Properties

Label 680.2.t.a.523.5
Level $680$
Weight $2$
Character 680.523
Analytic conductor $5.430$
Analytic rank $0$
Dimension $208$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(523,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.523"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.t (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(208\)
Relative dimension: \(104\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 523.5
Character \(\chi\) \(=\) 680.523
Dual form 680.2.t.a.667.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40194 + 0.185930i) q^{2} -2.65957i q^{3} +(1.93086 - 0.521326i) q^{4} +(-0.163750 - 2.23006i) q^{5} +(0.494495 + 3.72855i) q^{6} +1.56006 q^{7} +(-2.61002 + 1.08987i) q^{8} -4.07332 q^{9} +(0.644204 + 3.09597i) q^{10} +(-0.688367 + 0.688367i) q^{11} +(-1.38650 - 5.13526i) q^{12} +(3.75034 - 3.75034i) q^{13} +(-2.18710 + 0.290062i) q^{14} +(-5.93101 + 0.435505i) q^{15} +(3.45644 - 2.01321i) q^{16} +(-3.32461 - 2.43864i) q^{17} +(5.71054 - 0.757354i) q^{18} +0.733580 q^{19} +(-1.47877 - 4.22057i) q^{20} -4.14908i q^{21} +(0.837059 - 1.09304i) q^{22} -6.29519i q^{23} +(2.89859 + 6.94152i) q^{24} +(-4.94637 + 0.730347i) q^{25} +(-4.56044 + 5.95505i) q^{26} +2.85457i q^{27} +(3.01225 - 0.813298i) q^{28} +(1.95429 + 1.95429i) q^{29} +(8.23394 - 1.71331i) q^{30} +(1.99098 - 1.99098i) q^{31} +(-4.47140 + 3.46506i) q^{32} +(1.83076 + 1.83076i) q^{33} +(5.11432 + 2.80067i) q^{34} +(-0.255460 - 3.47903i) q^{35} +(-7.86501 + 2.12353i) q^{36} +10.8829i q^{37} +(-1.02843 + 0.136395i) q^{38} +(-9.97430 - 9.97430i) q^{39} +(2.85787 + 5.64203i) q^{40} +(-6.99271 + 6.99271i) q^{41} +(0.771441 + 5.81676i) q^{42} +(4.24516 - 4.24516i) q^{43} +(-0.970276 + 1.68800i) q^{44} +(0.667007 + 9.08376i) q^{45} +(1.17047 + 8.82546i) q^{46} +(4.16348 + 4.16348i) q^{47} +(-5.35428 - 9.19265i) q^{48} -4.56622 q^{49} +(6.79871 - 1.94358i) q^{50} +(-6.48573 + 8.84204i) q^{51} +(5.28623 - 9.19653i) q^{52} +(2.59977 + 2.59977i) q^{53} +(-0.530751 - 4.00193i) q^{54} +(1.64782 + 1.42238i) q^{55} +(-4.07177 + 1.70026i) q^{56} -1.95101i q^{57} +(-3.10315 - 2.37643i) q^{58} +3.14644 q^{59} +(-11.2249 + 3.93289i) q^{60} +(-2.66983 - 2.66983i) q^{61} +(-2.42104 + 3.16141i) q^{62} -6.35461 q^{63} +(5.62436 - 5.68916i) q^{64} +(-8.97762 - 7.74938i) q^{65} +(-2.90701 - 2.22622i) q^{66} +(-1.58165 + 1.58165i) q^{67} +(-7.69068 - 2.97546i) q^{68} -16.7425 q^{69} +(1.00500 + 4.82988i) q^{70} +(-1.38270 + 1.38270i) q^{71} +(10.6314 - 4.43939i) q^{72} +0.0700142i q^{73} +(-2.02346 - 15.2571i) q^{74} +(1.94241 + 13.1552i) q^{75} +(1.41644 - 0.382434i) q^{76} +(-1.07389 + 1.07389i) q^{77} +(15.8379 + 12.1288i) q^{78} +(-5.15461 + 5.15461i) q^{79} +(-5.05559 - 7.37842i) q^{80} -4.62803 q^{81} +(8.50318 - 11.1035i) q^{82} +(12.0334 - 12.0334i) q^{83} +(-2.16302 - 8.01130i) q^{84} +(-4.89391 + 7.81343i) q^{85} +(-5.16215 + 6.74076i) q^{86} +(5.19756 - 5.19756i) q^{87} +(1.04642 - 2.54688i) q^{88} +12.5002i q^{89} +(-2.62405 - 12.6109i) q^{90} +(5.85075 - 5.85075i) q^{91} +(-3.28184 - 12.1551i) q^{92} +(-5.29515 - 5.29515i) q^{93} +(-6.61106 - 5.06282i) q^{94} +(-0.120124 - 1.63593i) q^{95} +(9.21557 + 11.8920i) q^{96} +0.402052 q^{97} +(6.40156 - 0.848999i) q^{98} +(2.80394 - 2.80394i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 208 q - 8 q^{6} - 192 q^{9} + 2 q^{10} - 8 q^{11} + 8 q^{12} - 16 q^{14} - 16 q^{16} - 12 q^{18} - 10 q^{20} + 4 q^{22} + 16 q^{24} + 12 q^{28} - 24 q^{30} + 20 q^{32} - 8 q^{33} - 4 q^{34} - 8 q^{35} - 12 q^{38}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40194 + 0.185930i −0.991320 + 0.131473i
\(3\) 2.65957i 1.53550i −0.640747 0.767752i \(-0.721375\pi\)
0.640747 0.767752i \(-0.278625\pi\)
\(4\) 1.93086 0.521326i 0.965430 0.260663i
\(5\) −0.163750 2.23006i −0.0732313 0.997315i
\(6\) 0.494495 + 3.72855i 0.201877 + 1.52218i
\(7\) 1.56006 0.589646 0.294823 0.955552i \(-0.404739\pi\)
0.294823 + 0.955552i \(0.404739\pi\)
\(8\) −2.61002 + 1.08987i −0.922780 + 0.385328i
\(9\) −4.07332 −1.35777
\(10\) 0.644204 + 3.09597i 0.203715 + 0.979030i
\(11\) −0.688367 + 0.688367i −0.207550 + 0.207550i −0.803225 0.595675i \(-0.796885\pi\)
0.595675 + 0.803225i \(0.296885\pi\)
\(12\) −1.38650 5.13526i −0.400249 1.48242i
\(13\) 3.75034 3.75034i 1.04016 1.04016i 0.0409983 0.999159i \(-0.486946\pi\)
0.999159 0.0409983i \(-0.0130538\pi\)
\(14\) −2.18710 + 0.290062i −0.584528 + 0.0775223i
\(15\) −5.93101 + 0.435505i −1.53138 + 0.112447i
\(16\) 3.45644 2.01321i 0.864110 0.503303i
\(17\) −3.32461 2.43864i −0.806337 0.591457i
\(18\) 5.71054 0.757354i 1.34599 0.178510i
\(19\) 0.733580 0.168295 0.0841474 0.996453i \(-0.473183\pi\)
0.0841474 + 0.996453i \(0.473183\pi\)
\(20\) −1.47877 4.22057i −0.330663 0.943749i
\(21\) 4.14908i 0.905404i
\(22\) 0.837059 1.09304i 0.178462 0.233036i
\(23\) 6.29519i 1.31264i −0.754484 0.656319i \(-0.772113\pi\)
0.754484 0.656319i \(-0.227887\pi\)
\(24\) 2.89859 + 6.94152i 0.591672 + 1.41693i
\(25\) −4.94637 + 0.730347i −0.989274 + 0.146069i
\(26\) −4.56044 + 5.95505i −0.894377 + 1.16788i
\(27\) 2.85457i 0.549362i
\(28\) 3.01225 0.813298i 0.569262 0.153699i
\(29\) 1.95429 + 1.95429i 0.362902 + 0.362902i 0.864880 0.501978i \(-0.167394\pi\)
−0.501978 + 0.864880i \(0.667394\pi\)
\(30\) 8.23394 1.71331i 1.50330 0.312806i
\(31\) 1.99098 1.99098i 0.357590 0.357590i −0.505334 0.862924i \(-0.668631\pi\)
0.862924 + 0.505334i \(0.168631\pi\)
\(32\) −4.47140 + 3.46506i −0.790439 + 0.612541i
\(33\) 1.83076 + 1.83076i 0.318694 + 0.318694i
\(34\) 5.11432 + 2.80067i 0.877098 + 0.480311i
\(35\) −0.255460 3.47903i −0.0431806 0.588063i
\(36\) −7.86501 + 2.12353i −1.31083 + 0.353921i
\(37\) 10.8829i 1.78913i 0.446935 + 0.894567i \(0.352516\pi\)
−0.446935 + 0.894567i \(0.647484\pi\)
\(38\) −1.02843 + 0.136395i −0.166834 + 0.0221262i
\(39\) −9.97430 9.97430i −1.59717 1.59717i
\(40\) 2.85787 + 5.64203i 0.451870 + 0.892084i
\(41\) −6.99271 + 6.99271i −1.09208 + 1.09208i −0.0967703 + 0.995307i \(0.530851\pi\)
−0.995307 + 0.0967703i \(0.969149\pi\)
\(42\) 0.771441 + 5.81676i 0.119036 + 0.897545i
\(43\) 4.24516 4.24516i 0.647381 0.647381i −0.304978 0.952359i \(-0.598649\pi\)
0.952359 + 0.304978i \(0.0986492\pi\)
\(44\) −0.970276 + 1.68800i −0.146275 + 0.254476i
\(45\) 0.667007 + 9.08376i 0.0994315 + 1.35413i
\(46\) 1.17047 + 8.82546i 0.172576 + 1.30124i
\(47\) 4.16348 + 4.16348i 0.607306 + 0.607306i 0.942241 0.334935i \(-0.108714\pi\)
−0.334935 + 0.942241i \(0.608714\pi\)
\(48\) −5.35428 9.19265i −0.772824 1.32684i
\(49\) −4.56622 −0.652317
\(50\) 6.79871 1.94358i 0.961483 0.274864i
\(51\) −6.48573 + 8.84204i −0.908184 + 1.23813i
\(52\) 5.28623 9.19653i 0.733069 1.27533i
\(53\) 2.59977 + 2.59977i 0.357107 + 0.357107i 0.862745 0.505639i \(-0.168743\pi\)
−0.505639 + 0.862745i \(0.668743\pi\)
\(54\) −0.530751 4.00193i −0.0722260 0.544593i
\(55\) 1.64782 + 1.42238i 0.222192 + 0.191794i
\(56\) −4.07177 + 1.70026i −0.544114 + 0.227207i
\(57\) 1.95101i 0.258417i
\(58\) −3.10315 2.37643i −0.407463 0.312040i
\(59\) 3.14644 0.409632 0.204816 0.978800i \(-0.434340\pi\)
0.204816 + 0.978800i \(0.434340\pi\)
\(60\) −11.2249 + 3.93289i −1.44913 + 0.507734i
\(61\) −2.66983 2.66983i −0.341837 0.341837i 0.515220 0.857058i \(-0.327710\pi\)
−0.857058 + 0.515220i \(0.827710\pi\)
\(62\) −2.42104 + 3.16141i −0.307473 + 0.401500i
\(63\) −6.35461 −0.800606
\(64\) 5.62436 5.68916i 0.703045 0.711145i
\(65\) −8.97762 7.74938i −1.11354 0.961193i
\(66\) −2.90701 2.22622i −0.357828 0.274029i
\(67\) −1.58165 + 1.58165i −0.193229 + 0.193229i −0.797090 0.603861i \(-0.793628\pi\)
0.603861 + 0.797090i \(0.293628\pi\)
\(68\) −7.69068 2.97546i −0.932632 0.360828i
\(69\) −16.7425 −2.01556
\(70\) 1.00500 + 4.82988i 0.120120 + 0.577281i
\(71\) −1.38270 + 1.38270i −0.164096 + 0.164096i −0.784378 0.620283i \(-0.787018\pi\)
0.620283 + 0.784378i \(0.287018\pi\)
\(72\) 10.6314 4.43939i 1.25293 0.523188i
\(73\) 0.0700142i 0.00819454i 0.999992 + 0.00409727i \(0.00130421\pi\)
−0.999992 + 0.00409727i \(0.998696\pi\)
\(74\) −2.02346 15.2571i −0.235222 1.77360i
\(75\) 1.94241 + 13.1552i 0.224290 + 1.51903i
\(76\) 1.41644 0.382434i 0.162477 0.0438682i
\(77\) −1.07389 + 1.07389i −0.122381 + 0.122381i
\(78\) 15.8379 + 12.1288i 1.79329 + 1.37332i
\(79\) −5.15461 + 5.15461i −0.579939 + 0.579939i −0.934886 0.354947i \(-0.884499\pi\)
0.354947 + 0.934886i \(0.384499\pi\)
\(80\) −5.05559 7.37842i −0.565232 0.824932i
\(81\) −4.62803 −0.514226
\(82\) 8.50318 11.1035i 0.939019 1.22618i
\(83\) 12.0334 12.0334i 1.32084 1.32084i 0.407740 0.913098i \(-0.366317\pi\)
0.913098 0.407740i \(-0.133683\pi\)
\(84\) −2.16302 8.01130i −0.236005 0.874104i
\(85\) −4.89391 + 7.81343i −0.530819 + 0.847485i
\(86\) −5.16215 + 6.74076i −0.556649 + 0.726875i
\(87\) 5.19756 5.19756i 0.557237 0.557237i
\(88\) 1.04642 2.54688i 0.111548 0.271498i
\(89\) 12.5002i 1.32502i 0.749052 + 0.662511i \(0.230509\pi\)
−0.749052 + 0.662511i \(0.769491\pi\)
\(90\) −2.62405 12.6109i −0.276599 1.32930i
\(91\) 5.85075 5.85075i 0.613325 0.613325i
\(92\) −3.28184 12.1551i −0.342156 1.26726i
\(93\) −5.29515 5.29515i −0.549081 0.549081i
\(94\) −6.61106 5.06282i −0.681879 0.522190i
\(95\) −0.120124 1.63593i −0.0123244 0.167843i
\(96\) 9.21557 + 11.8920i 0.940560 + 1.21372i
\(97\) 0.402052 0.0408222 0.0204111 0.999792i \(-0.493502\pi\)
0.0204111 + 0.999792i \(0.493502\pi\)
\(98\) 6.40156 0.848999i 0.646655 0.0857619i
\(99\) 2.80394 2.80394i 0.281806 0.281806i
\(100\) −9.17000 + 3.98887i −0.917000 + 0.398887i
\(101\) 8.00189i 0.796218i −0.917338 0.398109i \(-0.869667\pi\)
0.917338 0.398109i \(-0.130333\pi\)
\(102\) 7.44859 13.6019i 0.737520 1.34679i
\(103\) 9.61710 9.61710i 0.947601 0.947601i −0.0510929 0.998694i \(-0.516270\pi\)
0.998694 + 0.0510929i \(0.0162705\pi\)
\(104\) −5.70106 + 13.8758i −0.559035 + 1.36064i
\(105\) −9.25272 + 0.679413i −0.902973 + 0.0663039i
\(106\) −4.12810 3.16135i −0.400957 0.307057i
\(107\) −15.4263 −1.49131 −0.745656 0.666331i \(-0.767864\pi\)
−0.745656 + 0.666331i \(0.767864\pi\)
\(108\) 1.48816 + 5.51177i 0.143198 + 0.530370i
\(109\) 13.1411 13.1411i 1.25869 1.25869i 0.306970 0.951719i \(-0.400685\pi\)
0.951719 0.306970i \(-0.0993153\pi\)
\(110\) −2.57461 1.68771i −0.245479 0.160917i
\(111\) 28.9438 2.74722
\(112\) 5.39224 3.14073i 0.509519 0.296771i
\(113\) 0.0244697 0.00230192 0.00115096 0.999999i \(-0.499634\pi\)
0.00115096 + 0.999999i \(0.499634\pi\)
\(114\) 0.362752 + 2.73519i 0.0339748 + 0.256174i
\(115\) −14.0387 + 1.03084i −1.30911 + 0.0961262i
\(116\) 4.79227 + 2.75463i 0.444951 + 0.255761i
\(117\) −15.2763 + 15.2763i −1.41230 + 1.41230i
\(118\) −4.41112 + 0.585020i −0.406076 + 0.0538554i
\(119\) −5.18659 3.80441i −0.475453 0.348750i
\(120\) 15.0054 7.60072i 1.36980 0.693848i
\(121\) 10.0523i 0.913846i
\(122\) 4.23934 + 3.24654i 0.383812 + 0.293928i
\(123\) 18.5976 + 18.5976i 1.67689 + 1.67689i
\(124\) 2.80635 4.88225i 0.252018 0.438439i
\(125\) 2.43869 + 10.9111i 0.218123 + 0.975921i
\(126\) 8.90877 1.18152i 0.793656 0.105258i
\(127\) −1.24030 + 1.24030i −0.110058 + 0.110058i −0.759992 0.649933i \(-0.774797\pi\)
0.649933 + 0.759992i \(0.274797\pi\)
\(128\) −6.82722 + 9.02159i −0.603446 + 0.797404i
\(129\) −11.2903 11.2903i −0.994056 0.994056i
\(130\) 14.0269 + 9.19494i 1.23024 + 0.806450i
\(131\) 5.84673 + 5.84673i 0.510832 + 0.510832i 0.914781 0.403950i \(-0.132363\pi\)
−0.403950 + 0.914781i \(0.632363\pi\)
\(132\) 4.48936 + 2.58052i 0.390749 + 0.224605i
\(133\) 1.14443 0.0992344
\(134\) 1.92330 2.51145i 0.166148 0.216956i
\(135\) 6.36587 0.467436i 0.547887 0.0402305i
\(136\) 11.3351 + 2.74148i 0.971976 + 0.235080i
\(137\) 7.33896 7.33896i 0.627010 0.627010i −0.320305 0.947315i \(-0.603785\pi\)
0.947315 + 0.320305i \(0.103785\pi\)
\(138\) 23.4719 3.11294i 1.99806 0.264991i
\(139\) 1.32051 1.32051i 0.112004 0.112004i −0.648884 0.760888i \(-0.724764\pi\)
0.760888 + 0.648884i \(0.224764\pi\)
\(140\) −2.30696 6.58434i −0.194974 0.556478i
\(141\) 11.0731 11.0731i 0.932521 0.932521i
\(142\) 1.68137 2.19554i 0.141097 0.184246i
\(143\) 5.16322i 0.431770i
\(144\) −14.0792 + 8.20046i −1.17326 + 0.683372i
\(145\) 4.03817 4.67820i 0.335352 0.388503i
\(146\) −0.0130178 0.0981555i −0.00107736 0.00812341i
\(147\) 12.1442i 1.00164i
\(148\) 5.67352 + 21.0133i 0.466360 + 1.72728i
\(149\) −5.06444 −0.414895 −0.207448 0.978246i \(-0.566516\pi\)
−0.207448 + 0.978246i \(0.566516\pi\)
\(150\) −5.16909 18.0817i −0.422055 1.47636i
\(151\) 5.34921 0.435312 0.217656 0.976026i \(-0.430159\pi\)
0.217656 + 0.976026i \(0.430159\pi\)
\(152\) −1.91465 + 0.799508i −0.155299 + 0.0648487i
\(153\) 13.5422 + 9.93335i 1.09482 + 0.803064i
\(154\) 1.30586 1.70520i 0.105229 0.137409i
\(155\) −4.76603 4.11399i −0.382817 0.330443i
\(156\) −24.4588 14.0591i −1.95827 1.12563i
\(157\) 4.02349 + 4.02349i 0.321109 + 0.321109i 0.849193 0.528083i \(-0.177089\pi\)
−0.528083 + 0.849193i \(0.677089\pi\)
\(158\) 6.26805 8.18484i 0.498659 0.651151i
\(159\) 6.91429 6.91429i 0.548339 0.548339i
\(160\) 8.45949 + 9.40410i 0.668781 + 0.743459i
\(161\) 9.82085i 0.773992i
\(162\) 6.48821 0.860491i 0.509762 0.0676066i
\(163\) −25.1622 −1.97086 −0.985428 0.170095i \(-0.945593\pi\)
−0.985428 + 0.170095i \(0.945593\pi\)
\(164\) −9.85646 + 17.1474i −0.769660 + 1.33899i
\(165\) 3.78293 4.38250i 0.294500 0.341177i
\(166\) −14.6327 + 19.1075i −1.13572 + 1.48303i
\(167\) 12.8815i 0.996799i −0.866947 0.498399i \(-0.833921\pi\)
0.866947 0.498399i \(-0.166079\pi\)
\(168\) 4.52197 + 10.8292i 0.348877 + 0.835489i
\(169\) 15.1301i 1.16386i
\(170\) 5.40821 11.8639i 0.414791 0.909917i
\(171\) −2.98811 −0.228506
\(172\) 5.98370 10.4099i 0.456253 0.793749i
\(173\) −3.56937 −0.271374 −0.135687 0.990752i \(-0.543324\pi\)
−0.135687 + 0.990752i \(0.543324\pi\)
\(174\) −6.32028 + 8.25305i −0.479139 + 0.625662i
\(175\) −7.71662 + 1.13938i −0.583322 + 0.0861292i
\(176\) −0.993469 + 3.76513i −0.0748855 + 0.283807i
\(177\) 8.36819i 0.628992i
\(178\) −2.32417 17.5246i −0.174204 1.31352i
\(179\) 22.2424 1.66247 0.831236 0.555919i \(-0.187634\pi\)
0.831236 + 0.555919i \(0.187634\pi\)
\(180\) 6.02349 + 17.1917i 0.448965 + 1.28140i
\(181\) 6.72654 + 6.72654i 0.499979 + 0.499979i 0.911431 0.411452i \(-0.134978\pi\)
−0.411452 + 0.911431i \(0.634978\pi\)
\(182\) −7.11455 + 9.29022i −0.527366 + 0.688637i
\(183\) −7.10061 + 7.10061i −0.524892 + 0.524892i
\(184\) 6.86095 + 16.4305i 0.505796 + 1.21128i
\(185\) 24.2695 1.78207i 1.78433 0.131021i
\(186\) 8.40800 + 6.43894i 0.616504 + 0.472126i
\(187\) 3.96723 0.609875i 0.290113 0.0445985i
\(188\) 10.2096 + 5.86857i 0.744613 + 0.428009i
\(189\) 4.45329i 0.323929i
\(190\) 0.472575 + 2.27114i 0.0342842 + 0.164766i
\(191\) 17.9549i 1.29917i −0.760289 0.649585i \(-0.774943\pi\)
0.760289 0.649585i \(-0.225057\pi\)
\(192\) −15.1307 14.9584i −1.09197 1.07953i
\(193\) 1.98214 0.142677 0.0713387 0.997452i \(-0.477273\pi\)
0.0713387 + 0.997452i \(0.477273\pi\)
\(194\) −0.563653 + 0.0747537i −0.0404679 + 0.00536701i
\(195\) −20.6100 + 23.8766i −1.47592 + 1.70984i
\(196\) −8.81673 + 2.38049i −0.629767 + 0.170035i
\(197\) −9.47788 −0.675271 −0.337636 0.941277i \(-0.609627\pi\)
−0.337636 + 0.941277i \(0.609627\pi\)
\(198\) −3.40961 + 4.45228i −0.242310 + 0.316410i
\(199\) 16.2177 + 16.2177i 1.14964 + 1.14964i 0.986623 + 0.163016i \(0.0521222\pi\)
0.163016 + 0.986623i \(0.447878\pi\)
\(200\) 12.1141 7.29713i 0.856598 0.515985i
\(201\) 4.20651 + 4.20651i 0.296704 + 0.296704i
\(202\) 1.48779 + 11.2182i 0.104681 + 0.789306i
\(203\) 3.04880 + 3.04880i 0.213984 + 0.213984i
\(204\) −7.91345 + 20.4539i −0.554053 + 1.43206i
\(205\) 16.7392 + 14.4491i 1.16912 + 1.00917i
\(206\) −11.6945 + 15.2707i −0.814792 + 1.06396i
\(207\) 25.6423i 1.78226i
\(208\) 5.41259 20.5131i 0.375296 1.42233i
\(209\) −0.504972 + 0.504972i −0.0349296 + 0.0349296i
\(210\) 12.8454 2.67286i 0.886418 0.184445i
\(211\) 18.5867 18.5867i 1.27956 1.27956i 0.338648 0.940913i \(-0.390030\pi\)
0.940913 0.338648i \(-0.109970\pi\)
\(212\) 6.37513 + 3.66447i 0.437846 + 0.251677i
\(213\) 3.67738 + 3.67738i 0.251970 + 0.251970i
\(214\) 21.6267 2.86821i 1.47837 0.196067i
\(215\) −10.1621 8.77184i −0.693052 0.598234i
\(216\) −3.11111 7.45047i −0.211684 0.506940i
\(217\) 3.10604 3.10604i 0.210852 0.210852i
\(218\) −15.9797 + 20.8663i −1.08228 + 1.41325i
\(219\) 0.186208 0.0125828
\(220\) 3.92324 + 1.88737i 0.264505 + 0.127246i
\(221\) −21.6142 + 3.32271i −1.45393 + 0.223509i
\(222\) −40.5774 + 5.38153i −2.72337 + 0.361184i
\(223\) 6.11183 + 6.11183i 0.409279 + 0.409279i 0.881487 0.472208i \(-0.156543\pi\)
−0.472208 + 0.881487i \(0.656543\pi\)
\(224\) −6.97563 + 5.40569i −0.466079 + 0.361183i
\(225\) 20.1481 2.97494i 1.34321 0.198329i
\(226\) −0.0343050 + 0.00454966i −0.00228194 + 0.000302639i
\(227\) 22.9409i 1.52264i −0.648376 0.761321i \(-0.724551\pi\)
0.648376 0.761321i \(-0.275449\pi\)
\(228\) −1.01711 3.76712i −0.0673598 0.249484i
\(229\) 11.5448i 0.762902i −0.924389 0.381451i \(-0.875425\pi\)
0.924389 0.381451i \(-0.124575\pi\)
\(230\) 19.4897 4.05539i 1.28511 0.267404i
\(231\) 2.85609 + 2.85609i 0.187917 + 0.187917i
\(232\) −7.23064 2.97080i −0.474715 0.195042i
\(233\) 17.9481i 1.17582i −0.808927 0.587909i \(-0.799951\pi\)
0.808927 0.587909i \(-0.200049\pi\)
\(234\) 18.5761 24.2568i 1.21436 1.58572i
\(235\) 8.60306 9.96660i 0.561202 0.650149i
\(236\) 6.07534 1.64032i 0.395471 0.106776i
\(237\) 13.7091 + 13.7091i 0.890499 + 0.890499i
\(238\) 7.97863 + 4.36921i 0.517178 + 0.283214i
\(239\) 7.76907 0.502539 0.251270 0.967917i \(-0.419152\pi\)
0.251270 + 0.967917i \(0.419152\pi\)
\(240\) −19.6234 + 13.4457i −1.26669 + 0.867916i
\(241\) 0.186182 + 0.186182i 0.0119931 + 0.0119931i 0.713078 0.701085i \(-0.247301\pi\)
−0.701085 + 0.713078i \(0.747301\pi\)
\(242\) −1.86903 14.0927i −0.120146 0.905913i
\(243\) 20.8723i 1.33896i
\(244\) −6.54693 3.76322i −0.419124 0.240916i
\(245\) 0.747719 + 10.1830i 0.0477700 + 0.650566i
\(246\) −29.5305 22.6148i −1.88280 1.44187i
\(247\) 2.75118 2.75118i 0.175053 0.175053i
\(248\) −3.02657 + 7.36639i −0.192188 + 0.467766i
\(249\) −32.0037 32.0037i −2.02815 2.02815i
\(250\) −5.44760 14.8433i −0.344537 0.938773i
\(251\) 13.1663 0.831051 0.415525 0.909582i \(-0.363598\pi\)
0.415525 + 0.909582i \(0.363598\pi\)
\(252\) −12.2699 + 3.31282i −0.772929 + 0.208688i
\(253\) 4.33340 + 4.33340i 0.272438 + 0.272438i
\(254\) 1.50821 1.96943i 0.0946335 0.123573i
\(255\) 20.7804 + 13.0157i 1.30132 + 0.815075i
\(256\) 7.89394 13.9171i 0.493372 0.869819i
\(257\) 7.70026 + 7.70026i 0.480329 + 0.480329i 0.905237 0.424908i \(-0.139693\pi\)
−0.424908 + 0.905237i \(0.639693\pi\)
\(258\) 17.9275 + 13.7291i 1.11612 + 0.854737i
\(259\) 16.9779i 1.05496i
\(260\) −21.3745 10.2827i −1.32559 0.637706i
\(261\) −7.96043 7.96043i −0.492738 0.492738i
\(262\) −9.28384 7.10967i −0.573558 0.439237i
\(263\) −7.89126 7.89126i −0.486596 0.486596i 0.420634 0.907230i \(-0.361807\pi\)
−0.907230 + 0.420634i \(0.861807\pi\)
\(264\) −6.77361 2.78302i −0.416887 0.171283i
\(265\) 5.37195 6.22338i 0.329996 0.382299i
\(266\) −1.60442 + 0.212784i −0.0983730 + 0.0130466i
\(267\) 33.2453 2.03458
\(268\) −2.22939 + 3.87850i −0.136182 + 0.236917i
\(269\) −9.50734 9.50734i −0.579673 0.579673i 0.355140 0.934813i \(-0.384433\pi\)
−0.934813 + 0.355140i \(0.884433\pi\)
\(270\) −8.83764 + 1.83892i −0.537842 + 0.111913i
\(271\) 26.3491i 1.60059i 0.599604 + 0.800297i \(0.295325\pi\)
−0.599604 + 0.800297i \(0.704675\pi\)
\(272\) −16.4008 1.73585i −0.994446 0.105251i
\(273\) −15.5605 15.5605i −0.941763 0.941763i
\(274\) −8.92423 + 11.6533i −0.539133 + 0.704002i
\(275\) 2.90217 3.90766i 0.175008 0.235641i
\(276\) −32.3274 + 8.72830i −1.94588 + 0.525382i
\(277\) 27.3216i 1.64160i −0.571219 0.820798i \(-0.693529\pi\)
0.571219 0.820798i \(-0.306471\pi\)
\(278\) −1.60575 + 2.09679i −0.0963063 + 0.125757i
\(279\) −8.10989 + 8.10989i −0.485526 + 0.485526i
\(280\) 4.45845 + 8.80190i 0.266443 + 0.526014i
\(281\) 30.9007i 1.84338i −0.387925 0.921691i \(-0.626808\pi\)
0.387925 0.921691i \(-0.373192\pi\)
\(282\) −13.4649 + 17.5826i −0.801825 + 1.04703i
\(283\) −16.5664 −0.984771 −0.492386 0.870377i \(-0.663875\pi\)
−0.492386 + 0.870377i \(0.663875\pi\)
\(284\) −1.94896 + 3.39063i −0.115649 + 0.201197i
\(285\) −4.35087 + 0.319478i −0.257723 + 0.0189242i
\(286\) −0.959999 7.23851i −0.0567660 0.428022i
\(287\) −10.9090 + 10.9090i −0.643939 + 0.643939i
\(288\) 18.2134 14.1143i 1.07324 0.831692i
\(289\) 5.10609 + 16.2150i 0.300358 + 0.953826i
\(290\) −4.79144 + 7.30936i −0.281363 + 0.429221i
\(291\) 1.06929i 0.0626827i
\(292\) 0.0365002 + 0.135188i 0.00213601 + 0.00791125i
\(293\) −15.6912 + 15.6912i −0.916687 + 0.916687i −0.996787 0.0800995i \(-0.974476\pi\)
0.0800995 + 0.996787i \(0.474476\pi\)
\(294\) −2.25797 17.0254i −0.131688 0.992942i
\(295\) −0.515231 7.01677i −0.0299979 0.408532i
\(296\) −11.8609 28.4045i −0.689403 1.65098i
\(297\) −1.96499 1.96499i −0.114020 0.114020i
\(298\) 7.10004 0.941634i 0.411294 0.0545474i
\(299\) −23.6091 23.6091i −1.36535 1.36535i
\(300\) 10.6087 + 24.3883i 0.612492 + 1.40806i
\(301\) 6.62270 6.62270i 0.381726 0.381726i
\(302\) −7.49925 + 0.994580i −0.431534 + 0.0572316i
\(303\) −21.2816 −1.22260
\(304\) 2.53557 1.47685i 0.145425 0.0847033i
\(305\) −5.51671 + 6.39109i −0.315886 + 0.365953i
\(306\) −20.8322 11.4080i −1.19090 0.652154i
\(307\) 4.71420 4.71420i 0.269053 0.269053i −0.559665 0.828719i \(-0.689070\pi\)
0.828719 + 0.559665i \(0.189070\pi\)
\(308\) −1.51369 + 2.63338i −0.0862503 + 0.150051i
\(309\) −25.5774 25.5774i −1.45505 1.45505i
\(310\) 7.44659 + 4.88140i 0.422938 + 0.277245i
\(311\) 18.2827 18.2827i 1.03672 1.03672i 0.0374182 0.999300i \(-0.488087\pi\)
0.999300 0.0374182i \(-0.0119134\pi\)
\(312\) 36.9038 + 15.1624i 2.08927 + 0.858400i
\(313\) −27.1445 −1.53430 −0.767148 0.641471i \(-0.778325\pi\)
−0.767148 + 0.641471i \(0.778325\pi\)
\(314\) −6.38877 4.89259i −0.360539 0.276105i
\(315\) 1.04057 + 14.1712i 0.0586294 + 0.798456i
\(316\) −7.26560 + 12.6401i −0.408722 + 0.711059i
\(317\) 18.8982 1.06143 0.530714 0.847551i \(-0.321924\pi\)
0.530714 + 0.847551i \(0.321924\pi\)
\(318\) −8.40782 + 10.9790i −0.471487 + 0.615670i
\(319\) −2.69053 −0.150641
\(320\) −13.6082 11.6111i −0.760721 0.649079i
\(321\) 41.0272i 2.28992i
\(322\) 1.82599 + 13.7682i 0.101759 + 0.767273i
\(323\) −2.43887 1.78894i −0.135702 0.0995391i
\(324\) −8.93608 + 2.41271i −0.496449 + 0.134039i
\(325\) −15.8115 + 21.2896i −0.877066 + 1.18094i
\(326\) 35.2758 4.67842i 1.95375 0.259114i
\(327\) −34.9497 34.9497i −1.93272 1.93272i
\(328\) 10.6299 25.8722i 0.586939 1.42855i
\(329\) 6.49527 + 6.49527i 0.358096 + 0.358096i
\(330\) −4.48859 + 6.84735i −0.247089 + 0.376934i
\(331\) 7.46399i 0.410258i −0.978735 0.205129i \(-0.934239\pi\)
0.978735 0.205129i \(-0.0657614\pi\)
\(332\) 16.9615 29.5081i 0.930883 1.61947i
\(333\) 44.3294i 2.42924i
\(334\) 2.39506 + 18.0590i 0.131052 + 0.988147i
\(335\) 3.78618 + 3.26818i 0.206861 + 0.178560i
\(336\) −8.35299 14.3411i −0.455693 0.782369i
\(337\) −19.4043 −1.05702 −0.528510 0.848927i \(-0.677249\pi\)
−0.528510 + 0.848927i \(0.677249\pi\)
\(338\) 2.81315 + 21.2115i 0.153015 + 1.15375i
\(339\) 0.0650790i 0.00353461i
\(340\) −5.37612 + 17.6380i −0.291561 + 0.956552i
\(341\) 2.74105i 0.148436i
\(342\) 4.18914 0.555579i 0.226523 0.0300423i
\(343\) −18.0440 −0.974283
\(344\) −6.45326 + 15.7066i −0.347936 + 0.846844i
\(345\) 2.74159 + 37.3369i 0.147602 + 2.01015i
\(346\) 5.00403 0.663654i 0.269018 0.0356782i
\(347\) 3.20787i 0.172207i 0.996286 + 0.0861036i \(0.0274416\pi\)
−0.996286 + 0.0861036i \(0.972558\pi\)
\(348\) 7.32614 12.7454i 0.392723 0.683225i
\(349\) 0.963390i 0.0515691i −0.999668 0.0257845i \(-0.991792\pi\)
0.999668 0.0257845i \(-0.00820839\pi\)
\(350\) 10.6064 3.03210i 0.566935 0.162072i
\(351\) 10.7056 + 10.7056i 0.571423 + 0.571423i
\(352\) 0.692730 5.46319i 0.0369226 0.291189i
\(353\) 21.0087 + 21.0087i 1.11818 + 1.11818i 0.992008 + 0.126174i \(0.0402698\pi\)
0.126174 + 0.992008i \(0.459730\pi\)
\(354\) 1.55590 + 11.7317i 0.0826952 + 0.623532i
\(355\) 3.30992 + 2.85709i 0.175672 + 0.151638i
\(356\) 6.51669 + 24.1362i 0.345384 + 1.27922i
\(357\) −10.1181 + 13.7941i −0.535507 + 0.730061i
\(358\) −31.1824 + 4.13553i −1.64804 + 0.218570i
\(359\) 13.5395i 0.714585i 0.933992 + 0.357293i \(0.116300\pi\)
−0.933992 + 0.357293i \(0.883700\pi\)
\(360\) −11.6410 22.9818i −0.613536 1.21125i
\(361\) −18.4619 −0.971677
\(362\) −10.6809 8.17952i −0.561373 0.429906i
\(363\) 26.7348 1.40321
\(364\) 8.24683 14.3471i 0.432251 0.751993i
\(365\) 0.156136 0.0114648i 0.00817254 0.000600097i
\(366\) 8.63440 11.2748i 0.451327 0.589345i
\(367\) 6.80340 0.355134 0.177567 0.984109i \(-0.443177\pi\)
0.177567 + 0.984109i \(0.443177\pi\)
\(368\) −12.6736 21.7589i −0.660655 1.13426i
\(369\) 28.4835 28.4835i 1.48279 1.48279i
\(370\) −33.6930 + 7.01079i −1.75162 + 0.364474i
\(371\) 4.05580 + 4.05580i 0.210567 + 0.210567i
\(372\) −12.9847 7.46369i −0.673224 0.386974i
\(373\) 6.39548 6.39548i 0.331145 0.331145i −0.521876 0.853021i \(-0.674768\pi\)
0.853021 + 0.521876i \(0.174768\pi\)
\(374\) −5.44841 + 1.59264i −0.281731 + 0.0823532i
\(375\) 29.0189 6.48587i 1.49853 0.334929i
\(376\) −15.4044 6.32909i −0.794422 0.326398i
\(377\) 14.6585 0.754950
\(378\) −0.828002 6.24324i −0.0425878 0.321117i
\(379\) 16.6735 16.6735i 0.856458 0.856458i −0.134461 0.990919i \(-0.542930\pi\)
0.990919 + 0.134461i \(0.0429303\pi\)
\(380\) −1.08479 3.09613i −0.0556488 0.158828i
\(381\) 3.29866 + 3.29866i 0.168995 + 0.168995i
\(382\) 3.33836 + 25.1716i 0.170805 + 1.28789i
\(383\) −11.7394 11.7394i −0.599853 0.599853i 0.340420 0.940273i \(-0.389431\pi\)
−0.940273 + 0.340420i \(0.889431\pi\)
\(384\) 23.9936 + 18.1575i 1.22442 + 0.926594i
\(385\) 2.57070 + 2.21900i 0.131015 + 0.113091i
\(386\) −2.77883 + 0.368540i −0.141439 + 0.0187582i
\(387\) −17.2919 + 17.2919i −0.878997 + 0.878997i
\(388\) 0.776307 0.209600i 0.0394110 0.0106408i
\(389\) 29.6087i 1.50122i 0.660746 + 0.750609i \(0.270240\pi\)
−0.660746 + 0.750609i \(0.729760\pi\)
\(390\) 24.4546 37.3056i 1.23831 1.88904i
\(391\) −15.3517 + 20.9291i −0.776368 + 1.05843i
\(392\) 11.9179 4.97659i 0.601945 0.251356i
\(393\) 15.5498 15.5498i 0.784384 0.784384i
\(394\) 13.2874 1.76223i 0.669410 0.0887797i
\(395\) 12.3392 + 10.6510i 0.620852 + 0.535912i
\(396\) 3.95225 6.87577i 0.198608 0.345521i
\(397\) 26.2663 1.31827 0.659135 0.752025i \(-0.270923\pi\)
0.659135 + 0.752025i \(0.270923\pi\)
\(398\) −25.7515 19.7208i −1.29081 0.988514i
\(399\) 3.04368i 0.152375i
\(400\) −15.6265 + 12.4825i −0.781324 + 0.624125i
\(401\) −5.49471 + 5.49471i −0.274393 + 0.274393i −0.830866 0.556473i \(-0.812154\pi\)
0.556473 + 0.830866i \(0.312154\pi\)
\(402\) −6.67938 5.11515i −0.333137 0.255120i
\(403\) 14.9337i 0.743900i
\(404\) −4.17159 15.4505i −0.207544 0.768692i
\(405\) 0.757841 + 10.3208i 0.0376574 + 0.512845i
\(406\) −4.84109 3.70736i −0.240259 0.183993i
\(407\) −7.49141 7.49141i −0.371335 0.371335i
\(408\) 7.29117 30.1465i 0.360967 1.49247i
\(409\) 8.49228i 0.419916i 0.977710 + 0.209958i \(0.0673328\pi\)
−0.977710 + 0.209958i \(0.932667\pi\)
\(410\) −26.1539 17.1444i −1.29165 0.846704i
\(411\) −19.5185 19.5185i −0.962776 0.962776i
\(412\) 13.5556 23.5829i 0.667838 1.16185i
\(413\) 4.90863 0.241538
\(414\) −4.76768 35.9489i −0.234319 1.76679i
\(415\) −28.8057 24.8648i −1.41402 1.22056i
\(416\) −3.77411 + 29.7644i −0.185041 + 1.45932i
\(417\) −3.51198 3.51198i −0.171982 0.171982i
\(418\) 0.614050 0.801829i 0.0300342 0.0392187i
\(419\) 19.5738 + 19.5738i 0.956244 + 0.956244i 0.999082 0.0428376i \(-0.0136398\pi\)
−0.0428376 + 0.999082i \(0.513640\pi\)
\(420\) −17.5115 + 6.13553i −0.854474 + 0.299383i
\(421\) 26.2340i 1.27857i −0.768972 0.639283i \(-0.779231\pi\)
0.768972 0.639283i \(-0.220769\pi\)
\(422\) −22.6016 + 29.5132i −1.10023 + 1.43668i
\(423\) −16.9592 16.9592i −0.824584 0.824584i
\(424\) −9.61887 3.95203i −0.467134 0.191928i
\(425\) 18.2258 + 9.63429i 0.884082 + 0.467332i
\(426\) −5.83919 4.47172i −0.282910 0.216656i
\(427\) −4.16509 4.16509i −0.201563 0.201563i
\(428\) −29.7859 + 8.04210i −1.43976 + 0.388730i
\(429\) 13.7320 0.662985
\(430\) 15.8776 + 10.4081i 0.765687 + 0.501924i
\(431\) 11.7262 + 11.7262i 0.564831 + 0.564831i 0.930676 0.365845i \(-0.119220\pi\)
−0.365845 + 0.930676i \(0.619220\pi\)
\(432\) 5.74685 + 9.86664i 0.276496 + 0.474709i
\(433\) 4.53366 4.53366i 0.217874 0.217874i −0.589728 0.807602i \(-0.700765\pi\)
0.807602 + 0.589728i \(0.200765\pi\)
\(434\) −3.77697 + 4.93198i −0.181300 + 0.236743i
\(435\) −12.4420 10.7398i −0.596548 0.514934i
\(436\) 18.5228 32.2244i 0.887083 1.54327i
\(437\) 4.61802i 0.220910i
\(438\) −0.261052 + 0.0346217i −0.0124735 + 0.00165429i
\(439\) −5.76725 5.76725i −0.275256 0.275256i 0.555956 0.831212i \(-0.312352\pi\)
−0.831212 + 0.555956i \(0.812352\pi\)
\(440\) −5.85105 1.91652i −0.278938 0.0913667i
\(441\) 18.5997 0.885699
\(442\) 29.6839 8.67695i 1.41192 0.412721i
\(443\) 11.2633 + 11.2633i 0.535137 + 0.535137i 0.922097 0.386960i \(-0.126475\pi\)
−0.386960 + 0.922097i \(0.626475\pi\)
\(444\) 55.8864 15.0891i 2.65225 0.716098i
\(445\) 27.8763 2.04692i 1.32146 0.0970331i
\(446\) −9.70478 7.43203i −0.459535 0.351917i
\(447\) 13.4692i 0.637074i
\(448\) 8.77432 8.87542i 0.414548 0.419324i
\(449\) 17.7617 + 17.7617i 0.838228 + 0.838228i 0.988626 0.150398i \(-0.0480555\pi\)
−0.150398 + 0.988626i \(0.548055\pi\)
\(450\) −27.6933 + 7.91683i −1.30548 + 0.373203i
\(451\) 9.62709i 0.453322i
\(452\) 0.0472476 0.0127567i 0.00222234 0.000600024i
\(453\) 14.2266i 0.668424i
\(454\) 4.26541 + 32.1617i 0.200186 + 1.50942i
\(455\) −14.0056 12.0895i −0.656593 0.566764i
\(456\) 2.12635 + 5.09216i 0.0995754 + 0.238462i
\(457\) 18.3075 + 18.3075i 0.856388 + 0.856388i 0.990911 0.134523i \(-0.0429501\pi\)
−0.134523 + 0.990911i \(0.542950\pi\)
\(458\) 2.14653 + 16.1851i 0.100301 + 0.756279i
\(459\) 6.96126 9.49033i 0.324924 0.442971i
\(460\) −26.5693 + 9.30912i −1.23880 + 0.434040i
\(461\) 17.8234 0.830117 0.415059 0.909795i \(-0.363761\pi\)
0.415059 + 0.909795i \(0.363761\pi\)
\(462\) −4.53510 3.47303i −0.210992 0.161580i
\(463\) −10.0048 + 10.0048i −0.464964 + 0.464964i −0.900278 0.435314i \(-0.856637\pi\)
0.435314 + 0.900278i \(0.356637\pi\)
\(464\) 10.6893 + 2.82048i 0.496237 + 0.130937i
\(465\) −10.9414 + 12.6756i −0.507397 + 0.587817i
\(466\) 3.33709 + 25.1621i 0.154588 + 1.16561i
\(467\) 2.80145 + 2.80145i 0.129636 + 0.129636i 0.768948 0.639312i \(-0.220781\pi\)
−0.639312 + 0.768948i \(0.720781\pi\)
\(468\) −21.5325 + 37.4604i −0.995341 + 1.73161i
\(469\) −2.46746 + 2.46746i −0.113937 + 0.113937i
\(470\) −10.2079 + 15.5721i −0.470853 + 0.718288i
\(471\) 10.7008 10.7008i 0.493065 0.493065i
\(472\) −8.21227 + 3.42922i −0.378000 + 0.157843i
\(473\) 5.84446i 0.268728i
\(474\) −21.7682 16.6703i −0.999845 0.765693i
\(475\) −3.62856 + 0.535768i −0.166490 + 0.0245827i
\(476\) −11.9979 4.64189i −0.549923 0.212761i
\(477\) −10.5897 10.5897i −0.484870 0.484870i
\(478\) −10.8918 + 1.44451i −0.498177 + 0.0660702i
\(479\) −0.127353 0.127353i −0.00581889 0.00581889i 0.704191 0.710010i \(-0.251310\pi\)
−0.710010 + 0.704191i \(0.751310\pi\)
\(480\) 25.0109 22.4986i 1.14158 1.02692i
\(481\) 40.8145 + 40.8145i 1.86098 + 1.86098i
\(482\) −0.295633 0.226399i −0.0134657 0.0103122i
\(483\) −26.1193 −1.18847
\(484\) 5.24052 + 19.4096i 0.238206 + 0.882254i
\(485\) −0.0658362 0.896603i −0.00298947 0.0407126i
\(486\) −3.88079 29.2616i −0.176036 1.32733i
\(487\) 10.3466 0.468849 0.234424 0.972134i \(-0.424679\pi\)
0.234424 + 0.972134i \(0.424679\pi\)
\(488\) 9.87808 + 4.05853i 0.447160 + 0.183721i
\(489\) 66.9207i 3.02626i
\(490\) −2.94158 14.1369i −0.132887 0.638638i
\(491\) 13.1680i 0.594266i 0.954836 + 0.297133i \(0.0960304\pi\)
−0.954836 + 0.297133i \(0.903970\pi\)
\(492\) 45.6048 + 26.2139i 2.05602 + 1.18182i
\(493\) −1.73145 11.2630i −0.0779805 0.507262i
\(494\) −3.34545 + 4.36850i −0.150519 + 0.196548i
\(495\) −6.71210 5.79381i −0.301687 0.260413i
\(496\) 2.87343 10.8900i 0.129021 0.488974i
\(497\) −2.15709 + 2.15709i −0.0967585 + 0.0967585i
\(498\) 50.8177 + 38.9167i 2.27719 + 1.74390i
\(499\) −18.5416 18.5416i −0.830036 0.830036i 0.157485 0.987521i \(-0.449661\pi\)
−0.987521 + 0.157485i \(0.949661\pi\)
\(500\) 10.3970 + 19.7965i 0.464969 + 0.885327i
\(501\) −34.2592 −1.53059
\(502\) −18.4584 + 2.44802i −0.823837 + 0.109260i
\(503\) 40.0463i 1.78558i 0.450475 + 0.892789i \(0.351255\pi\)
−0.450475 + 0.892789i \(0.648745\pi\)
\(504\) 16.5856 6.92571i 0.738783 0.308496i
\(505\) −17.8447 + 1.31031i −0.794080 + 0.0583081i
\(506\) −6.88087 5.26944i −0.305892 0.234255i
\(507\) −40.2396 −1.78710
\(508\) −1.74824 + 3.04144i −0.0775656 + 0.134942i
\(509\) 10.6206 0.470751 0.235375 0.971905i \(-0.424368\pi\)
0.235375 + 0.971905i \(0.424368\pi\)
\(510\) −31.5528 14.3835i −1.39718 0.636913i
\(511\) 0.109226i 0.00483188i
\(512\) −8.47921 + 20.9786i −0.374732 + 0.927133i
\(513\) 2.09405i 0.0924547i
\(514\) −12.2270 9.36357i −0.539310 0.413010i
\(515\) −23.0216 19.8719i −1.01445 0.875663i
\(516\) −27.6859 15.9141i −1.21881 0.700578i
\(517\) −5.73200 −0.252093
\(518\) −3.15671 23.8020i −0.138698 1.04580i
\(519\) 9.49299i 0.416696i
\(520\) 31.8776 + 10.4416i 1.39792 + 0.457892i
\(521\) −24.9222 + 24.9222i −1.09186 + 1.09186i −0.0965310 + 0.995330i \(0.530775\pi\)
−0.995330 + 0.0965310i \(0.969225\pi\)
\(522\) 12.6401 + 9.67995i 0.553243 + 0.423680i
\(523\) 4.25787 + 4.25787i 0.186183 + 0.186183i 0.794044 0.607860i \(-0.207972\pi\)
−0.607860 + 0.794044i \(0.707972\pi\)
\(524\) 14.3373 + 8.24117i 0.626327 + 0.360017i
\(525\) 3.03027 + 20.5229i 0.132252 + 0.895693i
\(526\) 12.5303 + 9.59583i 0.546346 + 0.418398i
\(527\) −11.4745 + 1.76395i −0.499837 + 0.0768391i
\(528\) 10.0136 + 2.64220i 0.435787 + 0.114987i
\(529\) −16.6294 −0.723017
\(530\) −6.37403 + 9.72360i −0.276870 + 0.422366i
\(531\) −12.8165 −0.556188
\(532\) 2.20973 0.596619i 0.0958038 0.0258667i
\(533\) 52.4501i 2.27186i
\(534\) −46.6078 + 6.18131i −2.01692 + 0.267491i
\(535\) 2.52605 + 34.4015i 0.109211 + 1.48731i
\(536\) 2.40433 5.85192i 0.103851 0.252765i
\(537\) 59.1552i 2.55273i
\(538\) 15.0964 + 11.5610i 0.650852 + 0.498430i
\(539\) 3.14323 3.14323i 0.135389 0.135389i
\(540\) 12.0479 4.22124i 0.518460 0.181653i
\(541\) −9.28608 + 9.28608i −0.399240 + 0.399240i −0.877965 0.478725i \(-0.841099\pi\)
0.478725 + 0.877965i \(0.341099\pi\)
\(542\) −4.89910 36.9398i −0.210434 1.58670i
\(543\) 17.8897 17.8897i 0.767721 0.767721i
\(544\) 23.3157 0.615855i 0.999651 0.0264046i
\(545\) −31.4574 27.1536i −1.34749 1.16313i
\(546\) 24.7080 + 18.9217i 1.05740 + 0.809772i
\(547\) −26.0796 −1.11509 −0.557543 0.830148i \(-0.688256\pi\)
−0.557543 + 0.830148i \(0.688256\pi\)
\(548\) 10.3445 17.9965i 0.441896 0.768772i
\(549\) 10.8751 + 10.8751i 0.464137 + 0.464137i
\(550\) −3.34211 + 6.01790i −0.142508 + 0.256604i
\(551\) 1.43363 + 1.43363i 0.0610745 + 0.0610745i
\(552\) 43.6982 18.2472i 1.85992 0.776651i
\(553\) −8.04149 + 8.04149i −0.341959 + 0.341959i
\(554\) 5.07991 + 38.3032i 0.215825 + 1.62735i
\(555\) −4.73955 64.5465i −0.201183 2.73984i
\(556\) 1.86130 3.23813i 0.0789367 0.137327i
\(557\) 23.9084 + 23.9084i 1.01303 + 1.01303i 0.999914 + 0.0131183i \(0.00417579\pi\)
0.0131183 + 0.999914i \(0.495824\pi\)
\(558\) 9.86169 12.8774i 0.417478 0.545145i
\(559\) 31.8416i 1.34676i
\(560\) −7.88701 11.5108i −0.333287 0.486418i
\(561\) −1.62201 10.5511i −0.0684811 0.445469i
\(562\) 5.74538 + 43.3209i 0.242354 + 1.82738i
\(563\) 22.2136 22.2136i 0.936190 0.936190i −0.0618929 0.998083i \(-0.519714\pi\)
0.998083 + 0.0618929i \(0.0197137\pi\)
\(564\) 15.6079 27.1532i 0.657210 1.14336i
\(565\) −0.00400692 0.0545691i −0.000168572 0.00229574i
\(566\) 23.2251 3.08020i 0.976223 0.129470i
\(567\) −7.21999 −0.303211
\(568\) 2.10190 5.11582i 0.0881937 0.214655i
\(569\) 33.4221 1.40113 0.700564 0.713590i \(-0.252932\pi\)
0.700564 + 0.713590i \(0.252932\pi\)
\(570\) 6.04025 1.25685i 0.252998 0.0526435i
\(571\) −18.0889 + 18.0889i −0.756995 + 0.756995i −0.975774 0.218779i \(-0.929793\pi\)
0.218779 + 0.975774i \(0.429793\pi\)
\(572\) 2.69172 + 9.96945i 0.112546 + 0.416844i
\(573\) −47.7523 −1.99488
\(574\) 13.2655 17.3221i 0.553689 0.723010i
\(575\) 4.59767 + 31.1383i 0.191736 + 1.29856i
\(576\) −22.9098 + 23.1738i −0.954575 + 0.965574i
\(577\) −8.71178 + 8.71178i −0.362676 + 0.362676i −0.864797 0.502121i \(-0.832553\pi\)
0.502121 + 0.864797i \(0.332553\pi\)
\(578\) −10.1733 21.7831i −0.423153 0.906058i
\(579\) 5.27164i 0.219082i
\(580\) 5.35827 11.1381i 0.222490 0.462486i
\(581\) 18.7728 18.7728i 0.778827 0.778827i
\(582\) 0.198813 + 1.49907i 0.00824106 + 0.0621386i
\(583\) −3.57920 −0.148235
\(584\) −0.0763065 0.182738i −0.00315758 0.00756176i
\(585\) 36.5687 + 31.5657i 1.51193 + 1.30508i
\(586\) 19.0806 24.9155i 0.788211 1.02925i
\(587\) 15.5812 + 15.5812i 0.643104 + 0.643104i 0.951317 0.308214i \(-0.0997312\pi\)
−0.308214 + 0.951317i \(0.599731\pi\)
\(588\) 6.33108 + 23.4487i 0.261089 + 0.967009i
\(589\) 1.46054 1.46054i 0.0601806 0.0601806i
\(590\) 2.02695 + 9.74128i 0.0834483 + 0.401042i
\(591\) 25.2071i 1.03688i
\(592\) 21.9095 + 37.6160i 0.900477 + 1.54601i
\(593\) −22.7622 + 22.7622i −0.934733 + 0.934733i −0.997997 0.0632634i \(-0.979849\pi\)
0.0632634 + 0.997997i \(0.479849\pi\)
\(594\) 3.12014 + 2.38944i 0.128021 + 0.0980400i
\(595\) −7.63478 + 12.1894i −0.312996 + 0.499716i
\(596\) −9.77873 + 2.64022i −0.400552 + 0.108148i
\(597\) 43.1320 43.1320i 1.76528 1.76528i
\(598\) 37.4882 + 28.7089i 1.53300 + 1.17399i
\(599\) 11.8993 0.486193 0.243097 0.970002i \(-0.421837\pi\)
0.243097 + 0.970002i \(0.421837\pi\)
\(600\) −19.4072 32.2184i −0.792297 1.31531i
\(601\) 7.45499 7.45499i 0.304096 0.304096i −0.538518 0.842614i \(-0.681016\pi\)
0.842614 + 0.538518i \(0.181016\pi\)
\(602\) −8.05325 + 10.5160i −0.328226 + 0.428599i
\(603\) 6.44256 6.44256i 0.262361 0.262361i
\(604\) 10.3286 2.78868i 0.420263 0.113470i
\(605\) 22.4173 1.64607i 0.911392 0.0669221i
\(606\) 29.8355 3.95689i 1.21198 0.160738i
\(607\) 3.15126i 0.127906i 0.997953 + 0.0639529i \(0.0203707\pi\)
−0.997953 + 0.0639529i \(0.979629\pi\)
\(608\) −3.28013 + 2.54190i −0.133027 + 0.103088i
\(609\) 8.10850 8.10850i 0.328573 0.328573i
\(610\) 6.54579 9.98563i 0.265031 0.404306i
\(611\) 31.2289 1.26339
\(612\) 31.3266 + 12.1200i 1.26630 + 0.489922i
\(613\) 0.0507432 0.0507432i 0.00204950 0.00204950i −0.706081 0.708131i \(-0.749539\pi\)
0.708131 + 0.706081i \(0.249539\pi\)
\(614\) −5.73250 + 7.48552i −0.231345 + 0.302091i
\(615\) 38.4285 44.5192i 1.54959 1.79519i
\(616\) 1.63247 3.97328i 0.0657741 0.160088i
\(617\) −36.6115 −1.47392 −0.736962 0.675934i \(-0.763740\pi\)
−0.736962 + 0.675934i \(0.763740\pi\)
\(618\) 40.6135 + 31.1023i 1.63371 + 1.25112i
\(619\) −15.2125 15.2125i −0.611443 0.611443i 0.331879 0.943322i \(-0.392317\pi\)
−0.943322 + 0.331879i \(0.892317\pi\)
\(620\) −11.3473 5.45887i −0.455717 0.219234i
\(621\) 17.9700 0.721113
\(622\) −22.2319 + 29.0305i −0.891419 + 1.16402i
\(623\) 19.5011i 0.781295i
\(624\) −54.5560 14.3952i −2.18399 0.576268i
\(625\) 23.9332 7.22513i 0.957327 0.289005i
\(626\) 38.0548 5.04698i 1.52098 0.201718i
\(627\) 1.34301 + 1.34301i 0.0536346 + 0.0536346i
\(628\) 9.86634 + 5.67125i 0.393710 + 0.226307i
\(629\) 26.5394 36.1813i 1.05819 1.44264i
\(630\) −4.09367 19.6737i −0.163096 0.783817i
\(631\) −7.21444 −0.287202 −0.143601 0.989636i \(-0.545868\pi\)
−0.143601 + 0.989636i \(0.545868\pi\)
\(632\) 7.83575 19.0715i 0.311689 0.758623i
\(633\) −49.4326 49.4326i −1.96477 1.96477i
\(634\) −26.4941 + 3.51375i −1.05221 + 0.139549i
\(635\) 2.96904 + 2.56284i 0.117823 + 0.101703i
\(636\) 9.74592 16.9551i 0.386451 0.672314i
\(637\) −17.1249 + 17.1249i −0.678513 + 0.678513i
\(638\) 3.77196 0.500251i 0.149333 0.0198051i
\(639\) 5.63216 5.63216i 0.222805 0.222805i
\(640\) 21.2367 + 13.7478i 0.839454 + 0.543431i
\(641\) −21.1951 21.1951i −0.837157 0.837157i 0.151327 0.988484i \(-0.451645\pi\)
−0.988484 + 0.151327i \(0.951645\pi\)
\(642\) −7.62821 57.5176i −0.301061 2.27004i
\(643\) 15.3198i 0.604153i 0.953284 + 0.302077i \(0.0976799\pi\)
−0.953284 + 0.302077i \(0.902320\pi\)
\(644\) −5.11986 18.9627i −0.201751 0.747235i
\(645\) −23.3293 + 27.0269i −0.918591 + 1.06418i
\(646\) 3.75176 + 2.05452i 0.147611 + 0.0808339i
\(647\) −30.7513 30.7513i −1.20896 1.20896i −0.971365 0.237594i \(-0.923641\pi\)
−0.237594 0.971365i \(-0.576359\pi\)
\(648\) 12.0792 5.04396i 0.474517 0.198145i
\(649\) −2.16591 + 2.16591i −0.0850193 + 0.0850193i
\(650\) 18.2084 32.7866i 0.714192 1.28600i
\(651\) −8.26073 8.26073i −0.323764 0.323764i
\(652\) −48.5847 + 13.1177i −1.90272 + 0.513729i
\(653\) 7.20109i 0.281801i 0.990024 + 0.140900i \(0.0449997\pi\)
−0.990024 + 0.140900i \(0.955000\pi\)
\(654\) 55.4955 + 42.4991i 2.17005 + 1.66185i
\(655\) 12.0812 13.9960i 0.472051 0.546869i
\(656\) −10.0921 + 38.2477i −0.394028 + 1.49332i
\(657\) 0.285190i 0.0111263i
\(658\) −10.3136 7.89829i −0.402067 0.307908i
\(659\) 26.5931i 1.03592i 0.855405 + 0.517960i \(0.173308\pi\)
−0.855405 + 0.517960i \(0.826692\pi\)
\(660\) 5.01959 10.4341i 0.195387 0.406148i
\(661\) 40.2944 1.56727 0.783635 0.621221i \(-0.213363\pi\)
0.783635 + 0.621221i \(0.213363\pi\)
\(662\) 1.38778 + 10.4641i 0.0539377 + 0.406697i
\(663\) 8.83697 + 57.4844i 0.343200 + 2.23251i
\(664\) −18.2925 + 44.5222i −0.709887 + 1.72780i
\(665\) −0.187400 2.55214i −0.00726706 0.0989679i
\(666\) 8.24218 + 62.1471i 0.319378 + 2.40815i
\(667\) 12.3026 12.3026i 0.476359 0.476359i
\(668\) −6.71545 24.8723i −0.259828 0.962340i
\(669\) 16.2549 16.2549i 0.628449 0.628449i
\(670\) −5.91564 3.87783i −0.228541 0.149814i
\(671\) 3.67565 0.141897
\(672\) 14.3768 + 18.5522i 0.554598 + 0.715666i
\(673\) 25.2208 0.972191 0.486096 0.873906i \(-0.338421\pi\)
0.486096 + 0.873906i \(0.338421\pi\)
\(674\) 27.2037 3.60785i 1.04785 0.138969i
\(675\) −2.08482 14.1198i −0.0802449 0.543470i
\(676\) −7.88772 29.2141i −0.303374 1.12362i
\(677\) 1.33997i 0.0514991i 0.999668 + 0.0257496i \(0.00819724\pi\)
−0.999668 + 0.0257496i \(0.991803\pi\)
\(678\) 0.0121002 + 0.0912367i 0.000464704 + 0.00350392i
\(679\) 0.627225 0.0240707
\(680\) 4.25756 25.7269i 0.163270 0.986581i
\(681\) −61.0130 −2.33802
\(682\) −0.509644 3.84278i −0.0195153 0.147147i
\(683\) 4.86709i 0.186234i −0.995655 0.0931169i \(-0.970317\pi\)
0.995655 0.0931169i \(-0.0296830\pi\)
\(684\) −5.76961 + 1.55778i −0.220607 + 0.0595630i
\(685\) −17.5681 15.1646i −0.671243 0.579410i
\(686\) 25.2965 3.35492i 0.965826 0.128091i
\(687\) −30.7042 −1.17144
\(688\) 6.12673 23.2196i 0.233579 0.885238i
\(689\) 19.5001 0.742894
\(690\) −10.7856 51.8342i −0.410600 1.97329i
\(691\) −0.721793 + 0.721793i −0.0274583 + 0.0274583i −0.720703 0.693244i \(-0.756181\pi\)
0.693244 + 0.720703i \(0.256181\pi\)
\(692\) −6.89195 + 1.86080i −0.261993 + 0.0707371i
\(693\) 4.37430 4.37430i 0.166166 0.166166i
\(694\) −0.596440 4.49723i −0.0226405 0.170713i
\(695\) −3.16105 2.72858i −0.119905 0.103501i
\(696\) −7.90104 + 19.2304i −0.299488 + 0.728926i
\(697\) 40.3007 6.19536i 1.52650 0.234666i
\(698\) 0.179123 + 1.35061i 0.00677992 + 0.0511215i
\(699\) −47.7342 −1.80547
\(700\) −14.3057 + 6.22286i −0.540706 + 0.235202i
\(701\) 0.0837431i 0.00316293i −0.999999 0.00158147i \(-0.999497\pi\)
0.999999 0.00158147i \(-0.000503397\pi\)
\(702\) −16.9991 13.0181i −0.641589 0.491336i
\(703\) 7.98346i 0.301102i
\(704\) 0.0446083 + 7.78785i 0.00168124 + 0.293516i
\(705\) −26.5069 22.8804i −0.998307 0.861727i
\(706\) −33.3591 25.5468i −1.25549 0.961466i
\(707\) 12.4834i 0.469487i
\(708\) −4.36255 16.1578i −0.163955 0.607248i
\(709\) 12.3924 + 12.3924i 0.465405 + 0.465405i 0.900422 0.435017i \(-0.143258\pi\)
−0.435017 + 0.900422i \(0.643258\pi\)
\(710\) −5.17152 3.39004i −0.194084 0.127226i
\(711\) 20.9964 20.9964i 0.787426 0.787426i
\(712\) −13.6237 32.6258i −0.510568 1.22270i
\(713\) −12.5336 12.5336i −0.469386 0.469386i
\(714\) 11.6202 21.2197i 0.434876 0.794128i
\(715\) 11.5143 0.845478i 0.430611 0.0316191i
\(716\) 42.9469 11.5955i 1.60500 0.433345i
\(717\) 20.6624i 0.771651i
\(718\) −2.51740 18.9815i −0.0939484 0.708383i
\(719\) 7.40991 + 7.40991i 0.276343 + 0.276343i 0.831647 0.555304i \(-0.187398\pi\)
−0.555304 + 0.831647i \(0.687398\pi\)
\(720\) 20.5930 + 30.0546i 0.767457 + 1.12007i
\(721\) 15.0032 15.0032i 0.558749 0.558749i
\(722\) 25.8824 3.43262i 0.963243 0.127749i
\(723\) 0.495165 0.495165i 0.0184154 0.0184154i
\(724\) 16.4947 + 9.48128i 0.613021 + 0.352369i
\(725\) −11.0939 8.23932i −0.412018 0.306001i
\(726\) −37.4805 + 4.97081i −1.39103 + 0.184484i
\(727\) −25.2505 25.2505i −0.936491 0.936491i 0.0616094 0.998100i \(-0.480377\pi\)
−0.998100 + 0.0616094i \(0.980377\pi\)
\(728\) −8.89398 + 21.6471i −0.329633 + 0.802295i
\(729\) 41.6272 1.54175
\(730\) −0.216761 + 0.0451034i −0.00802270 + 0.00166935i
\(731\) −24.4659 + 3.76110i −0.904905 + 0.139109i
\(732\) −10.0086 + 17.4120i −0.369927 + 0.643567i
\(733\) −27.6165 27.6165i −1.02004 1.02004i −0.999795 0.0202450i \(-0.993555\pi\)
−0.0202450 0.999795i \(-0.506445\pi\)
\(734\) −9.53794 + 1.26496i −0.352052 + 0.0466904i
\(735\) 27.0823 1.98861i 0.998947 0.0733511i
\(736\) 21.8132 + 28.1483i 0.804045 + 1.03756i
\(737\) 2.17751i 0.0802096i
\(738\) −34.6362 + 45.2281i −1.27498 + 1.66487i
\(739\) −17.0736 −0.628062 −0.314031 0.949413i \(-0.601680\pi\)
−0.314031 + 0.949413i \(0.601680\pi\)
\(740\) 45.9320 16.0932i 1.68849 0.591599i
\(741\) −7.31695 7.31695i −0.268795 0.268795i
\(742\) −6.44007 4.93188i −0.236422 0.181055i
\(743\) 38.4115 1.40918 0.704590 0.709614i \(-0.251131\pi\)
0.704590 + 0.709614i \(0.251131\pi\)
\(744\) 19.5914 + 8.04939i 0.718257 + 0.295105i
\(745\) 0.829304 + 11.2940i 0.0303833 + 0.413781i
\(746\) −7.77695 + 10.1552i −0.284734 + 0.371807i
\(747\) −49.0159 + 49.0159i −1.79340 + 1.79340i
\(748\) 7.34222 3.24580i 0.268458 0.118678i
\(749\) −24.0658 −0.879347
\(750\) −39.4768 + 14.4883i −1.44149 + 0.529037i
\(751\) −24.5915 + 24.5915i −0.897358 + 0.897358i −0.995202 0.0978437i \(-0.968805\pi\)
0.0978437 + 0.995202i \(0.468805\pi\)
\(752\) 22.7728 + 6.00884i 0.830438 + 0.219120i
\(753\) 35.0168i 1.27608i
\(754\) −20.5503 + 2.72546i −0.748397 + 0.0992553i
\(755\) −0.875933 11.9291i −0.0318785 0.434143i
\(756\) 2.32161 + 8.59868i 0.0844363 + 0.312731i
\(757\) 12.3415 12.3415i 0.448561 0.448561i −0.446315 0.894876i \(-0.647264\pi\)
0.894876 + 0.446315i \(0.147264\pi\)
\(758\) −20.2750 + 26.4752i −0.736423 + 0.961624i
\(759\) 11.5250 11.5250i 0.418330 0.418330i
\(760\) 2.09648 + 4.13888i 0.0760473 + 0.150133i
\(761\) −18.3851 −0.666458 −0.333229 0.942846i \(-0.608138\pi\)
−0.333229 + 0.942846i \(0.608138\pi\)
\(762\) −5.23783 4.01119i −0.189747 0.145310i
\(763\) 20.5009 20.5009i 0.742182 0.742182i
\(764\) −9.36034 34.6684i −0.338645 1.25426i
\(765\) 19.9345 31.8266i 0.720732 1.15069i
\(766\) 18.6406 + 14.2752i 0.673511 + 0.515782i
\(767\) 11.8002 11.8002i 0.426082 0.426082i
\(768\) −37.0135 20.9945i −1.33561 0.757574i
\(769\) 8.21402i 0.296205i 0.988972 + 0.148103i \(0.0473166\pi\)
−0.988972 + 0.148103i \(0.952683\pi\)
\(770\) −4.01654 2.63293i −0.144746 0.0948840i
\(771\) 20.4794 20.4794i 0.737547 0.737547i
\(772\) 3.82723 1.03334i 0.137745 0.0371907i
\(773\) −27.2399 27.2399i −0.979750 0.979750i 0.0200488 0.999799i \(-0.493618\pi\)
−0.999799 + 0.0200488i \(0.993618\pi\)
\(774\) 21.0271 27.4573i 0.755803 0.986931i
\(775\) −8.39401 + 11.3022i −0.301522 + 0.405988i
\(776\) −1.04936 + 0.438186i −0.0376699 + 0.0157299i
\(777\) 45.1539 1.61989
\(778\) −5.50515 41.5095i −0.197369 1.48819i
\(779\) −5.12971 + 5.12971i −0.183791 + 0.183791i
\(780\) −27.3476 + 56.8469i −0.979201 + 2.03545i
\(781\) 1.90360i 0.0681163i
\(782\) 17.6308 32.1956i 0.630475 1.15131i
\(783\) −5.57864 + 5.57864i −0.199364 + 0.199364i
\(784\) −15.7829 + 9.19278i −0.563674 + 0.328313i
\(785\) 8.31379 9.63149i 0.296732 0.343762i
\(786\) −18.9087 + 24.6910i −0.674450 + 0.880700i
\(787\) −5.98782 −0.213443 −0.106721 0.994289i \(-0.534035\pi\)
−0.106721 + 0.994289i \(0.534035\pi\)
\(788\) −18.3005 + 4.94106i −0.651927 + 0.176018i
\(789\) −20.9874 + 20.9874i −0.747170 + 0.747170i
\(790\) −19.2791 12.6379i −0.685920 0.449635i
\(791\) 0.0381742 0.00135732
\(792\) −4.26239 + 10.3743i −0.151457 + 0.368633i
\(793\) −20.0256 −0.711129
\(794\) −36.8238 + 4.88371i −1.30683 + 0.173316i
\(795\) −16.5515 14.2871i −0.587022 0.506711i
\(796\) 39.7687 + 22.8593i 1.40956 + 0.810228i
\(797\) −11.0798 + 11.0798i −0.392465 + 0.392465i −0.875565 0.483100i \(-0.839511\pi\)
0.483100 + 0.875565i \(0.339511\pi\)
\(798\) 0.565913 + 4.26706i 0.0200331 + 0.151052i
\(799\) −3.68874 23.9952i −0.130498 0.848888i
\(800\) 19.5865 20.4051i 0.692487 0.721430i
\(801\) 50.9175i 1.79908i
\(802\) 6.68161 8.72488i 0.235936 0.308086i
\(803\) −0.0481954 0.0481954i −0.00170078 0.00170078i
\(804\) 10.3151 + 5.92922i 0.363787 + 0.209107i
\(805\) −21.9011 + 1.60817i −0.771914 + 0.0566804i
\(806\) 2.77663 + 20.9361i 0.0978025 + 0.737443i
\(807\) −25.2855 + 25.2855i −0.890090 + 0.890090i
\(808\) 8.72103 + 20.8851i 0.306805 + 0.734734i
\(809\) 10.5755 + 10.5755i 0.371815 + 0.371815i 0.868138 0.496323i \(-0.165317\pi\)
−0.496323 + 0.868138i \(0.665317\pi\)
\(810\) −2.98140 14.3282i −0.104756 0.503442i
\(811\) 18.0270 + 18.0270i 0.633012 + 0.633012i 0.948822 0.315810i \(-0.102276\pi\)
−0.315810 + 0.948822i \(0.602276\pi\)
\(812\) 7.47622 + 4.29739i 0.262364 + 0.150809i
\(813\) 70.0773 2.45772
\(814\) 11.8954 + 9.10961i 0.416932 + 0.319292i
\(815\) 4.12031 + 56.1133i 0.144328 + 1.96556i
\(816\) −4.61662 + 43.6191i −0.161614 + 1.52698i
\(817\) 3.11417 3.11417i 0.108951 0.108951i
\(818\) −1.57897 11.9057i −0.0552075 0.416271i
\(819\) −23.8320 + 23.8320i −0.832756 + 0.832756i
\(820\) 39.8538 + 19.1726i 1.39176 + 0.669538i
\(821\) 4.78068 4.78068i 0.166847 0.166847i −0.618745 0.785592i \(-0.712359\pi\)
0.785592 + 0.618745i \(0.212359\pi\)
\(822\) 30.9928 + 23.7346i 1.08100 + 0.827841i
\(823\) 18.0502i 0.629189i 0.949226 + 0.314594i \(0.101868\pi\)
−0.949226 + 0.314594i \(0.898132\pi\)
\(824\) −14.6194 + 35.5822i −0.509290 + 1.23956i
\(825\) −10.3927 7.71853i −0.361828 0.268725i
\(826\) −6.88160 + 0.912664i −0.239441 + 0.0317556i
\(827\) 24.0381i 0.835888i 0.908473 + 0.417944i \(0.137249\pi\)
−0.908473 + 0.417944i \(0.862751\pi\)
\(828\) 13.3680 + 49.5117i 0.464570 + 1.72065i
\(829\) −54.5041 −1.89301 −0.946504 0.322693i \(-0.895412\pi\)
−0.946504 + 0.322693i \(0.895412\pi\)
\(830\) 45.0070 + 29.5030i 1.56222 + 1.02407i
\(831\) −72.6637 −2.52068
\(832\) −0.243034 42.4296i −0.00842568 1.47098i
\(833\) 15.1809 + 11.1354i 0.525988 + 0.385817i
\(834\) 5.57656 + 4.27060i 0.193101 + 0.147879i
\(835\) −28.7265 + 2.10934i −0.994123 + 0.0729969i
\(836\) −0.711775 + 1.23828i −0.0246173 + 0.0428270i
\(837\) 5.68338 + 5.68338i 0.196446 + 0.196446i
\(838\) −31.0807 23.8019i −1.07366 0.822224i
\(839\) 26.2491 26.2491i 0.906220 0.906220i −0.0897444 0.995965i \(-0.528605\pi\)
0.995965 + 0.0897444i \(0.0286050\pi\)
\(840\) 23.4093 11.8576i 0.807697 0.409125i
\(841\) 21.3615i 0.736604i
\(842\) 4.87769 + 36.7784i 0.168096 + 1.26747i
\(843\) −82.1827 −2.83052
\(844\) 26.1986 45.5780i 0.901792 1.56886i
\(845\) −33.7411 + 2.47756i −1.16073 + 0.0852306i
\(846\) 26.9289 + 20.6225i 0.925836 + 0.709016i
\(847\) 15.6822i 0.538846i
\(848\) 14.2199 + 3.75206i 0.488312 + 0.128846i
\(849\) 44.0596i 1.51212i
\(850\) −27.3428 10.1179i −0.937849 0.347043i
\(851\) 68.5097 2.34848
\(852\) 9.01762 + 5.18339i 0.308938 + 0.177580i
\(853\) 12.8401 0.439637 0.219818 0.975541i \(-0.429454\pi\)
0.219818 + 0.975541i \(0.429454\pi\)
\(854\) 6.61362 + 5.06479i 0.226313 + 0.173313i
\(855\) 0.489303 + 6.66367i 0.0167338 + 0.227893i
\(856\) 40.2628 16.8126i 1.37615 0.574644i
\(857\) 15.6507i 0.534616i 0.963611 + 0.267308i \(0.0861341\pi\)
−0.963611 + 0.267308i \(0.913866\pi\)
\(858\) −19.2513 + 2.55319i −0.657230 + 0.0871644i
\(859\) −45.3264 −1.54652 −0.773259 0.634091i \(-0.781375\pi\)
−0.773259 + 0.634091i \(0.781375\pi\)
\(860\) −24.1946 11.6394i −0.825030 0.396901i
\(861\) 29.0133 + 29.0133i 0.988771 + 0.988771i
\(862\) −18.6196 14.2591i −0.634187 0.485668i
\(863\) 6.78897 6.78897i 0.231099 0.231099i −0.582052 0.813151i \(-0.697750\pi\)
0.813151 + 0.582052i \(0.197750\pi\)
\(864\) −9.89124 12.7639i −0.336507 0.434237i
\(865\) 0.584484 + 7.95992i 0.0198731 + 0.270645i
\(866\) −5.51296 + 7.19885i −0.187338 + 0.244627i
\(867\) 43.1251 13.5800i 1.46460 0.461201i
\(868\) 4.37807 7.61658i 0.148601 0.258524i
\(869\) 7.09653i 0.240733i
\(870\) 19.4398 + 12.7432i 0.659070 + 0.432034i
\(871\) 11.8635i 0.401978i
\(872\) −19.9764 + 48.6206i −0.676485 + 1.64650i
\(873\) −1.63769 −0.0554273
\(874\) 0.858631 + 6.47418i 0.0290436 + 0.218993i
\(875\) 3.80449 + 17.0220i 0.128615 + 0.575448i
\(876\) 0.359541 0.0970748i 0.0121478 0.00327986i
\(877\) 23.4361 0.791379 0.395690 0.918384i \(-0.370506\pi\)
0.395690 + 0.918384i \(0.370506\pi\)
\(878\) 9.15763 + 7.01302i 0.309055 + 0.236678i
\(879\) 41.7318 + 41.7318i 1.40758 + 1.40758i
\(880\) 8.55915 + 1.59896i 0.288529 + 0.0539009i
\(881\) 22.5078 + 22.5078i 0.758308 + 0.758308i 0.976014 0.217706i \(-0.0698575\pi\)
−0.217706 + 0.976014i \(0.569858\pi\)
\(882\) −26.0756 + 3.45824i −0.878011 + 0.116445i
\(883\) −39.3128 39.3128i −1.32298 1.32298i −0.911351 0.411630i \(-0.864960\pi\)
−0.411630 0.911351i \(-0.635040\pi\)
\(884\) −40.0017 + 17.6837i −1.34540 + 0.594767i
\(885\) −18.6616 + 1.37029i −0.627303 + 0.0460619i
\(886\) −17.8847 13.6963i −0.600847 0.460136i
\(887\) 8.40522i 0.282220i 0.989994 + 0.141110i \(0.0450671\pi\)
−0.989994 + 0.141110i \(0.954933\pi\)
\(888\) −75.5437 + 31.5450i −2.53508 + 1.05858i
\(889\) −1.93493 + 1.93493i −0.0648956 + 0.0648956i
\(890\) −38.7003 + 8.05271i −1.29724 + 0.269927i
\(891\) 3.18578 3.18578i 0.106728 0.106728i
\(892\) 14.9873 + 8.61484i 0.501813 + 0.288446i
\(893\) 3.05425 + 3.05425i 0.102206 + 0.102206i
\(894\) −2.50434 18.8831i −0.0837577 0.631544i
\(895\) −3.64219 49.6019i −0.121745 1.65801i
\(896\) −10.6508 + 14.0742i −0.355820 + 0.470186i
\(897\) −62.7901 + 62.7901i −2.09650 + 2.09650i
\(898\) −28.2033 21.5984i −0.941156 0.720748i
\(899\) 7.78188 0.259540
\(900\) 37.3523 16.2479i 1.24508 0.541598i
\(901\) −2.30333 14.9832i −0.0767351 0.499161i
\(902\) 1.78997 + 13.4966i 0.0595994 + 0.449387i
\(903\) −17.6135 17.6135i −0.586142 0.586142i
\(904\) −0.0638664 + 0.0266689i −0.00212416 + 0.000886993i
\(905\) 13.8991 16.1021i 0.462023 0.535251i
\(906\) 2.64516 + 19.9448i 0.0878794 + 0.662622i
\(907\) 52.1542i 1.73175i 0.500259 + 0.865876i \(0.333238\pi\)
−0.500259 + 0.865876i \(0.666762\pi\)
\(908\) −11.9597 44.2957i −0.396896 1.47000i
\(909\) 32.5942i 1.08108i
\(910\) 21.8828 + 14.3446i 0.725407 + 0.475520i
\(911\) 9.82346 + 9.82346i 0.325466 + 0.325466i 0.850859 0.525394i \(-0.176082\pi\)
−0.525394 + 0.850859i \(0.676082\pi\)
\(912\) −3.92780 6.74354i −0.130062 0.223301i
\(913\) 16.5668i 0.548281i
\(914\) −29.0699 22.2620i −0.961546 0.736363i
\(915\) 16.9975 + 14.6721i 0.561922 + 0.485045i
\(916\) −6.01860 22.2914i −0.198860 0.736528i
\(917\) 9.12124 + 9.12124i 0.301210 + 0.301210i
\(918\) −7.99471 + 14.5992i −0.263865 + 0.481844i
\(919\) −31.0471 −1.02415 −0.512075 0.858940i \(-0.671123\pi\)
−0.512075 + 0.858940i \(0.671123\pi\)
\(920\) 35.5177 17.9909i 1.17098 0.593141i
\(921\) −12.5377 12.5377i −0.413133 0.413133i
\(922\) −24.9873 + 3.31391i −0.822912 + 0.109138i
\(923\) 10.3712i 0.341371i
\(924\) 7.00366 + 4.02576i 0.230404 + 0.132438i
\(925\) −7.94827 53.8307i −0.261337 1.76994i
\(926\) 12.1660 15.8864i 0.399798 0.522058i
\(927\) −39.1735 + 39.1735i −1.28663 + 1.28663i
\(928\) −15.5101 1.96667i −0.509144 0.0645592i
\(929\) 3.29196 + 3.29196i 0.108006 + 0.108006i 0.759044 0.651039i \(-0.225666\pi\)
−0.651039 + 0.759044i \(0.725666\pi\)
\(930\) 12.9824 19.8047i 0.425711 0.649423i
\(931\) −3.34969 −0.109782
\(932\) −9.35680 34.6552i −0.306492 1.13517i
\(933\) −48.6242 48.6242i −1.59188 1.59188i
\(934\) −4.44834 3.40659i −0.145554 0.111467i
\(935\) −2.00969 8.74731i −0.0657240 0.286068i
\(936\) 23.2222 56.5207i 0.759042 1.84744i
\(937\) 22.2487 + 22.2487i 0.726832 + 0.726832i 0.969987 0.243155i \(-0.0781825\pi\)
−0.243155 + 0.969987i \(0.578183\pi\)
\(938\) 3.00045 3.91801i 0.0979683 0.127927i
\(939\) 72.1926i 2.35592i
\(940\) 11.4155 23.7291i 0.372331 0.773958i
\(941\) −38.7948 38.7948i −1.26468 1.26468i −0.948801 0.315875i \(-0.897702\pi\)
−0.315875 0.948801i \(-0.602298\pi\)
\(942\) −13.0122 + 16.9914i −0.423960 + 0.553609i
\(943\) 44.0204 + 44.0204i 1.43350 + 1.43350i
\(944\) 10.8755 6.33446i 0.353967 0.206169i
\(945\) 9.93112 0.729227i 0.323059 0.0237218i
\(946\) −1.08666 8.19357i −0.0353304 0.266396i
\(947\) 4.62835 0.150401 0.0752006 0.997168i \(-0.476040\pi\)
0.0752006 + 0.997168i \(0.476040\pi\)
\(948\) 33.6171 + 19.3234i 1.09183 + 0.627594i
\(949\) 0.262577 + 0.262577i 0.00852361 + 0.00852361i
\(950\) 4.98740 1.42577i 0.161813 0.0462582i
\(951\) 50.2611i 1.62983i
\(952\) 17.6834 + 4.27687i 0.573122 + 0.138614i
\(953\) −11.7624 11.7624i −0.381021 0.381021i 0.490449 0.871470i \(-0.336833\pi\)
−0.871470 + 0.490449i \(0.836833\pi\)
\(954\) 16.8151 + 12.8772i 0.544408 + 0.416914i
\(955\) −40.0405 + 2.94012i −1.29568 + 0.0951399i
\(956\) 15.0010 4.05021i 0.485166 0.130993i
\(957\) 7.15566i 0.231310i
\(958\) 0.202219 + 0.154862i 0.00653341 + 0.00500336i
\(959\) 11.4492 11.4492i 0.369714 0.369714i
\(960\) −30.8805 + 36.1919i −0.996664 + 1.16809i
\(961\) 23.0720i 0.744259i
\(962\) −64.8080 49.6307i −2.08949 1.60016i
\(963\) 62.8361 2.02486
\(964\) 0.456553 + 0.262430i 0.0147046 + 0.00845231i
\(965\) −0.324575 4.42029i −0.0104485 0.142294i
\(966\) 36.6176 4.85636i 1.17815 0.156251i
\(967\) 6.58343 6.58343i 0.211709 0.211709i −0.593284 0.804993i \(-0.702169\pi\)
0.804993 + 0.593284i \(0.202169\pi\)
\(968\) −10.9557 26.2367i −0.352130 0.843278i
\(969\) −4.75780 + 6.48634i −0.152843 + 0.208371i
\(970\) 0.259004 + 1.24474i 0.00831611 + 0.0399662i
\(971\) 17.9459i 0.575912i 0.957644 + 0.287956i \(0.0929757\pi\)
−0.957644 + 0.287956i \(0.907024\pi\)
\(972\) 10.8813 + 40.3014i 0.349016 + 1.29267i
\(973\) 2.06007 2.06007i 0.0660427 0.0660427i
\(974\) −14.5053 + 1.92375i −0.464779 + 0.0616408i
\(975\) 56.6213 + 42.0519i 1.81333 + 1.34674i
\(976\) −14.6031 3.85317i −0.467433 0.123337i
\(977\) −2.49628 2.49628i −0.0798631 0.0798631i 0.666047 0.745910i \(-0.267985\pi\)
−0.745910 + 0.666047i \(0.767985\pi\)
\(978\) −12.4426 93.8186i −0.397870 2.99999i
\(979\) −8.60475 8.60475i −0.275009 0.275009i
\(980\) 6.75238 + 19.2721i 0.215697 + 0.615624i
\(981\) −53.5279 + 53.5279i −1.70901 + 1.70901i
\(982\) −2.44834 18.4608i −0.0781296 0.589107i
\(983\) 30.1790 0.962560 0.481280 0.876567i \(-0.340172\pi\)
0.481280 + 0.876567i \(0.340172\pi\)
\(984\) −68.8090 28.2710i −2.19355 0.901247i
\(985\) 1.55200 + 21.1363i 0.0494510 + 0.673458i
\(986\) 4.52152 + 15.4682i 0.143995 + 0.492606i
\(987\) 17.2746 17.2746i 0.549857 0.549857i
\(988\) 3.87788 6.74639i 0.123372 0.214631i
\(989\) −26.7241 26.7241i −0.849777 0.849777i
\(990\) 10.4872 + 6.87458i 0.333305 + 0.218489i
\(991\) −12.8847 + 12.8847i −0.409297 + 0.409297i −0.881493 0.472197i \(-0.843461\pi\)
0.472197 + 0.881493i \(0.343461\pi\)
\(992\) −2.00360 + 15.8013i −0.0636143 + 0.501692i
\(993\) −19.8510 −0.629953
\(994\) 2.62303 3.42517i 0.0831975 0.108640i
\(995\) 33.5108 38.8221i 1.06236 1.23074i
\(996\) −78.4790 45.1103i −2.48670 1.42938i
\(997\) 36.5622 1.15794 0.578969 0.815350i \(-0.303455\pi\)
0.578969 + 0.815350i \(0.303455\pi\)
\(998\) 29.4416 + 22.5467i 0.931958 + 0.713704i
\(999\) −31.0659 −0.982882
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.t.a.523.5 208
5.2 odd 4 680.2.bl.a.387.49 yes 208
8.3 odd 2 inner 680.2.t.a.523.56 yes 208
17.4 even 4 680.2.bl.a.123.100 yes 208
40.27 even 4 680.2.bl.a.387.100 yes 208
85.72 odd 4 inner 680.2.t.a.667.56 yes 208
136.123 odd 4 680.2.bl.a.123.49 yes 208
680.667 even 4 inner 680.2.t.a.667.5 yes 208
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.t.a.523.5 208 1.1 even 1 trivial
680.2.t.a.523.56 yes 208 8.3 odd 2 inner
680.2.t.a.667.5 yes 208 680.667 even 4 inner
680.2.t.a.667.56 yes 208 85.72 odd 4 inner
680.2.bl.a.123.49 yes 208 136.123 odd 4
680.2.bl.a.123.100 yes 208 17.4 even 4
680.2.bl.a.387.49 yes 208 5.2 odd 4
680.2.bl.a.387.100 yes 208 40.27 even 4