Properties

Label 680.2.o.a
Level $680$
Weight $2$
Character orbit 680.o
Analytic conductor $5.430$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(169,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.169"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.o (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \zeta_{8}^{3} + 2 \zeta_{8}) q^{3} + ( - \zeta_{8}^{3} + 2 \zeta_{8}) q^{5} + (\zeta_{8}^{3} - \zeta_{8}) q^{7} + 5 q^{9} + (4 \zeta_{8}^{3} + 4 \zeta_{8}) q^{11} + 2 \zeta_{8}^{2} q^{13} + (2 \zeta_{8}^{2} + 6) q^{15}+ \cdots + (20 \zeta_{8}^{3} + 20 \zeta_{8}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 20 q^{9} + 24 q^{15} - 24 q^{19} - 16 q^{21} + 16 q^{25} - 12 q^{35} - 20 q^{49} - 32 q^{51} - 16 q^{55} - 16 q^{59} + 80 q^{69} + 4 q^{81} - 24 q^{85} + 48 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
169.1
−0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 0.707107i
0.707107 + 0.707107i
0 −2.82843 0 −2.12132 0.707107i 0 1.41421 0 5.00000 0
169.2 0 −2.82843 0 −2.12132 + 0.707107i 0 1.41421 0 5.00000 0
169.3 0 2.82843 0 2.12132 0.707107i 0 −1.41421 0 5.00000 0
169.4 0 2.82843 0 2.12132 + 0.707107i 0 −1.41421 0 5.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
17.b even 2 1 inner
85.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 680.2.o.a 4
4.b odd 2 1 1360.2.o.c 4
5.b even 2 1 inner 680.2.o.a 4
5.c odd 4 1 3400.2.c.a 2
5.c odd 4 1 3400.2.c.b 2
17.b even 2 1 inner 680.2.o.a 4
20.d odd 2 1 1360.2.o.c 4
68.d odd 2 1 1360.2.o.c 4
85.c even 2 1 inner 680.2.o.a 4
85.g odd 4 1 3400.2.c.a 2
85.g odd 4 1 3400.2.c.b 2
340.d odd 2 1 1360.2.o.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
680.2.o.a 4 1.a even 1 1 trivial
680.2.o.a 4 5.b even 2 1 inner
680.2.o.a 4 17.b even 2 1 inner
680.2.o.a 4 85.c even 2 1 inner
1360.2.o.c 4 4.b odd 2 1
1360.2.o.c 4 20.d odd 2 1
1360.2.o.c 4 68.d odd 2 1
1360.2.o.c 4 340.d odd 2 1
3400.2.c.a 2 5.c odd 4 1
3400.2.c.a 2 85.g odd 4 1
3400.2.c.b 2 5.c odd 4 1
3400.2.c.b 2 85.g odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 8 \) acting on \(S_{2}^{\mathrm{new}}(680, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} - 8T^{2} + 25 \) Copy content Toggle raw display
$7$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 32)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 2T^{2} + 289 \) Copy content Toggle raw display
$19$ \( (T + 6)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 50)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 98)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 98)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 8)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$59$ \( (T + 4)^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 98)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 72)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 98)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 196)^{2} \) Copy content Toggle raw display
$89$ \( (T - 12)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} - 128)^{2} \) Copy content Toggle raw display
show more
show less