Properties

Label 680.2.z.b.89.1
Level $680$
Weight $2$
Character 680.89
Analytic conductor $5.430$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(89,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.89"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.z (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 89.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 680.89
Dual form 680.2.z.b.489.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{3} +(-2.00000 - 1.00000i) q^{5} +(1.00000 - 1.00000i) q^{7} -1.00000i q^{9} +(-1.00000 - 1.00000i) q^{11} -4.00000i q^{13} +(-1.00000 - 3.00000i) q^{15} +(-1.00000 - 4.00000i) q^{17} +2.00000i q^{19} +2.00000 q^{21} +(1.00000 - 1.00000i) q^{23} +(3.00000 + 4.00000i) q^{25} +(4.00000 - 4.00000i) q^{27} +(-1.00000 + 1.00000i) q^{29} +(3.00000 - 3.00000i) q^{31} -2.00000i q^{33} +(-3.00000 + 1.00000i) q^{35} +(-3.00000 - 3.00000i) q^{37} +(4.00000 - 4.00000i) q^{39} +(1.00000 + 1.00000i) q^{41} +4.00000 q^{43} +(-1.00000 + 2.00000i) q^{45} -10.0000i q^{47} +5.00000i q^{49} +(3.00000 - 5.00000i) q^{51} -6.00000 q^{53} +(1.00000 + 3.00000i) q^{55} +(-2.00000 + 2.00000i) q^{57} +10.0000i q^{59} +(7.00000 + 7.00000i) q^{61} +(-1.00000 - 1.00000i) q^{63} +(-4.00000 + 8.00000i) q^{65} -2.00000i q^{67} +2.00000 q^{69} +(11.0000 - 11.0000i) q^{71} +(7.00000 + 7.00000i) q^{73} +(-1.00000 + 7.00000i) q^{75} -2.00000 q^{77} +(-7.00000 - 7.00000i) q^{79} +5.00000 q^{81} -12.0000 q^{83} +(-2.00000 + 9.00000i) q^{85} -2.00000 q^{87} -10.0000 q^{89} +(-4.00000 - 4.00000i) q^{91} +6.00000 q^{93} +(2.00000 - 4.00000i) q^{95} +(3.00000 + 3.00000i) q^{97} +(-1.00000 + 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - 4 q^{5} + 2 q^{7} - 2 q^{11} - 2 q^{15} - 2 q^{17} + 4 q^{21} + 2 q^{23} + 6 q^{25} + 8 q^{27} - 2 q^{29} + 6 q^{31} - 6 q^{35} - 6 q^{37} + 8 q^{39} + 2 q^{41} + 8 q^{43} - 2 q^{45} + 6 q^{51}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 + 1.00000i 0.577350 + 0.577350i 0.934172 0.356822i \(-0.116140\pi\)
−0.356822 + 0.934172i \(0.616140\pi\)
\(4\) 0 0
\(5\) −2.00000 1.00000i −0.894427 0.447214i
\(6\) 0 0
\(7\) 1.00000 1.00000i 0.377964 0.377964i −0.492403 0.870367i \(-0.663881\pi\)
0.870367 + 0.492403i \(0.163881\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −1.00000 1.00000i −0.301511 0.301511i 0.540094 0.841605i \(-0.318389\pi\)
−0.841605 + 0.540094i \(0.818389\pi\)
\(12\) 0 0
\(13\) 4.00000i 1.10940i −0.832050 0.554700i \(-0.812833\pi\)
0.832050 0.554700i \(-0.187167\pi\)
\(14\) 0 0
\(15\) −1.00000 3.00000i −0.258199 0.774597i
\(16\) 0 0
\(17\) −1.00000 4.00000i −0.242536 0.970143i
\(18\) 0 0
\(19\) 2.00000i 0.458831i 0.973329 + 0.229416i \(0.0736815\pi\)
−0.973329 + 0.229416i \(0.926318\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) 1.00000 1.00000i 0.208514 0.208514i −0.595121 0.803636i \(-0.702896\pi\)
0.803636 + 0.595121i \(0.202896\pi\)
\(24\) 0 0
\(25\) 3.00000 + 4.00000i 0.600000 + 0.800000i
\(26\) 0 0
\(27\) 4.00000 4.00000i 0.769800 0.769800i
\(28\) 0 0
\(29\) −1.00000 + 1.00000i −0.185695 + 0.185695i −0.793832 0.608137i \(-0.791917\pi\)
0.608137 + 0.793832i \(0.291917\pi\)
\(30\) 0 0
\(31\) 3.00000 3.00000i 0.538816 0.538816i −0.384365 0.923181i \(-0.625580\pi\)
0.923181 + 0.384365i \(0.125580\pi\)
\(32\) 0 0
\(33\) 2.00000i 0.348155i
\(34\) 0 0
\(35\) −3.00000 + 1.00000i −0.507093 + 0.169031i
\(36\) 0 0
\(37\) −3.00000 3.00000i −0.493197 0.493197i 0.416115 0.909312i \(-0.363391\pi\)
−0.909312 + 0.416115i \(0.863391\pi\)
\(38\) 0 0
\(39\) 4.00000 4.00000i 0.640513 0.640513i
\(40\) 0 0
\(41\) 1.00000 + 1.00000i 0.156174 + 0.156174i 0.780869 0.624695i \(-0.214777\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) −1.00000 + 2.00000i −0.149071 + 0.298142i
\(46\) 0 0
\(47\) 10.0000i 1.45865i −0.684167 0.729325i \(-0.739834\pi\)
0.684167 0.729325i \(-0.260166\pi\)
\(48\) 0 0
\(49\) 5.00000i 0.714286i
\(50\) 0 0
\(51\) 3.00000 5.00000i 0.420084 0.700140i
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 1.00000 + 3.00000i 0.134840 + 0.404520i
\(56\) 0 0
\(57\) −2.00000 + 2.00000i −0.264906 + 0.264906i
\(58\) 0 0
\(59\) 10.0000i 1.30189i 0.759125 + 0.650945i \(0.225627\pi\)
−0.759125 + 0.650945i \(0.774373\pi\)
\(60\) 0 0
\(61\) 7.00000 + 7.00000i 0.896258 + 0.896258i 0.995103 0.0988447i \(-0.0315147\pi\)
−0.0988447 + 0.995103i \(0.531515\pi\)
\(62\) 0 0
\(63\) −1.00000 1.00000i −0.125988 0.125988i
\(64\) 0 0
\(65\) −4.00000 + 8.00000i −0.496139 + 0.992278i
\(66\) 0 0
\(67\) 2.00000i 0.244339i −0.992509 0.122169i \(-0.961015\pi\)
0.992509 0.122169i \(-0.0389851\pi\)
\(68\) 0 0
\(69\) 2.00000 0.240772
\(70\) 0 0
\(71\) 11.0000 11.0000i 1.30546 1.30546i 0.380804 0.924656i \(-0.375647\pi\)
0.924656 0.380804i \(-0.124353\pi\)
\(72\) 0 0
\(73\) 7.00000 + 7.00000i 0.819288 + 0.819288i 0.986005 0.166717i \(-0.0533166\pi\)
−0.166717 + 0.986005i \(0.553317\pi\)
\(74\) 0 0
\(75\) −1.00000 + 7.00000i −0.115470 + 0.808290i
\(76\) 0 0
\(77\) −2.00000 −0.227921
\(78\) 0 0
\(79\) −7.00000 7.00000i −0.787562 0.787562i 0.193532 0.981094i \(-0.438006\pi\)
−0.981094 + 0.193532i \(0.938006\pi\)
\(80\) 0 0
\(81\) 5.00000 0.555556
\(82\) 0 0
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) −2.00000 + 9.00000i −0.216930 + 0.976187i
\(86\) 0 0
\(87\) −2.00000 −0.214423
\(88\) 0 0
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) −4.00000 4.00000i −0.419314 0.419314i
\(92\) 0 0
\(93\) 6.00000 0.622171
\(94\) 0 0
\(95\) 2.00000 4.00000i 0.205196 0.410391i
\(96\) 0 0
\(97\) 3.00000 + 3.00000i 0.304604 + 0.304604i 0.842812 0.538208i \(-0.180899\pi\)
−0.538208 + 0.842812i \(0.680899\pi\)
\(98\) 0 0
\(99\) −1.00000 + 1.00000i −0.100504 + 0.100504i
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) 6.00000i 0.591198i 0.955312 + 0.295599i \(0.0955191\pi\)
−0.955312 + 0.295599i \(0.904481\pi\)
\(104\) 0 0
\(105\) −4.00000 2.00000i −0.390360 0.195180i
\(106\) 0 0
\(107\) 5.00000 + 5.00000i 0.483368 + 0.483368i 0.906206 0.422837i \(-0.138966\pi\)
−0.422837 + 0.906206i \(0.638966\pi\)
\(108\) 0 0
\(109\) −5.00000 5.00000i −0.478913 0.478913i 0.425871 0.904784i \(-0.359968\pi\)
−0.904784 + 0.425871i \(0.859968\pi\)
\(110\) 0 0
\(111\) 6.00000i 0.569495i
\(112\) 0 0
\(113\) −5.00000 + 5.00000i −0.470360 + 0.470360i −0.902031 0.431671i \(-0.857924\pi\)
0.431671 + 0.902031i \(0.357924\pi\)
\(114\) 0 0
\(115\) −3.00000 + 1.00000i −0.279751 + 0.0932505i
\(116\) 0 0
\(117\) −4.00000 −0.369800
\(118\) 0 0
\(119\) −5.00000 3.00000i −0.458349 0.275010i
\(120\) 0 0
\(121\) 9.00000i 0.818182i
\(122\) 0 0
\(123\) 2.00000i 0.180334i
\(124\) 0 0
\(125\) −2.00000 11.0000i −0.178885 0.983870i
\(126\) 0 0
\(127\) 16.0000 1.41977 0.709885 0.704317i \(-0.248747\pi\)
0.709885 + 0.704317i \(0.248747\pi\)
\(128\) 0 0
\(129\) 4.00000 + 4.00000i 0.352180 + 0.352180i
\(130\) 0 0
\(131\) 1.00000 1.00000i 0.0873704 0.0873704i −0.662071 0.749441i \(-0.730322\pi\)
0.749441 + 0.662071i \(0.230322\pi\)
\(132\) 0 0
\(133\) 2.00000 + 2.00000i 0.173422 + 0.173422i
\(134\) 0 0
\(135\) −12.0000 + 4.00000i −1.03280 + 0.344265i
\(136\) 0 0
\(137\) 12.0000i 1.02523i 0.858619 + 0.512615i \(0.171323\pi\)
−0.858619 + 0.512615i \(0.828677\pi\)
\(138\) 0 0
\(139\) −3.00000 + 3.00000i −0.254457 + 0.254457i −0.822795 0.568338i \(-0.807586\pi\)
0.568338 + 0.822795i \(0.307586\pi\)
\(140\) 0 0
\(141\) 10.0000 10.0000i 0.842152 0.842152i
\(142\) 0 0
\(143\) −4.00000 + 4.00000i −0.334497 + 0.334497i
\(144\) 0 0
\(145\) 3.00000 1.00000i 0.249136 0.0830455i
\(146\) 0 0
\(147\) −5.00000 + 5.00000i −0.412393 + 0.412393i
\(148\) 0 0
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 2.00000i 0.162758i 0.996683 + 0.0813788i \(0.0259324\pi\)
−0.996683 + 0.0813788i \(0.974068\pi\)
\(152\) 0 0
\(153\) −4.00000 + 1.00000i −0.323381 + 0.0808452i
\(154\) 0 0
\(155\) −9.00000 + 3.00000i −0.722897 + 0.240966i
\(156\) 0 0
\(157\) 8.00000i 0.638470i 0.947676 + 0.319235i \(0.103426\pi\)
−0.947676 + 0.319235i \(0.896574\pi\)
\(158\) 0 0
\(159\) −6.00000 6.00000i −0.475831 0.475831i
\(160\) 0 0
\(161\) 2.00000i 0.157622i
\(162\) 0 0
\(163\) 7.00000 7.00000i 0.548282 0.548282i −0.377661 0.925944i \(-0.623272\pi\)
0.925944 + 0.377661i \(0.123272\pi\)
\(164\) 0 0
\(165\) −2.00000 + 4.00000i −0.155700 + 0.311400i
\(166\) 0 0
\(167\) 7.00000 + 7.00000i 0.541676 + 0.541676i 0.924020 0.382344i \(-0.124883\pi\)
−0.382344 + 0.924020i \(0.624883\pi\)
\(168\) 0 0
\(169\) −3.00000 −0.230769
\(170\) 0 0
\(171\) 2.00000 0.152944
\(172\) 0 0
\(173\) −11.0000 11.0000i −0.836315 0.836315i 0.152057 0.988372i \(-0.451410\pi\)
−0.988372 + 0.152057i \(0.951410\pi\)
\(174\) 0 0
\(175\) 7.00000 + 1.00000i 0.529150 + 0.0755929i
\(176\) 0 0
\(177\) −10.0000 + 10.0000i −0.751646 + 0.751646i
\(178\) 0 0
\(179\) 18.0000i 1.34538i 0.739923 + 0.672692i \(0.234862\pi\)
−0.739923 + 0.672692i \(0.765138\pi\)
\(180\) 0 0
\(181\) 3.00000 + 3.00000i 0.222988 + 0.222988i 0.809756 0.586767i \(-0.199600\pi\)
−0.586767 + 0.809756i \(0.699600\pi\)
\(182\) 0 0
\(183\) 14.0000i 1.03491i
\(184\) 0 0
\(185\) 3.00000 + 9.00000i 0.220564 + 0.661693i
\(186\) 0 0
\(187\) −3.00000 + 5.00000i −0.219382 + 0.365636i
\(188\) 0 0
\(189\) 8.00000i 0.581914i
\(190\) 0 0
\(191\) 16.0000 1.15772 0.578860 0.815427i \(-0.303498\pi\)
0.578860 + 0.815427i \(0.303498\pi\)
\(192\) 0 0
\(193\) 3.00000 3.00000i 0.215945 0.215945i −0.590842 0.806787i \(-0.701204\pi\)
0.806787 + 0.590842i \(0.201204\pi\)
\(194\) 0 0
\(195\) −12.0000 + 4.00000i −0.859338 + 0.286446i
\(196\) 0 0
\(197\) −19.0000 + 19.0000i −1.35369 + 1.35369i −0.472205 + 0.881489i \(0.656542\pi\)
−0.881489 + 0.472205i \(0.843458\pi\)
\(198\) 0 0
\(199\) −9.00000 + 9.00000i −0.637993 + 0.637993i −0.950060 0.312067i \(-0.898979\pi\)
0.312067 + 0.950060i \(0.398979\pi\)
\(200\) 0 0
\(201\) 2.00000 2.00000i 0.141069 0.141069i
\(202\) 0 0
\(203\) 2.00000i 0.140372i
\(204\) 0 0
\(205\) −1.00000 3.00000i −0.0698430 0.209529i
\(206\) 0 0
\(207\) −1.00000 1.00000i −0.0695048 0.0695048i
\(208\) 0 0
\(209\) 2.00000 2.00000i 0.138343 0.138343i
\(210\) 0 0
\(211\) 11.0000 + 11.0000i 0.757271 + 0.757271i 0.975825 0.218554i \(-0.0701339\pi\)
−0.218554 + 0.975825i \(0.570134\pi\)
\(212\) 0 0
\(213\) 22.0000 1.50742
\(214\) 0 0
\(215\) −8.00000 4.00000i −0.545595 0.272798i
\(216\) 0 0
\(217\) 6.00000i 0.407307i
\(218\) 0 0
\(219\) 14.0000i 0.946032i
\(220\) 0 0
\(221\) −16.0000 + 4.00000i −1.07628 + 0.269069i
\(222\) 0 0
\(223\) −8.00000 −0.535720 −0.267860 0.963458i \(-0.586316\pi\)
−0.267860 + 0.963458i \(0.586316\pi\)
\(224\) 0 0
\(225\) 4.00000 3.00000i 0.266667 0.200000i
\(226\) 0 0
\(227\) 7.00000 7.00000i 0.464606 0.464606i −0.435556 0.900162i \(-0.643448\pi\)
0.900162 + 0.435556i \(0.143448\pi\)
\(228\) 0 0
\(229\) 20.0000i 1.32164i 0.750546 + 0.660819i \(0.229791\pi\)
−0.750546 + 0.660819i \(0.770209\pi\)
\(230\) 0 0
\(231\) −2.00000 2.00000i −0.131590 0.131590i
\(232\) 0 0
\(233\) 7.00000 + 7.00000i 0.458585 + 0.458585i 0.898191 0.439606i \(-0.144882\pi\)
−0.439606 + 0.898191i \(0.644882\pi\)
\(234\) 0 0
\(235\) −10.0000 + 20.0000i −0.652328 + 1.30466i
\(236\) 0 0
\(237\) 14.0000i 0.909398i
\(238\) 0 0
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) 17.0000 17.0000i 1.09507 1.09507i 0.100088 0.994979i \(-0.468088\pi\)
0.994979 0.100088i \(-0.0319123\pi\)
\(242\) 0 0
\(243\) −7.00000 7.00000i −0.449050 0.449050i
\(244\) 0 0
\(245\) 5.00000 10.0000i 0.319438 0.638877i
\(246\) 0 0
\(247\) 8.00000 0.509028
\(248\) 0 0
\(249\) −12.0000 12.0000i −0.760469 0.760469i
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) −2.00000 −0.125739
\(254\) 0 0
\(255\) −11.0000 + 7.00000i −0.688847 + 0.438357i
\(256\) 0 0
\(257\) −14.0000 −0.873296 −0.436648 0.899632i \(-0.643834\pi\)
−0.436648 + 0.899632i \(0.643834\pi\)
\(258\) 0 0
\(259\) −6.00000 −0.372822
\(260\) 0 0
\(261\) 1.00000 + 1.00000i 0.0618984 + 0.0618984i
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 12.0000 + 6.00000i 0.737154 + 0.368577i
\(266\) 0 0
\(267\) −10.0000 10.0000i −0.611990 0.611990i
\(268\) 0 0
\(269\) 23.0000 23.0000i 1.40233 1.40233i 0.609711 0.792624i \(-0.291286\pi\)
0.792624 0.609711i \(-0.208714\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) 8.00000i 0.484182i
\(274\) 0 0
\(275\) 1.00000 7.00000i 0.0603023 0.422116i
\(276\) 0 0
\(277\) 17.0000 + 17.0000i 1.02143 + 1.02143i 0.999765 + 0.0216657i \(0.00689696\pi\)
0.0216657 + 0.999765i \(0.493103\pi\)
\(278\) 0 0
\(279\) −3.00000 3.00000i −0.179605 0.179605i
\(280\) 0 0
\(281\) 32.0000i 1.90896i −0.298275 0.954480i \(-0.596411\pi\)
0.298275 0.954480i \(-0.403589\pi\)
\(282\) 0 0
\(283\) 3.00000 3.00000i 0.178331 0.178331i −0.612297 0.790628i \(-0.709754\pi\)
0.790628 + 0.612297i \(0.209754\pi\)
\(284\) 0 0
\(285\) 6.00000 2.00000i 0.355409 0.118470i
\(286\) 0 0
\(287\) 2.00000 0.118056
\(288\) 0 0
\(289\) −15.0000 + 8.00000i −0.882353 + 0.470588i
\(290\) 0 0
\(291\) 6.00000i 0.351726i
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 10.0000 20.0000i 0.582223 1.16445i
\(296\) 0 0
\(297\) −8.00000 −0.464207
\(298\) 0 0
\(299\) −4.00000 4.00000i −0.231326 0.231326i
\(300\) 0 0
\(301\) 4.00000 4.00000i 0.230556 0.230556i
\(302\) 0 0
\(303\) −6.00000 6.00000i −0.344691 0.344691i
\(304\) 0 0
\(305\) −7.00000 21.0000i −0.400819 1.20246i
\(306\) 0 0
\(307\) 10.0000i 0.570730i −0.958419 0.285365i \(-0.907885\pi\)
0.958419 0.285365i \(-0.0921148\pi\)
\(308\) 0 0
\(309\) −6.00000 + 6.00000i −0.341328 + 0.341328i
\(310\) 0 0
\(311\) 15.0000 15.0000i 0.850572 0.850572i −0.139632 0.990204i \(-0.544592\pi\)
0.990204 + 0.139632i \(0.0445918\pi\)
\(312\) 0 0
\(313\) 19.0000 19.0000i 1.07394 1.07394i 0.0769051 0.997038i \(-0.475496\pi\)
0.997038 0.0769051i \(-0.0245038\pi\)
\(314\) 0 0
\(315\) 1.00000 + 3.00000i 0.0563436 + 0.169031i
\(316\) 0 0
\(317\) 1.00000 1.00000i 0.0561656 0.0561656i −0.678466 0.734632i \(-0.737355\pi\)
0.734632 + 0.678466i \(0.237355\pi\)
\(318\) 0 0
\(319\) 2.00000 0.111979
\(320\) 0 0
\(321\) 10.0000i 0.558146i
\(322\) 0 0
\(323\) 8.00000 2.00000i 0.445132 0.111283i
\(324\) 0 0
\(325\) 16.0000 12.0000i 0.887520 0.665640i
\(326\) 0 0
\(327\) 10.0000i 0.553001i
\(328\) 0 0
\(329\) −10.0000 10.0000i −0.551318 0.551318i
\(330\) 0 0
\(331\) 26.0000i 1.42909i 0.699590 + 0.714545i \(0.253366\pi\)
−0.699590 + 0.714545i \(0.746634\pi\)
\(332\) 0 0
\(333\) −3.00000 + 3.00000i −0.164399 + 0.164399i
\(334\) 0 0
\(335\) −2.00000 + 4.00000i −0.109272 + 0.218543i
\(336\) 0 0
\(337\) 3.00000 + 3.00000i 0.163420 + 0.163420i 0.784080 0.620660i \(-0.213135\pi\)
−0.620660 + 0.784080i \(0.713135\pi\)
\(338\) 0 0
\(339\) −10.0000 −0.543125
\(340\) 0 0
\(341\) −6.00000 −0.324918
\(342\) 0 0
\(343\) 12.0000 + 12.0000i 0.647939 + 0.647939i
\(344\) 0 0
\(345\) −4.00000 2.00000i −0.215353 0.107676i
\(346\) 0 0
\(347\) −1.00000 + 1.00000i −0.0536828 + 0.0536828i −0.733439 0.679756i \(-0.762086\pi\)
0.679756 + 0.733439i \(0.262086\pi\)
\(348\) 0 0
\(349\) 24.0000i 1.28469i −0.766415 0.642345i \(-0.777962\pi\)
0.766415 0.642345i \(-0.222038\pi\)
\(350\) 0 0
\(351\) −16.0000 16.0000i −0.854017 0.854017i
\(352\) 0 0
\(353\) 24.0000i 1.27739i −0.769460 0.638696i \(-0.779474\pi\)
0.769460 0.638696i \(-0.220526\pi\)
\(354\) 0 0
\(355\) −33.0000 + 11.0000i −1.75146 + 0.583819i
\(356\) 0 0
\(357\) −2.00000 8.00000i −0.105851 0.423405i
\(358\) 0 0
\(359\) 18.0000i 0.950004i 0.879985 + 0.475002i \(0.157553\pi\)
−0.879985 + 0.475002i \(0.842447\pi\)
\(360\) 0 0
\(361\) 15.0000 0.789474
\(362\) 0 0
\(363\) 9.00000 9.00000i 0.472377 0.472377i
\(364\) 0 0
\(365\) −7.00000 21.0000i −0.366397 1.09919i
\(366\) 0 0
\(367\) 21.0000 21.0000i 1.09619 1.09619i 0.101339 0.994852i \(-0.467687\pi\)
0.994852 0.101339i \(-0.0323127\pi\)
\(368\) 0 0
\(369\) 1.00000 1.00000i 0.0520579 0.0520579i
\(370\) 0 0
\(371\) −6.00000 + 6.00000i −0.311504 + 0.311504i
\(372\) 0 0
\(373\) 4.00000i 0.207112i −0.994624 0.103556i \(-0.966978\pi\)
0.994624 0.103556i \(-0.0330221\pi\)
\(374\) 0 0
\(375\) 9.00000 13.0000i 0.464758 0.671317i
\(376\) 0 0
\(377\) 4.00000 + 4.00000i 0.206010 + 0.206010i
\(378\) 0 0
\(379\) 21.0000 21.0000i 1.07870 1.07870i 0.0820711 0.996626i \(-0.473847\pi\)
0.996626 0.0820711i \(-0.0261534\pi\)
\(380\) 0 0
\(381\) 16.0000 + 16.0000i 0.819705 + 0.819705i
\(382\) 0 0
\(383\) −24.0000 −1.22634 −0.613171 0.789950i \(-0.710106\pi\)
−0.613171 + 0.789950i \(0.710106\pi\)
\(384\) 0 0
\(385\) 4.00000 + 2.00000i 0.203859 + 0.101929i
\(386\) 0 0
\(387\) 4.00000i 0.203331i
\(388\) 0 0
\(389\) 28.0000i 1.41966i 0.704375 + 0.709828i \(0.251227\pi\)
−0.704375 + 0.709828i \(0.748773\pi\)
\(390\) 0 0
\(391\) −5.00000 3.00000i −0.252861 0.151717i
\(392\) 0 0
\(393\) 2.00000 0.100887
\(394\) 0 0
\(395\) 7.00000 + 21.0000i 0.352208 + 1.05662i
\(396\) 0 0
\(397\) −11.0000 + 11.0000i −0.552074 + 0.552074i −0.927039 0.374965i \(-0.877655\pi\)
0.374965 + 0.927039i \(0.377655\pi\)
\(398\) 0 0
\(399\) 4.00000i 0.200250i
\(400\) 0 0
\(401\) −3.00000 3.00000i −0.149813 0.149813i 0.628222 0.778034i \(-0.283783\pi\)
−0.778034 + 0.628222i \(0.783783\pi\)
\(402\) 0 0
\(403\) −12.0000 12.0000i −0.597763 0.597763i
\(404\) 0 0
\(405\) −10.0000 5.00000i −0.496904 0.248452i
\(406\) 0 0
\(407\) 6.00000i 0.297409i
\(408\) 0 0
\(409\) 26.0000 1.28562 0.642809 0.766027i \(-0.277769\pi\)
0.642809 + 0.766027i \(0.277769\pi\)
\(410\) 0 0
\(411\) −12.0000 + 12.0000i −0.591916 + 0.591916i
\(412\) 0 0
\(413\) 10.0000 + 10.0000i 0.492068 + 0.492068i
\(414\) 0 0
\(415\) 24.0000 + 12.0000i 1.17811 + 0.589057i
\(416\) 0 0
\(417\) −6.00000 −0.293821
\(418\) 0 0
\(419\) 7.00000 + 7.00000i 0.341972 + 0.341972i 0.857108 0.515136i \(-0.172259\pi\)
−0.515136 + 0.857108i \(0.672259\pi\)
\(420\) 0 0
\(421\) −14.0000 −0.682318 −0.341159 0.940006i \(-0.610819\pi\)
−0.341159 + 0.940006i \(0.610819\pi\)
\(422\) 0 0
\(423\) −10.0000 −0.486217
\(424\) 0 0
\(425\) 13.0000 16.0000i 0.630593 0.776114i
\(426\) 0 0
\(427\) 14.0000 0.677507
\(428\) 0 0
\(429\) −8.00000 −0.386244
\(430\) 0 0
\(431\) 1.00000 + 1.00000i 0.0481683 + 0.0481683i 0.730781 0.682612i \(-0.239156\pi\)
−0.682612 + 0.730781i \(0.739156\pi\)
\(432\) 0 0
\(433\) −30.0000 −1.44171 −0.720854 0.693087i \(-0.756250\pi\)
−0.720854 + 0.693087i \(0.756250\pi\)
\(434\) 0 0
\(435\) 4.00000 + 2.00000i 0.191785 + 0.0958927i
\(436\) 0 0
\(437\) 2.00000 + 2.00000i 0.0956730 + 0.0956730i
\(438\) 0 0
\(439\) 3.00000 3.00000i 0.143182 0.143182i −0.631882 0.775064i \(-0.717717\pi\)
0.775064 + 0.631882i \(0.217717\pi\)
\(440\) 0 0
\(441\) 5.00000 0.238095
\(442\) 0 0
\(443\) 26.0000i 1.23530i −0.786454 0.617649i \(-0.788085\pi\)
0.786454 0.617649i \(-0.211915\pi\)
\(444\) 0 0
\(445\) 20.0000 + 10.0000i 0.948091 + 0.474045i
\(446\) 0 0
\(447\) 6.00000 + 6.00000i 0.283790 + 0.283790i
\(448\) 0 0
\(449\) 21.0000 + 21.0000i 0.991051 + 0.991051i 0.999960 0.00890904i \(-0.00283587\pi\)
−0.00890904 + 0.999960i \(0.502836\pi\)
\(450\) 0 0
\(451\) 2.00000i 0.0941763i
\(452\) 0 0
\(453\) −2.00000 + 2.00000i −0.0939682 + 0.0939682i
\(454\) 0 0
\(455\) 4.00000 + 12.0000i 0.187523 + 0.562569i
\(456\) 0 0
\(457\) 10.0000 0.467780 0.233890 0.972263i \(-0.424854\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(458\) 0 0
\(459\) −20.0000 12.0000i −0.933520 0.560112i
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 6.00000i 0.278844i 0.990233 + 0.139422i \(0.0445244\pi\)
−0.990233 + 0.139422i \(0.955476\pi\)
\(464\) 0 0
\(465\) −12.0000 6.00000i −0.556487 0.278243i
\(466\) 0 0
\(467\) −20.0000 −0.925490 −0.462745 0.886492i \(-0.653135\pi\)
−0.462745 + 0.886492i \(0.653135\pi\)
\(468\) 0 0
\(469\) −2.00000 2.00000i −0.0923514 0.0923514i
\(470\) 0 0
\(471\) −8.00000 + 8.00000i −0.368621 + 0.368621i
\(472\) 0 0
\(473\) −4.00000 4.00000i −0.183920 0.183920i
\(474\) 0 0
\(475\) −8.00000 + 6.00000i −0.367065 + 0.275299i
\(476\) 0 0
\(477\) 6.00000i 0.274721i
\(478\) 0 0
\(479\) 15.0000 15.0000i 0.685367 0.685367i −0.275837 0.961204i \(-0.588955\pi\)
0.961204 + 0.275837i \(0.0889550\pi\)
\(480\) 0 0
\(481\) −12.0000 + 12.0000i −0.547153 + 0.547153i
\(482\) 0 0
\(483\) 2.00000 2.00000i 0.0910032 0.0910032i
\(484\) 0 0
\(485\) −3.00000 9.00000i −0.136223 0.408669i
\(486\) 0 0
\(487\) 29.0000 29.0000i 1.31412 1.31412i 0.395763 0.918353i \(-0.370480\pi\)
0.918353 0.395763i \(-0.129520\pi\)
\(488\) 0 0
\(489\) 14.0000 0.633102
\(490\) 0 0
\(491\) 26.0000i 1.17336i 0.809818 + 0.586682i \(0.199566\pi\)
−0.809818 + 0.586682i \(0.800434\pi\)
\(492\) 0 0
\(493\) 5.00000 + 3.00000i 0.225189 + 0.135113i
\(494\) 0 0
\(495\) 3.00000 1.00000i 0.134840 0.0449467i
\(496\) 0 0
\(497\) 22.0000i 0.986835i
\(498\) 0 0
\(499\) −5.00000 5.00000i −0.223831 0.223831i 0.586279 0.810109i \(-0.300592\pi\)
−0.810109 + 0.586279i \(0.800592\pi\)
\(500\) 0 0
\(501\) 14.0000i 0.625474i
\(502\) 0 0
\(503\) −19.0000 + 19.0000i −0.847168 + 0.847168i −0.989779 0.142611i \(-0.954450\pi\)
0.142611 + 0.989779i \(0.454450\pi\)
\(504\) 0 0
\(505\) 12.0000 + 6.00000i 0.533993 + 0.266996i
\(506\) 0 0
\(507\) −3.00000 3.00000i −0.133235 0.133235i
\(508\) 0 0
\(509\) −34.0000 −1.50702 −0.753512 0.657434i \(-0.771642\pi\)
−0.753512 + 0.657434i \(0.771642\pi\)
\(510\) 0 0
\(511\) 14.0000 0.619324
\(512\) 0 0
\(513\) 8.00000 + 8.00000i 0.353209 + 0.353209i
\(514\) 0 0
\(515\) 6.00000 12.0000i 0.264392 0.528783i
\(516\) 0 0
\(517\) −10.0000 + 10.0000i −0.439799 + 0.439799i
\(518\) 0 0
\(519\) 22.0000i 0.965693i
\(520\) 0 0
\(521\) −11.0000 11.0000i −0.481919 0.481919i 0.423825 0.905744i \(-0.360687\pi\)
−0.905744 + 0.423825i \(0.860687\pi\)
\(522\) 0 0
\(523\) 38.0000i 1.66162i 0.556553 + 0.830812i \(0.312124\pi\)
−0.556553 + 0.830812i \(0.687876\pi\)
\(524\) 0 0
\(525\) 6.00000 + 8.00000i 0.261861 + 0.349149i
\(526\) 0 0
\(527\) −15.0000 9.00000i −0.653410 0.392046i
\(528\) 0 0
\(529\) 21.0000i 0.913043i
\(530\) 0 0
\(531\) 10.0000 0.433963
\(532\) 0 0
\(533\) 4.00000 4.00000i 0.173259 0.173259i
\(534\) 0 0
\(535\) −5.00000 15.0000i −0.216169 0.648507i
\(536\) 0 0
\(537\) −18.0000 + 18.0000i −0.776757 + 0.776757i
\(538\) 0 0
\(539\) 5.00000 5.00000i 0.215365 0.215365i
\(540\) 0 0
\(541\) −1.00000 + 1.00000i −0.0429934 + 0.0429934i −0.728277 0.685283i \(-0.759678\pi\)
0.685283 + 0.728277i \(0.259678\pi\)
\(542\) 0 0
\(543\) 6.00000i 0.257485i
\(544\) 0 0
\(545\) 5.00000 + 15.0000i 0.214176 + 0.642529i
\(546\) 0 0
\(547\) 13.0000 + 13.0000i 0.555840 + 0.555840i 0.928120 0.372280i \(-0.121424\pi\)
−0.372280 + 0.928120i \(0.621424\pi\)
\(548\) 0 0
\(549\) 7.00000 7.00000i 0.298753 0.298753i
\(550\) 0 0
\(551\) −2.00000 2.00000i −0.0852029 0.0852029i
\(552\) 0 0
\(553\) −14.0000 −0.595341
\(554\) 0 0
\(555\) −6.00000 + 12.0000i −0.254686 + 0.509372i
\(556\) 0 0
\(557\) 28.0000i 1.18640i −0.805056 0.593199i \(-0.797865\pi\)
0.805056 0.593199i \(-0.202135\pi\)
\(558\) 0 0
\(559\) 16.0000i 0.676728i
\(560\) 0 0
\(561\) −8.00000 + 2.00000i −0.337760 + 0.0844401i
\(562\) 0 0
\(563\) 28.0000 1.18006 0.590030 0.807382i \(-0.299116\pi\)
0.590030 + 0.807382i \(0.299116\pi\)
\(564\) 0 0
\(565\) 15.0000 5.00000i 0.631055 0.210352i
\(566\) 0 0
\(567\) 5.00000 5.00000i 0.209980 0.209980i
\(568\) 0 0
\(569\) 24.0000i 1.00613i 0.864248 + 0.503066i \(0.167795\pi\)
−0.864248 + 0.503066i \(0.832205\pi\)
\(570\) 0 0
\(571\) 7.00000 + 7.00000i 0.292941 + 0.292941i 0.838241 0.545300i \(-0.183584\pi\)
−0.545300 + 0.838241i \(0.683584\pi\)
\(572\) 0 0
\(573\) 16.0000 + 16.0000i 0.668410 + 0.668410i
\(574\) 0 0
\(575\) 7.00000 + 1.00000i 0.291920 + 0.0417029i
\(576\) 0 0
\(577\) 4.00000i 0.166522i 0.996528 + 0.0832611i \(0.0265335\pi\)
−0.996528 + 0.0832611i \(0.973466\pi\)
\(578\) 0 0
\(579\) 6.00000 0.249351
\(580\) 0 0
\(581\) −12.0000 + 12.0000i −0.497844 + 0.497844i
\(582\) 0 0
\(583\) 6.00000 + 6.00000i 0.248495 + 0.248495i
\(584\) 0 0
\(585\) 8.00000 + 4.00000i 0.330759 + 0.165380i
\(586\) 0 0
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) 6.00000 + 6.00000i 0.247226 + 0.247226i
\(590\) 0 0
\(591\) −38.0000 −1.56311
\(592\) 0 0
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 0 0
\(595\) 7.00000 + 11.0000i 0.286972 + 0.450956i
\(596\) 0 0
\(597\) −18.0000 −0.736691
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −27.0000 27.0000i −1.10135 1.10135i −0.994248 0.107105i \(-0.965842\pi\)
−0.107105 0.994248i \(-0.534158\pi\)
\(602\) 0 0
\(603\) −2.00000 −0.0814463
\(604\) 0 0
\(605\) −9.00000 + 18.0000i −0.365902 + 0.731804i
\(606\) 0 0
\(607\) −29.0000 29.0000i −1.17707 1.17707i −0.980486 0.196587i \(-0.937014\pi\)
−0.196587 0.980486i \(-0.562986\pi\)
\(608\) 0 0
\(609\) −2.00000 + 2.00000i −0.0810441 + 0.0810441i
\(610\) 0 0
\(611\) −40.0000 −1.61823
\(612\) 0 0
\(613\) 16.0000i 0.646234i 0.946359 + 0.323117i \(0.104731\pi\)
−0.946359 + 0.323117i \(0.895269\pi\)
\(614\) 0 0
\(615\) 2.00000 4.00000i 0.0806478 0.161296i
\(616\) 0 0
\(617\) −5.00000 5.00000i −0.201292 0.201292i 0.599261 0.800554i \(-0.295461\pi\)
−0.800554 + 0.599261i \(0.795461\pi\)
\(618\) 0 0
\(619\) −21.0000 21.0000i −0.844061 0.844061i 0.145323 0.989384i \(-0.453578\pi\)
−0.989384 + 0.145323i \(0.953578\pi\)
\(620\) 0 0
\(621\) 8.00000i 0.321029i
\(622\) 0 0
\(623\) −10.0000 + 10.0000i −0.400642 + 0.400642i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 0 0
\(627\) 4.00000 0.159745
\(628\) 0 0
\(629\) −9.00000 + 15.0000i −0.358854 + 0.598089i
\(630\) 0 0
\(631\) 10.0000i 0.398094i 0.979990 + 0.199047i \(0.0637846\pi\)
−0.979990 + 0.199047i \(0.936215\pi\)
\(632\) 0 0
\(633\) 22.0000i 0.874421i
\(634\) 0 0
\(635\) −32.0000 16.0000i −1.26988 0.634941i
\(636\) 0 0
\(637\) 20.0000 0.792429
\(638\) 0 0
\(639\) −11.0000 11.0000i −0.435153 0.435153i
\(640\) 0 0
\(641\) −27.0000 + 27.0000i −1.06644 + 1.06644i −0.0688058 + 0.997630i \(0.521919\pi\)
−0.997630 + 0.0688058i \(0.978081\pi\)
\(642\) 0 0
\(643\) 17.0000 + 17.0000i 0.670415 + 0.670415i 0.957812 0.287397i \(-0.0927899\pi\)
−0.287397 + 0.957812i \(0.592790\pi\)
\(644\) 0 0
\(645\) −4.00000 12.0000i −0.157500 0.472500i
\(646\) 0 0
\(647\) 38.0000i 1.49393i 0.664861 + 0.746967i \(0.268491\pi\)
−0.664861 + 0.746967i \(0.731509\pi\)
\(648\) 0 0
\(649\) 10.0000 10.0000i 0.392534 0.392534i
\(650\) 0 0
\(651\) 6.00000 6.00000i 0.235159 0.235159i
\(652\) 0 0
\(653\) 1.00000 1.00000i 0.0391330 0.0391330i −0.687270 0.726403i \(-0.741191\pi\)
0.726403 + 0.687270i \(0.241191\pi\)
\(654\) 0 0
\(655\) −3.00000 + 1.00000i −0.117220 + 0.0390732i
\(656\) 0 0
\(657\) 7.00000 7.00000i 0.273096 0.273096i
\(658\) 0 0
\(659\) 36.0000 1.40236 0.701180 0.712984i \(-0.252657\pi\)
0.701180 + 0.712984i \(0.252657\pi\)
\(660\) 0 0
\(661\) 48.0000i 1.86698i 0.358599 + 0.933492i \(0.383255\pi\)
−0.358599 + 0.933492i \(0.616745\pi\)
\(662\) 0 0
\(663\) −20.0000 12.0000i −0.776736 0.466041i
\(664\) 0 0
\(665\) −2.00000 6.00000i −0.0775567 0.232670i
\(666\) 0 0
\(667\) 2.00000i 0.0774403i
\(668\) 0 0
\(669\) −8.00000 8.00000i −0.309298 0.309298i
\(670\) 0 0
\(671\) 14.0000i 0.540464i
\(672\) 0 0
\(673\) −17.0000 + 17.0000i −0.655302 + 0.655302i −0.954265 0.298963i \(-0.903359\pi\)
0.298963 + 0.954265i \(0.403359\pi\)
\(674\) 0 0
\(675\) 28.0000 + 4.00000i 1.07772 + 0.153960i
\(676\) 0 0
\(677\) −11.0000 11.0000i −0.422764 0.422764i 0.463390 0.886154i \(-0.346633\pi\)
−0.886154 + 0.463390i \(0.846633\pi\)
\(678\) 0 0
\(679\) 6.00000 0.230259
\(680\) 0 0
\(681\) 14.0000 0.536481
\(682\) 0 0
\(683\) 17.0000 + 17.0000i 0.650487 + 0.650487i 0.953110 0.302623i \(-0.0978624\pi\)
−0.302623 + 0.953110i \(0.597862\pi\)
\(684\) 0 0
\(685\) 12.0000 24.0000i 0.458496 0.916993i
\(686\) 0 0
\(687\) −20.0000 + 20.0000i −0.763048 + 0.763048i
\(688\) 0 0
\(689\) 24.0000i 0.914327i
\(690\) 0 0
\(691\) −17.0000 17.0000i −0.646710 0.646710i 0.305486 0.952197i \(-0.401181\pi\)
−0.952197 + 0.305486i \(0.901181\pi\)
\(692\) 0 0
\(693\) 2.00000i 0.0759737i
\(694\) 0 0
\(695\) 9.00000 3.00000i 0.341389 0.113796i
\(696\) 0 0
\(697\) 3.00000 5.00000i 0.113633 0.189389i
\(698\) 0 0
\(699\) 14.0000i 0.529529i
\(700\) 0 0
\(701\) −6.00000 −0.226617 −0.113308 0.993560i \(-0.536145\pi\)
−0.113308 + 0.993560i \(0.536145\pi\)
\(702\) 0 0
\(703\) 6.00000 6.00000i 0.226294 0.226294i
\(704\) 0 0
\(705\) −30.0000 + 10.0000i −1.12987 + 0.376622i
\(706\) 0 0
\(707\) −6.00000 + 6.00000i −0.225653 + 0.225653i
\(708\) 0 0
\(709\) 7.00000 7.00000i 0.262891 0.262891i −0.563337 0.826227i \(-0.690483\pi\)
0.826227 + 0.563337i \(0.190483\pi\)
\(710\) 0 0
\(711\) −7.00000 + 7.00000i −0.262521 + 0.262521i
\(712\) 0 0
\(713\) 6.00000i 0.224702i
\(714\) 0 0
\(715\) 12.0000 4.00000i 0.448775 0.149592i
\(716\) 0 0
\(717\) 24.0000 + 24.0000i 0.896296 + 0.896296i
\(718\) 0 0
\(719\) 27.0000 27.0000i 1.00693 1.00693i 0.00695427 0.999976i \(-0.497786\pi\)
0.999976 0.00695427i \(-0.00221363\pi\)
\(720\) 0 0
\(721\) 6.00000 + 6.00000i 0.223452 + 0.223452i
\(722\) 0 0
\(723\) 34.0000 1.26447
\(724\) 0 0
\(725\) −7.00000 1.00000i −0.259973 0.0371391i
\(726\) 0 0
\(727\) 14.0000i 0.519231i 0.965712 + 0.259616i \(0.0835959\pi\)
−0.965712 + 0.259616i \(0.916404\pi\)
\(728\) 0 0
\(729\) 29.0000i 1.07407i
\(730\) 0 0
\(731\) −4.00000 16.0000i −0.147945 0.591781i
\(732\) 0 0
\(733\) −14.0000 −0.517102 −0.258551 0.965998i \(-0.583245\pi\)
−0.258551 + 0.965998i \(0.583245\pi\)
\(734\) 0 0
\(735\) 15.0000 5.00000i 0.553283 0.184428i
\(736\) 0 0
\(737\) −2.00000 + 2.00000i −0.0736709 + 0.0736709i
\(738\) 0 0
\(739\) 10.0000i 0.367856i 0.982940 + 0.183928i \(0.0588813\pi\)
−0.982940 + 0.183928i \(0.941119\pi\)
\(740\) 0 0
\(741\) 8.00000 + 8.00000i 0.293887 + 0.293887i
\(742\) 0 0
\(743\) −21.0000 21.0000i −0.770415 0.770415i 0.207764 0.978179i \(-0.433381\pi\)
−0.978179 + 0.207764i \(0.933381\pi\)
\(744\) 0 0
\(745\) −12.0000 6.00000i −0.439646 0.219823i
\(746\) 0 0
\(747\) 12.0000i 0.439057i
\(748\) 0 0
\(749\) 10.0000 0.365392
\(750\) 0 0
\(751\) −13.0000 + 13.0000i −0.474377 + 0.474377i −0.903328 0.428951i \(-0.858883\pi\)
0.428951 + 0.903328i \(0.358883\pi\)
\(752\) 0 0
\(753\) 12.0000 + 12.0000i 0.437304 + 0.437304i
\(754\) 0 0
\(755\) 2.00000 4.00000i 0.0727875 0.145575i
\(756\) 0 0
\(757\) −42.0000 −1.52652 −0.763258 0.646094i \(-0.776401\pi\)
−0.763258 + 0.646094i \(0.776401\pi\)
\(758\) 0 0
\(759\) −2.00000 2.00000i −0.0725954 0.0725954i
\(760\) 0 0
\(761\) −10.0000 −0.362500 −0.181250 0.983437i \(-0.558014\pi\)
−0.181250 + 0.983437i \(0.558014\pi\)
\(762\) 0 0
\(763\) −10.0000 −0.362024
\(764\) 0 0
\(765\) 9.00000 + 2.00000i 0.325396 + 0.0723102i
\(766\) 0 0
\(767\) 40.0000 1.44432
\(768\) 0 0
\(769\) −18.0000 −0.649097 −0.324548 0.945869i \(-0.605212\pi\)
−0.324548 + 0.945869i \(0.605212\pi\)
\(770\) 0 0
\(771\) −14.0000 14.0000i −0.504198 0.504198i
\(772\) 0 0
\(773\) −34.0000 −1.22290 −0.611448 0.791285i \(-0.709412\pi\)
−0.611448 + 0.791285i \(0.709412\pi\)
\(774\) 0 0
\(775\) 21.0000 + 3.00000i 0.754342 + 0.107763i
\(776\) 0 0
\(777\) −6.00000 6.00000i −0.215249 0.215249i
\(778\) 0 0
\(779\) −2.00000 + 2.00000i −0.0716574 + 0.0716574i
\(780\) 0 0
\(781\) −22.0000 −0.787222
\(782\) 0 0
\(783\) 8.00000i 0.285897i
\(784\) 0 0
\(785\) 8.00000 16.0000i 0.285532 0.571064i
\(786\) 0 0
\(787\) 9.00000 + 9.00000i 0.320815 + 0.320815i 0.849080 0.528265i \(-0.177157\pi\)
−0.528265 + 0.849080i \(0.677157\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 10.0000i 0.355559i
\(792\) 0 0
\(793\) 28.0000 28.0000i 0.994309 0.994309i
\(794\) 0 0
\(795\) 6.00000 + 18.0000i 0.212798 + 0.638394i
\(796\) 0 0
\(797\) 34.0000 1.20434 0.602171 0.798367i \(-0.294303\pi\)
0.602171 + 0.798367i \(0.294303\pi\)
\(798\) 0 0
\(799\) −40.0000 + 10.0000i −1.41510 + 0.353775i
\(800\) 0 0
\(801\) 10.0000i 0.353333i
\(802\) 0 0
\(803\) 14.0000i 0.494049i
\(804\) 0 0
\(805\) −2.00000 + 4.00000i −0.0704907 + 0.140981i
\(806\) 0 0
\(807\) 46.0000 1.61928
\(808\) 0 0
\(809\) −31.0000 31.0000i −1.08990 1.08990i −0.995538 0.0943642i \(-0.969918\pi\)
−0.0943642 0.995538i \(-0.530082\pi\)
\(810\) 0 0
\(811\) 17.0000 17.0000i 0.596951 0.596951i −0.342549 0.939500i \(-0.611290\pi\)
0.939500 + 0.342549i \(0.111290\pi\)
\(812\) 0 0
\(813\) −16.0000 16.0000i −0.561144 0.561144i
\(814\) 0 0
\(815\) −21.0000 + 7.00000i −0.735598 + 0.245199i
\(816\) 0 0
\(817\) 8.00000i 0.279885i
\(818\) 0 0
\(819\) −4.00000 + 4.00000i −0.139771 + 0.139771i
\(820\) 0 0
\(821\) −1.00000 + 1.00000i −0.0349002 + 0.0349002i −0.724342 0.689441i \(-0.757856\pi\)
0.689441 + 0.724342i \(0.257856\pi\)
\(822\) 0 0
\(823\) −15.0000 + 15.0000i −0.522867 + 0.522867i −0.918436 0.395569i \(-0.870547\pi\)
0.395569 + 0.918436i \(0.370547\pi\)
\(824\) 0 0
\(825\) 8.00000 6.00000i 0.278524 0.208893i
\(826\) 0 0
\(827\) 15.0000 15.0000i 0.521601 0.521601i −0.396454 0.918055i \(-0.629759\pi\)
0.918055 + 0.396454i \(0.129759\pi\)
\(828\) 0 0
\(829\) 14.0000 0.486240 0.243120 0.969996i \(-0.421829\pi\)
0.243120 + 0.969996i \(0.421829\pi\)
\(830\) 0 0
\(831\) 34.0000i 1.17945i
\(832\) 0 0
\(833\) 20.0000 5.00000i 0.692959 0.173240i
\(834\) 0 0
\(835\) −7.00000 21.0000i −0.242245 0.726735i
\(836\) 0 0
\(837\) 24.0000i 0.829561i
\(838\) 0 0
\(839\) 33.0000 + 33.0000i 1.13929 + 1.13929i 0.988578 + 0.150708i \(0.0481554\pi\)
0.150708 + 0.988578i \(0.451845\pi\)
\(840\) 0 0
\(841\) 27.0000i 0.931034i
\(842\) 0 0
\(843\) 32.0000 32.0000i 1.10214 1.10214i
\(844\) 0 0
\(845\) 6.00000 + 3.00000i 0.206406 + 0.103203i
\(846\) 0 0
\(847\) −9.00000 9.00000i −0.309244 0.309244i
\(848\) 0 0
\(849\) 6.00000 0.205919
\(850\) 0 0
\(851\) −6.00000 −0.205677
\(852\) 0 0
\(853\) −39.0000 39.0000i −1.33533 1.33533i −0.900520 0.434815i \(-0.856814\pi\)
−0.434815 0.900520i \(-0.643186\pi\)
\(854\) 0 0
\(855\) −4.00000 2.00000i −0.136797 0.0683986i
\(856\) 0 0
\(857\) −21.0000 + 21.0000i −0.717346 + 0.717346i −0.968061 0.250715i \(-0.919334\pi\)
0.250715 + 0.968061i \(0.419334\pi\)
\(858\) 0 0
\(859\) 54.0000i 1.84246i −0.389023 0.921228i \(-0.627187\pi\)
0.389023 0.921228i \(-0.372813\pi\)
\(860\) 0 0
\(861\) 2.00000 + 2.00000i 0.0681598 + 0.0681598i
\(862\) 0 0
\(863\) 54.0000i 1.83818i 0.394046 + 0.919091i \(0.371075\pi\)
−0.394046 + 0.919091i \(0.628925\pi\)
\(864\) 0 0
\(865\) 11.0000 + 33.0000i 0.374011 + 1.12203i
\(866\) 0 0
\(867\) −23.0000 7.00000i −0.781121 0.237732i
\(868\) 0 0
\(869\) 14.0000i 0.474917i
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 0 0
\(873\) 3.00000 3.00000i 0.101535 0.101535i
\(874\) 0 0
\(875\) −13.0000 9.00000i −0.439480 0.304256i
\(876\) 0 0
\(877\) −7.00000 + 7.00000i −0.236373 + 0.236373i −0.815347 0.578973i \(-0.803454\pi\)
0.578973 + 0.815347i \(0.303454\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −19.0000 + 19.0000i −0.640126 + 0.640126i −0.950586 0.310460i \(-0.899517\pi\)
0.310460 + 0.950586i \(0.399517\pi\)
\(882\) 0 0
\(883\) 34.0000i 1.14419i −0.820187 0.572096i \(-0.806131\pi\)
0.820187 0.572096i \(-0.193869\pi\)
\(884\) 0 0
\(885\) 30.0000 10.0000i 1.00844 0.336146i
\(886\) 0 0
\(887\) −1.00000 1.00000i −0.0335767 0.0335767i 0.690119 0.723696i \(-0.257558\pi\)
−0.723696 + 0.690119i \(0.757558\pi\)
\(888\) 0 0
\(889\) 16.0000 16.0000i 0.536623 0.536623i
\(890\) 0 0
\(891\) −5.00000 5.00000i −0.167506 0.167506i
\(892\) 0 0
\(893\) 20.0000 0.669274
\(894\) 0 0
\(895\) 18.0000 36.0000i 0.601674 1.20335i
\(896\) 0 0
\(897\) 8.00000i 0.267112i
\(898\) 0 0
\(899\) 6.00000i 0.200111i
\(900\) 0 0
\(901\) 6.00000 + 24.0000i 0.199889 + 0.799556i
\(902\) 0 0
\(903\) 8.00000 0.266223
\(904\) 0 0
\(905\) −3.00000 9.00000i −0.0997234 0.299170i
\(906\) 0 0
\(907\) −37.0000 + 37.0000i −1.22856 + 1.22856i −0.264058 + 0.964507i \(0.585061\pi\)
−0.964507 + 0.264058i \(0.914939\pi\)
\(908\) 0 0
\(909\) 6.00000i 0.199007i
\(910\) 0 0
\(911\) 33.0000 + 33.0000i 1.09334 + 1.09334i 0.995170 + 0.0981690i \(0.0312986\pi\)
0.0981690 + 0.995170i \(0.468701\pi\)
\(912\) 0 0
\(913\) 12.0000 + 12.0000i 0.397142 + 0.397142i
\(914\) 0 0
\(915\) 14.0000 28.0000i 0.462826 0.925651i
\(916\) 0 0
\(917\) 2.00000i 0.0660458i
\(918\) 0 0
\(919\) −24.0000 −0.791687 −0.395843 0.918318i \(-0.629548\pi\)
−0.395843 + 0.918318i \(0.629548\pi\)
\(920\) 0 0
\(921\) 10.0000 10.0000i 0.329511 0.329511i
\(922\) 0 0
\(923\) −44.0000 44.0000i −1.44828 1.44828i
\(924\) 0 0
\(925\) 3.00000 21.0000i 0.0986394 0.690476i
\(926\) 0 0
\(927\) 6.00000 0.197066
\(928\) 0 0
\(929\) 33.0000 + 33.0000i 1.08269 + 1.08269i 0.996257 + 0.0864376i \(0.0275483\pi\)
0.0864376 + 0.996257i \(0.472452\pi\)
\(930\) 0 0
\(931\) −10.0000 −0.327737
\(932\) 0 0
\(933\) 30.0000 0.982156
\(934\) 0 0
\(935\) 11.0000 7.00000i 0.359738 0.228924i
\(936\) 0 0
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 0 0
\(939\) 38.0000 1.24008
\(940\) 0 0
\(941\) −9.00000 9.00000i −0.293392 0.293392i 0.545027 0.838419i \(-0.316519\pi\)
−0.838419 + 0.545027i \(0.816519\pi\)
\(942\) 0 0
\(943\) 2.00000 0.0651290
\(944\) 0 0
\(945\) −8.00000 + 16.0000i −0.260240 + 0.520480i
\(946\) 0 0
\(947\) −39.0000 39.0000i −1.26733 1.26733i −0.947462 0.319867i \(-0.896362\pi\)
−0.319867 0.947462i \(-0.603638\pi\)
\(948\) 0 0
\(949\) 28.0000 28.0000i 0.908918 0.908918i
\(950\) 0 0
\(951\) 2.00000 0.0648544
\(952\) 0 0
\(953\) 44.0000i 1.42530i 0.701520 + 0.712650i \(0.252505\pi\)
−0.701520 + 0.712650i \(0.747495\pi\)
\(954\) 0 0
\(955\) −32.0000 16.0000i −1.03550 0.517748i
\(956\) 0 0
\(957\) 2.00000 + 2.00000i 0.0646508 + 0.0646508i
\(958\) 0 0
\(959\) 12.0000 + 12.0000i 0.387500 + 0.387500i
\(960\) 0 0
\(961\) 13.0000i 0.419355i
\(962\) 0 0
\(963\) 5.00000 5.00000i 0.161123 0.161123i
\(964\) 0 0
\(965\) −9.00000 + 3.00000i −0.289720 + 0.0965734i
\(966\) 0 0
\(967\) −48.0000 −1.54358 −0.771788 0.635880i \(-0.780637\pi\)
−0.771788 + 0.635880i \(0.780637\pi\)
\(968\) 0 0
\(969\) 10.0000 + 6.00000i 0.321246 + 0.192748i
\(970\) 0 0
\(971\) 22.0000i 0.706014i −0.935621 0.353007i \(-0.885159\pi\)
0.935621 0.353007i \(-0.114841\pi\)
\(972\) 0 0
\(973\) 6.00000i 0.192351i
\(974\) 0 0
\(975\) 28.0000 + 4.00000i 0.896718 + 0.128103i
\(976\) 0 0
\(977\) 54.0000 1.72761 0.863807 0.503824i \(-0.168074\pi\)
0.863807 + 0.503824i \(0.168074\pi\)
\(978\) 0 0
\(979\) 10.0000 + 10.0000i 0.319601 + 0.319601i
\(980\) 0 0
\(981\) −5.00000 + 5.00000i −0.159638 + 0.159638i
\(982\) 0 0
\(983\) 3.00000 + 3.00000i 0.0956851 + 0.0956851i 0.753329 0.657644i \(-0.228447\pi\)
−0.657644 + 0.753329i \(0.728447\pi\)
\(984\) 0 0
\(985\) 57.0000 19.0000i 1.81617 0.605390i
\(986\) 0 0
\(987\) 20.0000i 0.636607i
\(988\) 0 0
\(989\) 4.00000 4.00000i 0.127193 0.127193i
\(990\) 0 0
\(991\) −5.00000 + 5.00000i −0.158830 + 0.158830i −0.782048 0.623218i \(-0.785825\pi\)
0.623218 + 0.782048i \(0.285825\pi\)
\(992\) 0 0
\(993\) −26.0000 + 26.0000i −0.825085 + 0.825085i
\(994\) 0 0
\(995\) 27.0000 9.00000i 0.855958 0.285319i
\(996\) 0 0
\(997\) 21.0000 21.0000i 0.665077 0.665077i −0.291496 0.956572i \(-0.594153\pi\)
0.956572 + 0.291496i \(0.0941528\pi\)
\(998\) 0 0
\(999\) −24.0000 −0.759326
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.z.b.89.1 yes 2
5.4 even 2 680.2.z.a.89.1 2
17.13 even 4 680.2.z.a.489.1 yes 2
85.64 even 4 inner 680.2.z.b.489.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.z.a.89.1 2 5.4 even 2
680.2.z.a.489.1 yes 2 17.13 even 4
680.2.z.b.89.1 yes 2 1.1 even 1 trivial
680.2.z.b.489.1 yes 2 85.64 even 4 inner