Properties

Label 680.2.u.b
Level $680$
Weight $2$
Character orbit 680.u
Analytic conductor $5.430$
Analytic rank $0$
Dimension $8$
CM discriminant -136
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(67,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.67"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.u (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-8,0,0,0,0,0,16,0,0,0,0,0,0,0,-32,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.1401249857536.13
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 8x^{6} + 32x^{4} - 200x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - 1) q^{2} - 2 \beta_{2} q^{4} - \beta_1 q^{5} + ( - \beta_{7} - \beta_{4}) q^{7} + (2 \beta_{2} + 2) q^{8} + 3 \beta_{2} q^{9} + ( - \beta_{7} + \beta_1) q^{10} + (\beta_{7} - \beta_{5} + \beta_{4} + \beta_1) q^{14}+ \cdots + (2 \beta_{3} - \beta_{2} - 1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} + 16 q^{8} - 32 q^{16} - 24 q^{18} + 16 q^{25} + 32 q^{32} - 24 q^{35} + 48 q^{36} + 16 q^{38} - 24 q^{43} + 8 q^{70} - 48 q^{72} - 32 q^{76} - 72 q^{81} + 56 q^{83} + 48 q^{86} - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 8x^{6} + 32x^{4} - 200x^{2} + 625 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 4\nu^{6} - 7\nu^{4} + 28\nu^{2} - 400 ) / 225 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 8\nu^{6} - 14\nu^{4} + 281\nu^{2} - 1250 ) / 225 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{7} - 8\nu^{5} + 32\nu^{3} - 200\nu ) / 125 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -16\nu^{7} + 28\nu^{5} - 337\nu^{3} + 2500\nu ) / 1125 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -17\nu^{6} + 86\nu^{4} - 344\nu^{2} + 2150 ) / 225 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 4\nu^{7} - 7\nu^{5} + 28\nu^{3} - 400\nu ) / 225 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 2\beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -4\beta_{7} - 5\beta_{5} + 4\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 4\beta_{6} + 4\beta_{3} + 9\beta_{2} \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -7\beta_{7} - 20\beta_{5} - 20\beta_{4} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 7\beta_{6} + 86\beta_{2} + 86 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 72\beta_{7} - 35\beta_{4} + 72\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(-\beta_{2}\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
2.22660 0.205577i
1.42908 + 1.71981i
−1.42908 1.71981i
−2.22660 + 0.205577i
2.22660 + 0.205577i
1.42908 1.71981i
−1.42908 + 1.71981i
−2.22660 0.205577i
−1.00000 1.00000i 0 2.00000i −2.22660 + 0.205577i 0 2.43218 + 2.43218i 2.00000 2.00000i 3.00000i 2.43218 + 2.02102i
67.2 −1.00000 1.00000i 0 2.00000i −1.42908 1.71981i 0 −0.290730 0.290730i 2.00000 2.00000i 3.00000i −0.290730 + 3.14888i
67.3 −1.00000 1.00000i 0 2.00000i 1.42908 + 1.71981i 0 0.290730 + 0.290730i 2.00000 2.00000i 3.00000i 0.290730 3.14888i
67.4 −1.00000 1.00000i 0 2.00000i 2.22660 0.205577i 0 −2.43218 2.43218i 2.00000 2.00000i 3.00000i −2.43218 2.02102i
203.1 −1.00000 + 1.00000i 0 2.00000i −2.22660 0.205577i 0 2.43218 2.43218i 2.00000 + 2.00000i 3.00000i 2.43218 2.02102i
203.2 −1.00000 + 1.00000i 0 2.00000i −1.42908 + 1.71981i 0 −0.290730 + 0.290730i 2.00000 + 2.00000i 3.00000i −0.290730 3.14888i
203.3 −1.00000 + 1.00000i 0 2.00000i 1.42908 1.71981i 0 0.290730 0.290730i 2.00000 + 2.00000i 3.00000i 0.290730 + 3.14888i
203.4 −1.00000 + 1.00000i 0 2.00000i 2.22660 + 0.205577i 0 −2.43218 + 2.43218i 2.00000 + 2.00000i 3.00000i −2.43218 + 2.02102i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 67.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
136.e odd 2 1 CM by \(\Q(\sqrt{-34}) \)
5.c odd 4 1 inner
8.d odd 2 1 inner
17.b even 2 1 inner
40.k even 4 1 inner
85.g odd 4 1 inner
680.u even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 680.2.u.b 8
5.c odd 4 1 inner 680.2.u.b 8
8.d odd 2 1 inner 680.2.u.b 8
17.b even 2 1 inner 680.2.u.b 8
40.k even 4 1 inner 680.2.u.b 8
85.g odd 4 1 inner 680.2.u.b 8
136.e odd 2 1 CM 680.2.u.b 8
680.u even 4 1 inner 680.2.u.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
680.2.u.b 8 1.a even 1 1 trivial
680.2.u.b 8 5.c odd 4 1 inner
680.2.u.b 8 8.d odd 2 1 inner
680.2.u.b 8 17.b even 2 1 inner
680.2.u.b 8 40.k even 4 1 inner
680.2.u.b 8 85.g odd 4 1 inner
680.2.u.b 8 136.e odd 2 1 CM
680.2.u.b 8 680.u even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(680, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{7}^{8} + 140T_{7}^{4} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2 T + 2)^{4} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} - 8 T^{6} + \cdots + 625 \) Copy content Toggle raw display
$7$ \( T^{8} + 140T^{4} + 4 \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( (T^{4} + 289)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + 76 T^{2} + 900)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + 460 T^{4} + 26244 \) Copy content Toggle raw display
$29$ \( (T^{4} + 124 T^{2} + 2178)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} - 156 T^{2} + 4418)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} + 31820 T^{4} + 250968964 \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( (T^{4} + 12 T^{3} + \cdots + 2500)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( (T^{2} + 136)^{4} \) Copy content Toggle raw display
$61$ \( (T^{4} - 396 T^{2} + 37538)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} + 4624)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} - 316 T^{2} + 15138)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} \) Copy content Toggle raw display
$79$ \( (T^{4} + 524 T^{2} + 66978)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} - 28 T^{3} + \cdots + 900)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + 356 T^{2} + 12100)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} \) Copy content Toggle raw display
show more
show less