Properties

Label 680.2.t.a.523.17
Level $680$
Weight $2$
Character 680.523
Analytic conductor $5.430$
Analytic rank $0$
Dimension $208$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(523,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.523"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.t (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(208\)
Relative dimension: \(104\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 523.17
Character \(\chi\) \(=\) 680.523
Dual form 680.2.t.a.667.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.23139 - 0.695478i) q^{2} -2.83257i q^{3} +(1.03262 + 1.71280i) q^{4} +(1.41742 - 1.72943i) q^{5} +(-1.96999 + 3.48799i) q^{6} -3.96131 q^{7} +(-0.0803370 - 2.82729i) q^{8} -5.02347 q^{9} +(-2.94817 + 1.14381i) q^{10} +(4.48255 - 4.48255i) q^{11} +(4.85164 - 2.92497i) q^{12} +(-2.99784 + 2.99784i) q^{13} +(4.87790 + 2.75500i) q^{14} +(-4.89873 - 4.01494i) q^{15} +(-1.86739 + 3.53735i) q^{16} +(-2.84925 + 2.98023i) q^{17} +(6.18583 + 3.49371i) q^{18} -0.774926 q^{19} +(4.42583 + 0.641918i) q^{20} +11.2207i q^{21} +(-8.63727 + 2.40223i) q^{22} -3.16329i q^{23} +(-8.00849 + 0.227560i) q^{24} +(-0.981842 - 4.90265i) q^{25} +(5.77642 - 1.60656i) q^{26} +5.73162i q^{27} +(-4.09053 - 6.78494i) q^{28} +(-0.715095 - 0.715095i) q^{29} +(3.23992 + 8.35090i) q^{30} +(-3.89586 + 3.89586i) q^{31} +(4.75963 - 3.05712i) q^{32} +(-12.6972 - 12.6972i) q^{33} +(5.58121 - 1.68822i) q^{34} +(-5.61483 + 6.85079i) q^{35} +(-5.18734 - 8.60421i) q^{36} -2.82223i q^{37} +(0.954233 + 0.538944i) q^{38} +(8.49159 + 8.49159i) q^{39} +(-5.00346 - 3.86851i) q^{40} +(-0.420361 + 0.420361i) q^{41} +(7.80374 - 13.8170i) q^{42} +(4.23204 - 4.23204i) q^{43} +(12.3065 + 3.04895i) q^{44} +(-7.12036 + 8.68773i) q^{45} +(-2.20000 + 3.89523i) q^{46} +(5.32420 + 5.32420i) q^{47} +(10.0198 + 5.28952i) q^{48} +8.69195 q^{49} +(-2.20066 + 6.71990i) q^{50} +(8.44172 + 8.07071i) q^{51} +(-8.23033 - 2.03908i) q^{52} +(-5.72750 - 5.72750i) q^{53} +(3.98622 - 7.05783i) q^{54} +(-1.39859 - 14.1059i) q^{55} +(0.318239 + 11.1997i) q^{56} +2.19503i q^{57} +(0.383225 + 1.37789i) q^{58} -10.4162 q^{59} +(1.81828 - 12.5365i) q^{60} +(7.58216 + 7.58216i) q^{61} +(7.50680 - 2.08782i) q^{62} +19.8995 q^{63} +(-7.98709 + 0.454271i) q^{64} +(0.935349 + 9.43373i) q^{65} +(6.80450 + 24.4657i) q^{66} +(2.87710 - 2.87710i) q^{67} +(-8.04674 - 1.80276i) q^{68} -8.96024 q^{69} +(11.6786 - 4.53098i) q^{70} +(5.10666 - 5.10666i) q^{71} +(0.403570 + 14.2028i) q^{72} +10.9501i q^{73} +(-1.96280 + 3.47526i) q^{74} +(-13.8871 + 2.78114i) q^{75} +(-0.800205 - 1.32730i) q^{76} +(-17.7568 + 17.7568i) q^{77} +(-4.55071 - 16.3621i) q^{78} +(-1.01300 + 1.01300i) q^{79} +(3.47072 + 8.24343i) q^{80} +1.16483 q^{81} +(0.809978 - 0.225275i) q^{82} +(2.19557 - 2.19557i) q^{83} +(-19.2188 + 11.5867i) q^{84} +(1.11551 + 9.15181i) q^{85} +(-8.15456 + 2.26798i) q^{86} +(-2.02556 + 2.02556i) q^{87} +(-13.0336 - 12.3133i) q^{88} -6.44059i q^{89} +(14.8100 - 5.74588i) q^{90} +(11.8753 - 11.8753i) q^{91} +(5.41809 - 3.26648i) q^{92} +(11.0353 + 11.0353i) q^{93} +(-2.85328 - 10.2590i) q^{94} +(-1.09840 + 1.34018i) q^{95} +(-8.65950 - 13.4820i) q^{96} -4.39822 q^{97} +(-10.7031 - 6.04506i) q^{98} +(-22.5180 + 22.5180i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 208 q - 8 q^{6} - 192 q^{9} + 2 q^{10} - 8 q^{11} + 8 q^{12} - 16 q^{14} - 16 q^{16} - 12 q^{18} - 10 q^{20} + 4 q^{22} + 16 q^{24} + 12 q^{28} - 24 q^{30} + 20 q^{32} - 8 q^{33} - 4 q^{34} - 8 q^{35} - 12 q^{38}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.23139 0.695478i −0.870721 0.491777i
\(3\) 2.83257i 1.63539i −0.575654 0.817693i \(-0.695253\pi\)
0.575654 0.817693i \(-0.304747\pi\)
\(4\) 1.03262 + 1.71280i 0.516310 + 0.856402i
\(5\) 1.41742 1.72943i 0.633889 0.773424i
\(6\) −1.96999 + 3.48799i −0.804246 + 1.42397i
\(7\) −3.96131 −1.49723 −0.748617 0.663003i \(-0.769282\pi\)
−0.748617 + 0.663003i \(0.769282\pi\)
\(8\) −0.0803370 2.82729i −0.0284034 0.999597i
\(9\) −5.02347 −1.67449
\(10\) −2.94817 + 1.14381i −0.932293 + 0.361704i
\(11\) 4.48255 4.48255i 1.35154 1.35154i 0.467601 0.883940i \(-0.345119\pi\)
0.883940 0.467601i \(-0.154881\pi\)
\(12\) 4.85164 2.92497i 1.40055 0.844367i
\(13\) −2.99784 + 2.99784i −0.831450 + 0.831450i −0.987715 0.156265i \(-0.950055\pi\)
0.156265 + 0.987715i \(0.450055\pi\)
\(14\) 4.87790 + 2.75500i 1.30367 + 0.736305i
\(15\) −4.89873 4.01494i −1.26485 1.03665i
\(16\) −1.86739 + 3.53735i −0.466847 + 0.884338i
\(17\) −2.84925 + 2.98023i −0.691045 + 0.722812i
\(18\) 6.18583 + 3.49371i 1.45801 + 0.823476i
\(19\) −0.774926 −0.177780 −0.0888901 0.996041i \(-0.528332\pi\)
−0.0888901 + 0.996041i \(0.528332\pi\)
\(20\) 4.42583 + 0.641918i 0.989645 + 0.143537i
\(21\) 11.2207i 2.44856i
\(22\) −8.63727 + 2.40223i −1.84147 + 0.512158i
\(23\) 3.16329i 0.659591i −0.944052 0.329796i \(-0.893020\pi\)
0.944052 0.329796i \(-0.106980\pi\)
\(24\) −8.00849 + 0.227560i −1.63473 + 0.0464506i
\(25\) −0.981842 4.90265i −0.196368 0.980530i
\(26\) 5.77642 1.60656i 1.13285 0.315073i
\(27\) 5.73162i 1.10305i
\(28\) −4.09053 6.78494i −0.773037 1.28223i
\(29\) −0.715095 0.715095i −0.132790 0.132790i 0.637588 0.770378i \(-0.279932\pi\)
−0.770378 + 0.637588i \(0.779932\pi\)
\(30\) 3.23992 + 8.35090i 0.591526 + 1.52466i
\(31\) −3.89586 + 3.89586i −0.699718 + 0.699718i −0.964350 0.264632i \(-0.914750\pi\)
0.264632 + 0.964350i \(0.414750\pi\)
\(32\) 4.75963 3.05712i 0.841391 0.540427i
\(33\) −12.6972 12.6972i −2.21029 2.21029i
\(34\) 5.58121 1.68822i 0.957170 0.289528i
\(35\) −5.61483 + 6.85079i −0.949080 + 1.15800i
\(36\) −5.18734 8.60421i −0.864556 1.43404i
\(37\) 2.82223i 0.463972i −0.972719 0.231986i \(-0.925478\pi\)
0.972719 0.231986i \(-0.0745224\pi\)
\(38\) 0.954233 + 0.538944i 0.154797 + 0.0874283i
\(39\) 8.49159 + 8.49159i 1.35974 + 1.35974i
\(40\) −5.00346 3.86851i −0.791116 0.611666i
\(41\) −0.420361 + 0.420361i −0.0656493 + 0.0656493i −0.739169 0.673520i \(-0.764782\pi\)
0.673520 + 0.739169i \(0.264782\pi\)
\(42\) 7.80374 13.8170i 1.20414 2.13201i
\(43\) 4.23204 4.23204i 0.645380 0.645380i −0.306493 0.951873i \(-0.599156\pi\)
0.951873 + 0.306493i \(0.0991557\pi\)
\(44\) 12.3065 + 3.04895i 1.85528 + 0.459647i
\(45\) −7.12036 + 8.68773i −1.06144 + 1.29509i
\(46\) −2.20000 + 3.89523i −0.324372 + 0.574320i
\(47\) 5.32420 + 5.32420i 0.776614 + 0.776614i 0.979253 0.202640i \(-0.0649520\pi\)
−0.202640 + 0.979253i \(0.564952\pi\)
\(48\) 10.0198 + 5.28952i 1.44623 + 0.763476i
\(49\) 8.69195 1.24171
\(50\) −2.20066 + 6.71990i −0.311220 + 0.950338i
\(51\) 8.44172 + 8.07071i 1.18208 + 1.13013i
\(52\) −8.23033 2.03908i −1.14134 0.282769i
\(53\) −5.72750 5.72750i −0.786732 0.786732i 0.194225 0.980957i \(-0.437781\pi\)
−0.980957 + 0.194225i \(0.937781\pi\)
\(54\) 3.98622 7.05783i 0.542455 0.960450i
\(55\) −1.39859 14.1059i −0.188586 1.90204i
\(56\) 0.318239 + 11.1997i 0.0425265 + 1.49663i
\(57\) 2.19503i 0.290739i
\(58\) 0.383225 + 1.37789i 0.0503199 + 0.180926i
\(59\) −10.4162 −1.35608 −0.678040 0.735025i \(-0.737170\pi\)
−0.678040 + 0.735025i \(0.737170\pi\)
\(60\) 1.81828 12.5365i 0.234739 1.61845i
\(61\) 7.58216 + 7.58216i 0.970796 + 0.970796i 0.999586 0.0287893i \(-0.00916519\pi\)
−0.0287893 + 0.999586i \(0.509165\pi\)
\(62\) 7.50680 2.08782i 0.953364 0.265154i
\(63\) 19.8995 2.50710
\(64\) −7.98709 + 0.454271i −0.998386 + 0.0567839i
\(65\) 0.935349 + 9.43373i 0.116016 + 1.17011i
\(66\) 6.80450 + 24.4657i 0.837576 + 3.01152i
\(67\) 2.87710 2.87710i 0.351493 0.351493i −0.509172 0.860665i \(-0.670048\pi\)
0.860665 + 0.509172i \(0.170048\pi\)
\(68\) −8.04674 1.80276i −0.975811 0.218616i
\(69\) −8.96024 −1.07869
\(70\) 11.6786 4.53098i 1.39586 0.541555i
\(71\) 5.10666 5.10666i 0.606049 0.606049i −0.335862 0.941911i \(-0.609028\pi\)
0.941911 + 0.335862i \(0.109028\pi\)
\(72\) 0.403570 + 14.2028i 0.0475612 + 1.67381i
\(73\) 10.9501i 1.28162i 0.767702 + 0.640808i \(0.221400\pi\)
−0.767702 + 0.640808i \(0.778600\pi\)
\(74\) −1.96280 + 3.47526i −0.228171 + 0.403990i
\(75\) −13.8871 + 2.78114i −1.60355 + 0.321138i
\(76\) −0.800205 1.32730i −0.0917898 0.152251i
\(77\) −17.7568 + 17.7568i −2.02357 + 2.02357i
\(78\) −4.55071 16.3621i −0.515266 1.85265i
\(79\) −1.01300 + 1.01300i −0.113971 + 0.113971i −0.761792 0.647821i \(-0.775680\pi\)
0.647821 + 0.761792i \(0.275680\pi\)
\(80\) 3.47072 + 8.24343i 0.388038 + 0.921643i
\(81\) 1.16483 0.129425
\(82\) 0.809978 0.225275i 0.0894471 0.0248774i
\(83\) 2.19557 2.19557i 0.240995 0.240995i −0.576267 0.817262i \(-0.695491\pi\)
0.817262 + 0.576267i \(0.195491\pi\)
\(84\) −19.2188 + 11.5867i −2.09695 + 1.26421i
\(85\) 1.11551 + 9.15181i 0.120994 + 0.992653i
\(86\) −8.15456 + 2.26798i −0.879329 + 0.244563i
\(87\) −2.02556 + 2.02556i −0.217163 + 0.217163i
\(88\) −13.0336 12.3133i −1.38938 1.31261i
\(89\) 6.44059i 0.682701i −0.939936 0.341351i \(-0.889116\pi\)
0.939936 0.341351i \(-0.110884\pi\)
\(90\) 14.8100 5.74588i 1.56111 0.605669i
\(91\) 11.8753 11.8753i 1.24487 1.24487i
\(92\) 5.41809 3.26648i 0.564875 0.340554i
\(93\) 11.0353 + 11.0353i 1.14431 + 1.14431i
\(94\) −2.85328 10.2590i −0.294293 1.05814i
\(95\) −1.09840 + 1.34018i −0.112693 + 0.137499i
\(96\) −8.65950 13.4820i −0.883807 1.37600i
\(97\) −4.39822 −0.446571 −0.223286 0.974753i \(-0.571678\pi\)
−0.223286 + 0.974753i \(0.571678\pi\)
\(98\) −10.7031 6.04506i −1.08118 0.610643i
\(99\) −22.5180 + 22.5180i −2.26314 + 2.26314i
\(100\) 7.38341 6.74428i 0.738341 0.674428i
\(101\) 2.49860i 0.248620i −0.992243 0.124310i \(-0.960328\pi\)
0.992243 0.124310i \(-0.0396717\pi\)
\(102\) −4.78201 15.8092i −0.473490 1.56534i
\(103\) 2.50948 2.50948i 0.247266 0.247266i −0.572582 0.819848i \(-0.694058\pi\)
0.819848 + 0.572582i \(0.194058\pi\)
\(104\) 8.71658 + 8.23490i 0.854731 + 0.807499i
\(105\) 19.4054 + 15.9044i 1.89377 + 1.55211i
\(106\) 3.06941 + 11.0361i 0.298127 + 1.07192i
\(107\) 2.41439 0.233408 0.116704 0.993167i \(-0.462767\pi\)
0.116704 + 0.993167i \(0.462767\pi\)
\(108\) −9.81714 + 5.91859i −0.944655 + 0.569517i
\(109\) −0.464364 + 0.464364i −0.0444780 + 0.0444780i −0.728996 0.684518i \(-0.760013\pi\)
0.684518 + 0.728996i \(0.260013\pi\)
\(110\) −8.08814 + 18.3425i −0.771174 + 1.74889i
\(111\) −7.99418 −0.758774
\(112\) 7.39730 14.0125i 0.698979 1.32406i
\(113\) 0.658607 0.0619566 0.0309783 0.999520i \(-0.490138\pi\)
0.0309783 + 0.999520i \(0.490138\pi\)
\(114\) 1.52660 2.70293i 0.142979 0.253153i
\(115\) −5.47068 4.48371i −0.510143 0.418108i
\(116\) 0.486395 1.96324i 0.0451607 0.182282i
\(117\) 15.0595 15.0595i 1.39225 1.39225i
\(118\) 12.8264 + 7.24427i 1.18077 + 0.666889i
\(119\) 11.2868 11.8056i 1.03466 1.08222i
\(120\) −10.9578 + 14.1727i −1.00031 + 1.29378i
\(121\) 29.1866i 2.65332i
\(122\) −4.06334 14.6098i −0.367877 1.32271i
\(123\) 1.19070 + 1.19070i 0.107362 + 0.107362i
\(124\) −10.6958 2.64990i −0.960511 0.237968i
\(125\) −9.87046 5.25109i −0.882841 0.469672i
\(126\) −24.5040 13.8397i −2.18299 1.23294i
\(127\) 5.02540 5.02540i 0.445933 0.445933i −0.448067 0.894000i \(-0.647888\pi\)
0.894000 + 0.448067i \(0.147888\pi\)
\(128\) 10.1511 + 4.99546i 0.897241 + 0.441541i
\(129\) −11.9876 11.9876i −1.05545 1.05545i
\(130\) 5.40918 12.2671i 0.474416 1.07589i
\(131\) −5.09343 5.09343i −0.445015 0.445015i 0.448678 0.893693i \(-0.351895\pi\)
−0.893693 + 0.448678i \(0.851895\pi\)
\(132\) 8.63638 34.8591i 0.751701 3.03409i
\(133\) 3.06972 0.266179
\(134\) −5.54377 + 1.54186i −0.478909 + 0.133196i
\(135\) 9.91243 + 8.12411i 0.853126 + 0.699212i
\(136\) 8.65486 + 7.81622i 0.742148 + 0.670236i
\(137\) −2.25763 + 2.25763i −0.192883 + 0.192883i −0.796940 0.604058i \(-0.793550\pi\)
0.604058 + 0.796940i \(0.293550\pi\)
\(138\) 11.0335 + 6.23165i 0.939235 + 0.530473i
\(139\) 13.5356 13.5356i 1.14807 1.14807i 0.161144 0.986931i \(-0.448482\pi\)
0.986931 0.161144i \(-0.0515183\pi\)
\(140\) −17.5321 2.54284i −1.48173 0.214909i
\(141\) 15.0812 15.0812i 1.27006 1.27006i
\(142\) −9.83984 + 2.73670i −0.825741 + 0.229659i
\(143\) 26.8759i 2.24748i
\(144\) 9.38077 17.7698i 0.781731 1.48081i
\(145\) −2.25030 + 0.223115i −0.186877 + 0.0185287i
\(146\) 7.61557 13.4838i 0.630269 1.11593i
\(147\) 24.6206i 2.03067i
\(148\) 4.83393 2.91430i 0.397347 0.239554i
\(149\) −7.14570 −0.585399 −0.292699 0.956204i \(-0.594554\pi\)
−0.292699 + 0.956204i \(0.594554\pi\)
\(150\) 19.0346 + 6.23353i 1.55417 + 0.508966i
\(151\) −16.1485 −1.31415 −0.657074 0.753826i \(-0.728206\pi\)
−0.657074 + 0.753826i \(0.728206\pi\)
\(152\) 0.0622552 + 2.19094i 0.00504957 + 0.177709i
\(153\) 14.3131 14.9711i 1.15715 1.21034i
\(154\) 34.2149 9.51598i 2.75711 0.766820i
\(155\) 1.21554 + 12.2597i 0.0976346 + 0.984722i
\(156\) −5.77583 + 23.3130i −0.462437 + 1.86653i
\(157\) −7.15502 7.15502i −0.571033 0.571033i 0.361384 0.932417i \(-0.382304\pi\)
−0.932417 + 0.361384i \(0.882304\pi\)
\(158\) 1.95191 0.542873i 0.155285 0.0431886i
\(159\) −16.2236 + 16.2236i −1.28661 + 1.28661i
\(160\) 1.45933 12.5646i 0.115370 0.993323i
\(161\) 12.5308i 0.987562i
\(162\) −1.43435 0.810112i −0.112693 0.0636484i
\(163\) −16.1590 −1.26567 −0.632836 0.774286i \(-0.718109\pi\)
−0.632836 + 0.774286i \(0.718109\pi\)
\(164\) −1.15407 0.285922i −0.0901176 0.0223268i
\(165\) −39.9560 + 3.96162i −3.11057 + 0.308411i
\(166\) −4.23056 + 1.17662i −0.328355 + 0.0913234i
\(167\) 18.0902i 1.39986i −0.714209 0.699932i \(-0.753214\pi\)
0.714209 0.699932i \(-0.246786\pi\)
\(168\) 31.7241 0.901437i 2.44757 0.0695473i
\(169\) 4.97404i 0.382619i
\(170\) 4.99126 12.0452i 0.382812 0.923826i
\(171\) 3.89282 0.297691
\(172\) 11.6187 + 2.87856i 0.885920 + 0.219488i
\(173\) 10.4310 0.793058 0.396529 0.918022i \(-0.370215\pi\)
0.396529 + 0.918022i \(0.370215\pi\)
\(174\) 3.90298 1.08551i 0.295884 0.0822925i
\(175\) 3.88938 + 19.4209i 0.294009 + 1.46808i
\(176\) 7.48569 + 24.2270i 0.564255 + 1.82618i
\(177\) 29.5048i 2.21771i
\(178\) −4.47929 + 7.93085i −0.335737 + 0.594442i
\(179\) −5.75799 −0.430372 −0.215186 0.976573i \(-0.569036\pi\)
−0.215186 + 0.976573i \(0.569036\pi\)
\(180\) −22.2330 3.22466i −1.65715 0.240352i
\(181\) 0.0861720 + 0.0861720i 0.00640511 + 0.00640511i 0.710302 0.703897i \(-0.248558\pi\)
−0.703897 + 0.710302i \(0.748558\pi\)
\(182\) −22.8822 + 6.36409i −1.69614 + 0.471738i
\(183\) 21.4770 21.4770i 1.58763 1.58763i
\(184\) −8.94352 + 0.254129i −0.659325 + 0.0187346i
\(185\) −4.88085 4.00029i −0.358847 0.294107i
\(186\) −5.91391 21.2635i −0.433629 1.55912i
\(187\) 0.587125 + 26.1310i 0.0429348 + 1.91088i
\(188\) −3.62143 + 14.6172i −0.264120 + 1.06607i
\(189\) 22.7047i 1.65152i
\(190\) 2.28461 0.886367i 0.165743 0.0643038i
\(191\) 14.3693i 1.03973i −0.854249 0.519864i \(-0.825983\pi\)
0.854249 0.519864i \(-0.174017\pi\)
\(192\) 1.28676 + 22.6240i 0.0928637 + 1.63275i
\(193\) 20.2298 1.45617 0.728087 0.685485i \(-0.240410\pi\)
0.728087 + 0.685485i \(0.240410\pi\)
\(194\) 5.41590 + 3.05886i 0.388839 + 0.219614i
\(195\) 26.7217 2.64944i 1.91358 0.189731i
\(196\) 8.97549 + 14.8876i 0.641106 + 1.06340i
\(197\) −23.0535 −1.64249 −0.821245 0.570575i \(-0.806720\pi\)
−0.821245 + 0.570575i \(0.806720\pi\)
\(198\) 43.3890 12.0675i 3.08352 0.857603i
\(199\) −19.0179 19.0179i −1.34814 1.34814i −0.887677 0.460467i \(-0.847682\pi\)
−0.460467 0.887677i \(-0.652318\pi\)
\(200\) −13.7823 + 3.16981i −0.974557 + 0.224140i
\(201\) −8.14959 8.14959i −0.574828 0.574828i
\(202\) −1.73772 + 3.07674i −0.122266 + 0.216479i
\(203\) 2.83271 + 2.83271i 0.198817 + 0.198817i
\(204\) −5.10644 + 22.7930i −0.357522 + 1.59583i
\(205\) 0.131156 + 1.32281i 0.00916033 + 0.0923892i
\(206\) −4.83542 + 1.34485i −0.336899 + 0.0936999i
\(207\) 15.8907i 1.10448i
\(208\) −5.00627 16.2025i −0.347123 1.12344i
\(209\) −3.47365 + 3.47365i −0.240277 + 0.240277i
\(210\) −12.8343 33.0805i −0.885652 2.28277i
\(211\) −0.514628 + 0.514628i −0.0354285 + 0.0354285i −0.724599 0.689171i \(-0.757975\pi\)
0.689171 + 0.724599i \(0.257975\pi\)
\(212\) 3.89574 15.7244i 0.267561 1.07996i
\(213\) −14.4650 14.4650i −0.991125 0.991125i
\(214\) −2.97304 1.67915i −0.203233 0.114785i
\(215\) −1.32043 13.3176i −0.0900526 0.908251i
\(216\) 16.2049 0.460461i 1.10261 0.0313304i
\(217\) 15.4327 15.4327i 1.04764 1.04764i
\(218\) 0.894766 0.248856i 0.0606012 0.0168547i
\(219\) 31.0170 2.09594
\(220\) 22.7164 16.9616i 1.53154 1.14355i
\(221\) −0.392657 17.4758i −0.0264130 1.17555i
\(222\) 9.84392 + 5.55978i 0.660680 + 0.373148i
\(223\) −20.2840 20.2840i −1.35831 1.35831i −0.875996 0.482317i \(-0.839795\pi\)
−0.482317 0.875996i \(-0.660205\pi\)
\(224\) −18.8543 + 12.1102i −1.25976 + 0.809145i
\(225\) 4.93225 + 24.6283i 0.328817 + 1.64189i
\(226\) −0.810999 0.458047i −0.0539469 0.0304688i
\(227\) 4.26142i 0.282840i −0.989950 0.141420i \(-0.954833\pi\)
0.989950 0.141420i \(-0.0451668\pi\)
\(228\) −3.75966 + 2.26664i −0.248990 + 0.150112i
\(229\) 25.2809i 1.67061i −0.549786 0.835306i \(-0.685291\pi\)
0.549786 0.835306i \(-0.314709\pi\)
\(230\) 3.61819 + 9.32591i 0.238577 + 0.614932i
\(231\) 50.2973 + 50.2973i 3.30932 + 3.30932i
\(232\) −1.96433 + 2.07923i −0.128965 + 0.136508i
\(233\) 4.93751i 0.323467i 0.986834 + 0.161734i \(0.0517085\pi\)
−0.986834 + 0.161734i \(0.948291\pi\)
\(234\) −29.0177 + 8.07052i −1.89694 + 0.527586i
\(235\) 16.7544 1.66119i 1.09294 0.108364i
\(236\) −10.7560 17.8410i −0.700158 1.16135i
\(237\) 2.86939 + 2.86939i 0.186387 + 0.186387i
\(238\) −22.1089 + 6.68756i −1.43311 + 0.433490i
\(239\) 2.45773 0.158977 0.0794887 0.996836i \(-0.474671\pi\)
0.0794887 + 0.996836i \(0.474671\pi\)
\(240\) 23.3501 9.83107i 1.50724 0.634593i
\(241\) −8.81988 8.81988i −0.568139 0.568139i 0.363468 0.931607i \(-0.381593\pi\)
−0.931607 + 0.363468i \(0.881593\pi\)
\(242\) −20.2986 + 35.9399i −1.30484 + 2.31030i
\(243\) 13.8954i 0.891390i
\(244\) −5.15725 + 20.8162i −0.330159 + 1.33262i
\(245\) 12.3201 15.0321i 0.787105 0.960366i
\(246\) −0.638106 2.29432i −0.0406842 0.146281i
\(247\) 2.32310 2.32310i 0.147815 0.147815i
\(248\) 11.3277 + 10.7017i 0.719310 + 0.679561i
\(249\) −6.21910 6.21910i −0.394119 0.394119i
\(250\) 8.50233 + 13.3308i 0.537734 + 0.843114i
\(251\) 23.2059 1.46474 0.732370 0.680907i \(-0.238414\pi\)
0.732370 + 0.680907i \(0.238414\pi\)
\(252\) 20.5486 + 34.0839i 1.29444 + 2.14709i
\(253\) −14.1796 14.1796i −0.891464 0.891464i
\(254\) −9.68327 + 2.69315i −0.607582 + 0.168983i
\(255\) 25.9232 3.15976i 1.62337 0.197872i
\(256\) −9.02571 13.2112i −0.564107 0.825702i
\(257\) 3.02777 + 3.02777i 0.188867 + 0.188867i 0.795206 0.606339i \(-0.207363\pi\)
−0.606339 + 0.795206i \(0.707363\pi\)
\(258\) 6.42422 + 23.0984i 0.399954 + 1.43804i
\(259\) 11.1797i 0.694675i
\(260\) −15.1923 + 11.3435i −0.942184 + 0.703496i
\(261\) 3.59226 + 3.59226i 0.222355 + 0.222355i
\(262\) 2.72961 + 9.81435i 0.168636 + 0.606332i
\(263\) 5.37115 + 5.37115i 0.331199 + 0.331199i 0.853042 0.521843i \(-0.174755\pi\)
−0.521843 + 0.853042i \(0.674755\pi\)
\(264\) −34.8784 + 36.9185i −2.14662 + 2.27218i
\(265\) −18.0236 + 1.78703i −1.10718 + 0.109776i
\(266\) −3.78001 2.13492i −0.231767 0.130901i
\(267\) −18.2434 −1.11648
\(268\) 7.89885 + 1.95695i 0.482499 + 0.119540i
\(269\) 19.0129 + 19.0129i 1.15924 + 1.15924i 0.984640 + 0.174596i \(0.0558621\pi\)
0.174596 + 0.984640i \(0.444138\pi\)
\(270\) −6.55587 16.8978i −0.398978 1.02837i
\(271\) 12.9640i 0.787509i 0.919216 + 0.393755i \(0.128824\pi\)
−0.919216 + 0.393755i \(0.871176\pi\)
\(272\) −5.22146 15.6441i −0.316598 0.948560i
\(273\) −33.6378 33.6378i −2.03585 2.03585i
\(274\) 4.35015 1.20988i 0.262802 0.0730916i
\(275\) −26.3775 17.5752i −1.59063 1.05983i
\(276\) −9.25253 15.3471i −0.556937 0.923789i
\(277\) 0.418408i 0.0251397i 0.999921 + 0.0125699i \(0.00400121\pi\)
−0.999921 + 0.0125699i \(0.995999\pi\)
\(278\) −26.0813 + 7.25383i −1.56425 + 0.435056i
\(279\) 19.5707 19.5707i 1.17167 1.17167i
\(280\) 19.8202 + 15.3244i 1.18449 + 0.915806i
\(281\) 1.16539i 0.0695215i 0.999396 + 0.0347608i \(0.0110669\pi\)
−0.999396 + 0.0347608i \(0.988933\pi\)
\(282\) −29.0594 + 8.08211i −1.73046 + 0.481283i
\(283\) −8.58446 −0.510293 −0.255147 0.966902i \(-0.582124\pi\)
−0.255147 + 0.966902i \(0.582124\pi\)
\(284\) 14.0200 + 3.47346i 0.831931 + 0.206112i
\(285\) 3.79615 + 3.11129i 0.224865 + 0.184297i
\(286\) 18.6916 33.0946i 1.10526 1.95693i
\(287\) 1.66518 1.66518i 0.0982924 0.0982924i
\(288\) −23.9098 + 15.3573i −1.40890 + 0.904939i
\(289\) −0.763546 16.9828i −0.0449145 0.998991i
\(290\) 2.92615 + 1.29029i 0.171830 + 0.0757684i
\(291\) 12.4583i 0.730317i
\(292\) −18.7554 + 11.3073i −1.09758 + 0.661711i
\(293\) −0.0155663 + 0.0155663i −0.000909391 + 0.000909391i −0.707561 0.706652i \(-0.750205\pi\)
0.706652 + 0.707561i \(0.250205\pi\)
\(294\) −17.1231 + 30.3174i −0.998638 + 1.76815i
\(295\) −14.7642 + 18.0141i −0.859604 + 1.04882i
\(296\) −7.97926 + 0.226730i −0.463785 + 0.0131784i
\(297\) 25.6923 + 25.6923i 1.49082 + 1.49082i
\(298\) 8.79912 + 4.96968i 0.509719 + 0.287886i
\(299\) 9.48302 + 9.48302i 0.548417 + 0.548417i
\(300\) −19.1037 20.9140i −1.10295 1.20747i
\(301\) −16.7644 + 16.7644i −0.966284 + 0.966284i
\(302\) 19.8851 + 11.2309i 1.14426 + 0.646268i
\(303\) −7.07747 −0.406590
\(304\) 1.44709 2.74119i 0.0829962 0.157218i
\(305\) 23.8599 2.36570i 1.36621 0.135459i
\(306\) −28.0370 + 8.48073i −1.60277 + 0.484811i
\(307\) −1.54294 + 1.54294i −0.0880605 + 0.0880605i −0.749765 0.661704i \(-0.769833\pi\)
0.661704 + 0.749765i \(0.269833\pi\)
\(308\) −48.7498 12.0778i −2.77778 0.688199i
\(309\) −7.10827 7.10827i −0.404375 0.404375i
\(310\) 7.02954 15.9418i 0.399251 0.905433i
\(311\) 6.32646 6.32646i 0.358741 0.358741i −0.504608 0.863349i \(-0.668363\pi\)
0.863349 + 0.504608i \(0.168363\pi\)
\(312\) 23.3260 24.6903i 1.32057 1.39782i
\(313\) 27.7463 1.56831 0.784155 0.620564i \(-0.213096\pi\)
0.784155 + 0.620564i \(0.213096\pi\)
\(314\) 3.83443 + 13.7868i 0.216389 + 0.778031i
\(315\) 28.2059 34.4147i 1.58922 1.93905i
\(316\) −2.78111 0.689023i −0.156449 0.0387606i
\(317\) 23.9145 1.34317 0.671586 0.740927i \(-0.265613\pi\)
0.671586 + 0.740927i \(0.265613\pi\)
\(318\) 31.2606 8.69432i 1.75301 0.487553i
\(319\) −6.41090 −0.358942
\(320\) −10.5354 + 14.4570i −0.588949 + 0.808170i
\(321\) 6.83893i 0.381712i
\(322\) 8.71486 15.4302i 0.485660 0.859891i
\(323\) 2.20796 2.30946i 0.122854 0.128502i
\(324\) 1.20283 + 1.99512i 0.0668236 + 0.110840i
\(325\) 17.6407 + 11.7539i 0.978532 + 0.651991i
\(326\) 19.8980 + 11.2382i 1.10205 + 0.622428i
\(327\) 1.31534 + 1.31534i 0.0727387 + 0.0727387i
\(328\) 1.22225 + 1.15471i 0.0674875 + 0.0637582i
\(329\) −21.0908 21.0908i −1.16277 1.16277i
\(330\) 51.9565 + 22.9103i 2.86011 + 1.26117i
\(331\) 20.8684i 1.14703i 0.819195 + 0.573515i \(0.194421\pi\)
−0.819195 + 0.573515i \(0.805579\pi\)
\(332\) 6.02776 + 1.49339i 0.330816 + 0.0819602i
\(333\) 14.1774i 0.776917i
\(334\) −12.5814 + 22.2761i −0.688421 + 1.21889i
\(335\) −0.897678 9.05379i −0.0490454 0.494661i
\(336\) −39.6915 20.9534i −2.16535 1.14310i
\(337\) 9.53032 0.519149 0.259575 0.965723i \(-0.416418\pi\)
0.259575 + 0.965723i \(0.416418\pi\)
\(338\) −3.45934 + 6.12496i −0.188163 + 0.333154i
\(339\) 1.86555i 0.101323i
\(340\) −14.5234 + 11.3610i −0.787639 + 0.616137i
\(341\) 34.9268i 1.89139i
\(342\) −4.79356 2.70737i −0.259206 0.146398i
\(343\) −6.70234 −0.361892
\(344\) −12.3052 11.6252i −0.663450 0.626788i
\(345\) −12.7004 + 15.4961i −0.683768 + 0.834282i
\(346\) −12.8446 7.25456i −0.690532 0.390008i
\(347\) 7.63781i 0.410019i −0.978760 0.205009i \(-0.934277\pi\)
0.978760 0.205009i \(-0.0657225\pi\)
\(348\) −5.56102 1.37775i −0.298102 0.0738552i
\(349\) 30.9360i 1.65596i 0.560755 + 0.827982i \(0.310511\pi\)
−0.560755 + 0.827982i \(0.689489\pi\)
\(350\) 8.71749 26.6196i 0.465969 1.42288i
\(351\) −17.1825 17.1825i −0.917132 0.917132i
\(352\) 7.63160 35.0390i 0.406766 1.86758i
\(353\) 17.4423 + 17.4423i 0.928360 + 0.928360i 0.997600 0.0692400i \(-0.0220574\pi\)
−0.0692400 + 0.997600i \(0.522057\pi\)
\(354\) 20.5199 36.3317i 1.09062 1.93101i
\(355\) −1.59332 16.0699i −0.0845646 0.852901i
\(356\) 11.0315 6.65068i 0.584666 0.352486i
\(357\) −33.4402 31.9706i −1.76985 1.69206i
\(358\) 7.09030 + 4.00455i 0.374734 + 0.211647i
\(359\) 5.38926i 0.284434i −0.989835 0.142217i \(-0.954577\pi\)
0.989835 0.142217i \(-0.0454231\pi\)
\(360\) 25.1347 + 19.4334i 1.32472 + 1.02423i
\(361\) −18.3995 −0.968394
\(362\) −0.0461802 0.166042i −0.00242718 0.00872696i
\(363\) −82.6730 −4.33921
\(364\) 32.6029 + 8.07741i 1.70885 + 0.423371i
\(365\) 18.9375 + 15.5209i 0.991231 + 0.812402i
\(366\) −41.3833 + 11.5097i −2.16314 + 0.601621i
\(367\) −6.40541 −0.334360 −0.167180 0.985926i \(-0.553466\pi\)
−0.167180 + 0.985926i \(0.553466\pi\)
\(368\) 11.1897 + 5.90709i 0.583301 + 0.307928i
\(369\) 2.11167 2.11167i 0.109929 0.109929i
\(370\) 3.22809 + 8.32042i 0.167821 + 0.432558i
\(371\) 22.6884 + 22.6884i 1.17792 + 1.17792i
\(372\) −7.50603 + 30.2966i −0.389170 + 1.57081i
\(373\) 0.520047 0.520047i 0.0269270 0.0269270i −0.693515 0.720442i \(-0.743939\pi\)
0.720442 + 0.693515i \(0.243939\pi\)
\(374\) 17.4505 32.5856i 0.902345 1.68496i
\(375\) −14.8741 + 27.9588i −0.768095 + 1.44379i
\(376\) 14.6253 15.4808i 0.754242 0.798359i
\(377\) 4.28748 0.220816
\(378\) −15.7906 + 27.9582i −0.812182 + 1.43802i
\(379\) −19.9985 + 19.9985i −1.02725 + 1.02725i −0.0276362 + 0.999618i \(0.508798\pi\)
−0.999618 + 0.0276362i \(0.991202\pi\)
\(380\) −3.42969 0.497439i −0.175939 0.0255181i
\(381\) −14.2348 14.2348i −0.729272 0.729272i
\(382\) −9.99355 + 17.6942i −0.511314 + 0.905313i
\(383\) −8.15727 8.15727i −0.416817 0.416817i 0.467288 0.884105i \(-0.345231\pi\)
−0.884105 + 0.467288i \(0.845231\pi\)
\(384\) 14.1500 28.7538i 0.722090 1.46734i
\(385\) 5.54026 + 55.8778i 0.282358 + 2.84780i
\(386\) −24.9107 14.0694i −1.26792 0.716113i
\(387\) −21.2595 + 21.2595i −1.08068 + 1.08068i
\(388\) −4.54169 7.53328i −0.230569 0.382444i
\(389\) 6.98167i 0.353985i −0.984212 0.176992i \(-0.943363\pi\)
0.984212 0.176992i \(-0.0566368\pi\)
\(390\) −34.7474 15.3219i −1.75950 0.775854i
\(391\) 9.42733 + 9.01300i 0.476760 + 0.455807i
\(392\) −0.698285 24.5746i −0.0352687 1.24121i
\(393\) −14.4275 + 14.4275i −0.727772 + 0.727772i
\(394\) 28.3877 + 16.0332i 1.43015 + 0.807740i
\(395\) 0.316063 + 3.18775i 0.0159029 + 0.160393i
\(396\) −61.8213 15.3163i −3.10664 0.769674i
\(397\) 37.1717 1.86559 0.932796 0.360404i \(-0.117361\pi\)
0.932796 + 0.360404i \(0.117361\pi\)
\(398\) 10.1918 + 36.6449i 0.510871 + 1.83684i
\(399\) 8.69521i 0.435305i
\(400\) 19.1759 + 5.68204i 0.958794 + 0.284102i
\(401\) 9.84964 9.84964i 0.491867 0.491867i −0.417027 0.908894i \(-0.636928\pi\)
0.908894 + 0.417027i \(0.136928\pi\)
\(402\) 4.36743 + 15.7031i 0.217827 + 0.783202i
\(403\) 23.3583i 1.16356i
\(404\) 4.27961 2.58011i 0.212919 0.128365i
\(405\) 1.65105 2.01449i 0.0820413 0.100101i
\(406\) −1.51807 5.45825i −0.0753406 0.270888i
\(407\) −12.6508 12.6508i −0.627077 0.627077i
\(408\) 22.1400 24.5155i 1.09609 1.21370i
\(409\) 3.23767i 0.160093i 0.996791 + 0.0800463i \(0.0255068\pi\)
−0.996791 + 0.0800463i \(0.974493\pi\)
\(410\) 0.758483 1.72011i 0.0374588 0.0849500i
\(411\) 6.39491 + 6.39491i 0.315438 + 0.315438i
\(412\) 6.88957 + 1.70690i 0.339425 + 0.0840930i
\(413\) 41.2619 2.03037
\(414\) 11.0516 19.5675i 0.543157 0.961693i
\(415\) −0.685034 6.90911i −0.0336270 0.339155i
\(416\) −5.10385 + 23.4333i −0.250237 + 1.14891i
\(417\) −38.3406 38.3406i −1.87755 1.87755i
\(418\) 6.69324 1.86155i 0.327377 0.0910516i
\(419\) 4.05212 + 4.05212i 0.197959 + 0.197959i 0.799125 0.601165i \(-0.205297\pi\)
−0.601165 + 0.799125i \(0.705297\pi\)
\(420\) −7.20277 + 49.6608i −0.351459 + 2.42320i
\(421\) 27.0692i 1.31927i −0.751585 0.659636i \(-0.770710\pi\)
0.751585 0.659636i \(-0.229290\pi\)
\(422\) 0.991619 0.275793i 0.0482712 0.0134254i
\(423\) −26.7459 26.7459i −1.30043 1.30043i
\(424\) −15.7331 + 16.6534i −0.764069 + 0.808761i
\(425\) 17.4085 + 11.0428i 0.844438 + 0.535653i
\(426\) 7.75190 + 27.8721i 0.375581 + 1.35041i
\(427\) −30.0353 30.0353i −1.45351 1.45351i
\(428\) 2.49315 + 4.13537i 0.120511 + 0.199891i
\(429\) 76.1280 3.67549
\(430\) −7.63612 + 17.3174i −0.368247 + 0.835119i
\(431\) −28.3313 28.3313i −1.36467 1.36467i −0.867856 0.496815i \(-0.834503\pi\)
−0.496815 0.867856i \(-0.665497\pi\)
\(432\) −20.2748 10.7032i −0.975470 0.514956i
\(433\) −22.5355 + 22.5355i −1.08299 + 1.08299i −0.0867573 + 0.996229i \(0.527650\pi\)
−0.996229 + 0.0867573i \(0.972350\pi\)
\(434\) −29.7367 + 8.27050i −1.42741 + 0.396997i
\(435\) 0.631991 + 6.37413i 0.0303016 + 0.305616i
\(436\) −1.27488 0.315852i −0.0610555 0.0151266i
\(437\) 2.45131i 0.117262i
\(438\) −38.1939 21.5717i −1.82498 1.03073i
\(439\) −3.55648 3.55648i −0.169742 0.169742i 0.617124 0.786866i \(-0.288298\pi\)
−0.786866 + 0.617124i \(0.788298\pi\)
\(440\) −39.7691 + 5.08745i −1.89592 + 0.242535i
\(441\) −43.6637 −2.07923
\(442\) −11.6705 + 21.7926i −0.555111 + 1.03657i
\(443\) 16.0726 + 16.0726i 0.763632 + 0.763632i 0.976977 0.213345i \(-0.0684359\pi\)
−0.213345 + 0.976977i \(0.568436\pi\)
\(444\) −8.25495 13.6925i −0.391763 0.649815i
\(445\) −11.1385 9.12902i −0.528017 0.432757i
\(446\) 10.8703 + 39.0844i 0.514725 + 1.85070i
\(447\) 20.2407i 0.957354i
\(448\) 31.6393 1.79951i 1.49482 0.0850188i
\(449\) −5.69502 5.69502i −0.268765 0.268765i 0.559838 0.828602i \(-0.310863\pi\)
−0.828602 + 0.559838i \(0.810863\pi\)
\(450\) 11.0549 33.7572i 0.521135 1.59133i
\(451\) 3.76858i 0.177455i
\(452\) 0.680091 + 1.12806i 0.0319888 + 0.0530597i
\(453\) 45.7419i 2.14914i
\(454\) −2.96372 + 5.24745i −0.139094 + 0.246275i
\(455\) −3.70521 37.3699i −0.173703 1.75193i
\(456\) 6.20599 0.176342i 0.290622 0.00825799i
\(457\) 16.0390 + 16.0390i 0.750275 + 0.750275i 0.974530 0.224255i \(-0.0719950\pi\)
−0.224255 + 0.974530i \(0.571995\pi\)
\(458\) −17.5823 + 31.1306i −0.821569 + 1.45464i
\(459\) −17.0815 16.3308i −0.797298 0.762257i
\(460\) 2.03057 14.0002i 0.0946759 0.652761i
\(461\) 25.0074 1.16471 0.582355 0.812935i \(-0.302131\pi\)
0.582355 + 0.812935i \(0.302131\pi\)
\(462\) −26.9547 96.9161i −1.25405 4.50894i
\(463\) 17.8690 17.8690i 0.830442 0.830442i −0.157136 0.987577i \(-0.550226\pi\)
0.987577 + 0.157136i \(0.0502259\pi\)
\(464\) 3.86490 1.19418i 0.179424 0.0554385i
\(465\) 34.7265 3.44311i 1.61040 0.159670i
\(466\) 3.43393 6.07998i 0.159074 0.281650i
\(467\) −2.52384 2.52384i −0.116789 0.116789i 0.646297 0.763086i \(-0.276317\pi\)
−0.763086 + 0.646297i \(0.776317\pi\)
\(468\) 41.3448 + 10.2432i 1.91116 + 0.473494i
\(469\) −11.3971 + 11.3971i −0.526268 + 0.526268i
\(470\) −21.7865 9.60677i −1.00494 0.443127i
\(471\) −20.2671 + 20.2671i −0.933860 + 0.933860i
\(472\) 0.836810 + 29.4497i 0.0385173 + 1.35553i
\(473\) 37.9407i 1.74451i
\(474\) −1.53773 5.52892i −0.0706301 0.253952i
\(475\) 0.760855 + 3.79919i 0.0349104 + 0.174319i
\(476\) 31.8756 + 7.14128i 1.46102 + 0.327320i
\(477\) 28.7719 + 28.7719i 1.31738 + 1.31738i
\(478\) −3.02641 1.70930i −0.138425 0.0781814i
\(479\) 23.6684 + 23.6684i 1.08144 + 1.08144i 0.996376 + 0.0850595i \(0.0271080\pi\)
0.0850595 + 0.996376i \(0.472892\pi\)
\(480\) −35.5903 4.13366i −1.62447 0.188675i
\(481\) 8.46059 + 8.46059i 0.385770 + 0.385770i
\(482\) 4.72664 + 16.9947i 0.215293 + 0.774088i
\(483\) 35.4943 1.61505
\(484\) 49.9908 30.1386i 2.27231 1.36994i
\(485\) −6.23412 + 7.60640i −0.283077 + 0.345389i
\(486\) 9.66395 17.1106i 0.438366 0.776152i
\(487\) 16.4195 0.744040 0.372020 0.928225i \(-0.378665\pi\)
0.372020 + 0.928225i \(0.378665\pi\)
\(488\) 20.8278 22.0461i 0.942831 0.997978i
\(489\) 45.7716i 2.06986i
\(490\) −25.6253 + 9.94193i −1.15764 + 0.449130i
\(491\) 0.375173i 0.0169313i 0.999964 + 0.00846565i \(0.00269473\pi\)
−0.999964 + 0.00846565i \(0.997305\pi\)
\(492\) −0.809895 + 3.26898i −0.0365129 + 0.147377i
\(493\) 4.16863 0.0936632i 0.187746 0.00421838i
\(494\) −4.47630 + 1.24497i −0.201398 + 0.0560137i
\(495\) 7.02579 + 70.8606i 0.315786 + 3.18495i
\(496\) −6.50594 21.0561i −0.292126 0.945448i
\(497\) −20.2291 + 20.2291i −0.907397 + 0.907397i
\(498\) 3.33286 + 11.9834i 0.149349 + 0.536987i
\(499\) 24.1090 + 24.1090i 1.07927 + 1.07927i 0.996575 + 0.0826912i \(0.0263515\pi\)
0.0826912 + 0.996575i \(0.473648\pi\)
\(500\) −1.19836 22.3285i −0.0535923 0.998563i
\(501\) −51.2419 −2.28932
\(502\) −28.5753 16.1392i −1.27538 0.720326i
\(503\) 24.5093i 1.09282i 0.837519 + 0.546408i \(0.184005\pi\)
−0.837519 + 0.546408i \(0.815995\pi\)
\(504\) −1.59867 56.2616i −0.0712102 2.50609i
\(505\) −4.32115 3.54157i −0.192289 0.157598i
\(506\) 7.59896 + 27.3222i 0.337815 + 1.21462i
\(507\) −14.0893 −0.625729
\(508\) 13.7969 + 3.41819i 0.612137 + 0.151658i
\(509\) 12.9200 0.572671 0.286336 0.958129i \(-0.407563\pi\)
0.286336 + 0.958129i \(0.407563\pi\)
\(510\) −34.1190 14.1381i −1.51081 0.626046i
\(511\) 43.3768i 1.91888i
\(512\) 1.92601 + 22.5453i 0.0851186 + 0.996371i
\(513\) 4.44158i 0.196101i
\(514\) −1.62260 5.83409i −0.0715699 0.257331i
\(515\) −0.782977 7.89694i −0.0345021 0.347981i
\(516\) 8.15372 32.9109i 0.358948 1.44882i
\(517\) 47.7320 2.09925
\(518\) 7.77526 13.7666i 0.341625 0.604868i
\(519\) 29.5467i 1.29696i
\(520\) 26.5967 3.40238i 1.16634 0.149204i
\(521\) 20.2898 20.2898i 0.888914 0.888914i −0.105505 0.994419i \(-0.533646\pi\)
0.994419 + 0.105505i \(0.0336458\pi\)
\(522\) −1.92512 6.92179i −0.0842601 0.302959i
\(523\) 11.4938 + 11.4938i 0.502591 + 0.502591i 0.912242 0.409651i \(-0.134350\pi\)
−0.409651 + 0.912242i \(0.634350\pi\)
\(524\) 3.46446 13.9836i 0.151346 0.610878i
\(525\) 55.0111 11.0169i 2.40088 0.480819i
\(526\) −2.87844 10.3495i −0.125506 0.451259i
\(527\) −0.510280 22.7109i −0.0222282 0.989301i
\(528\) 68.6248 21.2038i 2.98651 0.922776i
\(529\) 12.9936 0.564940
\(530\) 23.4368 + 10.3345i 1.01803 + 0.448901i
\(531\) 52.3257 2.27074
\(532\) 3.16986 + 5.25783i 0.137431 + 0.227956i
\(533\) 2.52035i 0.109168i
\(534\) 22.4647 + 12.6879i 0.972143 + 0.549060i
\(535\) 3.42220 4.17551i 0.147955 0.180523i
\(536\) −8.36552 7.90324i −0.361335 0.341368i
\(537\) 16.3099i 0.703825i
\(538\) −10.1892 36.6352i −0.439285 1.57946i
\(539\) 38.9621 38.9621i 1.67822 1.67822i
\(540\) −3.67923 + 25.3672i −0.158329 + 1.09163i
\(541\) 9.83879 9.83879i 0.423003 0.423003i −0.463234 0.886236i \(-0.653311\pi\)
0.886236 + 0.463234i \(0.153311\pi\)
\(542\) 9.01621 15.9637i 0.387279 0.685701i
\(543\) 0.244088 0.244088i 0.0104748 0.0104748i
\(544\) −4.45046 + 22.8953i −0.190812 + 0.981627i
\(545\) 0.144885 + 1.46128i 0.00620621 + 0.0625945i
\(546\) 18.0267 + 64.8154i 0.771473 + 2.77384i
\(547\) 13.3818 0.572166 0.286083 0.958205i \(-0.407647\pi\)
0.286083 + 0.958205i \(0.407647\pi\)
\(548\) −6.19816 1.53560i −0.264772 0.0655977i
\(549\) −38.0887 38.0887i −1.62559 1.62559i
\(550\) 20.2577 + 39.9869i 0.863793 + 1.70505i
\(551\) 0.554146 + 0.554146i 0.0236074 + 0.0236074i
\(552\) 0.719839 + 25.3332i 0.0306384 + 1.07825i
\(553\) 4.01279 4.01279i 0.170641 0.170641i
\(554\) 0.290994 0.515222i 0.0123631 0.0218897i
\(555\) −11.3311 + 13.8254i −0.480979 + 0.586854i
\(556\) 37.1610 + 9.20668i 1.57598 + 0.390450i
\(557\) −11.3921 11.3921i −0.482697 0.482697i 0.423295 0.905992i \(-0.360873\pi\)
−0.905992 + 0.423295i \(0.860873\pi\)
\(558\) −37.7102 + 10.4881i −1.59640 + 0.443997i
\(559\) 25.3739i 1.07320i
\(560\) −13.7486 32.6547i −0.580984 1.37991i
\(561\) 74.0178 1.66307i 3.12503 0.0702151i
\(562\) 0.810505 1.43505i 0.0341891 0.0605339i
\(563\) −3.73416 + 3.73416i −0.157376 + 0.157376i −0.781403 0.624027i \(-0.785496\pi\)
0.624027 + 0.781403i \(0.285496\pi\)
\(564\) 41.4042 + 10.2580i 1.74343 + 0.431938i
\(565\) 0.933523 1.13901i 0.0392736 0.0479187i
\(566\) 10.5708 + 5.97030i 0.444323 + 0.250951i
\(567\) −4.61424 −0.193780
\(568\) −14.8482 14.0277i −0.623019 0.588591i
\(569\) −11.8528 −0.496895 −0.248447 0.968645i \(-0.579920\pi\)
−0.248447 + 0.968645i \(0.579920\pi\)
\(570\) −2.51070 6.47133i −0.105162 0.271054i
\(571\) 14.1611 14.1611i 0.592623 0.592623i −0.345716 0.938339i \(-0.612364\pi\)
0.938339 + 0.345716i \(0.112364\pi\)
\(572\) −46.0332 + 27.7526i −1.92474 + 1.16040i
\(573\) −40.7021 −1.70036
\(574\) −3.20857 + 0.892381i −0.133923 + 0.0372473i
\(575\) −15.5085 + 3.10585i −0.646749 + 0.129523i
\(576\) 40.1229 2.28202i 1.67179 0.0950841i
\(577\) 20.6428 20.6428i 0.859369 0.859369i −0.131894 0.991264i \(-0.542106\pi\)
0.991264 + 0.131894i \(0.0421060\pi\)
\(578\) −10.8710 + 21.4435i −0.452173 + 0.891930i
\(579\) 57.3024i 2.38141i
\(580\) −2.70585 3.62392i −0.112354 0.150475i
\(581\) −8.69731 + 8.69731i −0.360825 + 0.360825i
\(582\) 8.66445 15.3409i 0.359153 0.635902i
\(583\) −51.3476 −2.12660
\(584\) 30.9591 0.879700i 1.28110 0.0364022i
\(585\) −4.69870 47.3901i −0.194267 1.95934i
\(586\) 0.0299941 0.00834208i 0.00123904 0.000344608i
\(587\) −9.85829 9.85829i −0.406895 0.406895i 0.473759 0.880654i \(-0.342897\pi\)
−0.880654 + 0.473759i \(0.842897\pi\)
\(588\) 42.1702 25.4237i 1.73907 1.04846i
\(589\) 3.01901 3.01901i 0.124396 0.124396i
\(590\) 30.7088 11.9142i 1.26426 0.490499i
\(591\) 65.3006i 2.68611i
\(592\) 9.98323 + 5.27021i 0.410308 + 0.216604i
\(593\) −32.7390 + 32.7390i −1.34443 + 1.34443i −0.452839 + 0.891592i \(0.649589\pi\)
−0.891592 + 0.452839i \(0.850411\pi\)
\(594\) −13.7687 49.5055i −0.564936 2.03124i
\(595\) −4.41888 36.2531i −0.181156 1.48623i
\(596\) −7.37880 12.2392i −0.302247 0.501337i
\(597\) −53.8696 + 53.8696i −2.20474 + 2.20474i
\(598\) −5.08202 18.2725i −0.207819 0.747217i
\(599\) 21.7862 0.890159 0.445079 0.895491i \(-0.353175\pi\)
0.445079 + 0.895491i \(0.353175\pi\)
\(600\) 8.97872 + 39.0394i 0.366555 + 1.59378i
\(601\) −16.8759 + 16.8759i −0.688382 + 0.688382i −0.961874 0.273492i \(-0.911821\pi\)
0.273492 + 0.961874i \(0.411821\pi\)
\(602\) 32.3027 8.98416i 1.31656 0.366167i
\(603\) −14.4530 + 14.4530i −0.588572 + 0.588572i
\(604\) −16.6753 27.6592i −0.678508 1.12544i
\(605\) −50.4760 41.3696i −2.05214 1.68191i
\(606\) 8.71509 + 4.92222i 0.354026 + 0.199952i
\(607\) 35.3030i 1.43290i −0.697636 0.716452i \(-0.745765\pi\)
0.697636 0.716452i \(-0.254235\pi\)
\(608\) −3.68836 + 2.36904i −0.149583 + 0.0960772i
\(609\) 8.02386 8.02386i 0.325143 0.325143i
\(610\) −31.0260 13.6810i −1.25621 0.553926i
\(611\) −31.9221 −1.29143
\(612\) 40.4226 + 9.05610i 1.63398 + 0.366071i
\(613\) 3.32327 3.32327i 0.134226 0.134226i −0.636802 0.771027i \(-0.719743\pi\)
0.771027 + 0.636802i \(0.219743\pi\)
\(614\) 2.97304 0.826875i 0.119982 0.0333700i
\(615\) 3.74696 0.371509i 0.151092 0.0149807i
\(616\) 51.6300 + 48.7769i 2.08023 + 1.96528i
\(617\) 18.8391 0.758434 0.379217 0.925308i \(-0.376193\pi\)
0.379217 + 0.925308i \(0.376193\pi\)
\(618\) 3.80938 + 13.6967i 0.153236 + 0.550961i
\(619\) −20.5571 20.5571i −0.826261 0.826261i 0.160737 0.986997i \(-0.448613\pi\)
−0.986997 + 0.160737i \(0.948613\pi\)
\(620\) −19.7432 + 14.7416i −0.792908 + 0.592036i
\(621\) 18.1308 0.727563
\(622\) −12.1902 + 3.39040i −0.488783 + 0.135943i
\(623\) 25.5132i 1.02216i
\(624\) −45.8948 + 14.1806i −1.83726 + 0.567680i
\(625\) −23.0720 + 9.62726i −0.922879 + 0.385090i
\(626\) −34.1663 19.2969i −1.36556 0.771260i
\(627\) 9.83936 + 9.83936i 0.392946 + 0.392946i
\(628\) 4.86672 19.6436i 0.194203 0.783864i
\(629\) 8.41090 + 8.04125i 0.335365 + 0.320626i
\(630\) −58.6671 + 22.7612i −2.33735 + 0.906828i
\(631\) −13.9283 −0.554476 −0.277238 0.960801i \(-0.589419\pi\)
−0.277238 + 0.960801i \(0.589419\pi\)
\(632\) 2.94541 + 2.78265i 0.117162 + 0.110688i
\(633\) 1.45772 + 1.45772i 0.0579393 + 0.0579393i
\(634\) −29.4480 16.6320i −1.16953 0.660542i
\(635\) −1.56797 15.8142i −0.0622229 0.627567i
\(636\) −44.5405 11.0350i −1.76615 0.437565i
\(637\) −26.0570 + 26.0570i −1.03242 + 1.03242i
\(638\) 7.89429 + 4.45864i 0.312538 + 0.176519i
\(639\) −25.6532 + 25.6532i −1.01482 + 1.01482i
\(640\) 23.0277 10.4750i 0.910250 0.414060i
\(641\) −10.2407 10.2407i −0.404483 0.404483i 0.475326 0.879810i \(-0.342330\pi\)
−0.879810 + 0.475326i \(0.842330\pi\)
\(642\) −4.75632 + 8.42135i −0.187717 + 0.332364i
\(643\) 7.15313i 0.282092i −0.990003 0.141046i \(-0.954953\pi\)
0.990003 0.141046i \(-0.0450466\pi\)
\(644\) −21.4627 + 12.9395i −0.845749 + 0.509888i
\(645\) −37.7230 + 3.74021i −1.48534 + 0.147271i
\(646\) −4.32503 + 1.30825i −0.170166 + 0.0514723i
\(647\) −26.1057 26.1057i −1.02632 1.02632i −0.999644 0.0266760i \(-0.991508\pi\)
−0.0266760 0.999644i \(-0.508492\pi\)
\(648\) −0.0935788 3.29330i −0.00367612 0.129373i
\(649\) −46.6914 + 46.6914i −1.83280 + 1.83280i
\(650\) −13.5479 26.7424i −0.531394 1.04892i
\(651\) −43.7143 43.7143i −1.71330 1.71330i
\(652\) −16.6861 27.6772i −0.653479 1.08392i
\(653\) 5.26762i 0.206138i −0.994674 0.103069i \(-0.967134\pi\)
0.994674 0.103069i \(-0.0328662\pi\)
\(654\) −0.704903 2.53449i −0.0275639 0.0991064i
\(655\) −16.0283 + 1.58919i −0.626276 + 0.0620949i
\(656\) −0.701987 2.27194i −0.0274080 0.0887044i
\(657\) 55.0076i 2.14605i
\(658\) 11.3027 + 40.6390i 0.440625 + 1.58427i
\(659\) 49.4899i 1.92785i −0.266168 0.963927i \(-0.585757\pi\)
0.266168 0.963927i \(-0.414243\pi\)
\(660\) −48.0449 64.3459i −1.87014 2.50466i
\(661\) 34.1170 1.32700 0.663499 0.748177i \(-0.269071\pi\)
0.663499 + 0.748177i \(0.269071\pi\)
\(662\) 14.5135 25.6970i 0.564084 0.998744i
\(663\) −49.5016 + 1.11223i −1.92248 + 0.0431954i
\(664\) −6.38388 6.03111i −0.247742 0.234052i
\(665\) 4.35108 5.30886i 0.168728 0.205869i
\(666\) 9.86007 17.4578i 0.382070 0.676478i
\(667\) −2.26205 + 2.26205i −0.0875870 + 0.0875870i
\(668\) 30.9850 18.6803i 1.19885 0.722764i
\(669\) −57.4558 + 57.4558i −2.22137 + 2.22137i
\(670\) −5.19132 + 11.7730i −0.200558 + 0.454831i
\(671\) 67.9749 2.62414
\(672\) 34.3029 + 53.4063i 1.32326 + 2.06019i
\(673\) −27.6753 −1.06681 −0.533403 0.845861i \(-0.679087\pi\)
−0.533403 + 0.845861i \(0.679087\pi\)
\(674\) −11.7355 6.62813i −0.452034 0.255306i
\(675\) 28.1001 5.62755i 1.08157 0.216604i
\(676\) 8.51955 5.13630i 0.327675 0.197550i
\(677\) 4.53230i 0.174191i 0.996200 + 0.0870953i \(0.0277585\pi\)
−0.996200 + 0.0870953i \(0.972242\pi\)
\(678\) −1.29745 + 2.29722i −0.0498283 + 0.0882240i
\(679\) 17.4227 0.668621
\(680\) 25.7852 3.88909i 0.988816 0.149140i
\(681\) −12.0708 −0.462553
\(682\) 24.2908 43.0084i 0.930144 1.64688i
\(683\) 7.32301i 0.280207i 0.990137 + 0.140104i \(0.0447436\pi\)
−0.990137 + 0.140104i \(0.955256\pi\)
\(684\) 4.01980 + 6.66763i 0.153701 + 0.254943i
\(685\) 0.704400 + 7.10443i 0.0269137 + 0.271446i
\(686\) 8.25317 + 4.66133i 0.315107 + 0.177970i
\(687\) −71.6101 −2.73210
\(688\) 7.06734 + 22.8731i 0.269440 + 0.872027i
\(689\) 34.3402 1.30826
\(690\) 26.4163 10.2488i 1.00565 0.390165i
\(691\) −25.0249 + 25.0249i −0.951994 + 0.951994i −0.998899 0.0469056i \(-0.985064\pi\)
0.0469056 + 0.998899i \(0.485064\pi\)
\(692\) 10.7713 + 17.8663i 0.409464 + 0.679176i
\(693\) 89.2005 89.2005i 3.38845 3.38845i
\(694\) −5.31193 + 9.40508i −0.201638 + 0.357012i
\(695\) −4.22322 42.5945i −0.160196 1.61570i
\(696\) 5.88956 + 5.56411i 0.223243 + 0.210907i
\(697\) −0.0550589 2.45049i −0.00208550 0.0928187i
\(698\) 21.5153 38.0941i 0.814365 1.44188i
\(699\) 13.9859 0.528994
\(700\) −29.2479 + 26.7162i −1.10547 + 1.00978i
\(701\) 23.5447i 0.889273i 0.895711 + 0.444636i \(0.146667\pi\)
−0.895711 + 0.444636i \(0.853333\pi\)
\(702\) 9.20821 + 33.1083i 0.347541 + 1.24959i
\(703\) 2.18702i 0.0824851i
\(704\) −33.7663 + 37.8389i −1.27261 + 1.42611i
\(705\) −4.70545 47.4582i −0.177217 1.78738i
\(706\) −9.34746 33.6089i −0.351796 1.26489i
\(707\) 9.89772i 0.372242i
\(708\) −50.5359 + 30.4672i −1.89925 + 1.14503i
\(709\) 34.3112 + 34.3112i 1.28858 + 1.28858i 0.935647 + 0.352937i \(0.114817\pi\)
0.352937 + 0.935647i \(0.385183\pi\)
\(710\) −9.21426 + 20.8963i −0.345805 + 0.784226i
\(711\) 5.08876 5.08876i 0.190843 0.190843i
\(712\) −18.2094 + 0.517418i −0.682426 + 0.0193910i
\(713\) 12.3237 + 12.3237i 0.461528 + 0.461528i
\(714\) 18.9430 + 62.6250i 0.708924 + 2.34368i
\(715\) 46.4800 + 38.0945i 1.73825 + 1.42465i
\(716\) −5.94582 9.86230i −0.222206 0.368571i
\(717\) 6.96170i 0.259989i
\(718\) −3.74811 + 6.63625i −0.139878 + 0.247663i
\(719\) 13.6465 + 13.6465i 0.508929 + 0.508929i 0.914198 0.405269i \(-0.132822\pi\)
−0.405269 + 0.914198i \(0.632822\pi\)
\(720\) −17.4351 41.4106i −0.649766 1.54328i
\(721\) −9.94080 + 9.94080i −0.370215 + 0.370215i
\(722\) 22.6569 + 12.7964i 0.843201 + 0.476234i
\(723\) −24.9830 + 24.9830i −0.929126 + 0.929126i
\(724\) −0.0586127 + 0.236579i −0.00217832 + 0.00879238i
\(725\) −2.80375 + 4.20797i −0.104129 + 0.156280i
\(726\) 101.802 + 57.4973i 3.77824 + 2.13392i
\(727\) 19.5298 + 19.5298i 0.724319 + 0.724319i 0.969482 0.245163i \(-0.0788415\pi\)
−0.245163 + 0.969482i \(0.578841\pi\)
\(728\) −34.5290 32.6210i −1.27973 1.20901i
\(729\) 42.8542 1.58719
\(730\) −12.5248 32.2828i −0.463565 1.19484i
\(731\) 0.554312 + 24.6706i 0.0205020 + 0.912474i
\(732\) 58.9635 + 14.6083i 2.17935 + 0.539938i
\(733\) −16.9836 16.9836i −0.627302 0.627302i 0.320086 0.947388i \(-0.396288\pi\)
−0.947388 + 0.320086i \(0.896288\pi\)
\(734\) 7.88753 + 4.45482i 0.291134 + 0.164430i
\(735\) −42.5795 34.8977i −1.57057 1.28722i
\(736\) −9.67054 15.0561i −0.356461 0.554974i
\(737\) 25.7935i 0.950115i
\(738\) −4.06890 + 1.13166i −0.149778 + 0.0416570i
\(739\) 10.6397 0.391386 0.195693 0.980665i \(-0.437304\pi\)
0.195693 + 0.980665i \(0.437304\pi\)
\(740\) 1.81164 12.4907i 0.0665973 0.459168i
\(741\) −6.58035 6.58035i −0.241735 0.241735i
\(742\) −12.1589 43.7174i −0.446366 1.60492i
\(743\) −10.2782 −0.377071 −0.188535 0.982066i \(-0.560374\pi\)
−0.188535 + 0.982066i \(0.560374\pi\)
\(744\) 30.3134 32.0865i 1.11134 1.17635i
\(745\) −10.1285 + 12.3580i −0.371078 + 0.452761i
\(746\) −1.00206 + 0.278697i −0.0366880 + 0.0102038i
\(747\) −11.0294 + 11.0294i −0.403543 + 0.403543i
\(748\) −44.1509 + 27.9890i −1.61432 + 1.02338i
\(749\) −9.56413 −0.349466
\(750\) 37.7605 24.0835i 1.37882 0.879404i
\(751\) −21.3098 + 21.3098i −0.777607 + 0.777607i −0.979423 0.201817i \(-0.935316\pi\)
0.201817 + 0.979423i \(0.435316\pi\)
\(752\) −28.7759 + 8.89121i −1.04935 + 0.324229i
\(753\) 65.7323i 2.39542i
\(754\) −5.27954 2.98185i −0.192269 0.108592i
\(755\) −22.8892 + 27.9277i −0.833024 + 1.01639i
\(756\) 38.8887 23.4453i 1.41437 0.852699i
\(757\) 19.3377 19.3377i 0.702840 0.702840i −0.262179 0.965019i \(-0.584441\pi\)
0.965019 + 0.262179i \(0.0844412\pi\)
\(758\) 38.5344 10.7173i 1.39963 0.389272i
\(759\) −40.1648 + 40.1648i −1.45789 + 1.45789i
\(760\) 3.87731 + 2.99781i 0.140645 + 0.108742i
\(761\) 18.6969 0.677761 0.338881 0.940829i \(-0.389952\pi\)
0.338881 + 0.940829i \(0.389952\pi\)
\(762\) 7.62855 + 27.4286i 0.276353 + 0.993632i
\(763\) 1.83949 1.83949i 0.0665940 0.0665940i
\(764\) 24.6118 14.8381i 0.890424 0.536822i
\(765\) −5.60373 45.9738i −0.202603 1.66219i
\(766\) 4.37154 + 15.7179i 0.157950 + 0.567912i
\(767\) 31.2262 31.2262i 1.12751 1.12751i
\(768\) −37.4218 + 25.5660i −1.35034 + 0.922533i
\(769\) 32.5459i 1.17363i −0.809719 0.586817i \(-0.800381\pi\)
0.809719 0.586817i \(-0.199619\pi\)
\(770\) 32.0396 72.6603i 1.15463 2.61850i
\(771\) 8.57637 8.57637i 0.308870 0.308870i
\(772\) 20.8897 + 34.6497i 0.751837 + 1.24707i
\(773\) −18.1546 18.1546i −0.652974 0.652974i 0.300734 0.953708i \(-0.402768\pi\)
−0.953708 + 0.300734i \(0.902768\pi\)
\(774\) 40.9642 11.3931i 1.47243 0.409517i
\(775\) 22.9252 + 15.2749i 0.823497 + 0.548692i
\(776\) 0.353340 + 12.4350i 0.0126842 + 0.446391i
\(777\) 31.6674 1.13606
\(778\) −4.85560 + 8.59713i −0.174082 + 0.308222i
\(779\) 0.325749 0.325749i 0.0116712 0.0116712i
\(780\) 32.1314 + 43.0332i 1.15049 + 1.54084i
\(781\) 45.7818i 1.63820i
\(782\) −5.34033 17.6550i −0.190970 0.631341i
\(783\) 4.09865 4.09865i 0.146474 0.146474i
\(784\) −16.2313 + 30.7465i −0.579688 + 1.09809i
\(785\) −22.5158 + 2.23243i −0.803622 + 0.0796787i
\(786\) 27.7998 7.73181i 0.991588 0.275785i
\(787\) 4.63427 0.165194 0.0825970 0.996583i \(-0.473679\pi\)
0.0825970 + 0.996583i \(0.473679\pi\)
\(788\) −23.8055 39.4860i −0.848035 1.40663i
\(789\) 15.2142 15.2142i 0.541639 0.541639i
\(790\) 1.82781 4.14516i 0.0650307 0.147478i
\(791\) −2.60895 −0.0927634
\(792\) 65.4737 + 61.8557i 2.32651 + 2.19795i
\(793\) −45.4601 −1.61434
\(794\) −45.7727 25.8521i −1.62441 0.917456i
\(795\) 5.06188 + 51.0531i 0.179526 + 1.81067i
\(796\) 12.9357 52.2122i 0.458492 1.85061i
\(797\) −8.82381 + 8.82381i −0.312555 + 0.312555i −0.845899 0.533343i \(-0.820935\pi\)
0.533343 + 0.845899i \(0.320935\pi\)
\(798\) −6.04732 + 10.7072i −0.214073 + 0.379029i
\(799\) −31.0373 + 0.697364i −1.09802 + 0.0246710i
\(800\) −19.6612 20.3332i −0.695127 0.718887i
\(801\) 32.3541i 1.14318i
\(802\) −18.9789 + 5.27849i −0.670169 + 0.186390i
\(803\) 49.0845 + 49.0845i 1.73215 + 1.73215i
\(804\) 5.54321 22.3741i 0.195494 0.789073i
\(805\) 21.6710 + 17.7613i 0.763804 + 0.626005i
\(806\) −16.2452 + 28.7631i −0.572213 + 1.01314i
\(807\) 53.8554 53.8554i 1.89580 1.89580i
\(808\) −7.06426 + 0.200730i −0.248520 + 0.00706166i
\(809\) 37.5030 + 37.5030i 1.31853 + 1.31853i 0.914936 + 0.403598i \(0.132241\pi\)
0.403598 + 0.914936i \(0.367759\pi\)
\(810\) −3.43411 + 1.33234i −0.120662 + 0.0468136i
\(811\) −25.5651 25.5651i −0.897711 0.897711i 0.0975225 0.995233i \(-0.468908\pi\)
−0.995233 + 0.0975225i \(0.968908\pi\)
\(812\) −1.92676 + 7.77699i −0.0676161 + 0.272919i
\(813\) 36.7216 1.28788
\(814\) 6.77966 + 24.3764i 0.237627 + 0.854392i
\(815\) −22.9041 + 27.9458i −0.802296 + 0.978900i
\(816\) −44.3129 + 14.7902i −1.55126 + 0.517760i
\(817\) −3.27952 + 3.27952i −0.114736 + 0.114736i
\(818\) 2.25173 3.98682i 0.0787299 0.139396i
\(819\) −59.6554 + 59.6554i −2.08453 + 2.08453i
\(820\) −2.13028 + 1.59061i −0.0743927 + 0.0555464i
\(821\) 1.79772 1.79772i 0.0627408 0.0627408i −0.675040 0.737781i \(-0.735874\pi\)
0.737781 + 0.675040i \(0.235874\pi\)
\(822\) −3.42708 12.3221i −0.119533 0.429783i
\(823\) 15.8441i 0.552291i 0.961116 + 0.276146i \(0.0890572\pi\)
−0.961116 + 0.276146i \(0.910943\pi\)
\(824\) −7.29661 6.89340i −0.254189 0.240143i
\(825\) −49.7831 + 74.7163i −1.73323 + 2.60129i
\(826\) −50.8093 28.6968i −1.76788 0.998488i
\(827\) 40.3102i 1.40172i −0.713297 0.700862i \(-0.752799\pi\)
0.713297 0.700862i \(-0.247201\pi\)
\(828\) −27.2176 + 16.4090i −0.945877 + 0.570254i
\(829\) 37.6890 1.30899 0.654497 0.756065i \(-0.272880\pi\)
0.654497 + 0.756065i \(0.272880\pi\)
\(830\) −3.96159 + 8.98420i −0.137509 + 0.311846i
\(831\) 1.18517 0.0411131
\(832\) 22.5822 25.3058i 0.782896 0.877322i
\(833\) −24.7655 + 25.9040i −0.858075 + 0.897521i
\(834\) 20.5470 + 73.8771i 0.711484 + 2.55815i
\(835\) −31.2858 25.6415i −1.08269 0.887359i
\(836\) −9.53663 2.36271i −0.329831 0.0817162i
\(837\) −22.3296 22.3296i −0.771824 0.771824i
\(838\) −2.17156 7.80788i −0.0750154 0.269719i
\(839\) 5.04653 5.04653i 0.174226 0.174226i −0.614608 0.788833i \(-0.710686\pi\)
0.788833 + 0.614608i \(0.210686\pi\)
\(840\) 43.4074 56.1423i 1.49770 1.93709i
\(841\) 27.9773i 0.964734i
\(842\) −18.8260 + 33.3326i −0.648788 + 1.14872i
\(843\) 3.30106 0.113695
\(844\) −1.41287 0.350041i −0.0486331 0.0120489i
\(845\) −8.60225 7.05031i −0.295926 0.242538i
\(846\) 14.3333 + 51.5358i 0.492791 + 1.77184i
\(847\) 115.617i 3.97264i
\(848\) 30.9556 9.56470i 1.06302 0.328453i
\(849\) 24.3161i 0.834527i
\(850\) −13.7566 25.7052i −0.471848 0.881680i
\(851\) −8.92753 −0.306032
\(852\) 9.83884 39.7125i 0.337073 1.36053i
\(853\) −9.87416 −0.338085 −0.169042 0.985609i \(-0.554067\pi\)
−0.169042 + 0.985609i \(0.554067\pi\)
\(854\) 16.0961 + 57.8739i 0.550798 + 1.98040i
\(855\) 5.51776 6.73235i 0.188703 0.230241i
\(856\) −0.193965 6.82616i −0.00662957 0.233313i
\(857\) 29.5861i 1.01064i 0.862931 + 0.505321i \(0.168626\pi\)
−0.862931 + 0.505321i \(0.831374\pi\)
\(858\) −93.7429 52.9453i −3.20033 1.80752i
\(859\) 24.3041 0.829246 0.414623 0.909993i \(-0.363913\pi\)
0.414623 + 0.909993i \(0.363913\pi\)
\(860\) 21.4469 16.0136i 0.731333 0.546061i
\(861\) −4.71674 4.71674i −0.160746 0.160746i
\(862\) 15.1830 + 54.5906i 0.517134 + 1.85936i
\(863\) −18.7016 + 18.7016i −0.636611 + 0.636611i −0.949718 0.313107i \(-0.898630\pi\)
0.313107 + 0.949718i \(0.398630\pi\)
\(864\) 17.5222 + 27.2804i 0.596118 + 0.928097i
\(865\) 14.7852 18.0397i 0.502711 0.613370i
\(866\) 43.4228 12.0769i 1.47557 0.410391i
\(867\) −48.1051 + 2.16280i −1.63374 + 0.0734525i
\(868\) 42.3693 + 10.4971i 1.43811 + 0.356293i
\(869\) 9.08163i 0.308073i
\(870\) 3.65484 8.28854i 0.123911 0.281008i
\(871\) 17.2501i 0.584499i
\(872\) 1.35020 + 1.27558i 0.0457234 + 0.0431967i
\(873\) 22.0943 0.747779
\(874\) 1.70484 3.01851i 0.0576669 0.102103i
\(875\) 39.0999 + 20.8012i 1.32182 + 0.703208i
\(876\) 32.0288 + 53.1261i 1.08215 + 1.79496i
\(877\) −7.75049 −0.261716 −0.130858 0.991401i \(-0.541773\pi\)
−0.130858 + 0.991401i \(0.541773\pi\)
\(878\) 1.90595 + 6.85286i 0.0643226 + 0.231273i
\(879\) 0.0440926 + 0.0440926i 0.00148721 + 0.00148721i
\(880\) 52.5093 + 21.3939i 1.77009 + 0.721189i
\(881\) 0.400246 + 0.400246i 0.0134846 + 0.0134846i 0.713817 0.700332i \(-0.246965\pi\)
−0.700332 + 0.713817i \(0.746965\pi\)
\(882\) 53.7669 + 30.3672i 1.81043 + 1.02252i
\(883\) 18.8749 + 18.8749i 0.635192 + 0.635192i 0.949366 0.314174i \(-0.101727\pi\)
−0.314174 + 0.949366i \(0.601727\pi\)
\(884\) 29.5272 18.7184i 0.993107 0.629569i
\(885\) 51.0264 + 41.8206i 1.71523 + 1.40579i
\(886\) −8.61342 30.9697i −0.289373 1.04045i
\(887\) 39.8172i 1.33693i 0.743743 + 0.668466i \(0.233049\pi\)
−0.743743 + 0.668466i \(0.766951\pi\)
\(888\) 0.642228 + 22.6018i 0.0215518 + 0.758468i
\(889\) −19.9072 + 19.9072i −0.667665 + 0.667665i
\(890\) 7.36680 + 18.9879i 0.246936 + 0.636477i
\(891\) 5.22140 5.22140i 0.174924 0.174924i
\(892\) 13.7968 55.6880i 0.461951 1.86457i
\(893\) −4.12586 4.12586i −0.138067 0.138067i
\(894\) 14.0770 24.9241i 0.470805 0.833588i
\(895\) −8.16148 + 9.95802i −0.272808 + 0.332860i
\(896\) −40.2117 19.7886i −1.34338 0.661090i
\(897\) 26.8613 26.8613i 0.896874 0.896874i
\(898\) 3.05200 + 10.9735i 0.101847 + 0.366191i
\(899\) 5.57183 0.185831
\(900\) −37.0903 + 33.8797i −1.23634 + 1.12932i
\(901\) 33.3883 0.750188i 1.11233 0.0249924i
\(902\) 2.62096 4.64057i 0.0872686 0.154514i
\(903\) 47.4864 + 47.4864i 1.58025 + 1.58025i
\(904\) −0.0529105 1.86207i −0.00175978 0.0619316i
\(905\) 0.271170 0.0268864i 0.00901400 0.000893733i
\(906\) 31.8125 56.3259i 1.05690 1.87130i
\(907\) 19.4920i 0.647223i −0.946190 0.323611i \(-0.895103\pi\)
0.946190 0.323611i \(-0.104897\pi\)
\(908\) 7.29897 4.40043i 0.242225 0.146033i
\(909\) 12.5516i 0.416312i
\(910\) −21.4274 + 48.5937i −0.710312 + 1.61086i
\(911\) −1.01477 1.01477i −0.0336208 0.0336208i 0.690097 0.723717i \(-0.257568\pi\)
−0.723717 + 0.690097i \(0.757568\pi\)
\(912\) −7.76461 4.09898i −0.257112 0.135731i
\(913\) 19.6835i 0.651428i
\(914\) −8.59544 30.9051i −0.284312 1.02225i
\(915\) −6.70101 67.5849i −0.221528 2.23429i
\(916\) 43.3013 26.1056i 1.43071 0.862554i
\(917\) 20.1766 + 20.1766i 0.666291 + 0.666291i
\(918\) 9.67625 + 31.9894i 0.319364 + 1.05581i
\(919\) −38.2443 −1.26156 −0.630782 0.775960i \(-0.717266\pi\)
−0.630782 + 0.775960i \(0.717266\pi\)
\(920\) −12.2372 + 15.8274i −0.403449 + 0.521813i
\(921\) 4.37050 + 4.37050i 0.144013 + 0.144013i
\(922\) −30.7937 17.3921i −1.01414 0.572778i
\(923\) 30.6179i 1.00780i
\(924\) −34.2114 + 138.087i −1.12547 + 4.54274i
\(925\) −13.8364 + 2.77099i −0.454939 + 0.0911095i
\(926\) −34.4311 + 9.57612i −1.13148 + 0.314691i
\(927\) −12.6063 + 12.6063i −0.414044 + 0.414044i
\(928\) −5.58971 1.21746i −0.183491 0.0399650i
\(929\) −14.6967 14.6967i −0.482182 0.482182i 0.423646 0.905828i \(-0.360750\pi\)
−0.905828 + 0.423646i \(0.860750\pi\)
\(930\) −45.1563 19.9117i −1.48073 0.652930i
\(931\) −6.73562 −0.220751
\(932\) −8.45699 + 5.09858i −0.277018 + 0.167009i
\(933\) −17.9202 17.9202i −0.586679 0.586679i
\(934\) 1.35255 + 4.86310i 0.0442566 + 0.159125i
\(935\) 46.0238 + 36.0231i 1.50514 + 1.17808i
\(936\) −43.7874 41.3678i −1.43124 1.35215i
\(937\) 32.0418 + 32.0418i 1.04676 + 1.04676i 0.998852 + 0.0479099i \(0.0152560\pi\)
0.0479099 + 0.998852i \(0.484744\pi\)
\(938\) 21.9606 6.10777i 0.717039 0.199426i
\(939\) 78.5933i 2.56479i
\(940\) 20.1463 + 26.9817i 0.657099 + 0.880045i
\(941\) −11.5769 11.5769i −0.377397 0.377397i 0.492765 0.870162i \(-0.335986\pi\)
−0.870162 + 0.492765i \(0.835986\pi\)
\(942\) 39.0520 10.8613i 1.27238 0.353880i
\(943\) 1.32972 + 1.32972i 0.0433017 + 0.0433017i
\(944\) 19.4512 36.8459i 0.633082 1.19923i
\(945\) −39.2662 32.1821i −1.27733 1.04688i
\(946\) −26.3869 + 46.7196i −0.857912 + 1.51898i
\(947\) 21.3606 0.694128 0.347064 0.937841i \(-0.387179\pi\)
0.347064 + 0.937841i \(0.387179\pi\)
\(948\) −1.95171 + 7.87769i −0.0633885 + 0.255855i
\(949\) −32.8267 32.8267i −1.06560 1.06560i
\(950\) 1.70535 5.20743i 0.0553288 0.168951i
\(951\) 67.7396i 2.19661i
\(952\) −34.2846 30.9625i −1.11117 1.00350i
\(953\) 9.06278 + 9.06278i 0.293572 + 0.293572i 0.838490 0.544917i \(-0.183439\pi\)
−0.544917 + 0.838490i \(0.683439\pi\)
\(954\) −15.4191 55.4395i −0.499211 1.79492i
\(955\) −24.8507 20.3674i −0.804150 0.659072i
\(956\) 2.53790 + 4.20961i 0.0820816 + 0.136148i
\(957\) 18.1593i 0.587008i
\(958\) −12.6841 45.6057i −0.409803 1.47345i
\(959\) 8.94317 8.94317i 0.288790 0.288790i
\(960\) 40.9505 + 29.8424i 1.32167 + 0.963159i
\(961\) 0.644501i 0.0207903i
\(962\) −4.53409 16.3024i −0.146185 0.525611i
\(963\) −12.1286 −0.390839
\(964\) 5.99913 24.2143i 0.193219 0.779891i
\(965\) 28.6741 34.9860i 0.923053 1.12624i
\(966\) −43.7071 24.6855i −1.40625 0.794243i
\(967\) −30.0406 + 30.0406i −0.966041 + 0.966041i −0.999442 0.0334011i \(-0.989366\pi\)
0.0334011 + 0.999442i \(0.489366\pi\)
\(968\) −82.5187 + 2.34476i −2.65225 + 0.0753634i
\(969\) −6.54171 6.25420i −0.210150 0.200914i
\(970\) 12.9667 5.03072i 0.416335 0.161527i
\(971\) 50.4418i 1.61875i 0.587289 + 0.809377i \(0.300195\pi\)
−0.587289 + 0.809377i \(0.699805\pi\)
\(972\) −23.8001 + 14.3487i −0.763388 + 0.460234i
\(973\) −53.6187 + 53.6187i −1.71894 + 1.71894i
\(974\) −20.2188 11.4194i −0.647851 0.365902i
\(975\) 33.2939 49.9687i 1.06626 1.60028i
\(976\) −40.9796 + 12.6619i −1.31173 + 0.405298i
\(977\) −10.5898 10.5898i −0.338799 0.338799i 0.517116 0.855915i \(-0.327005\pi\)
−0.855915 + 0.517116i \(0.827005\pi\)
\(978\) 31.8331 56.3624i 1.01791 1.80227i
\(979\) −28.8703 28.8703i −0.922698 0.922698i
\(980\) 38.4691 + 5.57952i 1.22885 + 0.178231i
\(981\) 2.33272 2.33272i 0.0744780 0.0744780i
\(982\) 0.260924 0.461982i 0.00832643 0.0147424i
\(983\) 38.2469 1.21989 0.609944 0.792445i \(-0.291192\pi\)
0.609944 + 0.792445i \(0.291192\pi\)
\(984\) 3.27080 3.46211i 0.104269 0.110368i
\(985\) −32.6764 + 39.8693i −1.04116 + 1.27034i
\(986\) −5.19834 2.78386i −0.165549 0.0886561i
\(987\) −59.7412 + 59.7412i −1.90158 + 1.90158i
\(988\) 6.37790 + 1.58013i 0.202908 + 0.0502707i
\(989\) −13.3872 13.3872i −0.425687 0.425687i
\(990\) 40.6305 92.1430i 1.29132 2.92850i
\(991\) 13.7638 13.7638i 0.437222 0.437222i −0.453854 0.891076i \(-0.649951\pi\)
0.891076 + 0.453854i \(0.149951\pi\)
\(992\) −6.63275 + 30.4530i −0.210590 + 0.966882i
\(993\) 59.1112 1.87584
\(994\) 38.9786 10.8409i 1.23633 0.343853i
\(995\) −59.8465 + 5.93374i −1.89726 + 0.188112i
\(996\) 4.23012 17.0741i 0.134037 0.541012i
\(997\) 33.7510 1.06890 0.534452 0.845199i \(-0.320518\pi\)
0.534452 + 0.845199i \(0.320518\pi\)
\(998\) −12.9202 46.4547i −0.408981 1.47050i
\(999\) 16.1760 0.511785
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.t.a.523.17 208
5.2 odd 4 680.2.bl.a.387.70 yes 208
8.3 odd 2 inner 680.2.t.a.523.35 yes 208
17.4 even 4 680.2.bl.a.123.88 yes 208
40.27 even 4 680.2.bl.a.387.88 yes 208
85.72 odd 4 inner 680.2.t.a.667.35 yes 208
136.123 odd 4 680.2.bl.a.123.70 yes 208
680.667 even 4 inner 680.2.t.a.667.17 yes 208
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.t.a.523.17 208 1.1 even 1 trivial
680.2.t.a.523.35 yes 208 8.3 odd 2 inner
680.2.t.a.667.17 yes 208 680.667 even 4 inner
680.2.t.a.667.35 yes 208 85.72 odd 4 inner
680.2.bl.a.123.70 yes 208 136.123 odd 4
680.2.bl.a.123.88 yes 208 17.4 even 4
680.2.bl.a.387.70 yes 208 5.2 odd 4
680.2.bl.a.387.88 yes 208 40.27 even 4