Properties

Label 680.2.t.a.523.8
Level $680$
Weight $2$
Character 680.523
Analytic conductor $5.430$
Analytic rank $0$
Dimension $208$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(523,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.523"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.t (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(208\)
Relative dimension: \(104\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 523.8
Character \(\chi\) \(=\) 680.523
Dual form 680.2.t.a.667.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.37567 + 0.327922i) q^{2} -1.51555i q^{3} +(1.78493 - 0.902224i) q^{4} +(-1.48529 - 1.67150i) q^{5} +(0.496982 + 2.08490i) q^{6} -3.71705 q^{7} +(-2.15962 + 1.82648i) q^{8} +0.703111 q^{9} +(2.59139 + 1.81238i) q^{10} +(-1.30000 + 1.30000i) q^{11} +(-1.36737 - 2.70516i) q^{12} +(-3.07440 + 3.07440i) q^{13} +(5.11343 - 1.21890i) q^{14} +(-2.53325 + 2.25102i) q^{15} +(2.37198 - 3.22082i) q^{16} +(3.38853 + 2.34901i) q^{17} +(-0.967248 + 0.230565i) q^{18} -0.903308 q^{19} +(-4.15921 - 1.64347i) q^{20} +5.63337i q^{21} +(1.36207 - 2.21467i) q^{22} +5.70159i q^{23} +(2.76812 + 3.27301i) q^{24} +(-0.587854 + 4.96532i) q^{25} +(3.22119 - 5.23752i) q^{26} -5.61225i q^{27} +(-6.63469 + 3.35361i) q^{28} +(3.08022 + 3.08022i) q^{29} +(2.74675 - 3.92737i) q^{30} +(5.23093 - 5.23093i) q^{31} +(-2.20689 + 5.20861i) q^{32} +(1.97021 + 1.97021i) q^{33} +(-5.43179 - 2.12029i) q^{34} +(5.52088 + 6.21307i) q^{35} +(1.25501 - 0.634363i) q^{36} -9.78412i q^{37} +(1.24265 - 0.296214i) q^{38} +(4.65940 + 4.65940i) q^{39} +(6.26063 + 0.896970i) q^{40} +(2.00614 - 2.00614i) q^{41} +(-1.84731 - 7.74966i) q^{42} +(-1.94236 + 1.94236i) q^{43} +(-1.14752 + 3.49330i) q^{44} +(-1.04432 - 1.17525i) q^{45} +(-1.86968 - 7.84351i) q^{46} +(3.82456 + 3.82456i) q^{47} +(-4.88132 - 3.59486i) q^{48} +6.81646 q^{49} +(-0.819545 - 7.02341i) q^{50} +(3.56004 - 5.13549i) q^{51} +(-2.71380 + 8.26140i) q^{52} +(5.50671 + 5.50671i) q^{53} +(1.84038 + 7.72060i) q^{54} +(4.10382 + 0.242084i) q^{55} +(8.02742 - 6.78912i) q^{56} +1.36901i q^{57} +(-5.24743 - 3.22729i) q^{58} -12.8744 q^{59} +(-2.49075 + 6.30349i) q^{60} +(0.657148 + 0.657148i) q^{61} +(-5.48069 + 8.91137i) q^{62} -2.61350 q^{63} +(1.32793 - 7.88902i) q^{64} +(9.70523 + 0.572511i) q^{65} +(-3.35643 - 2.06428i) q^{66} +(-3.11523 + 3.11523i) q^{67} +(8.16764 + 1.13561i) q^{68} +8.64105 q^{69} +(-9.63231 - 6.73671i) q^{70} +(-10.9681 + 10.9681i) q^{71} +(-1.51845 + 1.28422i) q^{72} +8.17185i q^{73} +(3.20843 + 13.4597i) q^{74} +(7.52519 + 0.890922i) q^{75} +(-1.61235 + 0.814986i) q^{76} +(4.83216 - 4.83216i) q^{77} +(-7.93772 - 4.88188i) q^{78} +(-5.00743 + 5.00743i) q^{79} +(-8.90669 + 0.819063i) q^{80} -6.39630 q^{81} +(-2.10193 + 3.41764i) q^{82} +(-1.45842 + 1.45842i) q^{83} +(5.08257 + 10.0552i) q^{84} +(-1.10656 - 9.15290i) q^{85} +(2.03510 - 3.30898i) q^{86} +(4.66822 - 4.66822i) q^{87} +(0.433081 - 5.18193i) q^{88} +17.1717i q^{89} +(1.82203 + 1.27430i) q^{90} +(11.4277 - 11.4277i) q^{91} +(5.14412 + 10.1770i) q^{92} +(-7.92773 - 7.92773i) q^{93} +(-6.51549 - 4.00718i) q^{94} +(1.34167 + 1.50988i) q^{95} +(7.89391 + 3.34464i) q^{96} +5.70880 q^{97} +(-9.37720 + 2.23527i) q^{98} +(-0.914042 + 0.914042i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 208 q - 8 q^{6} - 192 q^{9} + 2 q^{10} - 8 q^{11} + 8 q^{12} - 16 q^{14} - 16 q^{16} - 12 q^{18} - 10 q^{20} + 4 q^{22} + 16 q^{24} + 12 q^{28} - 24 q^{30} + 20 q^{32} - 8 q^{33} - 4 q^{34} - 8 q^{35} - 12 q^{38}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.37567 + 0.327922i −0.972745 + 0.231876i
\(3\) 1.51555i 0.875003i −0.899218 0.437501i \(-0.855864\pi\)
0.899218 0.437501i \(-0.144136\pi\)
\(4\) 1.78493 0.902224i 0.892467 0.451112i
\(5\) −1.48529 1.67150i −0.664240 0.747519i
\(6\) 0.496982 + 2.08490i 0.202892 + 0.851155i
\(7\) −3.71705 −1.40491 −0.702456 0.711727i \(-0.747913\pi\)
−0.702456 + 0.711727i \(0.747913\pi\)
\(8\) −2.15962 + 1.82648i −0.763541 + 0.645759i
\(9\) 0.703111 0.234370
\(10\) 2.59139 + 1.81238i 0.819468 + 0.573125i
\(11\) −1.30000 + 1.30000i −0.391964 + 0.391964i −0.875387 0.483423i \(-0.839393\pi\)
0.483423 + 0.875387i \(0.339393\pi\)
\(12\) −1.36737 2.70516i −0.394724 0.780911i
\(13\) −3.07440 + 3.07440i −0.852685 + 0.852685i −0.990463 0.137779i \(-0.956004\pi\)
0.137779 + 0.990463i \(0.456004\pi\)
\(14\) 5.11343 1.21890i 1.36662 0.325765i
\(15\) −2.53325 + 2.25102i −0.654082 + 0.581212i
\(16\) 2.37198 3.22082i 0.592996 0.805206i
\(17\) 3.38853 + 2.34901i 0.821840 + 0.569718i
\(18\) −0.967248 + 0.230565i −0.227983 + 0.0543448i
\(19\) −0.903308 −0.207233 −0.103617 0.994617i \(-0.533041\pi\)
−0.103617 + 0.994617i \(0.533041\pi\)
\(20\) −4.15921 1.64347i −0.930027 0.367490i
\(21\) 5.63337i 1.22930i
\(22\) 1.36207 2.21467i 0.290394 0.472168i
\(23\) 5.70159i 1.18886i 0.804146 + 0.594432i \(0.202623\pi\)
−0.804146 + 0.594432i \(0.797377\pi\)
\(24\) 2.76812 + 3.27301i 0.565041 + 0.668101i
\(25\) −0.587854 + 4.96532i −0.117571 + 0.993065i
\(26\) 3.22119 5.23752i 0.631728 1.02716i
\(27\) 5.61225i 1.08008i
\(28\) −6.63469 + 3.35361i −1.25384 + 0.633773i
\(29\) 3.08022 + 3.08022i 0.571982 + 0.571982i 0.932682 0.360700i \(-0.117462\pi\)
−0.360700 + 0.932682i \(0.617462\pi\)
\(30\) 2.74675 3.92737i 0.501486 0.717037i
\(31\) 5.23093 5.23093i 0.939503 0.939503i −0.0587691 0.998272i \(-0.518718\pi\)
0.998272 + 0.0587691i \(0.0187176\pi\)
\(32\) −2.20689 + 5.20861i −0.390126 + 0.920761i
\(33\) 1.97021 + 1.97021i 0.342970 + 0.342970i
\(34\) −5.43179 2.12029i −0.931545 0.363626i
\(35\) 5.52088 + 6.21307i 0.933199 + 1.05020i
\(36\) 1.25501 0.634363i 0.209168 0.105727i
\(37\) 9.78412i 1.60850i −0.594292 0.804250i \(-0.702567\pi\)
0.594292 0.804250i \(-0.297433\pi\)
\(38\) 1.24265 0.296214i 0.201585 0.0480523i
\(39\) 4.65940 + 4.65940i 0.746101 + 0.746101i
\(40\) 6.26063 + 0.896970i 0.989892 + 0.141823i
\(41\) 2.00614 2.00614i 0.313306 0.313306i −0.532883 0.846189i \(-0.678891\pi\)
0.846189 + 0.532883i \(0.178891\pi\)
\(42\) −1.84731 7.74966i −0.285045 1.19580i
\(43\) −1.94236 + 1.94236i −0.296207 + 0.296207i −0.839526 0.543319i \(-0.817167\pi\)
0.543319 + 0.839526i \(0.317167\pi\)
\(44\) −1.14752 + 3.49330i −0.172995 + 0.526635i
\(45\) −1.04432 1.17525i −0.155678 0.175196i
\(46\) −1.86968 7.84351i −0.275669 1.15646i
\(47\) 3.82456 + 3.82456i 0.557870 + 0.557870i 0.928700 0.370831i \(-0.120927\pi\)
−0.370831 + 0.928700i \(0.620927\pi\)
\(48\) −4.88132 3.59486i −0.704557 0.518873i
\(49\) 6.81646 0.973780
\(50\) −0.819545 7.02341i −0.115901 0.993261i
\(51\) 3.56004 5.13549i 0.498505 0.719112i
\(52\) −2.71380 + 8.26140i −0.376337 + 1.14565i
\(53\) 5.50671 + 5.50671i 0.756405 + 0.756405i 0.975666 0.219261i \(-0.0703646\pi\)
−0.219261 + 0.975666i \(0.570365\pi\)
\(54\) 1.84038 + 7.72060i 0.250444 + 1.05064i
\(55\) 4.10382 + 0.242084i 0.553359 + 0.0326426i
\(56\) 8.02742 6.78912i 1.07271 0.907235i
\(57\) 1.36901i 0.181329i
\(58\) −5.24743 3.22729i −0.689022 0.423764i
\(59\) −12.8744 −1.67611 −0.838055 0.545586i \(-0.816307\pi\)
−0.838055 + 0.545586i \(0.816307\pi\)
\(60\) −2.49075 + 6.30349i −0.321555 + 0.813777i
\(61\) 0.657148 + 0.657148i 0.0841391 + 0.0841391i 0.747924 0.663785i \(-0.231051\pi\)
−0.663785 + 0.747924i \(0.731051\pi\)
\(62\) −5.48069 + 8.91137i −0.696049 + 1.13174i
\(63\) −2.61350 −0.329270
\(64\) 1.32793 7.88902i 0.165991 0.986127i
\(65\) 9.70523 + 0.572511i 1.20379 + 0.0710113i
\(66\) −3.35643 2.06428i −0.413149 0.254096i
\(67\) −3.11523 + 3.11523i −0.380586 + 0.380586i −0.871313 0.490728i \(-0.836731\pi\)
0.490728 + 0.871313i \(0.336731\pi\)
\(68\) 8.16764 + 1.13561i 0.990472 + 0.137713i
\(69\) 8.64105 1.04026
\(70\) −9.63231 6.73671i −1.15128 0.805191i
\(71\) −10.9681 + 10.9681i −1.30168 + 1.30168i −0.374418 + 0.927260i \(0.622157\pi\)
−0.927260 + 0.374418i \(0.877843\pi\)
\(72\) −1.51845 + 1.28422i −0.178951 + 0.151347i
\(73\) 8.17185i 0.956443i 0.878239 + 0.478222i \(0.158718\pi\)
−0.878239 + 0.478222i \(0.841282\pi\)
\(74\) 3.20843 + 13.4597i 0.372972 + 1.56466i
\(75\) 7.52519 + 0.890922i 0.868934 + 0.102875i
\(76\) −1.61235 + 0.814986i −0.184949 + 0.0934853i
\(77\) 4.83216 4.83216i 0.550675 0.550675i
\(78\) −7.93772 4.88188i −0.898769 0.552764i
\(79\) −5.00743 + 5.00743i −0.563380 + 0.563380i −0.930266 0.366886i \(-0.880424\pi\)
0.366886 + 0.930266i \(0.380424\pi\)
\(80\) −8.90669 + 0.819063i −0.995798 + 0.0915740i
\(81\) −6.39630 −0.710700
\(82\) −2.10193 + 3.41764i −0.232119 + 0.377415i
\(83\) −1.45842 + 1.45842i −0.160082 + 0.160082i −0.782603 0.622521i \(-0.786109\pi\)
0.622521 + 0.782603i \(0.286109\pi\)
\(84\) 5.08257 + 10.0552i 0.554553 + 1.09711i
\(85\) −1.10656 9.15290i −0.120023 0.992771i
\(86\) 2.03510 3.30898i 0.219451 0.356817i
\(87\) 4.66822 4.66822i 0.500486 0.500486i
\(88\) 0.433081 5.18193i 0.0461665 0.552395i
\(89\) 17.1717i 1.82020i 0.414392 + 0.910098i \(0.363994\pi\)
−0.414392 + 0.910098i \(0.636006\pi\)
\(90\) 1.82203 + 1.27430i 0.192059 + 0.134323i
\(91\) 11.4277 11.4277i 1.19795 1.19795i
\(92\) 5.14412 + 10.1770i 0.536311 + 1.06102i
\(93\) −7.92773 7.92773i −0.822067 0.822067i
\(94\) −6.51549 4.00718i −0.672021 0.413309i
\(95\) 1.34167 + 1.50988i 0.137652 + 0.154911i
\(96\) 7.89391 + 3.34464i 0.805669 + 0.341361i
\(97\) 5.70880 0.579641 0.289820 0.957081i \(-0.406404\pi\)
0.289820 + 0.957081i \(0.406404\pi\)
\(98\) −9.37720 + 2.23527i −0.947240 + 0.225796i
\(99\) −0.914042 + 0.914042i −0.0918647 + 0.0918647i
\(100\) 3.43055 + 9.39315i 0.343055 + 0.939315i
\(101\) 17.4566i 1.73700i 0.495689 + 0.868500i \(0.334916\pi\)
−0.495689 + 0.868500i \(0.665084\pi\)
\(102\) −3.21340 + 8.23215i −0.318174 + 0.815104i
\(103\) 2.75583 2.75583i 0.271540 0.271540i −0.558180 0.829720i \(-0.688500\pi\)
0.829720 + 0.558180i \(0.188500\pi\)
\(104\) 1.02420 12.2549i 0.100431 1.20169i
\(105\) 9.41621 8.36717i 0.918928 0.816552i
\(106\) −9.38119 5.76965i −0.911182 0.560398i
\(107\) 0.0918138 0.00887598 0.00443799 0.999990i \(-0.498587\pi\)
0.00443799 + 0.999990i \(0.498587\pi\)
\(108\) −5.06351 10.0175i −0.487236 0.963934i
\(109\) −4.29101 + 4.29101i −0.411005 + 0.411005i −0.882088 0.471084i \(-0.843863\pi\)
0.471084 + 0.882088i \(0.343863\pi\)
\(110\) −5.72489 + 1.01270i −0.545846 + 0.0965576i
\(111\) −14.8283 −1.40744
\(112\) −8.81678 + 11.9720i −0.833107 + 1.13124i
\(113\) −18.5515 −1.74518 −0.872591 0.488451i \(-0.837562\pi\)
−0.872591 + 0.488451i \(0.837562\pi\)
\(114\) −0.448927 1.88330i −0.0420459 0.176387i
\(115\) 9.53024 8.46849i 0.888699 0.789691i
\(116\) 8.27704 + 2.71894i 0.768504 + 0.252447i
\(117\) −2.16164 + 2.16164i −0.199844 + 0.199844i
\(118\) 17.7110 4.22181i 1.63043 0.388649i
\(119\) −12.5953 8.73138i −1.15461 0.800405i
\(120\) 1.35940 9.48829i 0.124096 0.866158i
\(121\) 7.62001i 0.692728i
\(122\) −1.11951 0.688525i −0.101356 0.0623361i
\(123\) −3.04040 3.04040i −0.274144 0.274144i
\(124\) 4.61739 14.0563i 0.414654 1.26230i
\(125\) 9.17269 6.39232i 0.820430 0.571747i
\(126\) 3.59531 0.857023i 0.320296 0.0763497i
\(127\) −5.38968 + 5.38968i −0.478257 + 0.478257i −0.904574 0.426317i \(-0.859811\pi\)
0.426317 + 0.904574i \(0.359811\pi\)
\(128\) 0.760191 + 11.2881i 0.0671920 + 0.997740i
\(129\) 2.94374 + 2.94374i 0.259182 + 0.259182i
\(130\) −13.5389 + 2.39497i −1.18744 + 0.210053i
\(131\) 3.41720 + 3.41720i 0.298562 + 0.298562i 0.840451 0.541888i \(-0.182290\pi\)
−0.541888 + 0.840451i \(0.682290\pi\)
\(132\) 5.29427 + 1.73913i 0.460807 + 0.151371i
\(133\) 3.35764 0.291144
\(134\) 3.26397 5.30707i 0.281964 0.458461i
\(135\) −9.38089 + 8.33579i −0.807379 + 0.717430i
\(136\) −11.6084 + 1.11612i −0.995410 + 0.0957068i
\(137\) 5.03637 5.03637i 0.430286 0.430286i −0.458440 0.888726i \(-0.651591\pi\)
0.888726 + 0.458440i \(0.151591\pi\)
\(138\) −11.8872 + 2.83359i −1.01191 + 0.241211i
\(139\) 6.33813 6.33813i 0.537593 0.537593i −0.385228 0.922821i \(-0.625877\pi\)
0.922821 + 0.385228i \(0.125877\pi\)
\(140\) 15.4600 + 6.10884i 1.30661 + 0.516291i
\(141\) 5.79631 5.79631i 0.488137 0.488137i
\(142\) 11.4918 18.6852i 0.964374 1.56803i
\(143\) 7.99342i 0.668443i
\(144\) 1.66777 2.26459i 0.138980 0.188716i
\(145\) 0.573595 9.72360i 0.0476345 0.807501i
\(146\) −2.67973 11.2418i −0.221776 0.930376i
\(147\) 10.3307i 0.852060i
\(148\) −8.82747 17.4640i −0.725614 1.43553i
\(149\) 8.14759 0.667477 0.333738 0.942666i \(-0.391690\pi\)
0.333738 + 0.942666i \(0.391690\pi\)
\(150\) −10.6443 + 1.24206i −0.869106 + 0.101414i
\(151\) −16.1970 −1.31810 −0.659049 0.752100i \(-0.729041\pi\)
−0.659049 + 0.752100i \(0.729041\pi\)
\(152\) 1.95080 1.64988i 0.158231 0.133823i
\(153\) 2.38251 + 1.65161i 0.192615 + 0.133525i
\(154\) −5.06288 + 8.23202i −0.407979 + 0.663355i
\(155\) −16.5129 0.974098i −1.32635 0.0782414i
\(156\) 12.5206 + 4.11290i 1.00245 + 0.329296i
\(157\) −16.6722 16.6722i −1.33059 1.33059i −0.904842 0.425747i \(-0.860011\pi\)
−0.425747 0.904842i \(-0.639989\pi\)
\(158\) 5.24652 8.53061i 0.417391 0.678659i
\(159\) 8.34569 8.34569i 0.661857 0.661857i
\(160\) 11.9841 4.04746i 0.947424 0.319980i
\(161\) 21.1931i 1.67025i
\(162\) 8.79920 2.09749i 0.691331 0.164794i
\(163\) −8.64336 −0.677000 −0.338500 0.940966i \(-0.609920\pi\)
−0.338500 + 0.940966i \(0.609920\pi\)
\(164\) 1.77084 5.39081i 0.138279 0.420951i
\(165\) 0.366891 6.21954i 0.0285624 0.484191i
\(166\) 1.52805 2.48455i 0.118600 0.192838i
\(167\) 13.1486i 1.01747i −0.860924 0.508734i \(-0.830114\pi\)
0.860924 0.508734i \(-0.169886\pi\)
\(168\) −10.2893 12.1660i −0.793833 0.938623i
\(169\) 5.90384i 0.454142i
\(170\) 4.52370 + 12.2285i 0.346952 + 0.937883i
\(171\) −0.635125 −0.0485692
\(172\) −1.71454 + 5.21942i −0.130732 + 0.397977i
\(173\) −2.10963 −0.160392 −0.0801962 0.996779i \(-0.525555\pi\)
−0.0801962 + 0.996779i \(0.525555\pi\)
\(174\) −4.89112 + 7.95275i −0.370795 + 0.602896i
\(175\) 2.18508 18.4564i 0.165177 1.39517i
\(176\) 1.10349 + 7.27064i 0.0831788 + 0.548045i
\(177\) 19.5118i 1.46660i
\(178\) −5.63098 23.6226i −0.422059 1.77059i
\(179\) 7.91777 0.591802 0.295901 0.955219i \(-0.404380\pi\)
0.295901 + 0.955219i \(0.404380\pi\)
\(180\) −2.92438 1.15554i −0.217971 0.0861287i
\(181\) 6.21876 + 6.21876i 0.462237 + 0.462237i 0.899388 0.437151i \(-0.144013\pi\)
−0.437151 + 0.899388i \(0.644013\pi\)
\(182\) −11.9733 + 19.4681i −0.887523 + 1.44307i
\(183\) 0.995940 0.995940i 0.0736220 0.0736220i
\(184\) −10.4139 12.3133i −0.767720 0.907747i
\(185\) −16.3542 + 14.5322i −1.20238 + 1.06843i
\(186\) 13.5056 + 8.30626i 0.990280 + 0.609045i
\(187\) −7.45879 + 1.35138i −0.545441 + 0.0988226i
\(188\) 10.2772 + 3.37598i 0.749542 + 0.246219i
\(189\) 20.8610i 1.51741i
\(190\) −2.34082 1.63714i −0.169821 0.118770i
\(191\) 19.6175i 1.41948i −0.704466 0.709738i \(-0.748813\pi\)
0.704466 0.709738i \(-0.251187\pi\)
\(192\) −11.9562 2.01254i −0.862864 0.145243i
\(193\) 2.26114 0.162760 0.0813801 0.996683i \(-0.474067\pi\)
0.0813801 + 0.996683i \(0.474067\pi\)
\(194\) −7.85342 + 1.87204i −0.563843 + 0.134405i
\(195\) 0.867669 14.7088i 0.0621350 1.05332i
\(196\) 12.1669 6.14998i 0.869067 0.439284i
\(197\) 23.1161 1.64696 0.823479 0.567347i \(-0.192030\pi\)
0.823479 + 0.567347i \(0.192030\pi\)
\(198\) 0.957686 1.55715i 0.0680598 0.110662i
\(199\) 15.5461 + 15.5461i 1.10203 + 1.10203i 0.994165 + 0.107869i \(0.0344028\pi\)
0.107869 + 0.994165i \(0.465597\pi\)
\(200\) −7.79953 11.7969i −0.551510 0.834168i
\(201\) 4.72128 + 4.72128i 0.333013 + 0.333013i
\(202\) −5.72441 24.0146i −0.402768 1.68966i
\(203\) −11.4493 11.4493i −0.803585 0.803585i
\(204\) 1.72107 12.3785i 0.120499 0.866666i
\(205\) −6.33295 0.373581i −0.442313 0.0260920i
\(206\) −2.88742 + 4.69481i −0.201176 + 0.327103i
\(207\) 4.00885i 0.278634i
\(208\) 2.60967 + 17.1945i 0.180948 + 1.19222i
\(209\) 1.17430 1.17430i 0.0812279 0.0812279i
\(210\) −10.2098 + 14.5982i −0.704544 + 1.00737i
\(211\) −5.51839 + 5.51839i −0.379902 + 0.379902i −0.871067 0.491165i \(-0.836571\pi\)
0.491165 + 0.871067i \(0.336571\pi\)
\(212\) 14.7974 + 4.86083i 1.01629 + 0.333843i
\(213\) 16.6227 + 16.6227i 1.13897 + 1.13897i
\(214\) −0.126305 + 0.0301078i −0.00863406 + 0.00205812i
\(215\) 6.13162 + 0.361704i 0.418173 + 0.0246680i
\(216\) 10.2507 + 12.1203i 0.697469 + 0.824684i
\(217\) −19.4436 + 19.4436i −1.31992 + 1.31992i
\(218\) 4.49590 7.31014i 0.304501 0.495105i
\(219\) 12.3848 0.836890
\(220\) 7.54346 3.27046i 0.508580 0.220495i
\(221\) −17.6395 + 3.19591i −1.18656 + 0.214980i
\(222\) 20.3989 4.86253i 1.36908 0.326352i
\(223\) 6.23609 + 6.23609i 0.417600 + 0.417600i 0.884376 0.466776i \(-0.154585\pi\)
−0.466776 + 0.884376i \(0.654585\pi\)
\(224\) 8.20311 19.3607i 0.548093 1.29359i
\(225\) −0.413326 + 3.49117i −0.0275551 + 0.232745i
\(226\) 25.5208 6.08346i 1.69762 0.404666i
\(227\) 17.4600i 1.15886i 0.815022 + 0.579430i \(0.196725\pi\)
−0.815022 + 0.579430i \(0.803275\pi\)
\(228\) 1.23515 + 2.44359i 0.0817999 + 0.161831i
\(229\) 8.31383i 0.549394i −0.961531 0.274697i \(-0.911423\pi\)
0.961531 0.274697i \(-0.0885775\pi\)
\(230\) −10.3335 + 14.7750i −0.681368 + 0.974236i
\(231\) −7.32337 7.32337i −0.481843 0.481843i
\(232\) −12.2781 1.02614i −0.806095 0.0673695i
\(233\) 5.75838i 0.377244i 0.982050 + 0.188622i \(0.0604021\pi\)
−0.982050 + 0.188622i \(0.939598\pi\)
\(234\) 2.26486 3.68255i 0.148058 0.240736i
\(235\) 0.712206 12.0733i 0.0464592 0.787577i
\(236\) −22.9800 + 11.6156i −1.49587 + 0.756113i
\(237\) 7.58901 + 7.58901i 0.492959 + 0.492959i
\(238\) 20.1902 + 7.88121i 1.30874 + 0.510863i
\(239\) 1.80116 0.116507 0.0582537 0.998302i \(-0.481447\pi\)
0.0582537 + 0.998302i \(0.481447\pi\)
\(240\) 1.24133 + 13.4985i 0.0801275 + 0.871326i
\(241\) −8.07085 8.07085i −0.519889 0.519889i 0.397649 0.917538i \(-0.369826\pi\)
−0.917538 + 0.397649i \(0.869826\pi\)
\(242\) −2.49877 10.4826i −0.160627 0.673848i
\(243\) 7.14283i 0.458212i
\(244\) 1.76586 + 0.580071i 0.113048 + 0.0371352i
\(245\) −10.1244 11.3937i −0.646823 0.727920i
\(246\) 5.17960 + 3.18557i 0.330239 + 0.203105i
\(247\) 2.77713 2.77713i 0.176704 0.176704i
\(248\) −1.74263 + 20.8510i −0.110657 + 1.32404i
\(249\) 2.21030 + 2.21030i 0.140072 + 0.140072i
\(250\) −10.5224 + 11.8016i −0.665496 + 0.746402i
\(251\) −28.3150 −1.78723 −0.893613 0.448839i \(-0.851838\pi\)
−0.893613 + 0.448839i \(0.851838\pi\)
\(252\) −4.66492 + 2.35796i −0.293862 + 0.148538i
\(253\) −7.41206 7.41206i −0.465992 0.465992i
\(254\) 5.64703 9.18182i 0.354326 0.576119i
\(255\) −13.8717 + 1.67705i −0.868677 + 0.105021i
\(256\) −4.74740 15.2795i −0.296712 0.954967i
\(257\) 4.04023 + 4.04023i 0.252023 + 0.252023i 0.821800 0.569777i \(-0.192970\pi\)
−0.569777 + 0.821800i \(0.692970\pi\)
\(258\) −5.01493 3.08430i −0.312216 0.192020i
\(259\) 36.3681i 2.25980i
\(260\) 17.8397 7.73440i 1.10637 0.479667i
\(261\) 2.16573 + 2.16573i 0.134056 + 0.134056i
\(262\) −5.82151 3.58036i −0.359654 0.221196i
\(263\) −6.89242 6.89242i −0.425005 0.425005i 0.461918 0.886923i \(-0.347161\pi\)
−0.886923 + 0.461918i \(0.847161\pi\)
\(264\) −7.85346 0.656355i −0.483347 0.0403959i
\(265\) 1.02545 17.3835i 0.0629931 1.06786i
\(266\) −4.61900 + 1.10104i −0.283209 + 0.0675093i
\(267\) 26.0246 1.59268
\(268\) −2.74984 + 8.37111i −0.167973 + 0.511347i
\(269\) −1.79035 1.79035i −0.109160 0.109160i 0.650417 0.759577i \(-0.274594\pi\)
−0.759577 + 0.650417i \(0.774594\pi\)
\(270\) 10.1715 14.5435i 0.619019 0.885089i
\(271\) 15.2942i 0.929054i −0.885559 0.464527i \(-0.846224\pi\)
0.885559 0.464527i \(-0.153776\pi\)
\(272\) 15.6033 5.34206i 0.946088 0.323910i
\(273\) −17.3192 17.3192i −1.04821 1.04821i
\(274\) −5.27684 + 8.57991i −0.318786 + 0.518331i
\(275\) −5.69070 7.21912i −0.343162 0.435329i
\(276\) 15.4237 7.79616i 0.928398 0.469274i
\(277\) 8.71801i 0.523815i −0.965093 0.261907i \(-0.915649\pi\)
0.965093 0.261907i \(-0.0843515\pi\)
\(278\) −6.64076 + 10.7976i −0.398286 + 0.647596i
\(279\) 3.67792 3.67792i 0.220191 0.220191i
\(280\) −23.2711 3.33408i −1.39071 0.199249i
\(281\) 8.21781i 0.490233i 0.969494 + 0.245117i \(0.0788263\pi\)
−0.969494 + 0.245117i \(0.921174\pi\)
\(282\) −6.07307 + 9.87454i −0.361646 + 0.588021i
\(283\) −0.561393 −0.0333714 −0.0166857 0.999861i \(-0.505311\pi\)
−0.0166857 + 0.999861i \(0.505311\pi\)
\(284\) −9.68168 + 29.4731i −0.574502 + 1.74891i
\(285\) 2.28830 2.03337i 0.135547 0.120446i
\(286\) 2.62122 + 10.9963i 0.154996 + 0.650225i
\(287\) −7.45691 + 7.45691i −0.440168 + 0.440168i
\(288\) −1.55168 + 3.66223i −0.0914339 + 0.215799i
\(289\) 5.96431 + 15.9194i 0.350842 + 0.936435i
\(290\) 2.39950 + 13.5646i 0.140904 + 0.796538i
\(291\) 8.65196i 0.507187i
\(292\) 7.37285 + 14.5862i 0.431463 + 0.853594i
\(293\) 5.48283 5.48283i 0.320310 0.320310i −0.528576 0.848886i \(-0.677274\pi\)
0.848886 + 0.528576i \(0.177274\pi\)
\(294\) 3.38766 + 14.2116i 0.197572 + 0.828838i
\(295\) 19.1222 + 21.5197i 1.11334 + 1.25292i
\(296\) 17.8705 + 21.1300i 1.03870 + 1.22816i
\(297\) 7.29591 + 7.29591i 0.423352 + 0.423352i
\(298\) −11.2084 + 2.67177i −0.649285 + 0.154772i
\(299\) −17.5290 17.5290i −1.01373 1.01373i
\(300\) 14.2358 5.19917i 0.821903 0.300174i
\(301\) 7.21984 7.21984i 0.416145 0.416145i
\(302\) 22.2818 5.31137i 1.28217 0.305635i
\(303\) 26.4564 1.51988
\(304\) −2.14263 + 2.90939i −0.122888 + 0.166865i
\(305\) 0.122373 2.07448i 0.00700708 0.118784i
\(306\) −3.81915 1.49080i −0.218326 0.0852231i
\(307\) 0.746565 0.746565i 0.0426087 0.0426087i −0.685481 0.728090i \(-0.740408\pi\)
0.728090 + 0.685481i \(0.240408\pi\)
\(308\) 4.26539 12.9848i 0.243043 0.739876i
\(309\) −4.17660 4.17660i −0.237598 0.237598i
\(310\) 23.0358 4.07492i 1.30834 0.231440i
\(311\) −4.45125 + 4.45125i −0.252407 + 0.252407i −0.821957 0.569550i \(-0.807118\pi\)
0.569550 + 0.821957i \(0.307118\pi\)
\(312\) −18.5729 1.55223i −1.05148 0.0878777i
\(313\) −1.44042 −0.0814175 −0.0407087 0.999171i \(-0.512962\pi\)
−0.0407087 + 0.999171i \(0.512962\pi\)
\(314\) 28.4027 + 17.4683i 1.60286 + 0.985793i
\(315\) 3.88179 + 4.36847i 0.218714 + 0.246135i
\(316\) −4.42011 + 13.4558i −0.248651 + 0.756946i
\(317\) −15.2405 −0.855993 −0.427997 0.903780i \(-0.640781\pi\)
−0.427997 + 0.903780i \(0.640781\pi\)
\(318\) −8.74418 + 14.2177i −0.490349 + 0.797287i
\(319\) −8.00856 −0.448393
\(320\) −15.1589 + 9.49781i −0.847407 + 0.530944i
\(321\) 0.139148i 0.00776650i
\(322\) 6.94968 + 29.1547i 0.387291 + 1.62473i
\(323\) −3.06089 2.12188i −0.170312 0.118064i
\(324\) −11.4170 + 5.77090i −0.634277 + 0.320606i
\(325\) −13.4581 17.0727i −0.746520 0.947022i
\(326\) 11.8904 2.83435i 0.658549 0.156980i
\(327\) 6.50324 + 6.50324i 0.359630 + 0.359630i
\(328\) −0.668323 + 7.99667i −0.0369020 + 0.441542i
\(329\) −14.2161 14.2161i −0.783758 0.783758i
\(330\) 1.53480 + 8.67635i 0.0844882 + 0.477617i
\(331\) 10.9948i 0.604328i 0.953256 + 0.302164i \(0.0977091\pi\)
−0.953256 + 0.302164i \(0.902291\pi\)
\(332\) −1.28736 + 3.91900i −0.0706530 + 0.215083i
\(333\) 6.87932i 0.376984i
\(334\) 4.31171 + 18.0881i 0.235926 + 0.989737i
\(335\) 9.83412 + 0.580114i 0.537295 + 0.0316950i
\(336\) 18.1441 + 13.3623i 0.989841 + 0.728971i
\(337\) −9.83453 −0.535721 −0.267860 0.963458i \(-0.586317\pi\)
−0.267860 + 0.963458i \(0.586317\pi\)
\(338\) 1.93600 + 8.12174i 0.105304 + 0.441764i
\(339\) 28.1158i 1.52704i
\(340\) −10.2331 15.3390i −0.554968 0.831872i
\(341\) 13.6004i 0.736503i
\(342\) 0.873723 0.208271i 0.0472455 0.0112620i
\(343\) 0.682227 0.0368368
\(344\) 0.647076 7.74244i 0.0348880 0.417444i
\(345\) −12.8344 14.4435i −0.690982 0.777614i
\(346\) 2.90216 0.691795i 0.156021 0.0371911i
\(347\) 33.9561i 1.82286i −0.411456 0.911429i \(-0.634980\pi\)
0.411456 0.911429i \(-0.365020\pi\)
\(348\) 4.12069 12.5443i 0.220892 0.672443i
\(349\) 10.3032i 0.551519i 0.961227 + 0.275759i \(0.0889293\pi\)
−0.961227 + 0.275759i \(0.911071\pi\)
\(350\) 3.04629 + 26.1064i 0.162831 + 1.39544i
\(351\) 17.2543 + 17.2543i 0.920965 + 0.920965i
\(352\) −3.90224 9.64013i −0.207990 0.513821i
\(353\) 14.5146 + 14.5146i 0.772535 + 0.772535i 0.978549 0.206014i \(-0.0660493\pi\)
−0.206014 + 0.978549i \(0.566049\pi\)
\(354\) −6.39836 26.8419i −0.340069 1.42663i
\(355\) 34.6241 + 2.04247i 1.83766 + 0.108403i
\(356\) 15.4927 + 30.6504i 0.821113 + 1.62447i
\(357\) −13.2328 + 19.0889i −0.700356 + 1.01029i
\(358\) −10.8922 + 2.59641i −0.575672 + 0.137224i
\(359\) 20.5335i 1.08372i 0.840470 + 0.541858i \(0.182279\pi\)
−0.840470 + 0.541858i \(0.817721\pi\)
\(360\) 4.40191 + 0.630669i 0.232001 + 0.0332392i
\(361\) −18.1840 −0.957054
\(362\) −10.5942 6.51569i −0.556820 0.342457i
\(363\) 11.5485 0.606139
\(364\) 10.0873 30.7080i 0.528720 1.60954i
\(365\) 13.6593 12.1375i 0.714960 0.635308i
\(366\) −1.04349 + 1.69667i −0.0545443 + 0.0886866i
\(367\) −0.314519 −0.0164178 −0.00820889 0.999966i \(-0.502613\pi\)
−0.00820889 + 0.999966i \(0.502613\pi\)
\(368\) 18.3638 + 13.5241i 0.957280 + 0.704991i
\(369\) 1.41054 1.41054i 0.0734296 0.0734296i
\(370\) 17.7325 25.3544i 0.921871 1.31811i
\(371\) −20.4687 20.4687i −1.06268 1.06268i
\(372\) −21.3031 6.99789i −1.10451 0.362824i
\(373\) −14.2125 + 14.2125i −0.735895 + 0.735895i −0.971781 0.235886i \(-0.924201\pi\)
0.235886 + 0.971781i \(0.424201\pi\)
\(374\) 9.81769 4.30495i 0.507661 0.222604i
\(375\) −9.68788 13.9017i −0.500280 0.717879i
\(376\) −15.2451 1.27411i −0.786206 0.0657073i
\(377\) −18.9396 −0.975441
\(378\) −6.84078 28.6978i −0.351852 1.47606i
\(379\) −12.1204 + 12.1204i −0.622585 + 0.622585i −0.946192 0.323607i \(-0.895105\pi\)
0.323607 + 0.946192i \(0.395105\pi\)
\(380\) 3.75705 + 1.48455i 0.192732 + 0.0761561i
\(381\) 8.16833 + 8.16833i 0.418476 + 0.418476i
\(382\) 6.43302 + 26.9873i 0.329142 + 1.38079i
\(383\) 18.0098 + 18.0098i 0.920257 + 0.920257i 0.997047 0.0767901i \(-0.0244671\pi\)
−0.0767901 + 0.997047i \(0.524467\pi\)
\(384\) 17.1077 1.15211i 0.873025 0.0587932i
\(385\) −15.2541 0.899839i −0.777421 0.0458600i
\(386\) −3.11058 + 0.741476i −0.158324 + 0.0377401i
\(387\) −1.36569 + 1.36569i −0.0694220 + 0.0694220i
\(388\) 10.1898 5.15062i 0.517310 0.261483i
\(389\) 3.61983i 0.183533i 0.995781 + 0.0917663i \(0.0292513\pi\)
−0.995781 + 0.0917663i \(0.970749\pi\)
\(390\) 3.62970 + 20.5189i 0.183797 + 1.03902i
\(391\) −13.3931 + 19.3200i −0.677318 + 0.977056i
\(392\) −14.7210 + 12.4501i −0.743521 + 0.628827i
\(393\) 5.17894 5.17894i 0.261243 0.261243i
\(394\) −31.8002 + 7.58029i −1.60207 + 0.381889i
\(395\) 15.8074 + 0.932478i 0.795357 + 0.0469181i
\(396\) −0.806834 + 2.45618i −0.0405450 + 0.123428i
\(397\) −21.8199 −1.09511 −0.547555 0.836770i \(-0.684441\pi\)
−0.547555 + 0.836770i \(0.684441\pi\)
\(398\) −26.4842 16.2884i −1.32753 0.816464i
\(399\) 5.08867i 0.254752i
\(400\) 14.5980 + 13.6710i 0.729902 + 0.683552i
\(401\) 22.4858 22.4858i 1.12289 1.12289i 0.131585 0.991305i \(-0.457993\pi\)
0.991305 0.131585i \(-0.0420065\pi\)
\(402\) −8.04313 4.94671i −0.401155 0.246720i
\(403\) 32.1639i 1.60220i
\(404\) 15.7498 + 31.1589i 0.783582 + 1.55022i
\(405\) 9.50034 + 10.6915i 0.472076 + 0.531262i
\(406\) 19.5050 + 11.9960i 0.968016 + 0.595352i
\(407\) 12.7193 + 12.7193i 0.630474 + 0.630474i
\(408\) 1.69154 + 17.5931i 0.0837437 + 0.870986i
\(409\) 35.8757i 1.77394i −0.461827 0.886970i \(-0.652806\pi\)
0.461827 0.886970i \(-0.347194\pi\)
\(410\) 8.83456 1.56279i 0.436308 0.0771807i
\(411\) −7.63286 7.63286i −0.376501 0.376501i
\(412\) 2.43260 7.40536i 0.119846 0.364836i
\(413\) 47.8549 2.35479
\(414\) −1.31459 5.51485i −0.0646086 0.271040i
\(415\) 4.60392 + 0.271585i 0.225997 + 0.0133316i
\(416\) −9.22850 22.7982i −0.452465 1.11777i
\(417\) −9.60574 9.60574i −0.470395 0.470395i
\(418\) −1.23037 + 2.00052i −0.0601793 + 0.0978489i
\(419\) −21.6697 21.6697i −1.05864 1.05864i −0.998170 0.0604656i \(-0.980741\pi\)
−0.0604656 0.998170i \(-0.519259\pi\)
\(420\) 9.25825 23.4304i 0.451756 1.14329i
\(421\) 16.7158i 0.814680i −0.913277 0.407340i \(-0.866456\pi\)
0.913277 0.407340i \(-0.133544\pi\)
\(422\) 5.78188 9.40109i 0.281458 0.457638i
\(423\) 2.68909 + 2.68909i 0.130748 + 0.130748i
\(424\) −21.9503 1.83450i −1.06600 0.0890914i
\(425\) −13.6556 + 15.4443i −0.662392 + 0.749158i
\(426\) −28.3184 17.4164i −1.37203 0.843830i
\(427\) −2.44265 2.44265i −0.118208 0.118208i
\(428\) 0.163882 0.0828367i 0.00792152 0.00400406i
\(429\) −12.1144 −0.584890
\(430\) −8.55369 + 1.51311i −0.412495 + 0.0729684i
\(431\) 6.57830 + 6.57830i 0.316866 + 0.316866i 0.847562 0.530696i \(-0.178070\pi\)
−0.530696 + 0.847562i \(0.678070\pi\)
\(432\) −18.0761 13.3121i −0.869684 0.640481i
\(433\) 20.9132 20.9132i 1.00502 1.00502i 0.00503702 0.999987i \(-0.498397\pi\)
0.999987 0.00503702i \(-0.00160334\pi\)
\(434\) 20.3720 33.1240i 0.977888 1.59000i
\(435\) −14.7366 0.869311i −0.706566 0.0416803i
\(436\) −3.78772 + 11.5306i −0.181399 + 0.552217i
\(437\) 5.15029i 0.246372i
\(438\) −17.0375 + 4.06126i −0.814081 + 0.194055i
\(439\) −7.88355 7.88355i −0.376261 0.376261i 0.493490 0.869751i \(-0.335721\pi\)
−0.869751 + 0.493490i \(0.835721\pi\)
\(440\) −9.30486 + 6.97274i −0.443592 + 0.332412i
\(441\) 4.79272 0.228225
\(442\) 23.2181 10.1809i 1.10437 0.484256i
\(443\) 5.63993 + 5.63993i 0.267961 + 0.267961i 0.828278 0.560317i \(-0.189321\pi\)
−0.560317 + 0.828278i \(0.689321\pi\)
\(444\) −26.4676 + 13.3785i −1.25610 + 0.634914i
\(445\) 28.7026 25.5049i 1.36063 1.20905i
\(446\) −10.6238 6.53386i −0.503050 0.309387i
\(447\) 12.3481i 0.584044i
\(448\) −4.93598 + 29.3239i −0.233203 + 1.38542i
\(449\) −15.8239 15.8239i −0.746777 0.746777i 0.227095 0.973873i \(-0.427077\pi\)
−0.973873 + 0.227095i \(0.927077\pi\)
\(450\) −0.576231 4.93824i −0.0271638 0.232791i
\(451\) 5.21595i 0.245609i
\(452\) −33.1133 + 16.7377i −1.55752 + 0.787273i
\(453\) 24.5474i 1.15334i
\(454\) −5.72551 24.0192i −0.268712 1.12728i
\(455\) −36.0748 2.12805i −1.69121 0.0997646i
\(456\) −2.50047 2.95654i −0.117095 0.138453i
\(457\) 1.74011 + 1.74011i 0.0813989 + 0.0813989i 0.746634 0.665235i \(-0.231669\pi\)
−0.665235 + 0.746634i \(0.731669\pi\)
\(458\) 2.72629 + 11.4371i 0.127391 + 0.534420i
\(459\) 13.1832 19.0173i 0.615340 0.887651i
\(460\) 9.37037 23.7141i 0.436896 1.10568i
\(461\) −12.9627 −0.603733 −0.301867 0.953350i \(-0.597610\pi\)
−0.301867 + 0.953350i \(0.597610\pi\)
\(462\) 12.4760 + 7.67305i 0.580438 + 0.356982i
\(463\) 19.9650 19.9650i 0.927854 0.927854i −0.0697132 0.997567i \(-0.522208\pi\)
0.997567 + 0.0697132i \(0.0222084\pi\)
\(464\) 17.2271 2.61461i 0.799746 0.121380i
\(465\) −1.47629 + 25.0262i −0.0684615 + 1.16056i
\(466\) −1.88830 7.92163i −0.0874737 0.366962i
\(467\) 17.6270 + 17.6270i 0.815680 + 0.815680i 0.985479 0.169798i \(-0.0543116\pi\)
−0.169798 + 0.985479i \(0.554312\pi\)
\(468\) −1.90810 + 5.80867i −0.0882021 + 0.268506i
\(469\) 11.5795 11.5795i 0.534690 0.534690i
\(470\) 2.97935 + 16.8425i 0.137427 + 0.776885i
\(471\) −25.2676 + 25.2676i −1.16427 + 1.16427i
\(472\) 27.8039 23.5149i 1.27978 1.08236i
\(473\) 5.05012i 0.232205i
\(474\) −12.9286 7.95136i −0.593829 0.365218i
\(475\) 0.531013 4.48521i 0.0243646 0.205796i
\(476\) −30.3595 4.22112i −1.39153 0.193475i
\(477\) 3.87183 + 3.87183i 0.177279 + 0.177279i
\(478\) −2.47780 + 0.590640i −0.113332 + 0.0270153i
\(479\) −13.0574 13.0574i −0.596610 0.596610i 0.342799 0.939409i \(-0.388625\pi\)
−0.939409 + 0.342799i \(0.888625\pi\)
\(480\) −6.13412 18.1625i −0.279983 0.828999i
\(481\) 30.0803 + 30.0803i 1.37154 + 1.37154i
\(482\) 13.7494 + 8.45622i 0.626269 + 0.385170i
\(483\) −32.1192 −1.46147
\(484\) 6.87496 + 13.6012i 0.312498 + 0.618237i
\(485\) −8.47919 9.54228i −0.385020 0.433293i
\(486\) 2.34229 + 9.82617i 0.106248 + 0.445724i
\(487\) 24.8028 1.12392 0.561960 0.827164i \(-0.310047\pi\)
0.561960 + 0.827164i \(0.310047\pi\)
\(488\) −2.61946 0.218922i −0.118577 0.00991012i
\(489\) 13.0994i 0.592377i
\(490\) 17.6641 + 12.3540i 0.797981 + 0.558098i
\(491\) 40.9044i 1.84599i 0.384811 + 0.922996i \(0.374267\pi\)
−0.384811 + 0.922996i \(0.625733\pi\)
\(492\) −8.17004 2.68379i −0.368334 0.120995i
\(493\) 3.20196 + 17.6729i 0.144209 + 0.795947i
\(494\) −2.90973 + 4.73109i −0.130915 + 0.212862i
\(495\) 2.88544 + 0.170212i 0.129691 + 0.00765046i
\(496\) −4.44022 29.2556i −0.199372 1.31361i
\(497\) 40.7691 40.7691i 1.82874 1.82874i
\(498\) −3.76545 2.31584i −0.168734 0.103775i
\(499\) −0.108545 0.108545i −0.00485913 0.00485913i 0.704673 0.709532i \(-0.251094\pi\)
−0.709532 + 0.704673i \(0.751094\pi\)
\(500\) 10.6053 19.6857i 0.474285 0.880371i
\(501\) −19.9273 −0.890287
\(502\) 38.9521 9.28510i 1.73852 0.414414i
\(503\) 5.66034i 0.252382i −0.992006 0.126191i \(-0.959725\pi\)
0.992006 0.126191i \(-0.0402753\pi\)
\(504\) 5.64416 4.77350i 0.251411 0.212629i
\(505\) 29.1788 25.9281i 1.29844 1.15378i
\(506\) 12.6271 + 7.76597i 0.561344 + 0.345239i
\(507\) −8.94757 −0.397375
\(508\) −4.75753 + 14.4829i −0.211081 + 0.642576i
\(509\) −5.13864 −0.227766 −0.113883 0.993494i \(-0.536329\pi\)
−0.113883 + 0.993494i \(0.536329\pi\)
\(510\) 18.5329 6.85588i 0.820650 0.303584i
\(511\) 30.3752i 1.34372i
\(512\) 11.5413 + 19.4627i 0.510059 + 0.860139i
\(513\) 5.06959i 0.223828i
\(514\) −6.88291 4.23315i −0.303592 0.186716i
\(515\) −8.69958 0.513188i −0.383349 0.0226138i
\(516\) 7.91029 + 2.59847i 0.348231 + 0.114391i
\(517\) −9.94384 −0.437330
\(518\) −11.9259 50.0304i −0.523993 2.19821i
\(519\) 3.19725i 0.140344i
\(520\) −22.0053 + 16.4900i −0.964996 + 0.723135i
\(521\) 29.6119 29.6119i 1.29732 1.29732i 0.367168 0.930155i \(-0.380327\pi\)
0.930155 0.367168i \(-0.119673\pi\)
\(522\) −3.68953 2.26914i −0.161486 0.0993177i
\(523\) 18.7631 + 18.7631i 0.820451 + 0.820451i 0.986173 0.165722i \(-0.0529953\pi\)
−0.165722 + 0.986173i \(0.552995\pi\)
\(524\) 9.18256 + 3.01640i 0.401142 + 0.131772i
\(525\) −27.9715 3.31160i −1.22078 0.144530i
\(526\) 11.7419 + 7.22152i 0.511970 + 0.314873i
\(527\) 30.0127 5.43768i 1.30737 0.236869i
\(528\) 11.0190 1.67239i 0.479541 0.0727816i
\(529\) −9.50817 −0.413399
\(530\) 4.28976 + 24.2503i 0.186335 + 1.05336i
\(531\) −9.05215 −0.392830
\(532\) 5.99317 3.02934i 0.259837 0.131339i
\(533\) 12.3353i 0.534302i
\(534\) −35.8012 + 8.53402i −1.54927 + 0.369303i
\(535\) −0.136370 0.153467i −0.00589578 0.00663497i
\(536\) 1.03781 12.4176i 0.0448263 0.536359i
\(537\) 11.9998i 0.517828i
\(538\) 3.05003 + 1.87584i 0.131496 + 0.0808731i
\(539\) −8.86138 + 8.86138i −0.381687 + 0.381687i
\(540\) −9.22353 + 23.3425i −0.396918 + 1.00450i
\(541\) −23.9023 + 23.9023i −1.02764 + 1.02764i −0.0280350 + 0.999607i \(0.508925\pi\)
−0.999607 + 0.0280350i \(0.991075\pi\)
\(542\) 5.01529 + 21.0397i 0.215425 + 0.903733i
\(543\) 9.42484 9.42484i 0.404458 0.404458i
\(544\) −19.7132 + 12.4656i −0.845196 + 0.534457i
\(545\) 13.5458 + 0.799068i 0.580240 + 0.0342283i
\(546\) 29.5049 + 18.1462i 1.26269 + 0.776585i
\(547\) −6.46473 −0.276412 −0.138206 0.990404i \(-0.544134\pi\)
−0.138206 + 0.990404i \(0.544134\pi\)
\(548\) 4.44565 13.5335i 0.189909 0.578123i
\(549\) 0.462047 + 0.462047i 0.0197197 + 0.0197197i
\(550\) 10.1958 + 8.06502i 0.434752 + 0.343893i
\(551\) −2.78239 2.78239i −0.118534 0.118534i
\(552\) −18.6614 + 15.7827i −0.794281 + 0.671757i
\(553\) 18.6129 18.6129i 0.791500 0.791500i
\(554\) 2.85883 + 11.9931i 0.121460 + 0.509538i
\(555\) 22.0243 + 24.7856i 0.934879 + 1.05209i
\(556\) 5.59473 17.0316i 0.237269 0.722299i
\(557\) −25.3100 25.3100i −1.07242 1.07242i −0.997164 0.0752544i \(-0.976023\pi\)
−0.0752544 0.997164i \(-0.523977\pi\)
\(558\) −3.85353 + 6.26568i −0.163133 + 0.265247i
\(559\) 11.9432i 0.505142i
\(560\) 33.1066 3.04450i 1.39901 0.128653i
\(561\) 2.04808 + 11.3042i 0.0864701 + 0.477262i
\(562\) −2.69480 11.3050i −0.113673 0.476872i
\(563\) 24.4415 24.4415i 1.03009 1.03009i 0.0305539 0.999533i \(-0.490273\pi\)
0.999533 0.0305539i \(-0.00972711\pi\)
\(564\) 5.11646 15.5756i 0.215442 0.655851i
\(565\) 27.5543 + 31.0090i 1.15922 + 1.30456i
\(566\) 0.772292 0.184093i 0.0324618 0.00773801i
\(567\) 23.7754 0.998472
\(568\) 3.65392 43.7201i 0.153315 1.83445i
\(569\) 7.01994 0.294291 0.147146 0.989115i \(-0.452991\pi\)
0.147146 + 0.989115i \(0.452991\pi\)
\(570\) −2.48116 + 3.54763i −0.103924 + 0.148594i
\(571\) −5.66950 + 5.66950i −0.237261 + 0.237261i −0.815715 0.578454i \(-0.803656\pi\)
0.578454 + 0.815715i \(0.303656\pi\)
\(572\) −7.21186 14.2677i −0.301543 0.596564i
\(573\) −29.7314 −1.24205
\(574\) 7.81296 12.7035i 0.326107 0.530235i
\(575\) −28.3102 3.35170i −1.18062 0.139776i
\(576\) 0.933680 5.54685i 0.0389033 0.231119i
\(577\) −13.7607 + 13.7607i −0.572864 + 0.572864i −0.932928 0.360063i \(-0.882755\pi\)
0.360063 + 0.932928i \(0.382755\pi\)
\(578\) −13.4252 19.9440i −0.558416 0.829561i
\(579\) 3.42686i 0.142416i
\(580\) −7.74904 17.8735i −0.321761 0.742157i
\(581\) 5.42101 5.42101i 0.224901 0.224901i
\(582\) 2.83717 + 11.9022i 0.117604 + 0.493364i
\(583\) −14.3174 −0.592967
\(584\) −14.9257 17.6481i −0.617632 0.730284i
\(585\) 6.82385 + 0.402539i 0.282131 + 0.0166429i
\(586\) −5.74462 + 9.34050i −0.237308 + 0.385853i
\(587\) 22.0867 + 22.0867i 0.911614 + 0.911614i 0.996399 0.0847853i \(-0.0270205\pi\)
−0.0847853 + 0.996399i \(0.527020\pi\)
\(588\) −9.32059 18.4396i −0.384375 0.760436i
\(589\) −4.72514 + 4.72514i −0.194696 + 0.194696i
\(590\) −33.3626 23.3334i −1.37352 0.960620i
\(591\) 35.0337i 1.44109i
\(592\) −31.5129 23.2078i −1.29517 0.953833i
\(593\) −15.8013 + 15.8013i −0.648882 + 0.648882i −0.952723 0.303841i \(-0.901731\pi\)
0.303841 + 0.952723i \(0.401731\pi\)
\(594\) −12.4292 7.64427i −0.509978 0.313648i
\(595\) 4.11314 + 34.0218i 0.168622 + 1.39476i
\(596\) 14.5429 7.35096i 0.595701 0.301107i
\(597\) 23.5609 23.5609i 0.964283 0.964283i
\(598\) 29.8622 + 18.3659i 1.22116 + 0.751039i
\(599\) −0.415409 −0.0169732 −0.00848658 0.999964i \(-0.502701\pi\)
−0.00848658 + 0.999964i \(0.502701\pi\)
\(600\) −17.8788 + 11.8206i −0.729900 + 0.482573i
\(601\) 21.0815 21.0815i 0.859934 0.859934i −0.131396 0.991330i \(-0.541946\pi\)
0.991330 + 0.131396i \(0.0419459\pi\)
\(602\) −7.56457 + 12.2997i −0.308309 + 0.501297i
\(603\) −2.19035 + 2.19035i −0.0891979 + 0.0891979i
\(604\) −28.9107 + 14.6134i −1.17636 + 0.594610i
\(605\) 12.7369 11.3179i 0.517828 0.460138i
\(606\) −36.3953 + 8.67563i −1.47846 + 0.352423i
\(607\) 20.6894i 0.839756i 0.907581 + 0.419878i \(0.137927\pi\)
−0.907581 + 0.419878i \(0.862073\pi\)
\(608\) 1.99350 4.70498i 0.0808470 0.190812i
\(609\) −17.3520 + 17.3520i −0.703139 + 0.703139i
\(610\) 0.511921 + 2.89392i 0.0207271 + 0.117172i
\(611\) −23.5164 −0.951373
\(612\) 5.74276 + 0.798460i 0.232137 + 0.0322758i
\(613\) −19.5899 + 19.5899i −0.791228 + 0.791228i −0.981694 0.190466i \(-0.939000\pi\)
0.190466 + 0.981694i \(0.439000\pi\)
\(614\) −0.782212 + 1.27184i −0.0315675 + 0.0513274i
\(615\) −0.566180 + 9.59790i −0.0228306 + 0.387025i
\(616\) −1.60978 + 19.2615i −0.0648600 + 0.776067i
\(617\) −46.0849 −1.85531 −0.927655 0.373438i \(-0.878179\pi\)
−0.927655 + 0.373438i \(0.878179\pi\)
\(618\) 7.11522 + 4.37602i 0.286216 + 0.176029i
\(619\) 9.52714 + 9.52714i 0.382928 + 0.382928i 0.872156 0.489228i \(-0.162721\pi\)
−0.489228 + 0.872156i \(0.662721\pi\)
\(620\) −30.3534 + 13.1597i −1.21902 + 0.528505i
\(621\) 31.9987 1.28407
\(622\) 4.66379 7.58311i 0.187001 0.304055i
\(623\) 63.8281i 2.55722i
\(624\) 26.0591 3.95509i 1.04320 0.158330i
\(625\) −24.3089 5.83777i −0.972354 0.233511i
\(626\) 1.98154 0.472346i 0.0791985 0.0188787i
\(627\) −1.77971 1.77971i −0.0710746 0.0710746i
\(628\) −44.8009 14.7167i −1.78775 0.587262i
\(629\) 22.9830 33.1538i 0.916392 1.32193i
\(630\) −6.77258 4.73665i −0.269826 0.188713i
\(631\) −15.4948 −0.616837 −0.308419 0.951251i \(-0.599800\pi\)
−0.308419 + 0.951251i \(0.599800\pi\)
\(632\) 1.66817 19.9601i 0.0663563 0.793971i
\(633\) 8.36340 + 8.36340i 0.332415 + 0.332415i
\(634\) 20.9659 4.99770i 0.832664 0.198484i
\(635\) 17.0141 + 1.00366i 0.675184 + 0.0398291i
\(636\) 7.36683 22.4262i 0.292114 0.889257i
\(637\) −20.9565 + 20.9565i −0.830327 + 0.830327i
\(638\) 11.0171 2.62618i 0.436172 0.103971i
\(639\) −7.71181 + 7.71181i −0.305074 + 0.305074i
\(640\) 17.7391 18.0368i 0.701199 0.712966i
\(641\) −27.7337 27.7337i −1.09542 1.09542i −0.994939 0.100477i \(-0.967963\pi\)
−0.100477 0.994939i \(-0.532037\pi\)
\(642\) 0.0456298 + 0.191422i 0.00180086 + 0.00755483i
\(643\) 11.6274i 0.458541i 0.973363 + 0.229271i \(0.0736341\pi\)
−0.973363 + 0.229271i \(0.926366\pi\)
\(644\) −19.1209 37.8283i −0.753471 1.49064i
\(645\) 0.548180 9.29276i 0.0215846 0.365902i
\(646\) 4.90658 + 1.91527i 0.193047 + 0.0753553i
\(647\) 14.1827 + 14.1827i 0.557578 + 0.557578i 0.928617 0.371039i \(-0.120998\pi\)
−0.371039 + 0.928617i \(0.620998\pi\)
\(648\) 13.8136 11.6827i 0.542649 0.458941i
\(649\) 16.7367 16.7367i 0.656975 0.656975i
\(650\) 24.1124 + 19.0732i 0.945765 + 0.748111i
\(651\) 29.4678 + 29.4678i 1.15493 + 1.15493i
\(652\) −15.4278 + 7.79825i −0.604201 + 0.305403i
\(653\) 29.9896i 1.17358i −0.809738 0.586792i \(-0.800391\pi\)
0.809738 0.586792i \(-0.199609\pi\)
\(654\) −11.0789 6.81376i −0.433218 0.266439i
\(655\) 0.636347 10.7874i 0.0248642 0.421498i
\(656\) −1.70289 11.2199i −0.0664867 0.438065i
\(657\) 5.74572i 0.224162i
\(658\) 24.2184 + 14.8949i 0.944132 + 0.580663i
\(659\) 9.33759i 0.363741i −0.983323 0.181870i \(-0.941785\pi\)
0.983323 0.181870i \(-0.0582151\pi\)
\(660\) −4.95655 11.4325i −0.192933 0.445009i
\(661\) −26.0027 −1.01139 −0.505694 0.862713i \(-0.668763\pi\)
−0.505694 + 0.862713i \(0.668763\pi\)
\(662\) −3.60543 15.1252i −0.140129 0.587858i
\(663\) 4.84356 + 26.7335i 0.188108 + 1.03824i
\(664\) 0.485856 5.81340i 0.0188549 0.225604i
\(665\) −4.98705 5.61231i −0.193390 0.217636i
\(666\) 2.25588 + 9.46367i 0.0874135 + 0.366710i
\(667\) −17.5622 + 17.5622i −0.680009 + 0.680009i
\(668\) −11.8630 23.4694i −0.458992 0.908057i
\(669\) 9.45111 9.45111i 0.365401 0.365401i
\(670\) −13.7187 + 2.42678i −0.530001 + 0.0937546i
\(671\) −1.70858 −0.0659590
\(672\) −29.3421 12.4322i −1.13189 0.479583i
\(673\) 2.71734 0.104746 0.0523728 0.998628i \(-0.483322\pi\)
0.0523728 + 0.998628i \(0.483322\pi\)
\(674\) 13.5291 3.22496i 0.521120 0.124221i
\(675\) 27.8666 + 3.29918i 1.07259 + 0.126986i
\(676\) −5.32659 10.5380i −0.204869 0.405307i
\(677\) 17.1643i 0.659678i 0.944037 + 0.329839i \(0.106994\pi\)
−0.944037 + 0.329839i \(0.893006\pi\)
\(678\) −9.21978 38.6780i −0.354084 1.48542i
\(679\) −21.2199 −0.814344
\(680\) 19.1074 + 17.7457i 0.732733 + 0.680516i
\(681\) 26.4615 1.01401
\(682\) −4.45987 18.7096i −0.170777 0.716429i
\(683\) 30.3673i 1.16197i 0.813914 + 0.580985i \(0.197333\pi\)
−0.813914 + 0.580985i \(0.802667\pi\)
\(684\) −1.13366 + 0.573025i −0.0433465 + 0.0219102i
\(685\) −15.8988 0.937867i −0.607460 0.0358341i
\(686\) −0.938520 + 0.223717i −0.0358328 + 0.00854157i
\(687\) −12.6000 −0.480721
\(688\) 1.64875 + 10.8632i 0.0628581 + 0.414157i
\(689\) −33.8597 −1.28995
\(690\) 22.3923 + 15.6609i 0.852459 + 0.596199i
\(691\) −1.07060 + 1.07060i −0.0407275 + 0.0407275i −0.727177 0.686450i \(-0.759168\pi\)
0.686450 + 0.727177i \(0.259168\pi\)
\(692\) −3.76556 + 1.90336i −0.143145 + 0.0723550i
\(693\) 3.39754 3.39754i 0.129062 0.129062i
\(694\) 11.1349 + 46.7124i 0.422677 + 1.77318i
\(695\) −20.0081 1.18028i −0.758952 0.0447705i
\(696\) −1.55517 + 18.6080i −0.0589485 + 0.705335i
\(697\) 11.5103 2.08543i 0.435984 0.0789912i
\(698\) −3.37865 14.1738i −0.127884 0.536487i
\(699\) 8.72711 0.330090
\(700\) −12.7515 34.9148i −0.481963 1.31966i
\(701\) 20.9298i 0.790509i 0.918572 + 0.395254i \(0.129344\pi\)
−0.918572 + 0.395254i \(0.870656\pi\)
\(702\) −29.3942 18.0781i −1.10941 0.682315i
\(703\) 8.83807i 0.333334i
\(704\) 8.52940 + 11.9820i 0.321464 + 0.451589i
\(705\) −18.2977 1.07938i −0.689132 0.0406519i
\(706\) −24.7270 15.2077i −0.930612 0.572347i
\(707\) 64.8872i 2.44033i
\(708\) 17.6041 + 34.8274i 0.661601 + 1.30889i
\(709\) 24.3007 + 24.3007i 0.912634 + 0.912634i 0.996479 0.0838451i \(-0.0267201\pi\)
−0.0838451 + 0.996479i \(0.526720\pi\)
\(710\) −48.3011 + 8.54423i −1.81271 + 0.320659i
\(711\) −3.52078 + 3.52078i −0.132039 + 0.132039i
\(712\) −31.3638 37.0844i −1.17541 1.38980i
\(713\) 29.8246 + 29.8246i 1.11694 + 1.11694i
\(714\) 11.9444 30.5993i 0.447007 1.14515i
\(715\) −13.3610 + 11.8725i −0.499675 + 0.444007i
\(716\) 14.1327 7.14360i 0.528164 0.266969i
\(717\) 2.72975i 0.101944i
\(718\) −6.73337 28.2473i −0.251287 1.05418i
\(719\) 23.3854 + 23.3854i 0.872129 + 0.872129i 0.992704 0.120575i \(-0.0384738\pi\)
−0.120575 + 0.992704i \(0.538474\pi\)
\(720\) −6.26239 + 0.575891i −0.233385 + 0.0214622i
\(721\) −10.2436 + 10.2436i −0.381490 + 0.381490i
\(722\) 25.0152 5.96294i 0.930970 0.221918i
\(723\) −12.2318 + 12.2318i −0.454904 + 0.454904i
\(724\) 16.7108 + 5.48936i 0.621052 + 0.204011i
\(725\) −17.1050 + 13.4836i −0.635264 + 0.500767i
\(726\) −15.8869 + 3.78701i −0.589619 + 0.140549i
\(727\) 11.5450 + 11.5450i 0.428182 + 0.428182i 0.888009 0.459827i \(-0.152088\pi\)
−0.459827 + 0.888009i \(0.652088\pi\)
\(728\) −3.80701 + 45.5520i −0.141097 + 1.68827i
\(729\) −30.0142 −1.11164
\(730\) −14.8105 + 21.1764i −0.548162 + 0.783775i
\(731\) −11.1444 + 2.01913i −0.412189 + 0.0746801i
\(732\) 0.879126 2.67625i 0.0324934 0.0989170i
\(733\) −9.08578 9.08578i −0.335591 0.335591i 0.519114 0.854705i \(-0.326262\pi\)
−0.854705 + 0.519114i \(0.826262\pi\)
\(734\) 0.432675 0.103138i 0.0159703 0.00380688i
\(735\) −17.2678 + 15.3440i −0.636932 + 0.565972i
\(736\) −29.6974 12.5828i −1.09466 0.463807i
\(737\) 8.09958i 0.298352i
\(738\) −1.47789 + 2.40298i −0.0544017 + 0.0884548i
\(739\) 4.68350 0.172285 0.0861427 0.996283i \(-0.472546\pi\)
0.0861427 + 0.996283i \(0.472546\pi\)
\(740\) −16.0799 + 40.6942i −0.591107 + 1.49595i
\(741\) −4.20887 4.20887i −0.154617 0.154617i
\(742\) 34.8704 + 21.4461i 1.28013 + 0.787310i
\(743\) −37.5211 −1.37651 −0.688257 0.725467i \(-0.741624\pi\)
−0.688257 + 0.725467i \(0.741624\pi\)
\(744\) 31.6007 + 2.64104i 1.15854 + 0.0968252i
\(745\) −12.1015 13.6187i −0.443365 0.498952i
\(746\) 14.8911 24.2123i 0.545202 0.886475i
\(747\) −1.02543 + 1.02543i −0.0375185 + 0.0375185i
\(748\) −12.0942 + 9.14163i −0.442208 + 0.334251i
\(749\) −0.341277 −0.0124700
\(750\) 17.8860 + 15.9472i 0.653104 + 0.582310i
\(751\) 13.4655 13.4655i 0.491364 0.491364i −0.417372 0.908736i \(-0.637049\pi\)
0.908736 + 0.417372i \(0.137049\pi\)
\(752\) 21.3900 3.24644i 0.780014 0.118386i
\(753\) 42.9127i 1.56383i
\(754\) 26.0547 6.21072i 0.948856 0.226181i
\(755\) 24.0572 + 27.0734i 0.875533 + 0.985303i
\(756\) 18.8213 + 37.2355i 0.684524 + 1.35424i
\(757\) −17.5046 + 17.5046i −0.636215 + 0.636215i −0.949620 0.313405i \(-0.898530\pi\)
0.313405 + 0.949620i \(0.398530\pi\)
\(758\) 12.6992 20.6483i 0.461254 0.749979i
\(759\) −11.2333 + 11.2333i −0.407744 + 0.407744i
\(760\) −5.65527 0.810240i −0.205138 0.0293905i
\(761\) −27.5546 −0.998852 −0.499426 0.866356i \(-0.666456\pi\)
−0.499426 + 0.866356i \(0.666456\pi\)
\(762\) −13.9155 8.55835i −0.504105 0.310036i
\(763\) 15.9499 15.9499i 0.577426 0.577426i
\(764\) −17.6994 35.0160i −0.640343 1.26684i
\(765\) −0.778034 6.43550i −0.0281299 0.232676i
\(766\) −30.6813 18.8697i −1.10856 0.681791i
\(767\) 39.5811 39.5811i 1.42919 1.42919i
\(768\) −23.1568 + 7.19492i −0.835599 + 0.259624i
\(769\) 15.2916i 0.551429i −0.961240 0.275715i \(-0.911086\pi\)
0.961240 0.275715i \(-0.0889145\pi\)
\(770\) 21.2797 3.76427i 0.766867 0.135655i
\(771\) 6.12317 6.12317i 0.220521 0.220521i
\(772\) 4.03598 2.04005i 0.145258 0.0734231i
\(773\) −4.32599 4.32599i −0.155595 0.155595i 0.625016 0.780612i \(-0.285092\pi\)
−0.780612 + 0.625016i \(0.785092\pi\)
\(774\) 1.43090 2.32658i 0.0514327 0.0836273i
\(775\) 22.8982 + 29.0483i 0.822529 + 1.04344i
\(776\) −12.3288 + 10.4270i −0.442580 + 0.374308i
\(777\) 55.1176 1.97733
\(778\) −1.18702 4.97969i −0.0425568 0.178531i
\(779\) −1.81216 + 1.81216i −0.0649273 + 0.0649273i
\(780\) −11.7219 27.0370i −0.419710 0.968079i
\(781\) 28.5171i 1.02042i
\(782\) 12.0890 30.9699i 0.432302 1.10748i
\(783\) 17.2869 17.2869i 0.617785 0.617785i
\(784\) 16.1685 21.9546i 0.577447 0.784093i
\(785\) −3.10469 + 52.6307i −0.110811 + 1.87847i
\(786\) −5.42622 + 8.82279i −0.193547 + 0.314699i
\(787\) 36.5735 1.30371 0.651853 0.758346i \(-0.273992\pi\)
0.651853 + 0.758346i \(0.273992\pi\)
\(788\) 41.2608 20.8559i 1.46986 0.742962i
\(789\) −10.4458 + 10.4458i −0.371880 + 0.371880i
\(790\) −22.0515 + 3.90081i −0.784559 + 0.138785i
\(791\) 68.9570 2.45183
\(792\) 0.304504 3.64347i 0.0108201 0.129465i
\(793\) −4.04067 −0.143488
\(794\) 30.0170 7.15523i 1.06526 0.253930i
\(795\) −26.3456 1.55413i −0.934382 0.0551192i
\(796\) 41.7749 + 13.7227i 1.48067 + 0.486388i
\(797\) −26.7083 + 26.7083i −0.946058 + 0.946058i −0.998618 0.0525598i \(-0.983262\pi\)
0.0525598 + 0.998618i \(0.483262\pi\)
\(798\) 1.66869 + 7.00033i 0.0590708 + 0.247809i
\(799\) 3.97572 + 21.9436i 0.140651 + 0.776308i
\(800\) −24.5651 14.0198i −0.868508 0.495675i
\(801\) 12.0736i 0.426600i
\(802\) −23.5595 + 38.3067i −0.831915 + 1.35266i
\(803\) −10.6234 10.6234i −0.374891 0.374891i
\(804\) 12.6868 + 4.16752i 0.447430 + 0.146977i
\(805\) −35.4244 + 31.4778i −1.24855 + 1.10945i
\(806\) −10.5472 44.2469i −0.371511 1.55853i
\(807\) −2.71337 + 2.71337i −0.0955151 + 0.0955151i
\(808\) −31.8842 37.6997i −1.12168 1.32627i
\(809\) 12.0635 + 12.0635i 0.424130 + 0.424130i 0.886623 0.462493i \(-0.153045\pi\)
−0.462493 + 0.886623i \(0.653045\pi\)
\(810\) −16.5753 11.5925i −0.582396 0.407320i
\(811\) −19.3441 19.3441i −0.679263 0.679263i 0.280570 0.959833i \(-0.409476\pi\)
−0.959833 + 0.280570i \(0.909476\pi\)
\(812\) −30.7662 10.1064i −1.07968 0.354666i
\(813\) −23.1791 −0.812925
\(814\) −21.6686 13.3267i −0.759482 0.467099i
\(815\) 12.8379 + 14.4474i 0.449691 + 0.506071i
\(816\) −8.09615 23.6475i −0.283422 0.827830i
\(817\) 1.75455 1.75455i 0.0613838 0.0613838i
\(818\) 11.7644 + 49.3532i 0.411334 + 1.72559i
\(819\) 8.03493 8.03493i 0.280763 0.280763i
\(820\) −11.6410 + 5.04693i −0.406520 + 0.176246i
\(821\) 7.82008 7.82008i 0.272923 0.272923i −0.557353 0.830276i \(-0.688183\pi\)
0.830276 + 0.557353i \(0.188183\pi\)
\(822\) 13.0033 + 7.99732i 0.453541 + 0.278938i
\(823\) 16.6827i 0.581523i 0.956796 + 0.290761i \(0.0939086\pi\)
−0.956796 + 0.290761i \(0.906091\pi\)
\(824\) −0.918076 + 10.9850i −0.0319827 + 0.382682i
\(825\) −10.9409 + 8.62454i −0.380914 + 0.300268i
\(826\) −65.8326 + 15.6927i −2.29061 + 0.546018i
\(827\) 16.6333i 0.578398i 0.957269 + 0.289199i \(0.0933889\pi\)
−0.957269 + 0.289199i \(0.906611\pi\)
\(828\) 3.61688 + 7.15554i 0.125695 + 0.248672i
\(829\) 23.7611 0.825258 0.412629 0.910899i \(-0.364611\pi\)
0.412629 + 0.910899i \(0.364611\pi\)
\(830\) −6.42253 + 1.13611i −0.222929 + 0.0394351i
\(831\) −13.2126 −0.458339
\(832\) 20.1714 + 28.3366i 0.699317 + 0.982393i
\(833\) 23.0978 + 16.0119i 0.800291 + 0.554780i
\(834\) 16.3643 + 10.0644i 0.566648 + 0.348502i
\(835\) −21.9779 + 19.5294i −0.760577 + 0.675843i
\(836\) 1.03656 3.15553i 0.0358503 0.109136i
\(837\) −29.3573 29.3573i −1.01474 1.01474i
\(838\) 36.9164 + 22.7044i 1.27526 + 0.784311i
\(839\) 0.873046 0.873046i 0.0301409 0.0301409i −0.691876 0.722017i \(-0.743215\pi\)
0.722017 + 0.691876i \(0.243215\pi\)
\(840\) −5.05296 + 35.2684i −0.174344 + 1.21688i
\(841\) 10.0245i 0.345673i
\(842\) 5.48149 + 22.9955i 0.188905 + 0.792476i
\(843\) 12.4545 0.428955
\(844\) −4.87114 + 14.8288i −0.167672 + 0.510428i
\(845\) −9.86830 + 8.76889i −0.339480 + 0.301659i
\(846\) −4.58111 2.81749i −0.157502 0.0968672i
\(847\) 28.3240i 0.973223i
\(848\) 30.7980 4.67432i 1.05761 0.160517i
\(849\) 0.850819i 0.0292000i
\(850\) 13.7210 25.7242i 0.470627 0.882332i
\(851\) 55.7851 1.91229
\(852\) 44.6680 + 14.6731i 1.53030 + 0.502691i
\(853\) 30.3331 1.03858 0.519292 0.854597i \(-0.326196\pi\)
0.519292 + 0.854597i \(0.326196\pi\)
\(854\) 4.16128 + 2.55928i 0.142396 + 0.0875768i
\(855\) 0.943342 + 1.06161i 0.0322616 + 0.0363065i
\(856\) −0.198283 + 0.167696i −0.00677718 + 0.00573174i
\(857\) 48.9530i 1.67220i 0.548576 + 0.836101i \(0.315170\pi\)
−0.548576 + 0.836101i \(0.684830\pi\)
\(858\) 16.6654 3.97258i 0.568949 0.135622i
\(859\) 49.4797 1.68822 0.844112 0.536167i \(-0.180128\pi\)
0.844112 + 0.536167i \(0.180128\pi\)
\(860\) 11.2709 4.88648i 0.384333 0.166627i
\(861\) 11.3013 + 11.3013i 0.385148 + 0.385148i
\(862\) −11.2067 6.89241i −0.381703 0.234756i
\(863\) −1.26688 + 1.26688i −0.0431250 + 0.0431250i −0.728340 0.685215i \(-0.759708\pi\)
0.685215 + 0.728340i \(0.259708\pi\)
\(864\) 29.2320 + 12.3856i 0.994494 + 0.421366i
\(865\) 3.13341 + 3.52626i 0.106539 + 0.119896i
\(866\) −21.9118 + 35.6276i −0.744592 + 1.21067i
\(867\) 24.1266 9.03921i 0.819383 0.306988i
\(868\) −17.1631 + 52.2481i −0.582553 + 1.77342i
\(869\) 13.0193i 0.441649i
\(870\) 20.5578 3.63657i 0.696973 0.123291i
\(871\) 19.1549i 0.649039i
\(872\) 1.42951 17.1044i 0.0484092 0.579229i
\(873\) 4.01392 0.135850
\(874\) 1.68889 + 7.08510i 0.0571277 + 0.239657i
\(875\) −34.0953 + 23.7606i −1.15263 + 0.803254i
\(876\) 22.1061 11.1739i 0.746897 0.377532i
\(877\) −15.3169 −0.517216 −0.258608 0.965982i \(-0.583264\pi\)
−0.258608 + 0.965982i \(0.583264\pi\)
\(878\) 13.4303 + 8.25997i 0.453252 + 0.278761i
\(879\) −8.30950 8.30950i −0.280272 0.280272i
\(880\) 10.5139 12.6435i 0.354423 0.426211i
\(881\) −2.69015 2.69015i −0.0906336 0.0906336i 0.660336 0.750970i \(-0.270414\pi\)
−0.750970 + 0.660336i \(0.770414\pi\)
\(882\) −6.59321 + 1.57164i −0.222005 + 0.0529198i
\(883\) 19.1831 + 19.1831i 0.645562 + 0.645562i 0.951917 0.306355i \(-0.0991096\pi\)
−0.306355 + 0.951917i \(0.599110\pi\)
\(884\) −28.6019 + 21.6193i −0.961986 + 0.727135i
\(885\) 32.6141 28.9807i 1.09631 0.974174i
\(886\) −9.60813 5.90922i −0.322791 0.198524i
\(887\) 40.6132i 1.36366i 0.731512 + 0.681828i \(0.238815\pi\)
−0.731512 + 0.681828i \(0.761185\pi\)
\(888\) 32.0235 27.0836i 1.07464 0.908868i
\(889\) 20.0337 20.0337i 0.671909 0.671909i
\(890\) −31.1217 + 44.4985i −1.04320 + 1.49159i
\(891\) 8.31518 8.31518i 0.278569 0.278569i
\(892\) 16.7574 + 5.50466i 0.561079 + 0.184310i
\(893\) −3.45476 3.45476i −0.115609 0.115609i
\(894\) 4.04920 + 16.9869i 0.135426 + 0.568126i
\(895\) −11.7601 13.2346i −0.393098 0.442383i
\(896\) −2.82567 41.9586i −0.0943989 1.40174i
\(897\) −26.5660 + 26.5660i −0.887013 + 0.887013i
\(898\) 26.9575 + 16.5795i 0.899584 + 0.553265i
\(899\) 32.2248 1.07476
\(900\) 2.41206 + 6.60442i 0.0804020 + 0.220147i
\(901\) 5.72436 + 31.5950i 0.190706 + 1.05258i
\(902\) −1.71042 7.17542i −0.0569509 0.238915i
\(903\) −10.9420 10.9420i −0.364128 0.364128i
\(904\) 40.0643 33.8841i 1.33252 1.12697i
\(905\) 1.15805 19.6313i 0.0384949 0.652567i
\(906\) −8.04964 33.7692i −0.267431 1.12190i
\(907\) 42.0092i 1.39489i −0.716637 0.697446i \(-0.754320\pi\)
0.716637 0.697446i \(-0.245680\pi\)
\(908\) 15.7528 + 31.1649i 0.522776 + 1.03424i
\(909\) 12.2739i 0.407101i
\(910\) 50.3249 8.90222i 1.66825 0.295106i
\(911\) −9.54809 9.54809i −0.316342 0.316342i 0.531018 0.847361i \(-0.321810\pi\)
−0.847361 + 0.531018i \(0.821810\pi\)
\(912\) 4.40933 + 3.24726i 0.146008 + 0.107528i
\(913\) 3.79188i 0.125493i
\(914\) −2.96444 1.82320i −0.0980549 0.0603060i
\(915\) −3.14397 0.185463i −0.103937 0.00613121i
\(916\) −7.50094 14.8396i −0.247838 0.490316i
\(917\) −12.7019 12.7019i −0.419454 0.419454i
\(918\) −11.8996 + 30.4846i −0.392744 + 1.00614i
\(919\) 31.0155 1.02311 0.511553 0.859252i \(-0.329070\pi\)
0.511553 + 0.859252i \(0.329070\pi\)
\(920\) −5.11416 + 35.6955i −0.168609 + 1.17685i
\(921\) −1.13146 1.13146i −0.0372828 0.0372828i
\(922\) 17.8324 4.25075i 0.587279 0.139991i
\(923\) 67.4408i 2.21984i
\(924\) −19.6791 6.46441i −0.647394 0.212664i
\(925\) 48.5813 + 5.75163i 1.59734 + 0.189113i
\(926\) −20.9183 + 34.0123i −0.687419 + 1.11771i
\(927\) 1.93765 1.93765i 0.0636409 0.0636409i
\(928\) −22.8414 + 9.24598i −0.749804 + 0.303514i
\(929\) −20.9262 20.9262i −0.686568 0.686568i 0.274904 0.961472i \(-0.411354\pi\)
−0.961472 + 0.274904i \(0.911354\pi\)
\(930\) −6.17574 34.9119i −0.202510 1.14481i
\(931\) −6.15736 −0.201799
\(932\) 5.19535 + 10.2783i 0.170179 + 0.336678i
\(933\) 6.74609 + 6.74609i 0.220857 + 0.220857i
\(934\) −30.0292 18.4687i −0.982586 0.604313i
\(935\) 13.3373 + 10.4602i 0.436175 + 0.342086i
\(936\) 0.720128 8.61653i 0.0235381 0.281640i
\(937\) −37.2453 37.2453i −1.21675 1.21675i −0.968763 0.247988i \(-0.920231\pi\)
−0.247988 0.968763i \(-0.579769\pi\)
\(938\) −12.1323 + 19.7267i −0.396135 + 0.644098i
\(939\) 2.18303i 0.0712405i
\(940\) −9.62162 22.1927i −0.313823 0.723845i
\(941\) 18.6114 + 18.6114i 0.606715 + 0.606715i 0.942086 0.335371i \(-0.108862\pi\)
−0.335371 + 0.942086i \(0.608862\pi\)
\(942\) 26.4741 43.0457i 0.862572 1.40250i
\(943\) 11.4382 + 11.4382i 0.372478 + 0.372478i
\(944\) −30.5379 + 41.4663i −0.993925 + 1.34961i
\(945\) 34.8693 30.9845i 1.13430 1.00793i
\(946\) 1.65605 + 6.94730i 0.0538427 + 0.225876i
\(947\) 35.3439 1.14852 0.574261 0.818672i \(-0.305289\pi\)
0.574261 + 0.818672i \(0.305289\pi\)
\(948\) 20.3929 + 6.69889i 0.662329 + 0.217570i
\(949\) −25.1235 25.1235i −0.815544 0.815544i
\(950\) 0.740301 + 6.34430i 0.0240185 + 0.205836i
\(951\) 23.0978i 0.748997i
\(952\) 43.1489 4.14869i 1.39846 0.134460i
\(953\) −2.89722 2.89722i −0.0938502 0.0938502i 0.658623 0.752473i \(-0.271139\pi\)
−0.752473 + 0.658623i \(0.771139\pi\)
\(954\) −6.59601 4.05670i −0.213554 0.131341i
\(955\) −32.7908 + 29.1377i −1.06109 + 0.942872i
\(956\) 3.21495 1.62505i 0.103979 0.0525579i
\(957\) 12.1374i 0.392345i
\(958\) 22.2446 + 13.6809i 0.718689 + 0.442010i
\(959\) −18.7204 + 18.7204i −0.604514 + 0.604514i
\(960\) 14.3944 + 22.9740i 0.464577 + 0.741484i
\(961\) 23.7252i 0.765330i
\(962\) −51.2445 31.5165i −1.65219 1.01613i
\(963\) 0.0645553 0.00208026
\(964\) −21.6877 7.12422i −0.698512 0.229456i
\(965\) −3.35843 3.77950i −0.108112 0.121666i
\(966\) 44.1854 10.5326i 1.42164 0.338880i
\(967\) 24.8158 24.8158i 0.798023 0.798023i −0.184761 0.982784i \(-0.559151\pi\)
0.982784 + 0.184761i \(0.0591510\pi\)
\(968\) −13.9178 16.4563i −0.447335 0.528927i
\(969\) −3.21581 + 4.63893i −0.103307 + 0.149024i
\(970\) 14.7937 + 10.3465i 0.474997 + 0.332206i
\(971\) 17.4174i 0.558952i −0.960153 0.279476i \(-0.909839\pi\)
0.960153 0.279476i \(-0.0901607\pi\)
\(972\) −6.44443 12.7495i −0.206705 0.408940i
\(973\) −23.5591 + 23.5591i −0.755271 + 0.755271i
\(974\) −34.1204 + 8.13337i −1.09329 + 0.260610i
\(975\) −25.8745 + 20.3964i −0.828646 + 0.653207i
\(976\) 3.67530 0.557814i 0.117643 0.0178552i
\(977\) −18.2967 18.2967i −0.585364 0.585364i 0.351008 0.936372i \(-0.385839\pi\)
−0.936372 + 0.351008i \(0.885839\pi\)
\(978\) −4.29559 18.0205i −0.137358 0.576232i
\(979\) −22.3232 22.3232i −0.713452 0.713452i
\(980\) −28.3511 11.2026i −0.905642 0.357854i
\(981\) −3.01706 + 3.01706i −0.0963272 + 0.0963272i
\(982\) −13.4135 56.2710i −0.428041 1.79568i
\(983\) −55.1497 −1.75900 −0.879502 0.475896i \(-0.842124\pi\)
−0.879502 + 0.475896i \(0.842124\pi\)
\(984\) 12.1193 + 1.01288i 0.386351 + 0.0322893i
\(985\) −34.3341 38.6387i −1.09397 1.23113i
\(986\) −10.2002 23.2621i −0.324839 0.740815i
\(987\) −21.5452 + 21.5452i −0.685790 + 0.685790i
\(988\) 2.45140 7.46258i 0.0779894 0.237416i
\(989\) −11.0745 11.0745i −0.352150 0.352150i
\(990\) −4.02523 + 0.712043i −0.127930 + 0.0226302i
\(991\) 28.4525 28.4525i 0.903823 0.903823i −0.0919410 0.995764i \(-0.529307\pi\)
0.995764 + 0.0919410i \(0.0293071\pi\)
\(992\) 15.7018 + 38.7899i 0.498533 + 1.23158i
\(993\) 16.6631 0.528789
\(994\) −42.7157 + 69.4539i −1.35486 + 2.20294i
\(995\) 2.89498 49.0758i 0.0917770 1.55581i
\(996\) 5.93944 + 1.95106i 0.188198 + 0.0618216i
\(997\) 41.8164 1.32434 0.662170 0.749354i \(-0.269636\pi\)
0.662170 + 0.749354i \(0.269636\pi\)
\(998\) 0.184916 + 0.113727i 0.00585341 + 0.00359998i
\(999\) −54.9109 −1.73730
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.t.a.523.8 208
5.2 odd 4 680.2.bl.a.387.45 yes 208
8.3 odd 2 inner 680.2.t.a.523.60 yes 208
17.4 even 4 680.2.bl.a.123.97 yes 208
40.27 even 4 680.2.bl.a.387.97 yes 208
85.72 odd 4 inner 680.2.t.a.667.60 yes 208
136.123 odd 4 680.2.bl.a.123.45 yes 208
680.667 even 4 inner 680.2.t.a.667.8 yes 208
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.t.a.523.8 208 1.1 even 1 trivial
680.2.t.a.523.60 yes 208 8.3 odd 2 inner
680.2.t.a.667.8 yes 208 680.667 even 4 inner
680.2.t.a.667.60 yes 208 85.72 odd 4 inner
680.2.bl.a.123.45 yes 208 136.123 odd 4
680.2.bl.a.123.97 yes 208 17.4 even 4
680.2.bl.a.387.45 yes 208 5.2 odd 4
680.2.bl.a.387.97 yes 208 40.27 even 4