.783883\pi\)
0.627978 + 0.778231i \(0.283883\pi\)
\(318\) 0 0
\(319\) −13.1252 −0.734869
\(320\) 0 0
\(321\) 3.67609i 0.205179i
\(322\) 0 0
\(323\) 17.3011 16.0679i 0.962660 0.894040i
\(324\) 0 0
\(325\) 28.3063 14.2976i 1.57015 0.793086i
\(326\) 0 0
\(327\) 4.53777i 0.250939i
\(328\) 0 0
\(329\) −14.1703 14.1703i −0.781235 0.781235i
\(330\) 0 0
\(331\) 22.8418i 1.25550i 0.778416 + 0.627748i \(0.216023\pi\)
−0.778416 + 0.627748i \(0.783977\pi\)
\(332\) 0 0
\(333\) 23.2772 23.2772i 1.27558 1.27558i
\(334\) 0 0
\(335\) −8.12512 + 13.2068i −0.443923 + 0.721564i
\(336\) 0 0
\(337\) 1.75915 + 1.75915i 0.0958269 + 0.0958269i 0.753395 0.657568i \(-0.228415\pi\)
−0.657568 + 0.753395i \(0.728415\pi\)
\(338\) 0 0
\(339\) −1.69854 −0.0922522
\(340\) 0 0
\(341\) 26.9642 1.46019
\(342\) 0 0
\(343\) 8.23227 + 8.23227i 0.444501 + 0.444501i
\(344\) 0 0
\(345\) 0.692882 + 0.426277i 0.0373035 + 0.0229500i
\(346\) 0 0
\(347\) 22.9048 22.9048i 1.22959 1.22959i 0.265477 0.964117i \(-0.414471\pi\)
0.964117 0.265477i \(-0.0855295\pi\)
\(348\) 0 0
\(349\) 1.07242i 0.0574056i −0.999588 0.0287028i \(-0.990862\pi\)
0.999588 0.0287028i \(-0.00913763\pi\)
\(350\) 0 0
\(351\) −9.62968 9.62968i −0.513994 0.513994i
\(352\) 0 0
\(353\) 13.4728i 0.717085i −0.933513 0.358542i \(-0.883274\pi\)
0.933513 0.358542i \(-0.116726\pi\)
\(354\) 0 0
\(355\) −19.1088 + 4.55208i −1.01419 + 0.241599i
\(356\) 0 0
\(357\) −3.31014 3.56420i −0.175191 0.188638i
\(358\) 0 0
\(359\) 5.26692i 0.277978i −0.990294 0.138989i \(-0.955615\pi\)
0.990294 0.138989i \(-0.0443852\pi\)
\(360\) 0 0
\(361\) −13.7944 −0.726023
\(362\) 0 0
\(363\) 0.932344 0.932344i 0.0489354 0.0489354i
\(364\) 0 0
\(365\) 4.13585 + 17.3616i 0.216480 + 0.908746i
\(366\) 0 0
\(367\) 14.7071 14.7071i 0.767703 0.767703i −0.209999 0.977702i \(-0.567346\pi\)
0.977702 + 0.209999i \(0.0673460\pi\)
\(368\) 0 0
\(369\) 2.81597 2.81597i 0.146593 0.146593i
\(370\) 0 0
\(371\) 11.8929 11.8929i 0.617450 0.617450i
\(372\) 0 0
\(373\) 11.2190i 0.580899i −0.956890 0.290449i \(-0.906195\pi\)
0.956890 0.290449i \(-0.0938048\pi\)
\(374\) 0 0
\(375\) −3.12589 + 2.64136i −0.161420 + 0.136399i
\(376\) 0 0
\(377\) −21.6419 21.6419i −1.11462 1.11462i
\(378\) 0 0
\(379\) 9.14951 9.14951i 0.469979 0.469979i −0.431929 0.901908i \(-0.642167\pi\)
0.901908 + 0.431929i \(0.142167\pi\)
\(380\) 0 0
\(381\) −0.630901 0.630901i −0.0323220 0.0323220i
\(382\) 0 0
\(383\) −24.4086 −1.24722 −0.623612 0.781734i \(-0.714335\pi\)
−0.623612 + 0.781734i \(0.714335\pi\)
\(384\) 0 0
\(385\) −16.6953 10.2714i −0.850873 0.523477i
\(386\) 0 0
\(387\) 13.5747i 0.690043i
\(388\) 0 0
\(389\) 14.6427i 0.742415i 0.928550 + 0.371208i \(0.121056\pi\)
−0.928550 + 0.371208i \(0.878944\pi\)
\(390\) 0 0
\(391\) −4.09524 0.151352i −0.207105 0.00765419i
\(392\) 0 0
\(393\) −0.406904 −0.0205256
\(394\) 0 0
\(395\) 3.87152 + 16.2519i 0.194797 + 0.817724i
\(396\) 0 0
\(397\) 21.5736 21.5736i 1.08275 1.08275i 0.0864969 0.996252i \(-0.472433\pi\)
0.996252 0.0864969i \(-0.0275673\pi\)
\(398\) 0 0
\(399\) 6.75597i 0.338222i
\(400\) 0 0
\(401\) −0.0291011 0.0291011i −0.00145324 0.00145324i 0.706380 0.707833i \(-0.250327\pi\)
−0.707833 + 0.706380i \(0.750327\pi\)
\(402\) 0 0
\(403\) 44.4608 + 44.4608i 2.21475 + 2.21475i
\(404\) 0 0
\(405\) −14.8782 9.15339i −0.739302 0.454836i
\(406\) 0 0
\(407\) 31.2405i 1.54854i
\(408\) 0 0
\(409\) −6.48907 −0.320864 −0.160432 0.987047i \(-0.551289\pi\)
−0.160432 + 0.987047i \(0.551289\pi\)
\(410\) 0 0
\(411\) 2.91003 2.91003i 0.143541 0.143541i
\(412\) 0 0
\(413\) 4.93185 + 4.93185i 0.242680 + 0.242680i
\(414\) 0 0
\(415\) 28.8789 + 17.7669i 1.41761 + 0.872145i
\(416\) 0 0
\(417\) 8.04392 0.393913
\(418\) 0 0
\(419\) −7.87265 7.87265i −0.384604 0.384604i 0.488154 0.872758i \(-0.337671\pi\)
−0.872758 + 0.488154i \(0.837671\pi\)
\(420\) 0 0
\(421\) 31.6643 1.54322 0.771612 0.636093i \(-0.219451\pi\)
0.771612 + 0.636093i \(0.219451\pi\)
\(422\) 0 0
\(423\) −17.8202 −0.866446
\(424\) 0 0
\(425\) 7.15839 19.3328i 0.347233 0.937779i
\(426\) 0 0
\(427\) 4.03950 0.195485
\(428\) 0 0
\(429\) −6.31445 −0.304864
\(430\) 0 0
\(431\) −24.2502 24.2502i −1.16809 1.16809i −0.982657 0.185435i \(-0.940631\pi\)
−0.185435 0.982657i \(-0.559369\pi\)
\(432\) 0 0
\(433\) 19.3816 0.931422 0.465711 0.884937i \(-0.345799\pi\)
0.465711 + 0.884937i \(0.345799\pi\)
\(434\) 0 0
\(435\) 3.36404 + 2.06964i 0.161293 + 0.0992315i
\(436\) 0 0
\(437\) 4.02473 + 4.02473i 0.192529 + 0.192529i
\(438\) 0 0
\(439\) −3.83581 + 3.83581i −0.183073 + 0.183073i −0.792693 0.609620i \(-0.791322\pi\)
0.609620 + 0.792693i \(0.291322\pi\)
\(440\) 0 0
\(441\) −9.70947 −0.462356
\(442\) 0 0
\(443\) 25.6325i 1.21784i 0.793233 + 0.608919i \(0.208396\pi\)
−0.793233 + 0.608919i \(0.791604\pi\)
\(444\) 0 0
\(445\) 13.6641 + 8.40646i 0.647740 + 0.398505i
\(446\) 0 0
\(447\) 3.55309 + 3.55309i 0.168056 + 0.168056i
\(448\) 0 0
\(449\) 12.4761 + 12.4761i 0.588783 + 0.588783i 0.937302 0.348518i \(-0.113315\pi\)
−0.348518 + 0.937302i \(0.613315\pi\)
\(450\) 0 0
\(451\) 3.77934i 0.177962i
\(452\) 0 0
\(453\) −5.39988 + 5.39988i −0.253708 + 0.253708i
\(454\) 0 0
\(455\) −10.5924 44.4650i −0.496579 2.08455i
\(456\) 0 0
\(457\) −32.1430 −1.50359 −0.751793 0.659400i \(-0.770811\pi\)
−0.751793 + 0.659400i \(0.770811\pi\)
\(458\) 0 0
\(459\) −8.84703 0.326968i −0.412944 0.0152616i
\(460\) 0 0
\(461\) 16.0754i 0.748704i 0.927287 + 0.374352i \(0.122135\pi\)
−0.927287 + 0.374352i \(0.877865\pi\)
\(462\) 0 0
\(463\) 7.38107i 0.343027i −0.985182 0.171514i \(-0.945134\pi\)
0.985182 0.171514i \(-0.0548658\pi\)
\(464\) 0 0
\(465\) −6.91103 4.25183i −0.320492 0.197174i
\(466\) 0 0
\(467\) −21.7955 −1.00857 −0.504287 0.863536i \(-0.668245\pi\)
−0.504287 + 0.863536i \(0.668245\pi\)
\(468\) 0 0
\(469\) 15.8038 + 15.8038i 0.729753 + 0.729753i
\(470\) 0 0
\(471\) 0.135367 0.135367i 0.00623736 0.00623736i
\(472\) 0 0
\(473\) 9.10940 + 9.10940i 0.418851 + 0.418851i
\(474\) 0 0
\(475\) −25.5580 + 12.9094i −1.17268 + 0.592322i
\(476\) 0 0
\(477\) 14.9562i 0.684797i
\(478\) 0 0
\(479\) 21.5268 21.5268i 0.983586 0.983586i −0.0162818 0.999867i \(-0.505183\pi\)
0.999867 + 0.0162818i \(0.00518290\pi\)
\(480\) 0 0
\(481\) 51.5120 51.5120i 2.34875 2.34875i
\(482\) 0 0
\(483\) 0.829133 0.829133i 0.0377269 0.0377269i
\(484\) 0 0
\(485\) −2.12700 8.92874i −0.0965819 0.405433i
\(486\) 0 0
\(487\) −22.7198 + 22.7198i −1.02953 + 1.02953i −0.0299839 + 0.999550i \(0.509546\pi\)
−0.999550 + 0.0299839i \(0.990454\pi\)
\(488\) 0 0
\(489\) −5.71224 −0.258316
\(490\) 0 0
\(491\) 13.1034i 0.591349i 0.955289 + 0.295674i \(0.0955444\pi\)
−0.955289 + 0.295674i \(0.904456\pi\)
\(492\) 0 0
\(493\) −19.8830 0.734834i −0.895484 0.0330953i
\(494\) 0 0
\(495\) −16.9563 + 4.03930i −0.762127 + 0.181553i
\(496\) 0 0
\(497\) 28.3137i 1.27004i
\(498\) 0 0
\(499\) −9.32184 9.32184i −0.417303 0.417303i 0.466970 0.884273i \(-0.345346\pi\)
−0.884273 + 0.466970i \(0.845346\pi\)
\(500\) 0 0
\(501\) 0.976221i 0.0436144i
\(502\) 0 0
\(503\) −4.67930 + 4.67930i −0.208640 + 0.208640i −0.803689 0.595049i \(-0.797132\pi\)
0.595049 + 0.803689i \(0.297132\pi\)
\(504\) 0 0
\(505\) −30.3759 18.6879i −1.35171 0.831603i
\(506\) 0 0
\(507\) −7.04703 7.04703i −0.312970 0.312970i
\(508\) 0 0
\(509\) −18.9376 −0.839396 −0.419698 0.907664i \(-0.637864\pi\)
−0.419698 + 0.907664i \(0.637864\pi\)
\(510\) 0 0
\(511\) 25.7247 1.13800
\(512\) 0 0
\(513\) 8.69470 + 8.69470i 0.383880 + 0.383880i
\(514\) 0 0
\(515\) −5.24906 + 8.53196i −0.231301 + 0.375963i
\(516\) 0 0
\(517\) −11.9583 + 11.9583i −0.525926 + 0.525926i
\(518\) 0 0
\(519\) 3.14970i 0.138257i
\(520\) 0 0
\(521\) 23.1593 + 23.1593i 1.01463 + 1.01463i 0.999891 + 0.0147360i \(0.00469078\pi\)
0.0147360 + 0.999891i \(0.495309\pi\)
\(522\) 0 0
\(523\) 13.5754i 0.593611i −0.954938 0.296805i \(-0.904079\pi\)
0.954938 0.296805i \(-0.0959213\pi\)
\(524\) 0 0
\(525\) 2.65946 + 5.26519i 0.116068 + 0.229792i
\(526\) 0 0
\(527\) 40.8473 + 1.50963i 1.77934 + 0.0657606i
\(528\) 0 0
\(529\) 22.0121i 0.957049i
\(530\) 0 0
\(531\) 6.20214 0.269150
\(532\) 0 0
\(533\) 6.23170 6.23170i 0.269925 0.269925i
\(534\) 0 0
\(535\) 5.20398 + 21.8454i 0.224988 + 0.944457i
\(536\) 0 0
\(537\) 6.30219 6.30219i 0.271960 0.271960i
\(538\) 0 0
\(539\) −6.51559 + 6.51559i −0.280646 + 0.280646i
\(540\) 0 0
\(541\) −28.7689 + 28.7689i −1.23687 + 1.23687i −0.275596 + 0.961274i \(0.588875\pi\)
−0.961274 + 0.275596i \(0.911125\pi\)
\(542\) 0 0
\(543\) 5.56673i 0.238891i
\(544\) 0 0
\(545\) 6.42379 + 26.9659i 0.275165 + 1.15509i
\(546\) 0 0
\(547\) 1.14183 + 1.14183i 0.0488211 + 0.0488211i 0.731096 0.682275i \(-0.239009\pi\)
−0.682275 + 0.731096i \(0.739009\pi\)
\(548\) 0 0
\(549\) 2.53998 2.53998i 0.108404 0.108404i
\(550\) 0 0
\(551\) 19.5406 + 19.5406i 0.832459 + 0.832459i
\(552\) 0 0
\(553\) 24.0806 1.02401
\(554\) 0 0
\(555\) −4.92614 + 8.00709i −0.209103 + 0.339882i
\(556\) 0 0
\(557\) 43.2235i 1.83144i 0.401819 + 0.915719i \(0.368378\pi\)
−0.401819 + 0.915719i \(0.631622\pi\)
\(558\) 0 0
\(559\) 30.0407i 1.27059i
\(560\) 0 0
\(561\) −3.00782 + 2.79342i −0.126990 + 0.117938i
\(562\) 0 0
\(563\) −15.0751 −0.635339 −0.317670 0.948201i \(-0.602900\pi\)
−0.317670 + 0.948201i \(0.602900\pi\)
\(564\) 0 0
\(565\) −10.0937 + 2.40451i −0.424645 + 0.101158i
\(566\) 0 0
\(567\) −17.8039 + 17.8039i −0.747692 + 0.747692i
\(568\) 0 0
\(569\) 4.85448i 0.203510i 0.994809 + 0.101755i \(0.0324458\pi\)
−0.994809 + 0.101755i \(0.967554\pi\)
\(570\) 0 0
\(571\) 17.4787 + 17.4787i 0.731460 + 0.731460i 0.970909 0.239449i \(-0.0769669\pi\)
−0.239449 + 0.970909i \(0.576967\pi\)
\(572\) 0 0
\(573\) −5.28391 5.28391i −0.220738 0.220738i
\(574\) 0 0
\(575\) 4.72094 + 1.55231i 0.196877 + 0.0647358i
\(576\) 0 0
\(577\) 30.6093i 1.27428i 0.770748 + 0.637141i \(0.219883\pi\)
−0.770748 + 0.637141i \(0.780117\pi\)
\(578\) 0 0
\(579\) 4.66243 0.193764
\(580\) 0 0
\(581\) 34.5577 34.5577i 1.43370 1.43370i
\(582\) 0 0
\(583\) −10.0364 10.0364i −0.415666 0.415666i
\(584\) 0 0
\(585\) −34.6192 21.2986i −1.43133 0.880587i
\(586\) 0 0
\(587\) −15.4493 −0.637663 −0.318831 0.947811i \(-0.603290\pi\)
−0.318831 + 0.947811i \(0.603290\pi\)
\(588\) 0 0
\(589\) −40.1439 40.1439i −1.65410 1.65410i
\(590\) 0 0
\(591\) −1.15942 −0.0476922
\(592\) 0 0
\(593\) −35.9557 −1.47652 −0.738261 0.674515i \(-0.764353\pi\)
−0.738261 + 0.674515i \(0.764353\pi\)
\(594\) 0 0
\(595\) −24.7163 16.4945i −1.01327 0.676209i
\(596\) 0 0
\(597\) −2.99504 −0.122579
\(598\) 0 0
\(599\) −36.0209 −1.47178 −0.735888 0.677103i \(-0.763235\pi\)
−0.735888 + 0.677103i \(0.763235\pi\)
\(600\) 0 0
\(601\) −11.0978 11.0978i −0.452689 0.452689i 0.443557 0.896246i \(-0.353716\pi\)
−0.896246 + 0.443557i \(0.853716\pi\)
\(602\) 0 0
\(603\) 19.8744 0.809348
\(604\) 0 0
\(605\) 4.22065 6.86036i 0.171594 0.278913i
\(606\) 0 0
\(607\) 15.3614 + 15.3614i 0.623499 + 0.623499i 0.946424 0.322926i \(-0.104666\pi\)
−0.322926 + 0.946424i \(0.604666\pi\)
\(608\) 0 0
\(609\) 4.02556 4.02556i 0.163124 0.163124i
\(610\) 0 0
\(611\) −39.4358 −1.59540
\(612\) 0 0
\(613\) 14.6607i 0.592140i 0.955166 + 0.296070i \(0.0956761\pi\)
−0.955166 + 0.296070i \(0.904324\pi\)
\(614\) 0 0
\(615\) −0.595943 + 0.968662i −0.0240307 + 0.0390602i
\(616\) 0 0
\(617\) −8.78776 8.78776i −0.353782 0.353782i 0.507733 0.861515i \(-0.330484\pi\)
−0.861515 + 0.507733i \(0.830484\pi\)
\(618\) 0 0
\(619\) −22.1012 22.1012i −0.888323 0.888323i 0.106039 0.994362i \(-0.466183\pi\)
−0.994362 + 0.106039i \(0.966183\pi\)
\(620\) 0 0
\(621\) 2.13413i 0.0856397i
\(622\) 0 0
\(623\) 16.3511 16.3511i 0.655091 0.655091i
\(624\) 0 0
\(625\) −14.8366 + 20.1215i −0.593463 + 0.804861i
\(626\) 0 0
\(627\) 5.70136 0.227690
\(628\) 0 0
\(629\) 1.74905 47.3254i 0.0697392 1.88699i
\(630\) 0 0
\(631\) 1.92923i 0.0768013i −0.999262 0.0384007i \(-0.987774\pi\)
0.999262 0.0384007i \(-0.0122263\pi\)
\(632\) 0 0
\(633\) 6.80999i 0.270673i
\(634\) 0 0
\(635\) −4.64228 2.85604i −0.184223 0.113338i
\(636\) 0 0
\(637\) −21.4869 −0.851342
\(638\) 0 0
\(639\) 17.8032 + 17.8032i 0.704283 + 0.704283i
\(640\) 0 0
\(641\) 15.9510 15.9510i 0.630028 0.630028i −0.318047 0.948075i \(-0.603027\pi\)
0.948075 + 0.318047i \(0.103027\pi\)
\(642\) 0 0
\(643\) −16.0532 16.0532i −0.633077 0.633077i 0.315761 0.948839i \(-0.397740\pi\)
−0.948839 + 0.315761i \(0.897740\pi\)
\(644\) 0 0
\(645\) −0.898369 3.77119i −0.0353732 0.148490i
\(646\) 0 0
\(647\) 43.9167i 1.72654i 0.504741 + 0.863271i \(0.331588\pi\)
−0.504741 + 0.863271i \(0.668412\pi\)
\(648\) 0 0
\(649\) 4.16198 4.16198i 0.163372 0.163372i
\(650\) 0 0
\(651\) −8.27005 + 8.27005i −0.324129 + 0.324129i
\(652\) 0 0
\(653\) −23.1062 + 23.1062i −0.904216 + 0.904216i −0.995798 0.0915812i \(-0.970808\pi\)
0.0915812 + 0.995798i \(0.470808\pi\)
\(654\) 0 0
\(655\) −2.41805 + 0.576025i −0.0944809 + 0.0225071i
\(656\) 0 0
\(657\) 16.1753 16.1753i 0.631060 0.631060i
\(658\) 0 0
\(659\) 7.61843 0.296772 0.148386 0.988930i \(-0.452592\pi\)
0.148386 + 0.988930i \(0.452592\pi\)
\(660\) 0 0
\(661\) 24.0179i 0.934188i −0.884208 0.467094i \(-0.845301\pi\)
0.884208 0.467094i \(-0.154699\pi\)
\(662\) 0 0
\(663\) −9.56559 0.353524i −0.371497 0.0137297i
\(664\) 0 0
\(665\) 9.56395 + 40.1477i 0.370874 + 1.55686i
\(666\) 0 0
\(667\) 4.79628i 0.185713i
\(668\) 0 0
\(669\) 0.796295 + 0.796295i 0.0307866 + 0.0307866i
\(670\) 0 0
\(671\) 3.40893i 0.131600i
\(672\) 0 0
\(673\) 2.30807 2.30807i 0.0889697 0.0889697i −0.661221 0.750191i \(-0.729962\pi\)
0.750191 + 0.661221i \(0.229962\pi\)
\(674\) 0 0
\(675\) 10.1987 + 3.35349i 0.392550 + 0.129076i
\(676\) 0 0
\(677\) 1.00830 + 1.00830i 0.0387522 + 0.0387522i 0.726217 0.687465i \(-0.241277\pi\)
−0.687465 + 0.726217i \(0.741277\pi\)
\(678\) 0 0
\(679\) −13.2298 −0.507712
\(680\) 0 0
\(681\) 6.68859 0.256307
\(682\) 0 0
\(683\) 0.0970845 + 0.0970845i 0.00371483 + 0.00371483i 0.708962 0.705247i \(-0.249164\pi\)
−0.705247 + 0.708962i \(0.749164\pi\)
\(684\) 0 0
\(685\) 13.1735 21.4125i 0.503333 0.818131i
\(686\) 0 0
\(687\) −2.86119 + 2.86119i −0.109161 + 0.109161i
\(688\) 0 0
\(689\) 33.0978i 1.26093i
\(690\) 0 0
\(691\) −1.71912 1.71912i −0.0653984 0.0653984i 0.673651 0.739050i \(-0.264725\pi\)
−0.739050 + 0.673651i \(0.764725\pi\)
\(692\) 0 0
\(693\) 25.1242i 0.954389i
\(694\) 0 0
\(695\) 47.8014 11.3872i 1.81321 0.431941i
\(696\) 0 0
\(697\) 0.211592 5.72522i 0.00801463 0.216858i
\(698\) 0 0
\(699\) 1.85403i 0.0701259i
\(700\) 0 0
\(701\) 38.1019 1.43909 0.719545 0.694445i \(-0.244350\pi\)
0.719545 + 0.694445i \(0.244350\pi\)
\(702\) 0 0
\(703\) −46.5106 + 46.5106i −1.75418 + 1.75418i
\(704\) 0 0
\(705\) 4.95061 1.17933i 0.186451 0.0444161i
\(706\) 0 0
\(707\) −36.3491 + 36.3491i −1.36705 + 1.36705i
\(708\) 0 0
\(709\) −14.4541 + 14.4541i −0.542835 + 0.542835i −0.924359 0.381524i \(-0.875399\pi\)
0.381524 + 0.924359i \(0.375399\pi\)
\(710\) 0 0
\(711\) 15.1415 15.1415i 0.567851 0.567851i
\(712\) 0 0
\(713\) 9.85341i 0.369013i
\(714\) 0 0
\(715\) −37.5239 + 8.93891i −1.40332 + 0.334296i
\(716\) 0 0
\(717\) −3.11600 3.11600i −0.116369 0.116369i
\(718\) 0 0
\(719\) 18.1680 18.1680i 0.677553 0.677553i −0.281893 0.959446i \(-0.590962\pi\)
0.959446 + 0.281893i \(0.0909624\pi\)
\(720\) 0 0
\(721\) 10.2097 + 10.2097i 0.380230 + 0.380230i
\(722\) 0 0
\(723\) −4.12928 −0.153570
\(724\) 0 0
\(725\) 22.9208 + 7.53669i 0.851258 + 0.279906i
\(726\) 0 0
\(727\) 38.1508i 1.41493i −0.706746 0.707467i \(-0.749838\pi\)
0.706746 0.707467i \(-0.250162\pi\)
\(728\) 0 0
\(729\) 20.0317i 0.741916i
\(730\) 0 0
\(731\) 13.2896 + 14.3096i 0.491533 + 0.529259i
\(732\) 0 0
\(733\) −15.0872 −0.557260 −0.278630 0.960399i \(-0.589880\pi\)
−0.278630 + 0.960399i \(0.589880\pi\)
\(734\) 0 0
\(735\) 2.69738 0.642567i 0.0994944 0.0237015i
\(736\) 0 0
\(737\) 13.3368 13.3368i 0.491268 0.491268i
\(738\) 0 0
\(739\) 29.9967i 1.10345i 0.834027 + 0.551723i \(0.186030\pi\)
−0.834027 + 0.551723i \(0.813970\pi\)
\(740\) 0 0
\(741\) 9.40088 + 9.40088i 0.345350 + 0.345350i
\(742\) 0 0
\(743\) −28.3721 28.3721i −1.04087 1.04087i −0.999128 0.0417429i \(-0.986709\pi\)
−0.0417429 0.999128i \(-0.513291\pi\)
\(744\) 0 0
\(745\) 26.1443 + 16.0846i 0.957853 + 0.589293i
\(746\) 0 0
\(747\) 43.4587i 1.59007i
\(748\) 0 0
\(749\) 32.3684 1.18272
\(750\) 0 0
\(751\) 0.668097 0.668097i 0.0243792 0.0243792i −0.694812 0.719191i \(-0.744512\pi\)
0.719191 + 0.694812i \(0.244512\pi\)
\(752\) 0 0
\(753\) 5.17521 + 5.17521i 0.188595 + 0.188595i
\(754\) 0 0
\(755\) −24.4448 + 39.7333i −0.889639 + 1.44604i
\(756\) 0 0
\(757\) 10.0807 0.366390 0.183195 0.983077i \(-0.441356\pi\)
0.183195 + 0.983077i \(0.441356\pi\)
\(758\) 0 0
\(759\) −0.699705 0.699705i −0.0253977 0.0253977i
\(760\) 0 0
\(761\) −3.99545 −0.144835 −0.0724175 0.997374i \(-0.523071\pi\)
−0.0724175 + 0.997374i \(0.523071\pi\)
\(762\) 0 0
\(763\) 39.9556 1.44649
\(764\) 0 0
\(765\) −25.9127 + 5.16970i −0.936876 + 0.186911i
\(766\) 0 0
\(767\) 13.7252 0.495590
\(768\) 0 0
\(769\) 24.0023 0.865544 0.432772 0.901503i \(-0.357536\pi\)
0.432772 + 0.901503i \(0.357536\pi\)
\(770\) 0 0
\(771\) −1.69747 1.69747i −0.0611328 0.0611328i
\(772\) 0 0
\(773\) 14.7233 0.529561 0.264780 0.964309i \(-0.414701\pi\)
0.264780 + 0.964309i \(0.414701\pi\)
\(774\) 0 0
\(775\) −47.0882 15.4832i −1.69146 0.556175i
\(776\) 0 0
\(777\) 9.58163 + 9.58163i 0.343739 + 0.343739i
\(778\) 0 0
\(779\) −5.62664 + 5.62664i −0.201595 + 0.201595i
\(780\) 0 0
\(781\) 23.8939 0.854989
\(782\) 0 0
\(783\) 10.3615i 0.370290i
\(784\) 0 0
\(785\) 0.612794 0.996052i 0.0218716 0.0355506i
\(786\) 0 0
\(787\) −0.551240 0.551240i −0.0196496 0.0196496i 0.697214 0.716863i \(-0.254423\pi\)
−0.716863 + 0.697214i \(0.754423\pi\)
\(788\) 0 0
\(789\) −5.50353 5.50353i −0.195931 0.195931i
\(790\) 0 0
\(791\) 14.9559i 0.531770i
\(792\) 0 0
\(793\) 5.62093 5.62093i 0.199605 0.199605i
\(794\) 0 0
\(795\) 0.989792 + 4.15497i 0.0351043 + 0.147362i
\(796\) 0 0
\(797\) 6.58323 0.233190 0.116595 0.993180i \(-0.462802\pi\)
0.116595 + 0.993180i \(0.462802\pi\)
\(798\) 0 0
\(799\) −18.7848 + 17.4458i −0.664559 + 0.617189i
\(800\) 0 0
\(801\) 20.5626i 0.726543i
\(802\) 0 0
\(803\) 21.7091i 0.766097i
\(804\) 0 0
\(805\) 3.75342 6.10091i 0.132291 0.215029i
\(806\) 0 0
\(807\) −0.534575 −0.0188179
\(808\) 0 0
\(809\) 10.8247 + 10.8247i 0.380576 + 0.380576i 0.871310 0.490733i \(-0.163271\pi\)
−0.490733 + 0.871310i \(0.663271\pi\)
\(810\) 0 0
\(811\) 16.4872 16.4872i 0.578945 0.578945i −0.355668 0.934613i \(-0.615746\pi\)
0.934613 + 0.355668i \(0.115746\pi\)
\(812\) 0 0
\(813\) 1.09855 + 1.09855i 0.0385278 + 0.0385278i
\(814\) 0 0
\(815\) −33.9453 + 8.08641i −1.18905 + 0.283255i
\(816\) 0 0
\(817\) 27.1239i 0.948947i
\(818\) 0 0
\(819\) −41.4269 + 41.4269i −1.44757 + 1.44757i
\(820\) 0 0
\(821\) −5.76006 + 5.76006i −0.201028 + 0.201028i −0.800440 0.599413i \(-0.795401\pi\)
0.599413 + 0.800440i \(0.295401\pi\)
\(822\) 0 0
\(823\) −12.6076 + 12.6076i −0.439475 + 0.439475i −0.891835 0.452360i \(-0.850582\pi\)
0.452360 + 0.891835i \(0.350582\pi\)
\(824\) 0 0
\(825\) 4.44329 2.24431i 0.154695 0.0781369i
\(826\) 0 0
\(827\) −19.9447 + 19.9447i −0.693544 + 0.693544i −0.963010 0.269466i \(-0.913153\pi\)
0.269466 + 0.963010i \(0.413153\pi\)
\(828\) 0 0
\(829\) −46.3143 −1.60856 −0.804282 0.594248i \(-0.797450\pi\)
−0.804282 + 0.594248i \(0.797450\pi\)
\(830\) 0 0
\(831\) 8.70126i 0.301843i
\(832\) 0 0
\(833\) −10.2351 + 9.50550i −0.354624 + 0.329346i
\(834\) 0 0
\(835\) −1.38197 5.80125i −0.0478249 0.200760i
\(836\) 0 0
\(837\) 21.2865i 0.735770i
\(838\) 0 0
\(839\) −22.3210 22.3210i −0.770605 0.770605i 0.207607 0.978212i \(-0.433432\pi\)
−0.978212 + 0.207607i \(0.933432\pi\)
\(840\) 0 0
\(841\) 5.71336i 0.197012i
\(842\) 0 0
\(843\) −3.49314 + 3.49314i −0.120310 + 0.120310i
\(844\) 0 0
\(845\) −51.8533 31.9014i −1.78381 1.09744i
\(846\) 0 0
\(847\) −8.20941 8.20941i −0.282079 0.282079i
\(848\) 0 0
\(849\) 5.24893 0.180143
\(850\) 0 0
\(851\) 11.4161 0.391339
\(852\) 0 0
\(853\) −0.947318 0.947318i −0.0324355 0.0324355i 0.690703 0.723139i \(-0.257301\pi\)
−0.723139 + 0.690703i \(0.757301\pi\)
\(854\) 0 0
\(855\) 31.2579 + 19.2306i 1.06900 + 0.657673i
\(856\) 0 0
\(857\) 20.1011 20.1011i 0.686640 0.686640i −0.274848 0.961488i \(-0.588627\pi\)
0.961488 + 0.274848i \(0.0886274\pi\)
\(858\) 0 0
\(859\) 39.2008i 1.33751i 0.743481 + 0.668757i \(0.233173\pi\)
−0.743481 + 0.668757i \(0.766827\pi\)
\(860\) 0 0
\(861\) 1.15914 + 1.15914i 0.0395035 + 0.0395035i
\(862\) 0 0
\(863\) 5.52428i 0.188049i −0.995570 0.0940243i \(-0.970027\pi\)
0.995570 0.0940243i \(-0.0299731\pi\)
\(864\) 0 0
\(865\) −4.45881 18.7173i −0.151604 0.636407i
\(866\) 0 0
\(867\) −4.71286 + 4.06328i −0.160057 + 0.137996i
\(868\) 0 0
\(869\) 20.3216i 0.689363i
\(870\) 0 0
\(871\) 43.9818 1.49027
\(872\) 0 0
\(873\) −8.31868 + 8.31868i −0.281545 + 0.281545i
\(874\) 0 0
\(875\) 23.2575 + 27.5239i 0.786247 + 0.930476i
\(876\) 0 0
\(877\) 1.37709 1.37709i 0.0465009 0.0465009i −0.683474 0.729975i \(-0.739532\pi\)
0.729975 + 0.683474i \(0.239532\pi\)
\(878\) 0 0
\(879\) −3.41145 + 3.41145i −0.115065 + 0.115065i
\(880\) 0 0
\(881\) −12.7010 + 12.7010i −0.427906 + 0.427906i −0.887915 0.460008i \(-0.847846\pi\)
0.460008 + 0.887915i \(0.347846\pi\)
\(882\) 0 0
\(883\) 14.8270i 0.498968i −0.968379 0.249484i \(-0.919739\pi\)
0.968379 0.249484i \(-0.0802610\pi\)
\(884\) 0 0
\(885\) −1.72301 + 0.410454i −0.0579184 + 0.0137973i
\(886\) 0 0
\(887\) −17.4009 17.4009i −0.584266 0.584266i 0.351807 0.936073i \(-0.385567\pi\)
−0.936073 + 0.351807i \(0.885567\pi\)
\(888\) 0 0
\(889\) −5.55516 + 5.55516i −0.186314 + 0.186314i
\(890\) 0 0
\(891\) 15.0247 + 15.0247i 0.503345 + 0.503345i
\(892\) 0 0
\(893\) 35.6068 1.19154
\(894\) 0 0
\(895\) 28.5295 46.3727i 0.953637 1.55007i
\(896\) 0 0
\(897\) 2.30746i 0.0770440i
\(898\) 0 0
\(899\) 47.8397i 1.59554i
\(900\) 0 0
\(901\) −14.6420 15.7658i −0.487796 0.525235i
\(902\) 0 0
\(903\) −5.58780 −0.185950
\(904\) 0 0
\(905\) −7.88043 33.0806i −0.261954 1.09964i
\(906\) 0 0
\(907\) 23.0135 23.0135i 0.764150 0.764150i −0.212920 0.977070i \(-0.568297\pi\)
0.977070 + 0.212920i \(0.0682973\pi\)
\(908\) 0 0
\(909\) 45.7115i 1.51616i
\(910\) 0 0
\(911\) 11.6712 + 11.6712i 0.386685 + 0.386685i 0.873503 0.486818i \(-0.161843\pi\)
−0.486818 + 0.873503i \(0.661843\pi\)
\(912\) 0 0
\(913\) −29.1632 29.1632i −0.965161 0.965161i
\(914\) 0 0
\(915\) −0.537535 + 0.873724i −0.0177704 + 0.0288844i
\(916\) 0 0
\(917\) 3.58284i 0.118316i
\(918\) 0 0
\(919\) 51.4106 1.69588 0.847940 0.530092i \(-0.177843\pi\)
0.847940 + 0.530092i \(0.177843\pi\)
\(920\) 0 0
\(921\) 0.386472 0.386472i 0.0127347 0.0127347i
\(922\) 0 0
\(923\) 39.3982 + 39.3982i 1.29681 + 1.29681i
\(924\) 0 0
\(925\) −17.9388 + 54.5561i −0.589824 + 1.79379i
\(926\) 0 0
\(927\) 12.8394 0.421702
\(928\) 0 0
\(929\) −4.17792 4.17792i −0.137073 0.137073i 0.635241 0.772314i \(-0.280901\pi\)
−0.772314 + 0.635241i \(0.780901\pi\)
\(930\) 0 0
\(931\) 19.4007 0.635831
\(932\) 0 0
\(933\) 6.89994 0.225894
\(934\) 0 0
\(935\) −13.9197 + 20.8580i −0.455223 + 0.682130i
\(936\) 0 0
\(937\) −11.1986 −0.365842 −0.182921 0.983128i \(-0.558555\pi\)
−0.182921 + 0.983128i \(0.558555\pi\)
\(938\) 0 0
\(939\) 0.499529 0.0163015
\(940\) 0 0
\(941\) 0.460269 + 0.460269i 0.0150043 + 0.0150043i 0.714569 0.699565i \(-0.246623\pi\)
−0.699565 + 0.714569i \(0.746623\pi\)
\(942\) 0 0
\(943\) 1.38107 0.0449738
\(944\) 0 0
\(945\) 8.10859 13.1799i 0.263773 0.428743i
\(946\) 0 0
\(947\) 8.16599 + 8.16599i 0.265359 + 0.265359i 0.827227 0.561868i \(-0.189917\pi\)
−0.561868 + 0.827227i \(0.689917\pi\)
\(948\) 0 0
\(949\) 35.7958 35.7958i 1.16198 1.16198i
\(950\) 0 0
\(951\) −1.38482 −0.0449058
\(952\) 0 0
\(953\) 8.89276i 0.288065i −0.989573 0.144032i \(-0.953993\pi\)
0.989573 0.144032i \(-0.0460069\pi\)
\(954\) 0 0
\(955\) −38.8799 23.9198i −1.25813 0.774028i
\(956\) 0 0
\(957\) −3.39717 3.39717i −0.109815 0.109815i
\(958\) 0 0
\(959\) −25.6232 25.6232i −0.827416 0.827416i
\(960\) 0 0
\(961\) 67.2811i 2.17036i
\(962\) 0 0
\(963\) 20.3528 20.3528i 0.655859 0.655859i
\(964\) 0 0
\(965\) 27.7068 6.60028i 0.891912 0.212470i
\(966\) 0 0
\(967\) 3.44609 0.110819 0.0554094 0.998464i \(-0.482354\pi\)
0.0554094 + 0.998464i \(0.482354\pi\)
\(968\) 0 0
\(969\) 8.63683 + 0.319200i 0.277455 + 0.0102542i
\(970\) 0 0
\(971\) 21.7224i 0.697104i −0.937289 0.348552i \(-0.886673\pi\)
0.937289 0.348552i \(-0.113327\pi\)
\(972\) 0 0
\(973\) 70.8277i 2.27063i
\(974\) 0 0
\(975\) 11.0271 + 3.62586i 0.353149 + 0.116120i
\(976\) 0 0
\(977\) −4.68811 −0.149986 −0.0749929 0.997184i \(-0.523893\pi\)
−0.0749929 + 0.997184i \(0.523893\pi\)
\(978\) 0 0
\(979\) −13.7986 13.7986i −0.441006 0.441006i
\(980\) 0 0
\(981\) 25.1235 25.1235i 0.802130 0.802130i
\(982\) 0 0
\(983\) 13.5040 + 13.5040i 0.430710 + 0.430710i 0.888870 0.458160i \(-0.151491\pi\)
−0.458160 + 0.888870i \(0.651491\pi\)
\(984\) 0 0
\(985\) −6.88992 + 1.64131i −0.219531 + 0.0522965i
\(986\) 0 0
\(987\) 7.33535i 0.233487i
\(988\) 0 0
\(989\) −3.32881 + 3.32881i −0.105850 + 0.105850i
\(990\) 0 0
\(991\) 30.3189 30.3189i 0.963113 0.963113i −0.0362306 0.999343i \(-0.511535\pi\)
0.999343 + 0.0362306i \(0.0115351\pi\)
\(992\) 0 0
\(993\) −5.91209 + 5.91209i −0.187614 + 0.187614i
\(994\) 0 0
\(995\) −17.7982 + 4.23986i −0.564239 + 0.134413i
\(996\) 0 0
\(997\) 19.1494 19.1494i 0.606467 0.606467i −0.335554 0.942021i \(-0.608924\pi\)
0.942021 + 0.335554i \(0.108924\pi\)
\(998\) 0 0
\(999\) 24.6624 0.780285
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.z.d.89.7 yes 26
5.4 even 2 680.2.z.c.89.7 26
17.13 even 4 680.2.z.c.489.7 yes 26
85.64 even 4 inner 680.2.z.d.489.7 yes 26
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.z.c.89.7 26 5.4 even 2
680.2.z.c.489.7 yes 26 17.13 even 4
680.2.z.d.89.7 yes 26 1.1 even 1 trivial
680.2.z.d.489.7 yes 26 85.64 even 4 inner