Properties

Label 680.2.l.a.101.8
Level $680$
Weight $2$
Character 680.101
Analytic conductor $5.430$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(101,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.l (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 101.8
Character \(\chi\) \(=\) 680.101
Dual form 680.2.l.a.101.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.26408 + 0.634112i) q^{2} -1.91553 q^{3} +(1.19580 - 1.60314i) q^{4} +1.00000 q^{5} +(2.42138 - 1.21466i) q^{6} +3.32813i q^{7} +(-0.495023 + 2.78477i) q^{8} +0.669252 q^{9} +(-1.26408 + 0.634112i) q^{10} +5.61990 q^{11} +(-2.29060 + 3.07086i) q^{12} -3.09895i q^{13} +(-2.11041 - 4.20702i) q^{14} -1.91553 q^{15} +(-1.14011 - 3.83408i) q^{16} +(-3.99001 + 1.03913i) q^{17} +(-0.845988 + 0.424380i) q^{18} +0.142902i q^{19} +(1.19580 - 1.60314i) q^{20} -6.37512i q^{21} +(-7.10401 + 3.56365i) q^{22} -1.97327i q^{23} +(0.948232 - 5.33431i) q^{24} +1.00000 q^{25} +(1.96508 + 3.91733i) q^{26} +4.46462 q^{27} +(5.33545 + 3.97979i) q^{28} +1.39629 q^{29} +(2.42138 - 1.21466i) q^{30} +5.08219i q^{31} +(3.87242 + 4.12363i) q^{32} -10.7651 q^{33} +(4.38478 - 3.84366i) q^{34} +3.32813i q^{35} +(0.800293 - 1.07290i) q^{36} +1.12245 q^{37} +(-0.0906161 - 0.180640i) q^{38} +5.93613i q^{39} +(-0.495023 + 2.78477i) q^{40} +4.91265i q^{41} +(4.04254 + 8.05867i) q^{42} +10.2306i q^{43} +(6.72030 - 9.00948i) q^{44} +0.669252 q^{45} +(1.25128 + 2.49438i) q^{46} +5.17052 q^{47} +(2.18391 + 7.34429i) q^{48} -4.07643 q^{49} +(-1.26408 + 0.634112i) q^{50} +(7.64299 - 1.99048i) q^{51} +(-4.96805 - 3.70574i) q^{52} +0.833534i q^{53} +(-5.64364 + 2.83107i) q^{54} +5.61990 q^{55} +(-9.26807 - 1.64750i) q^{56} -0.273734i q^{57} +(-1.76502 + 0.885402i) q^{58} -1.78441i q^{59} +(-2.29060 + 3.07086i) q^{60} -10.0513 q^{61} +(-3.22268 - 6.42430i) q^{62} +2.22735i q^{63} +(-7.50990 - 2.75705i) q^{64} -3.09895i q^{65} +(13.6079 - 6.82627i) q^{66} +13.2391i q^{67} +(-3.10541 + 7.63914i) q^{68} +3.77986i q^{69} +(-2.11041 - 4.20702i) q^{70} +13.0517i q^{71} +(-0.331295 + 1.86371i) q^{72} +8.46816i q^{73} +(-1.41887 + 0.711760i) q^{74} -1.91553 q^{75} +(0.229092 + 0.170883i) q^{76} +18.7037i q^{77} +(-3.76417 - 7.50375i) q^{78} +13.5702i q^{79} +(-1.14011 - 3.83408i) q^{80} -10.5599 q^{81} +(-3.11517 - 6.20999i) q^{82} -17.4618i q^{83} +(-10.2202 - 7.62340i) q^{84} +(-3.99001 + 1.03913i) q^{85} +(-6.48736 - 12.9323i) q^{86} -2.67463 q^{87} +(-2.78198 + 15.6501i) q^{88} +12.8756 q^{89} +(-0.845988 + 0.424380i) q^{90} +10.3137 q^{91} +(-3.16343 - 2.35965i) q^{92} -9.73508i q^{93} +(-6.53596 + 3.27869i) q^{94} +0.142902i q^{95} +(-7.41774 - 7.89894i) q^{96} +4.67407i q^{97} +(5.15293 - 2.58491i) q^{98} +3.76113 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 4 q^{3} + 2 q^{4} + 36 q^{5} + 36 q^{9} - 8 q^{11} - 2 q^{12} + 2 q^{14} - 4 q^{15} + 6 q^{16} - 10 q^{18} + 2 q^{20} + 26 q^{24} + 36 q^{25} + 6 q^{26} - 16 q^{27} + 14 q^{28} - 10 q^{32} - 8 q^{33}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.26408 + 0.634112i −0.893841 + 0.448385i
\(3\) −1.91553 −1.10593 −0.552966 0.833204i \(-0.686504\pi\)
−0.552966 + 0.833204i \(0.686504\pi\)
\(4\) 1.19580 1.60314i 0.597902 0.801569i
\(5\) 1.00000 0.447214
\(6\) 2.42138 1.21466i 0.988526 0.495883i
\(7\) 3.32813i 1.25791i 0.777440 + 0.628957i \(0.216518\pi\)
−0.777440 + 0.628957i \(0.783482\pi\)
\(8\) −0.495023 + 2.78477i −0.175017 + 0.984565i
\(9\) 0.669252 0.223084
\(10\) −1.26408 + 0.634112i −0.399738 + 0.200524i
\(11\) 5.61990 1.69446 0.847232 0.531223i \(-0.178268\pi\)
0.847232 + 0.531223i \(0.178268\pi\)
\(12\) −2.29060 + 3.07086i −0.661238 + 0.886481i
\(13\) 3.09895i 0.859495i −0.902949 0.429747i \(-0.858603\pi\)
0.902949 0.429747i \(-0.141397\pi\)
\(14\) −2.11041 4.20702i −0.564030 1.12437i
\(15\) −1.91553 −0.494587
\(16\) −1.14011 3.83408i −0.285027 0.958520i
\(17\) −3.99001 + 1.03913i −0.967721 + 0.252025i
\(18\) −0.845988 + 0.424380i −0.199401 + 0.100027i
\(19\) 0.142902i 0.0327841i 0.999866 + 0.0163920i \(0.00521798\pi\)
−0.999866 + 0.0163920i \(0.994782\pi\)
\(20\) 1.19580 1.60314i 0.267390 0.358473i
\(21\) 6.37512i 1.39117i
\(22\) −7.10401 + 3.56365i −1.51458 + 0.759772i
\(23\) 1.97327i 0.411456i −0.978609 0.205728i \(-0.934044\pi\)
0.978609 0.205728i \(-0.0659562\pi\)
\(24\) 0.948232 5.33431i 0.193557 1.08886i
\(25\) 1.00000 0.200000
\(26\) 1.96508 + 3.91733i 0.385384 + 0.768251i
\(27\) 4.46462 0.859216
\(28\) 5.33545 + 3.97979i 1.00830 + 0.752109i
\(29\) 1.39629 0.259284 0.129642 0.991561i \(-0.458617\pi\)
0.129642 + 0.991561i \(0.458617\pi\)
\(30\) 2.42138 1.21466i 0.442082 0.221766i
\(31\) 5.08219i 0.912788i 0.889778 + 0.456394i \(0.150859\pi\)
−0.889778 + 0.456394i \(0.849141\pi\)
\(32\) 3.87242 + 4.12363i 0.684554 + 0.728962i
\(33\) −10.7651 −1.87396
\(34\) 4.38478 3.84366i 0.751984 0.659182i
\(35\) 3.32813i 0.562556i
\(36\) 0.800293 1.07290i 0.133382 0.178817i
\(37\) 1.12245 0.184530 0.0922650 0.995734i \(-0.470589\pi\)
0.0922650 + 0.995734i \(0.470589\pi\)
\(38\) −0.0906161 0.180640i −0.0146999 0.0293037i
\(39\) 5.93613i 0.950542i
\(40\) −0.495023 + 2.78477i −0.0782701 + 0.440311i
\(41\) 4.91265i 0.767227i 0.923494 + 0.383614i \(0.125321\pi\)
−0.923494 + 0.383614i \(0.874679\pi\)
\(42\) 4.04254 + 8.05867i 0.623778 + 1.24348i
\(43\) 10.2306i 1.56016i 0.625683 + 0.780078i \(0.284820\pi\)
−0.625683 + 0.780078i \(0.715180\pi\)
\(44\) 6.72030 9.00948i 1.01312 1.35823i
\(45\) 0.669252 0.0997661
\(46\) 1.25128 + 2.49438i 0.184491 + 0.367776i
\(47\) 5.17052 0.754198 0.377099 0.926173i \(-0.376922\pi\)
0.377099 + 0.926173i \(0.376922\pi\)
\(48\) 2.18391 + 7.34429i 0.315220 + 1.06006i
\(49\) −4.07643 −0.582347
\(50\) −1.26408 + 0.634112i −0.178768 + 0.0896770i
\(51\) 7.64299 1.99048i 1.07023 0.278722i
\(52\) −4.96805 3.70574i −0.688945 0.513893i
\(53\) 0.833534i 0.114495i 0.998360 + 0.0572474i \(0.0182324\pi\)
−0.998360 + 0.0572474i \(0.981768\pi\)
\(54\) −5.64364 + 2.83107i −0.768002 + 0.385259i
\(55\) 5.61990 0.757787
\(56\) −9.26807 1.64750i −1.23850 0.220157i
\(57\) 0.273734i 0.0362569i
\(58\) −1.76502 + 0.885402i −0.231758 + 0.116259i
\(59\) 1.78441i 0.232310i −0.993231 0.116155i \(-0.962943\pi\)
0.993231 0.116155i \(-0.0370569\pi\)
\(60\) −2.29060 + 3.07086i −0.295715 + 0.396446i
\(61\) −10.0513 −1.28694 −0.643472 0.765470i \(-0.722507\pi\)
−0.643472 + 0.765470i \(0.722507\pi\)
\(62\) −3.22268 6.42430i −0.409281 0.815887i
\(63\) 2.22735i 0.280620i
\(64\) −7.50990 2.75705i −0.938738 0.344632i
\(65\) 3.09895i 0.384378i
\(66\) 13.6079 6.82627i 1.67502 0.840256i
\(67\) 13.2391i 1.61741i 0.588216 + 0.808704i \(0.299830\pi\)
−0.588216 + 0.808704i \(0.700170\pi\)
\(68\) −3.10541 + 7.63914i −0.376586 + 0.926382i
\(69\) 3.77986i 0.455042i
\(70\) −2.11041 4.20702i −0.252242 0.502835i
\(71\) 13.0517i 1.54895i 0.632605 + 0.774475i \(0.281986\pi\)
−0.632605 + 0.774475i \(0.718014\pi\)
\(72\) −0.331295 + 1.86371i −0.0390435 + 0.219641i
\(73\) 8.46816i 0.991123i 0.868573 + 0.495561i \(0.165038\pi\)
−0.868573 + 0.495561i \(0.834962\pi\)
\(74\) −1.41887 + 0.711760i −0.164940 + 0.0827404i
\(75\) −1.91553 −0.221186
\(76\) 0.229092 + 0.170883i 0.0262787 + 0.0196016i
\(77\) 18.7037i 2.13149i
\(78\) −3.76417 7.50375i −0.426209 0.849633i
\(79\) 13.5702i 1.52676i 0.645947 + 0.763382i \(0.276463\pi\)
−0.645947 + 0.763382i \(0.723537\pi\)
\(80\) −1.14011 3.83408i −0.127468 0.428663i
\(81\) −10.5599 −1.17332
\(82\) −3.11517 6.20999i −0.344013 0.685779i
\(83\) 17.4618i 1.91668i −0.285624 0.958342i \(-0.592201\pi\)
0.285624 0.958342i \(-0.407799\pi\)
\(84\) −10.2202 7.62340i −1.11512 0.831781i
\(85\) −3.99001 + 1.03913i −0.432778 + 0.112709i
\(86\) −6.48736 12.9323i −0.699550 1.39453i
\(87\) −2.67463 −0.286750
\(88\) −2.78198 + 15.6501i −0.296560 + 1.66831i
\(89\) 12.8756 1.36481 0.682407 0.730972i \(-0.260933\pi\)
0.682407 + 0.730972i \(0.260933\pi\)
\(90\) −0.845988 + 0.424380i −0.0891750 + 0.0447336i
\(91\) 10.3137 1.08117
\(92\) −3.16343 2.35965i −0.329810 0.246010i
\(93\) 9.73508i 1.00948i
\(94\) −6.53596 + 3.27869i −0.674133 + 0.338171i
\(95\) 0.142902i 0.0146615i
\(96\) −7.41774 7.89894i −0.757070 0.806182i
\(97\) 4.67407i 0.474580i 0.971439 + 0.237290i \(0.0762591\pi\)
−0.971439 + 0.237290i \(0.923741\pi\)
\(98\) 5.15293 2.58491i 0.520525 0.261115i
\(99\) 3.76113 0.378007
\(100\) 1.19580 1.60314i 0.119580 0.160314i
\(101\) 8.33556i 0.829419i −0.909954 0.414710i \(-0.863883\pi\)
0.909954 0.414710i \(-0.136117\pi\)
\(102\) −8.39918 + 7.36264i −0.831642 + 0.729010i
\(103\) 5.81347 0.572818 0.286409 0.958107i \(-0.407538\pi\)
0.286409 + 0.958107i \(0.407538\pi\)
\(104\) 8.62987 + 1.53405i 0.846229 + 0.150426i
\(105\) 6.37512i 0.622148i
\(106\) −0.528554 1.05366i −0.0513377 0.102340i
\(107\) 1.24668 0.120521 0.0602604 0.998183i \(-0.480807\pi\)
0.0602604 + 0.998183i \(0.480807\pi\)
\(108\) 5.33880 7.15740i 0.513727 0.688721i
\(109\) −5.08744 −0.487288 −0.243644 0.969865i \(-0.578343\pi\)
−0.243644 + 0.969865i \(0.578343\pi\)
\(110\) −7.10401 + 3.56365i −0.677341 + 0.339780i
\(111\) −2.15009 −0.204077
\(112\) 12.7603 3.79442i 1.20573 0.358539i
\(113\) 2.08980i 0.196592i −0.995157 0.0982959i \(-0.968661\pi\)
0.995157 0.0982959i \(-0.0313392\pi\)
\(114\) 0.173578 + 0.346022i 0.0162571 + 0.0324079i
\(115\) 1.97327i 0.184009i
\(116\) 1.66968 2.23844i 0.155026 0.207834i
\(117\) 2.07398i 0.191739i
\(118\) 1.13151 + 2.25563i 0.104164 + 0.207648i
\(119\) −3.45834 13.2793i −0.317026 1.21731i
\(120\) 0.948232 5.33431i 0.0865613 0.486954i
\(121\) 20.5833 1.87121
\(122\) 12.7057 6.37368i 1.15032 0.577046i
\(123\) 9.41033i 0.848501i
\(124\) 8.14745 + 6.07730i 0.731663 + 0.545758i
\(125\) 1.00000 0.0894427
\(126\) −1.41239 2.81556i −0.125826 0.250830i
\(127\) −11.6290 −1.03191 −0.515954 0.856616i \(-0.672562\pi\)
−0.515954 + 0.856616i \(0.672562\pi\)
\(128\) 11.2414 1.27698i 0.993610 0.112870i
\(129\) 19.5971i 1.72542i
\(130\) 1.96508 + 3.91733i 0.172349 + 0.343572i
\(131\) 13.3354 1.16512 0.582558 0.812789i \(-0.302052\pi\)
0.582558 + 0.812789i \(0.302052\pi\)
\(132\) −12.8729 + 17.2579i −1.12044 + 1.50211i
\(133\) −0.475597 −0.0412395
\(134\) −8.39504 16.7352i −0.725221 1.44570i
\(135\) 4.46462 0.384253
\(136\) −0.918578 11.6257i −0.0787674 0.996893i
\(137\) 17.1243 1.46303 0.731514 0.681826i \(-0.238814\pi\)
0.731514 + 0.681826i \(0.238814\pi\)
\(138\) −2.39686 4.77805i −0.204034 0.406735i
\(139\) −5.78874 −0.490994 −0.245497 0.969397i \(-0.578951\pi\)
−0.245497 + 0.969397i \(0.578951\pi\)
\(140\) 5.33545 + 3.97979i 0.450928 + 0.336353i
\(141\) −9.90429 −0.834091
\(142\) −8.27623 16.4984i −0.694526 1.38451i
\(143\) 17.4158i 1.45638i
\(144\) −0.763019 2.56596i −0.0635849 0.213830i
\(145\) 1.39629 0.115955
\(146\) −5.36976 10.7044i −0.444404 0.885906i
\(147\) 7.80851 0.644035
\(148\) 1.34223 1.79945i 0.110331 0.147914i
\(149\) 1.85859i 0.152262i −0.997098 0.0761308i \(-0.975743\pi\)
0.997098 0.0761308i \(-0.0242566\pi\)
\(150\) 2.42138 1.21466i 0.197705 0.0991766i
\(151\) −20.4111 −1.66103 −0.830515 0.556997i \(-0.811954\pi\)
−0.830515 + 0.556997i \(0.811954\pi\)
\(152\) −0.397951 0.0707400i −0.0322780 0.00573777i
\(153\) −2.67032 + 0.695437i −0.215883 + 0.0562227i
\(154\) −11.8603 23.6430i −0.955728 1.90521i
\(155\) 5.08219i 0.408211i
\(156\) 9.51644 + 7.09845i 0.761925 + 0.568331i
\(157\) 12.9192i 1.03106i 0.856870 + 0.515532i \(0.172406\pi\)
−0.856870 + 0.515532i \(0.827594\pi\)
\(158\) −8.60501 17.1538i −0.684578 1.36468i
\(159\) 1.59666i 0.126623i
\(160\) 3.87242 + 4.12363i 0.306142 + 0.326002i
\(161\) 6.56730 0.517576
\(162\) 13.3485 6.69613i 1.04876 0.526098i
\(163\) 16.1460 1.26465 0.632325 0.774704i \(-0.282101\pi\)
0.632325 + 0.774704i \(0.282101\pi\)
\(164\) 7.87566 + 5.87457i 0.614986 + 0.458727i
\(165\) −10.7651 −0.838060
\(166\) 11.0727 + 22.0732i 0.859412 + 1.71321i
\(167\) 8.04236i 0.622337i −0.950355 0.311168i \(-0.899280\pi\)
0.950355 0.311168i \(-0.100720\pi\)
\(168\) 17.7533 + 3.15584i 1.36969 + 0.243478i
\(169\) 3.39650 0.261269
\(170\) 4.38478 3.84366i 0.336297 0.294795i
\(171\) 0.0956376i 0.00731359i
\(172\) 16.4011 + 12.2338i 1.25057 + 0.932820i
\(173\) −13.1004 −0.996003 −0.498002 0.867176i \(-0.665933\pi\)
−0.498002 + 0.867176i \(0.665933\pi\)
\(174\) 3.38095 1.69601i 0.256309 0.128574i
\(175\) 3.32813i 0.251583i
\(176\) −6.40729 21.5471i −0.482968 1.62418i
\(177\) 3.41808i 0.256919i
\(178\) −16.2758 + 8.16460i −1.21993 + 0.611962i
\(179\) 21.1603i 1.58159i 0.612080 + 0.790796i \(0.290333\pi\)
−0.612080 + 0.790796i \(0.709667\pi\)
\(180\) 0.800293 1.07290i 0.0596503 0.0799695i
\(181\) 1.42312 0.105780 0.0528898 0.998600i \(-0.483157\pi\)
0.0528898 + 0.998600i \(0.483157\pi\)
\(182\) −13.0374 + 6.54004i −0.966394 + 0.484780i
\(183\) 19.2536 1.42327
\(184\) 5.49512 + 0.976817i 0.405105 + 0.0720119i
\(185\) 1.12245 0.0825243
\(186\) 6.17313 + 12.3059i 0.452636 + 0.902315i
\(187\) −22.4235 + 5.83978i −1.63977 + 0.427047i
\(188\) 6.18293 8.28907i 0.450937 0.604542i
\(189\) 14.8588i 1.08082i
\(190\) −0.0906161 0.180640i −0.00657399 0.0131050i
\(191\) −18.7557 −1.35712 −0.678558 0.734547i \(-0.737395\pi\)
−0.678558 + 0.734547i \(0.737395\pi\)
\(192\) 14.3854 + 5.28122i 1.03818 + 0.381139i
\(193\) 21.7003i 1.56202i −0.624517 0.781011i \(-0.714704\pi\)
0.624517 0.781011i \(-0.285296\pi\)
\(194\) −2.96388 5.90840i −0.212794 0.424198i
\(195\) 5.93613i 0.425095i
\(196\) −4.87461 + 6.53508i −0.348186 + 0.466791i
\(197\) 0.446645 0.0318222 0.0159111 0.999873i \(-0.494935\pi\)
0.0159111 + 0.999873i \(0.494935\pi\)
\(198\) −4.75437 + 2.38498i −0.337878 + 0.169493i
\(199\) 0.799910i 0.0567041i 0.999598 + 0.0283520i \(0.00902595\pi\)
−0.999598 + 0.0283520i \(0.990974\pi\)
\(200\) −0.495023 + 2.78477i −0.0350034 + 0.196913i
\(201\) 25.3598i 1.78874i
\(202\) 5.28568 + 10.5368i 0.371899 + 0.741369i
\(203\) 4.64702i 0.326157i
\(204\) 5.94850 14.6330i 0.416479 1.02451i
\(205\) 4.91265i 0.343115i
\(206\) −7.34870 + 3.68639i −0.512008 + 0.256843i
\(207\) 1.32062i 0.0917892i
\(208\) −11.8816 + 3.53314i −0.823842 + 0.244979i
\(209\) 0.803097i 0.0555514i
\(210\) 4.04254 + 8.05867i 0.278962 + 0.556101i
\(211\) 2.54524 0.175222 0.0876109 0.996155i \(-0.472077\pi\)
0.0876109 + 0.996155i \(0.472077\pi\)
\(212\) 1.33627 + 0.996743i 0.0917755 + 0.0684566i
\(213\) 25.0009i 1.71303i
\(214\) −1.57590 + 0.790533i −0.107726 + 0.0540397i
\(215\) 10.2306i 0.697723i
\(216\) −2.21009 + 12.4329i −0.150378 + 0.845954i
\(217\) −16.9142 −1.14821
\(218\) 6.43094 3.22601i 0.435558 0.218493i
\(219\) 16.2210i 1.09611i
\(220\) 6.72030 9.00948i 0.453082 0.607419i
\(221\) 3.22020 + 12.3649i 0.216614 + 0.831751i
\(222\) 2.71789 1.36340i 0.182413 0.0915052i
\(223\) −26.0537 −1.74469 −0.872343 0.488895i \(-0.837400\pi\)
−0.872343 + 0.488895i \(0.837400\pi\)
\(224\) −13.7240 + 12.8879i −0.916971 + 0.861110i
\(225\) 0.669252 0.0446168
\(226\) 1.32517 + 2.64168i 0.0881489 + 0.175722i
\(227\) −8.59371 −0.570385 −0.285192 0.958470i \(-0.592057\pi\)
−0.285192 + 0.958470i \(0.592057\pi\)
\(228\) −0.438833 0.327332i −0.0290624 0.0216781i
\(229\) 14.1378i 0.934255i −0.884190 0.467127i \(-0.845289\pi\)
0.884190 0.467127i \(-0.154711\pi\)
\(230\) 1.25128 + 2.49438i 0.0825067 + 0.164474i
\(231\) 35.8276i 2.35728i
\(232\) −0.691194 + 3.88834i −0.0453791 + 0.255282i
\(233\) 15.4659i 1.01320i −0.862180 0.506602i \(-0.830901\pi\)
0.862180 0.506602i \(-0.169099\pi\)
\(234\) 1.31513 + 2.62168i 0.0859730 + 0.171384i
\(235\) 5.17052 0.337288
\(236\) −2.86065 2.13380i −0.186212 0.138899i
\(237\) 25.9941i 1.68850i
\(238\) 12.7922 + 14.5931i 0.829194 + 0.945931i
\(239\) 23.9446 1.54885 0.774423 0.632668i \(-0.218040\pi\)
0.774423 + 0.632668i \(0.218040\pi\)
\(240\) 2.18391 + 7.34429i 0.140971 + 0.474072i
\(241\) 17.4933i 1.12684i 0.826171 + 0.563420i \(0.190515\pi\)
−0.826171 + 0.563420i \(0.809485\pi\)
\(242\) −26.0189 + 13.0521i −1.67256 + 0.839021i
\(243\) 6.83386 0.438393
\(244\) −12.0194 + 16.1137i −0.769466 + 1.03157i
\(245\) −4.07643 −0.260433
\(246\) 5.96720 + 11.8954i 0.380455 + 0.758424i
\(247\) 0.442848 0.0281777
\(248\) −14.1527 2.51580i −0.898700 0.159754i
\(249\) 33.4486i 2.11972i
\(250\) −1.26408 + 0.634112i −0.0799475 + 0.0401048i
\(251\) 20.8823i 1.31808i −0.752107 0.659041i \(-0.770962\pi\)
0.752107 0.659041i \(-0.229038\pi\)
\(252\) 3.57076 + 2.66348i 0.224937 + 0.167783i
\(253\) 11.0896i 0.697197i
\(254\) 14.7000 7.37410i 0.922361 0.462692i
\(255\) 7.64299 1.99048i 0.478623 0.124648i
\(256\) −13.4003 + 8.74252i −0.837519 + 0.546408i
\(257\) −0.525927 −0.0328064 −0.0164032 0.999865i \(-0.505222\pi\)
−0.0164032 + 0.999865i \(0.505222\pi\)
\(258\) 12.4267 + 24.7723i 0.773654 + 1.54225i
\(259\) 3.73566i 0.232123i
\(260\) −4.96805 3.70574i −0.308105 0.229820i
\(261\) 0.934467 0.0578420
\(262\) −16.8570 + 8.45612i −1.04143 + 0.522421i
\(263\) −0.500325 −0.0308513 −0.0154257 0.999881i \(-0.504910\pi\)
−0.0154257 + 0.999881i \(0.504910\pi\)
\(264\) 5.32897 29.9783i 0.327975 1.84504i
\(265\) 0.833534i 0.0512036i
\(266\) 0.601194 0.301582i 0.0368615 0.0184912i
\(267\) −24.6637 −1.50939
\(268\) 21.2240 + 15.8313i 1.29646 + 0.967051i
\(269\) 27.3003 1.66453 0.832265 0.554377i \(-0.187044\pi\)
0.832265 + 0.554377i \(0.187044\pi\)
\(270\) −5.64364 + 2.83107i −0.343461 + 0.172293i
\(271\) 5.56998 0.338352 0.169176 0.985586i \(-0.445889\pi\)
0.169176 + 0.985586i \(0.445889\pi\)
\(272\) 8.53314 + 14.1133i 0.517397 + 0.855745i
\(273\) −19.7562 −1.19570
\(274\) −21.6465 + 10.8587i −1.30771 + 0.656000i
\(275\) 5.61990 0.338893
\(276\) 6.05964 + 4.51997i 0.364748 + 0.272070i
\(277\) −2.77924 −0.166989 −0.0834943 0.996508i \(-0.526608\pi\)
−0.0834943 + 0.996508i \(0.526608\pi\)
\(278\) 7.31744 3.67071i 0.438871 0.220154i
\(279\) 3.40126i 0.203628i
\(280\) −9.26807 1.64750i −0.553873 0.0984570i
\(281\) −5.79372 −0.345624 −0.172812 0.984955i \(-0.555285\pi\)
−0.172812 + 0.984955i \(0.555285\pi\)
\(282\) 12.5198 6.28043i 0.745545 0.373994i
\(283\) 2.69243 0.160049 0.0800243 0.996793i \(-0.474500\pi\)
0.0800243 + 0.996793i \(0.474500\pi\)
\(284\) 20.9237 + 15.6072i 1.24159 + 0.926120i
\(285\) 0.273734i 0.0162146i
\(286\) 11.0436 + 22.0150i 0.653020 + 1.30177i
\(287\) −16.3499 −0.965106
\(288\) 2.59163 + 2.75975i 0.152713 + 0.162620i
\(289\) 14.8404 8.29226i 0.872967 0.487780i
\(290\) −1.76502 + 0.885402i −0.103646 + 0.0519926i
\(291\) 8.95331i 0.524852i
\(292\) 13.5756 + 10.1263i 0.794453 + 0.592594i
\(293\) 9.70877i 0.567192i −0.958944 0.283596i \(-0.908472\pi\)
0.958944 0.283596i \(-0.0915275\pi\)
\(294\) −9.87060 + 4.95147i −0.575665 + 0.288776i
\(295\) 1.78441i 0.103892i
\(296\) −0.555640 + 3.12577i −0.0322959 + 0.181682i
\(297\) 25.0907 1.45591
\(298\) 1.17855 + 2.34941i 0.0682718 + 0.136098i
\(299\) −6.11508 −0.353644
\(300\) −2.29060 + 3.07086i −0.132248 + 0.177296i
\(301\) −34.0488 −1.96254
\(302\) 25.8013 12.9429i 1.48470 0.744781i
\(303\) 15.9670i 0.917281i
\(304\) 0.547899 0.162924i 0.0314242 0.00934434i
\(305\) −10.0513 −0.575538
\(306\) 2.93452 2.57237i 0.167755 0.147053i
\(307\) 31.9245i 1.82203i −0.412373 0.911015i \(-0.635300\pi\)
0.412373 0.911015i \(-0.364700\pi\)
\(308\) 29.9847 + 22.3660i 1.70854 + 1.27442i
\(309\) −11.1359 −0.633497
\(310\) −3.22268 6.42430i −0.183036 0.364876i
\(311\) 26.8685i 1.52357i 0.647829 + 0.761786i \(0.275677\pi\)
−0.647829 + 0.761786i \(0.724323\pi\)
\(312\) −16.5308 2.93852i −0.935871 0.166361i
\(313\) 28.2676i 1.59778i −0.601478 0.798890i \(-0.705421\pi\)
0.601478 0.798890i \(-0.294579\pi\)
\(314\) −8.19221 16.3309i −0.462313 0.921606i
\(315\) 2.22735i 0.125497i
\(316\) 21.7549 + 16.2273i 1.22381 + 0.912855i
\(317\) −8.09179 −0.454480 −0.227240 0.973839i \(-0.572970\pi\)
−0.227240 + 0.973839i \(0.572970\pi\)
\(318\) 1.01246 + 2.01831i 0.0567760 + 0.113181i
\(319\) 7.84699 0.439347
\(320\) −7.50990 2.75705i −0.419816 0.154124i
\(321\) −2.38804 −0.133288
\(322\) −8.30161 + 4.16441i −0.462630 + 0.232073i
\(323\) −0.148494 0.570183i −0.00826241 0.0317258i
\(324\) −12.6275 + 16.9289i −0.701529 + 0.940495i
\(325\) 3.09895i 0.171899i
\(326\) −20.4098 + 10.2383i −1.13039 + 0.567050i
\(327\) 9.74514 0.538907
\(328\) −13.6806 2.43188i −0.755385 0.134278i
\(329\) 17.2082i 0.948716i
\(330\) 13.6079 6.82627i 0.749092 0.375774i
\(331\) 4.22596i 0.232280i −0.993233 0.116140i \(-0.962948\pi\)
0.993233 0.116140i \(-0.0370521\pi\)
\(332\) −27.9937 20.8809i −1.53635 1.14599i
\(333\) 0.751203 0.0411656
\(334\) 5.09976 + 10.1662i 0.279046 + 0.556270i
\(335\) 13.2391i 0.723327i
\(336\) −24.4427 + 7.26832i −1.33346 + 0.396520i
\(337\) 18.0632i 0.983963i 0.870606 + 0.491981i \(0.163727\pi\)
−0.870606 + 0.491981i \(0.836273\pi\)
\(338\) −4.29345 + 2.15376i −0.233533 + 0.117149i
\(339\) 4.00307i 0.217417i
\(340\) −3.10541 + 7.63914i −0.168415 + 0.414290i
\(341\) 28.5614i 1.54669i
\(342\) −0.0606450 0.120894i −0.00327931 0.00653719i
\(343\) 9.73002i 0.525372i
\(344\) −28.4899 5.06440i −1.53607 0.273054i
\(345\) 3.77986i 0.203501i
\(346\) 16.5599 8.30711i 0.890268 0.446593i
\(347\) 13.9650 0.749679 0.374840 0.927090i \(-0.377698\pi\)
0.374840 + 0.927090i \(0.377698\pi\)
\(348\) −3.19833 + 4.28780i −0.171448 + 0.229850i
\(349\) 1.83664i 0.0983129i −0.998791 0.0491565i \(-0.984347\pi\)
0.998791 0.0491565i \(-0.0156533\pi\)
\(350\) −2.11041 4.20702i −0.112806 0.224875i
\(351\) 13.8356i 0.738491i
\(352\) 21.7626 + 23.1744i 1.15995 + 1.23520i
\(353\) −21.1687 −1.12669 −0.563347 0.826220i \(-0.690487\pi\)
−0.563347 + 0.826220i \(0.690487\pi\)
\(354\) −2.16745 4.32073i −0.115199 0.229644i
\(355\) 13.0517i 0.692711i
\(356\) 15.3967 20.6414i 0.816025 1.09399i
\(357\) 6.62456 + 25.4368i 0.350609 + 1.34626i
\(358\) −13.4180 26.7483i −0.709162 1.41369i
\(359\) −19.4778 −1.02800 −0.513999 0.857791i \(-0.671836\pi\)
−0.513999 + 0.857791i \(0.671836\pi\)
\(360\) −0.331295 + 1.86371i −0.0174608 + 0.0982263i
\(361\) 18.9796 0.998925
\(362\) −1.79894 + 0.902416i −0.0945500 + 0.0474299i
\(363\) −39.4279 −2.06943
\(364\) 12.3332 16.5343i 0.646433 0.866633i
\(365\) 8.46816i 0.443244i
\(366\) −24.3382 + 12.2090i −1.27218 + 0.638173i
\(367\) 20.8474i 1.08823i −0.839012 0.544113i \(-0.816866\pi\)
0.839012 0.544113i \(-0.183134\pi\)
\(368\) −7.56568 + 2.24974i −0.394389 + 0.117276i
\(369\) 3.28780i 0.171156i
\(370\) −1.41887 + 0.711760i −0.0737636 + 0.0370027i
\(371\) −2.77411 −0.144024
\(372\) −15.6067 11.6412i −0.809169 0.603570i
\(373\) 11.3307i 0.586683i −0.956008 0.293342i \(-0.905233\pi\)
0.956008 0.293342i \(-0.0947673\pi\)
\(374\) 24.6420 21.6010i 1.27421 1.11696i
\(375\) −1.91553 −0.0989175
\(376\) −2.55953 + 14.3987i −0.131998 + 0.742558i
\(377\) 4.32702i 0.222853i
\(378\) −9.42215 18.7827i −0.484623 0.966080i
\(379\) 18.1526 0.932434 0.466217 0.884670i \(-0.345617\pi\)
0.466217 + 0.884670i \(0.345617\pi\)
\(380\) 0.229092 + 0.170883i 0.0117522 + 0.00876612i
\(381\) 22.2757 1.14122
\(382\) 23.7087 11.8932i 1.21304 0.608510i
\(383\) 26.1354 1.33546 0.667729 0.744405i \(-0.267267\pi\)
0.667729 + 0.744405i \(0.267267\pi\)
\(384\) −21.5332 + 2.44609i −1.09886 + 0.124827i
\(385\) 18.7037i 0.953231i
\(386\) 13.7604 + 27.4310i 0.700387 + 1.39620i
\(387\) 6.84686i 0.348045i
\(388\) 7.49318 + 5.58927i 0.380408 + 0.283752i
\(389\) 20.6458i 1.04678i 0.852092 + 0.523392i \(0.175334\pi\)
−0.852092 + 0.523392i \(0.824666\pi\)
\(390\) −3.76417 7.50375i −0.190606 0.379967i
\(391\) 2.05048 + 7.87339i 0.103697 + 0.398174i
\(392\) 2.01793 11.3519i 0.101921 0.573358i
\(393\) −25.5443 −1.28854
\(394\) −0.564596 + 0.283223i −0.0284439 + 0.0142686i
\(395\) 13.5702i 0.682790i
\(396\) 4.49757 6.02961i 0.226011 0.302999i
\(397\) 24.4324 1.22623 0.613113 0.789995i \(-0.289917\pi\)
0.613113 + 0.789995i \(0.289917\pi\)
\(398\) −0.507232 1.01115i −0.0254253 0.0506844i
\(399\) 0.911020 0.0456081
\(400\) −1.14011 3.83408i −0.0570054 0.191704i
\(401\) 38.3454i 1.91488i −0.288634 0.957439i \(-0.593201\pi\)
0.288634 0.957439i \(-0.406799\pi\)
\(402\) 16.0809 + 32.0568i 0.802045 + 1.59885i
\(403\) 15.7495 0.784537
\(404\) −13.3631 9.96769i −0.664837 0.495911i
\(405\) −10.5599 −0.524724
\(406\) −2.94673 5.87421i −0.146244 0.291532i
\(407\) 6.30807 0.312679
\(408\) 1.75956 + 22.2693i 0.0871113 + 1.10250i
\(409\) 1.92082 0.0949784 0.0474892 0.998872i \(-0.484878\pi\)
0.0474892 + 0.998872i \(0.484878\pi\)
\(410\) −3.11517 6.20999i −0.153847 0.306690i
\(411\) −32.8021 −1.61801
\(412\) 6.95177 9.31979i 0.342489 0.459153i
\(413\) 5.93873 0.292226
\(414\) 0.837419 + 1.66937i 0.0411569 + 0.0820449i
\(415\) 17.4618i 0.857167i
\(416\) 12.7789 12.0005i 0.626539 0.588371i
\(417\) 11.0885 0.543006
\(418\) −0.509254 1.01518i −0.0249084 0.0496541i
\(419\) −14.8975 −0.727790 −0.363895 0.931440i \(-0.618553\pi\)
−0.363895 + 0.931440i \(0.618553\pi\)
\(420\) −10.2202 7.62340i −0.498695 0.371984i
\(421\) 4.71333i 0.229714i 0.993382 + 0.114857i \(0.0366409\pi\)
−0.993382 + 0.114857i \(0.963359\pi\)
\(422\) −3.21740 + 1.61397i −0.156620 + 0.0785669i
\(423\) 3.46038 0.168249
\(424\) −2.32120 0.412619i −0.112728 0.0200386i
\(425\) −3.99001 + 1.03913i −0.193544 + 0.0504050i
\(426\) 15.8534 + 31.6031i 0.768098 + 1.53118i
\(427\) 33.4522i 1.61886i
\(428\) 1.49078 1.99860i 0.0720596 0.0966057i
\(429\) 33.3605i 1.61066i
\(430\) −6.48736 12.9323i −0.312848 0.623653i
\(431\) 4.42066i 0.212935i 0.994316 + 0.106468i \(0.0339541\pi\)
−0.994316 + 0.106468i \(0.966046\pi\)
\(432\) −5.09014 17.1177i −0.244900 0.823575i
\(433\) 3.43928 0.165281 0.0826407 0.996579i \(-0.473665\pi\)
0.0826407 + 0.996579i \(0.473665\pi\)
\(434\) 21.3809 10.7255i 1.02632 0.514840i
\(435\) −2.67463 −0.128239
\(436\) −6.08358 + 8.15587i −0.291351 + 0.390595i
\(437\) 0.281985 0.0134892
\(438\) 10.2859 + 20.5047i 0.491481 + 0.979751i
\(439\) 17.2783i 0.824647i −0.911037 0.412324i \(-0.864717\pi\)
0.911037 0.412324i \(-0.135283\pi\)
\(440\) −2.78198 + 15.6501i −0.132626 + 0.746091i
\(441\) −2.72815 −0.129912
\(442\) −11.9113 13.5882i −0.566563 0.646326i
\(443\) 22.4135i 1.06490i 0.846462 + 0.532450i \(0.178728\pi\)
−0.846462 + 0.532450i \(0.821272\pi\)
\(444\) −2.57108 + 3.44689i −0.122018 + 0.163582i
\(445\) 12.8756 0.610364
\(446\) 32.9340 16.5210i 1.55947 0.782291i
\(447\) 3.56018i 0.168391i
\(448\) 9.17583 24.9939i 0.433517 1.18085i
\(449\) 13.2570i 0.625637i 0.949813 + 0.312818i \(0.101273\pi\)
−0.949813 + 0.312818i \(0.898727\pi\)
\(450\) −0.845988 + 0.424380i −0.0398803 + 0.0200055i
\(451\) 27.6086i 1.30004i
\(452\) −3.35024 2.49899i −0.157582 0.117543i
\(453\) 39.0980 1.83698
\(454\) 10.8632 5.44938i 0.509833 0.255752i
\(455\) 10.3137 0.483514
\(456\) 0.762286 + 0.135505i 0.0356973 + 0.00634558i
\(457\) 20.2149 0.945612 0.472806 0.881167i \(-0.343241\pi\)
0.472806 + 0.881167i \(0.343241\pi\)
\(458\) 8.96498 + 17.8714i 0.418906 + 0.835075i
\(459\) −17.8139 + 4.63930i −0.831481 + 0.216544i
\(460\) −3.16343 2.35965i −0.147496 0.110019i
\(461\) 41.2453i 1.92099i −0.278303 0.960493i \(-0.589772\pi\)
0.278303 0.960493i \(-0.410228\pi\)
\(462\) 22.7187 + 45.2889i 1.05697 + 2.10703i
\(463\) 30.7003 1.42676 0.713381 0.700776i \(-0.247163\pi\)
0.713381 + 0.700776i \(0.247163\pi\)
\(464\) −1.59192 5.35347i −0.0739028 0.248529i
\(465\) 9.73508i 0.451454i
\(466\) 9.80712 + 19.5502i 0.454306 + 0.905644i
\(467\) 5.56967i 0.257733i 0.991662 + 0.128867i \(0.0411339\pi\)
−0.991662 + 0.128867i \(0.958866\pi\)
\(468\) −3.32487 2.48007i −0.153692 0.114641i
\(469\) −44.0612 −2.03456
\(470\) −6.53596 + 3.27869i −0.301481 + 0.151235i
\(471\) 24.7471i 1.14029i
\(472\) 4.96916 + 0.883323i 0.228724 + 0.0406582i
\(473\) 57.4951i 2.64363i
\(474\) 16.4832 + 32.8586i 0.757096 + 1.50925i
\(475\) 0.142902i 0.00655681i
\(476\) −25.4240 10.3352i −1.16531 0.473713i
\(477\) 0.557844i 0.0255419i
\(478\) −30.2679 + 15.1836i −1.38442 + 0.694480i
\(479\) 30.9129i 1.41244i −0.707990 0.706222i \(-0.750398\pi\)
0.707990 0.706222i \(-0.249602\pi\)
\(480\) −7.41774 7.89894i −0.338572 0.360535i
\(481\) 3.47842i 0.158602i
\(482\) −11.0927 22.1129i −0.505258 1.00722i
\(483\) −12.5799 −0.572403
\(484\) 24.6136 32.9978i 1.11880 1.49990i
\(485\) 4.67407i 0.212238i
\(486\) −8.63856 + 4.33344i −0.391853 + 0.196569i
\(487\) 32.4017i 1.46826i 0.679009 + 0.734130i \(0.262410\pi\)
−0.679009 + 0.734130i \(0.737590\pi\)
\(488\) 4.97565 27.9907i 0.225237 1.26708i
\(489\) −30.9281 −1.39861
\(490\) 5.15293 2.58491i 0.232786 0.116774i
\(491\) 1.76749i 0.0797656i −0.999204 0.0398828i \(-0.987302\pi\)
0.999204 0.0398828i \(-0.0126985\pi\)
\(492\) −15.0861 11.2529i −0.680132 0.507320i
\(493\) −5.57120 + 1.45092i −0.250914 + 0.0653460i
\(494\) −0.559795 + 0.280815i −0.0251864 + 0.0126345i
\(495\) 3.76113 0.169050
\(496\) 19.4855 5.79424i 0.874925 0.260169i
\(497\) −43.4376 −1.94844
\(498\) −21.2102 42.2818i −0.950451 1.89469i
\(499\) 18.9122 0.846628 0.423314 0.905983i \(-0.360867\pi\)
0.423314 + 0.905983i \(0.360867\pi\)
\(500\) 1.19580 1.60314i 0.0534780 0.0716945i
\(501\) 15.4054i 0.688262i
\(502\) 13.2418 + 26.3970i 0.591008 + 1.17816i
\(503\) 39.0914i 1.74300i 0.490396 + 0.871499i \(0.336852\pi\)
−0.490396 + 0.871499i \(0.663148\pi\)
\(504\) −6.20267 1.10259i −0.276289 0.0491134i
\(505\) 8.33556i 0.370928i
\(506\) 7.03205 + 14.0182i 0.312613 + 0.623183i
\(507\) −6.50609 −0.288946
\(508\) −13.9060 + 18.6429i −0.616980 + 0.827146i
\(509\) 12.6510i 0.560748i −0.959891 0.280374i \(-0.909542\pi\)
0.959891 0.280374i \(-0.0904584\pi\)
\(510\) −8.39918 + 7.36264i −0.371922 + 0.326023i
\(511\) −28.1831 −1.24675
\(512\) 11.3953 19.5486i 0.503608 0.863932i
\(513\) 0.638004i 0.0281686i
\(514\) 0.664814 0.333497i 0.0293237 0.0147099i
\(515\) 5.81347 0.256172
\(516\) −31.4168 23.4342i −1.38305 1.03163i
\(517\) 29.0578 1.27796
\(518\) −2.36883 4.72218i −0.104080 0.207481i
\(519\) 25.0942 1.10151
\(520\) 8.62987 + 1.53405i 0.378445 + 0.0672727i
\(521\) 35.0878i 1.53722i 0.639716 + 0.768611i \(0.279052\pi\)
−0.639716 + 0.768611i \(0.720948\pi\)
\(522\) −1.18124 + 0.592557i −0.0517016 + 0.0259355i
\(523\) 4.89316i 0.213963i 0.994261 + 0.106982i \(0.0341186\pi\)
−0.994261 + 0.106982i \(0.965881\pi\)
\(524\) 15.9465 21.3784i 0.696625 0.933922i
\(525\) 6.37512i 0.278233i
\(526\) 0.632451 0.317262i 0.0275762 0.0138333i
\(527\) −5.28104 20.2780i −0.230046 0.883324i
\(528\) 12.2733 + 41.2742i 0.534129 + 1.79623i
\(529\) 19.1062 0.830704
\(530\) −0.528554 1.05366i −0.0229589 0.0457679i
\(531\) 1.19422i 0.0518246i
\(532\) −0.568721 + 0.762448i −0.0246572 + 0.0330563i
\(533\) 15.2241 0.659428
\(534\) 31.1769 15.6395i 1.34915 0.676788i
\(535\) 1.24668 0.0538985
\(536\) −36.8677 6.55364i −1.59244 0.283074i
\(537\) 40.5331i 1.74913i
\(538\) −34.5098 + 17.3115i −1.48783 + 0.746351i
\(539\) −22.9091 −0.986765
\(540\) 5.33880 7.15740i 0.229746 0.308005i
\(541\) −40.0292 −1.72099 −0.860494 0.509460i \(-0.829845\pi\)
−0.860494 + 0.509460i \(0.829845\pi\)
\(542\) −7.04091 + 3.53199i −0.302433 + 0.151712i
\(543\) −2.72602 −0.116985
\(544\) −19.7360 12.4294i −0.846174 0.532907i
\(545\) −5.08744 −0.217922
\(546\) 24.9734 12.5276i 1.06876 0.536134i
\(547\) 28.3432 1.21187 0.605933 0.795516i \(-0.292800\pi\)
0.605933 + 0.795516i \(0.292800\pi\)
\(548\) 20.4773 27.4526i 0.874747 1.17272i
\(549\) −6.72688 −0.287096
\(550\) −7.10401 + 3.56365i −0.302916 + 0.151954i
\(551\) 0.199533i 0.00850038i
\(552\) −10.5261 1.87112i −0.448019 0.0796402i
\(553\) −45.1633 −1.92054
\(554\) 3.51319 1.76235i 0.149261 0.0748752i
\(555\) −2.15009 −0.0912662
\(556\) −6.92219 + 9.28015i −0.293566 + 0.393566i
\(557\) 45.1187i 1.91174i −0.293792 0.955869i \(-0.594917\pi\)
0.293792 0.955869i \(-0.405083\pi\)
\(558\) −2.15678 4.29947i −0.0913039 0.182011i
\(559\) 31.7042 1.34095
\(560\) 12.7603 3.79442i 0.539221 0.160344i
\(561\) 42.9528 11.1863i 1.81347 0.472285i
\(562\) 7.32374 3.67387i 0.308933 0.154973i
\(563\) 9.81887i 0.413816i −0.978360 0.206908i \(-0.933660\pi\)
0.978360 0.206908i \(-0.0663401\pi\)
\(564\) −11.8436 + 15.8779i −0.498705 + 0.668582i
\(565\) 2.08980i 0.0879186i
\(566\) −3.40346 + 1.70730i −0.143058 + 0.0717634i
\(567\) 35.1445i 1.47593i
\(568\) −36.3459 6.46089i −1.52504 0.271093i
\(569\) 28.1252 1.17907 0.589534 0.807744i \(-0.299311\pi\)
0.589534 + 0.807744i \(0.299311\pi\)
\(570\) 0.173578 + 0.346022i 0.00727038 + 0.0144933i
\(571\) −40.6467 −1.70101 −0.850506 0.525966i \(-0.823704\pi\)
−0.850506 + 0.525966i \(0.823704\pi\)
\(572\) −27.9199 20.8259i −1.16739 0.870774i
\(573\) 35.9271 1.50088
\(574\) 20.6676 10.3677i 0.862651 0.432739i
\(575\) 1.97327i 0.0822912i
\(576\) −5.02601 1.84516i −0.209417 0.0768818i
\(577\) 14.5879 0.607304 0.303652 0.952783i \(-0.401794\pi\)
0.303652 + 0.952783i \(0.401794\pi\)
\(578\) −13.5013 + 19.8926i −0.561580 + 0.827423i
\(579\) 41.5676i 1.72749i
\(580\) 1.66968 2.23844i 0.0693299 0.0929462i
\(581\) 58.1151 2.41102
\(582\) 5.67740 + 11.3177i 0.235336 + 0.469134i
\(583\) 4.68438i 0.194007i
\(584\) −23.5819 4.19194i −0.975825 0.173464i
\(585\) 2.07398i 0.0857484i
\(586\) 6.15645 + 12.2727i 0.254321 + 0.506980i
\(587\) 11.3901i 0.470121i −0.971981 0.235061i \(-0.924471\pi\)
0.971981 0.235061i \(-0.0755288\pi\)
\(588\) 9.33745 12.5181i 0.385070 0.516239i
\(589\) −0.726257 −0.0299249
\(590\) 1.13151 + 2.25563i 0.0465837 + 0.0928630i
\(591\) −0.855562 −0.0351931
\(592\) −1.27972 4.30357i −0.0525960 0.176876i
\(593\) −30.7174 −1.26141 −0.630705 0.776022i \(-0.717234\pi\)
−0.630705 + 0.776022i \(0.717234\pi\)
\(594\) −31.7167 + 15.9103i −1.30135 + 0.652808i
\(595\) −3.45834 13.2793i −0.141778 0.544397i
\(596\) −2.97958 2.22251i −0.122048 0.0910375i
\(597\) 1.53225i 0.0627108i
\(598\) 7.72996 3.87765i 0.316101 0.158569i
\(599\) −5.53876 −0.226308 −0.113154 0.993577i \(-0.536095\pi\)
−0.113154 + 0.993577i \(0.536095\pi\)
\(600\) 0.948232 5.33431i 0.0387114 0.217772i
\(601\) 11.1252i 0.453807i 0.973917 + 0.226903i \(0.0728601\pi\)
−0.973917 + 0.226903i \(0.927140\pi\)
\(602\) 43.0405 21.5908i 1.75420 0.879974i
\(603\) 8.86026i 0.360818i
\(604\) −24.4076 + 32.7218i −0.993133 + 1.33143i
\(605\) 20.5833 0.836829
\(606\) −10.1249 20.1836i −0.411295 0.819903i
\(607\) 22.3277i 0.906252i −0.891446 0.453126i \(-0.850309\pi\)
0.891446 0.453126i \(-0.149691\pi\)
\(608\) −0.589277 + 0.553379i −0.0238983 + 0.0224425i
\(609\) 8.90150i 0.360707i
\(610\) 12.7057 6.37368i 0.514440 0.258063i
\(611\) 16.0232i 0.648229i
\(612\) −2.07830 + 5.11250i −0.0840103 + 0.206661i
\(613\) 12.3546i 0.498999i 0.968375 + 0.249499i \(0.0802661\pi\)
−0.968375 + 0.249499i \(0.919734\pi\)
\(614\) 20.2437 + 40.3552i 0.816971 + 1.62860i
\(615\) 9.41033i 0.379461i
\(616\) −52.0856 9.25879i −2.09859 0.373047i
\(617\) 13.7285i 0.552690i −0.961059 0.276345i \(-0.910877\pi\)
0.961059 0.276345i \(-0.0891232\pi\)
\(618\) 14.0766 7.06139i 0.566246 0.284051i
\(619\) −19.8519 −0.797914 −0.398957 0.916970i \(-0.630628\pi\)
−0.398957 + 0.916970i \(0.630628\pi\)
\(620\) 8.14745 + 6.07730i 0.327210 + 0.244070i
\(621\) 8.80991i 0.353529i
\(622\) −17.0376 33.9639i −0.683146 1.36183i
\(623\) 42.8517i 1.71682i
\(624\) 22.7596 6.76783i 0.911113 0.270930i
\(625\) 1.00000 0.0400000
\(626\) 17.9248 + 35.7326i 0.716420 + 1.42816i
\(627\) 1.53836i 0.0614360i
\(628\) 20.7112 + 15.4488i 0.826469 + 0.616475i
\(629\) −4.47860 + 1.16637i −0.178573 + 0.0465062i
\(630\) −1.41239 2.81556i −0.0562710 0.112174i
\(631\) −19.5862 −0.779714 −0.389857 0.920875i \(-0.627476\pi\)
−0.389857 + 0.920875i \(0.627476\pi\)
\(632\) −37.7898 6.71755i −1.50320 0.267210i
\(633\) −4.87549 −0.193783
\(634\) 10.2287 5.13110i 0.406233 0.203782i
\(635\) −11.6290 −0.461483
\(636\) −2.55967 1.90929i −0.101497 0.0757083i
\(637\) 12.6326i 0.500524i
\(638\) −9.91923 + 4.97587i −0.392706 + 0.196997i
\(639\) 8.73486i 0.345546i
\(640\) 11.2414 1.27698i 0.444356 0.0504771i
\(641\) 14.9074i 0.588805i 0.955681 + 0.294403i \(0.0951207\pi\)
−0.955681 + 0.294403i \(0.904879\pi\)
\(642\) 3.01868 1.51429i 0.119138 0.0597642i
\(643\) 13.4958 0.532224 0.266112 0.963942i \(-0.414261\pi\)
0.266112 + 0.963942i \(0.414261\pi\)
\(644\) 7.85321 10.5283i 0.309460 0.414873i
\(645\) 19.5971i 0.771633i
\(646\) 0.549268 + 0.626596i 0.0216107 + 0.0246531i
\(647\) 17.3061 0.680372 0.340186 0.940358i \(-0.389510\pi\)
0.340186 + 0.940358i \(0.389510\pi\)
\(648\) 5.22738 29.4068i 0.205351 1.15521i
\(649\) 10.0282i 0.393641i
\(650\) 1.96508 + 3.91733i 0.0770769 + 0.153650i
\(651\) 32.3996 1.26984
\(652\) 19.3074 25.8842i 0.756136 1.01370i
\(653\) 29.3539 1.14871 0.574354 0.818607i \(-0.305253\pi\)
0.574354 + 0.818607i \(0.305253\pi\)
\(654\) −12.3187 + 6.17951i −0.481697 + 0.241638i
\(655\) 13.3354 0.521056
\(656\) 18.8355 5.60095i 0.735402 0.218680i
\(657\) 5.66733i 0.221103i
\(658\) −10.9119 21.7525i −0.425390 0.848001i
\(659\) 16.0983i 0.627101i −0.949572 0.313550i \(-0.898482\pi\)
0.949572 0.313550i \(-0.101518\pi\)
\(660\) −12.8729 + 17.2579i −0.501078 + 0.671764i
\(661\) 15.2351i 0.592576i 0.955099 + 0.296288i \(0.0957489\pi\)
−0.955099 + 0.296288i \(0.904251\pi\)
\(662\) 2.67973 + 5.34196i 0.104151 + 0.207621i
\(663\) −6.16839 23.6853i −0.239560 0.919859i
\(664\) 48.6272 + 8.64401i 1.88710 + 0.335453i
\(665\) −0.475597 −0.0184429
\(666\) −0.949581 + 0.476347i −0.0367955 + 0.0184581i
\(667\) 2.75525i 0.106684i
\(668\) −12.8930 9.61709i −0.498846 0.372096i
\(669\) 49.9066 1.92950
\(670\) −8.39504 16.7352i −0.324329 0.646539i
\(671\) −56.4876 −2.18068
\(672\) 26.2887 24.6872i 1.01411 0.952329i
\(673\) 5.31067i 0.204711i −0.994748 0.102356i \(-0.967362\pi\)
0.994748 0.102356i \(-0.0326380\pi\)
\(674\) −11.4541 22.8333i −0.441194 0.879506i
\(675\) 4.46462 0.171843
\(676\) 4.06154 5.44506i 0.156213 0.209425i
\(677\) 2.26823 0.0871750 0.0435875 0.999050i \(-0.486121\pi\)
0.0435875 + 0.999050i \(0.486121\pi\)
\(678\) −2.53840 5.06021i −0.0974866 0.194336i
\(679\) −15.5559 −0.596980
\(680\) −0.918578 11.6257i −0.0352258 0.445824i
\(681\) 16.4615 0.630806
\(682\) −18.1111 36.1039i −0.693511 1.38249i
\(683\) −51.1235 −1.95619 −0.978093 0.208168i \(-0.933250\pi\)
−0.978093 + 0.208168i \(0.933250\pi\)
\(684\) 0.153320 + 0.114364i 0.00586235 + 0.00437281i
\(685\) 17.1243 0.654286
\(686\) −6.16993 12.2995i −0.235569 0.469599i
\(687\) 27.0814i 1.03322i
\(688\) 39.2250 11.6640i 1.49544 0.444686i
\(689\) 2.58308 0.0984076
\(690\) −2.39686 4.77805i −0.0912468 0.181897i
\(691\) 28.1607 1.07128 0.535641 0.844446i \(-0.320070\pi\)
0.535641 + 0.844446i \(0.320070\pi\)
\(692\) −15.6655 + 21.0017i −0.595512 + 0.798366i
\(693\) 12.5175i 0.475501i
\(694\) −17.6529 + 8.85536i −0.670094 + 0.336145i
\(695\) −5.78874 −0.219579
\(696\) 1.32400 7.44822i 0.0501862 0.282324i
\(697\) −5.10486 19.6016i −0.193361 0.742462i
\(698\) 1.16463 + 2.32166i 0.0440820 + 0.0878761i
\(699\) 29.6254i 1.12053i
\(700\) 5.33545 + 3.97979i 0.201661 + 0.150422i
\(701\) 26.9833i 1.01914i −0.860428 0.509572i \(-0.829804\pi\)
0.860428 0.509572i \(-0.170196\pi\)
\(702\) 8.77334 + 17.4894i 0.331128 + 0.660094i
\(703\) 0.160401i 0.00604964i
\(704\) −42.2049 15.4944i −1.59066 0.583966i
\(705\) −9.90429 −0.373017
\(706\) 26.7589 13.4233i 1.00709 0.505193i
\(707\) 27.7418 1.04334
\(708\) 5.47966 + 4.08735i 0.205938 + 0.153612i
\(709\) −7.08750 −0.266177 −0.133088 0.991104i \(-0.542489\pi\)
−0.133088 + 0.991104i \(0.542489\pi\)
\(710\) −8.27623 16.4984i −0.310601 0.619173i
\(711\) 9.08186i 0.340596i
\(712\) −6.37374 + 35.8557i −0.238866 + 1.34375i
\(713\) 10.0285 0.375572
\(714\) −24.5038 27.9535i −0.917031 1.04613i
\(715\) 17.4158i 0.651314i
\(716\) 33.9228 + 25.3035i 1.26776 + 0.945637i
\(717\) −45.8666 −1.71292
\(718\) 24.6215 12.3511i 0.918866 0.460939i
\(719\) 14.5272i 0.541773i −0.962611 0.270886i \(-0.912683\pi\)
0.962611 0.270886i \(-0.0873168\pi\)
\(720\) −0.763019 2.56596i −0.0284360 0.0956278i
\(721\) 19.3480i 0.720555i
\(722\) −23.9917 + 12.0352i −0.892880 + 0.447903i
\(723\) 33.5088i 1.24621i
\(724\) 1.70177 2.28146i 0.0632458 0.0847896i
\(725\) 1.39629 0.0518568
\(726\) 49.8400 25.0017i 1.84974 0.927900i
\(727\) −41.7933 −1.55003 −0.775014 0.631944i \(-0.782257\pi\)
−0.775014 + 0.631944i \(0.782257\pi\)
\(728\) −5.10553 + 28.7213i −0.189223 + 1.06448i
\(729\) 18.5891 0.688485
\(730\) −5.36976 10.7044i −0.198744 0.396189i
\(731\) −10.6309 40.8203i −0.393198 1.50979i
\(732\) 23.0236 30.8663i 0.850976 1.14085i
\(733\) 17.6138i 0.650581i −0.945614 0.325290i \(-0.894538\pi\)
0.945614 0.325290i \(-0.105462\pi\)
\(734\) 13.2196 + 26.3528i 0.487944 + 0.972700i
\(735\) 7.80851 0.288021
\(736\) 8.13705 7.64135i 0.299936 0.281664i
\(737\) 74.4021i 2.74064i
\(738\) −2.08483 4.15605i −0.0767438 0.152986i
\(739\) 28.9662i 1.06554i −0.846261 0.532769i \(-0.821152\pi\)
0.846261 0.532769i \(-0.178848\pi\)
\(740\) 1.34223 1.79945i 0.0493414 0.0661489i
\(741\) −0.848288 −0.0311626
\(742\) 3.50670 1.75910i 0.128735 0.0645784i
\(743\) 12.1438i 0.445511i −0.974874 0.222756i \(-0.928495\pi\)
0.974874 0.222756i \(-0.0715052\pi\)
\(744\) 27.1100 + 4.81909i 0.993900 + 0.176677i
\(745\) 1.85859i 0.0680934i
\(746\) 7.18495 + 14.3230i 0.263060 + 0.524401i
\(747\) 11.6863i 0.427581i
\(748\) −17.4521 + 42.9312i −0.638112 + 1.56972i
\(749\) 4.14910i 0.151605i
\(750\) 2.42138 1.21466i 0.0884165 0.0443531i
\(751\) 31.9240i 1.16493i −0.812858 0.582463i \(-0.802089\pi\)
0.812858 0.582463i \(-0.197911\pi\)
\(752\) −5.89495 19.8242i −0.214967 0.722914i
\(753\) 40.0007i 1.45771i
\(754\) 2.74382 + 5.46971i 0.0999240 + 0.199195i
\(755\) −20.4111 −0.742835
\(756\) 23.8207 + 17.7682i 0.866352 + 0.646224i
\(757\) 47.0366i 1.70957i −0.518979 0.854787i \(-0.673688\pi\)
0.518979 0.854787i \(-0.326312\pi\)
\(758\) −22.9463 + 11.5108i −0.833447 + 0.418089i
\(759\) 21.2424i 0.771052i
\(760\) −0.397951 0.0707400i −0.0144352 0.00256601i
\(761\) 4.54400 0.164720 0.0823600 0.996603i \(-0.473754\pi\)
0.0823600 + 0.996603i \(0.473754\pi\)
\(762\) −28.1583 + 14.1253i −1.02007 + 0.511705i
\(763\) 16.9316i 0.612967i
\(764\) −22.4281 + 30.0680i −0.811422 + 1.08782i
\(765\) −2.67032 + 0.695437i −0.0965457 + 0.0251436i
\(766\) −33.0373 + 16.5728i −1.19369 + 0.598799i
\(767\) −5.52979 −0.199669
\(768\) 25.6687 16.7466i 0.926239 0.604289i
\(769\) −32.6478 −1.17731 −0.588654 0.808385i \(-0.700342\pi\)
−0.588654 + 0.808385i \(0.700342\pi\)
\(770\) −11.8603 23.6430i −0.427414 0.852036i
\(771\) 1.00743 0.0362816
\(772\) −34.7886 25.9493i −1.25207 0.933936i
\(773\) 35.7216i 1.28482i 0.766362 + 0.642409i \(0.222065\pi\)
−0.766362 + 0.642409i \(0.777935\pi\)
\(774\) −4.34168 8.65499i −0.156058 0.311097i
\(775\) 5.08219i 0.182558i
\(776\) −13.0162 2.31377i −0.467255 0.0830596i
\(777\) 7.15577i 0.256712i
\(778\) −13.0918 26.0980i −0.469362 0.935658i
\(779\) −0.702030 −0.0251528
\(780\) 9.51644 + 7.09845i 0.340743 + 0.254165i
\(781\) 73.3491i 2.62464i
\(782\) −7.58458 8.65237i −0.271224 0.309408i
\(783\) 6.23388 0.222781
\(784\) 4.64756 + 15.6293i 0.165984 + 0.558191i
\(785\) 12.9192i 0.461106i
\(786\) 32.2901 16.1979i 1.15175 0.577761i
\(787\) −17.0668 −0.608367 −0.304183 0.952613i \(-0.598384\pi\)
−0.304183 + 0.952613i \(0.598384\pi\)
\(788\) 0.534100 0.716034i 0.0190265 0.0255077i
\(789\) 0.958387 0.0341195
\(790\) −8.60501 17.1538i −0.306153 0.610305i
\(791\) 6.95512 0.247296
\(792\) −1.86185 + 10.4739i −0.0661578 + 0.372173i
\(793\) 31.1486i 1.10612i
\(794\) −30.8845 + 15.4929i −1.09605 + 0.549821i
\(795\) 1.59666i 0.0566277i
\(796\) 1.28237 + 0.956535i 0.0454523 + 0.0339035i
\(797\) 17.1921i 0.608977i 0.952516 + 0.304488i \(0.0984855\pi\)
−0.952516 + 0.304488i \(0.901515\pi\)
\(798\) −1.15160 + 0.577689i −0.0407663 + 0.0204500i
\(799\) −20.6305 + 5.37283i −0.729853 + 0.190077i
\(800\) 3.87242 + 4.12363i 0.136911 + 0.145792i
\(801\) 8.61704 0.304468
\(802\) 24.3153 + 48.4717i 0.858603 + 1.71160i
\(803\) 47.5902i 1.67942i
\(804\) −40.6553 30.3253i −1.43380 1.06949i
\(805\) 6.56730 0.231467
\(806\) −19.9086 + 9.98692i −0.701251 + 0.351774i
\(807\) −52.2946 −1.84086
\(808\) 23.2126 + 4.12630i 0.816618 + 0.145163i
\(809\) 9.72475i 0.341904i 0.985279 + 0.170952i \(0.0546843\pi\)
−0.985279 + 0.170952i \(0.945316\pi\)
\(810\) 13.3485 6.69613i 0.469019 0.235278i
\(811\) 27.5068 0.965894 0.482947 0.875649i \(-0.339566\pi\)
0.482947 + 0.875649i \(0.339566\pi\)
\(812\) 7.44981 + 5.55692i 0.261437 + 0.195010i
\(813\) −10.6695 −0.374194
\(814\) −7.97391 + 4.00002i −0.279485 + 0.140201i
\(815\) 16.1460 0.565568
\(816\) −16.3455 27.0345i −0.572206 0.946395i
\(817\) −1.46198 −0.0511482
\(818\) −2.42807 + 1.21802i −0.0848956 + 0.0425869i
\(819\) 6.90246 0.241192
\(820\) 7.87566 + 5.87457i 0.275030 + 0.205149i
\(821\) 26.8453 0.936909 0.468455 0.883488i \(-0.344811\pi\)
0.468455 + 0.883488i \(0.344811\pi\)
\(822\) 41.4645 20.8002i 1.44624 0.725491i
\(823\) 39.3390i 1.37127i −0.727945 0.685635i \(-0.759525\pi\)
0.727945 0.685635i \(-0.240475\pi\)
\(824\) −2.87780 + 16.1892i −0.100253 + 0.563977i
\(825\) −10.7651 −0.374792
\(826\) −7.50704 + 3.76582i −0.261203 + 0.131030i
\(827\) 27.5464 0.957884 0.478942 0.877847i \(-0.341020\pi\)
0.478942 + 0.877847i \(0.341020\pi\)
\(828\) −2.11713 1.57920i −0.0735754 0.0548809i
\(829\) 9.24546i 0.321108i 0.987027 + 0.160554i \(0.0513281\pi\)
−0.987027 + 0.160554i \(0.948672\pi\)
\(830\) 11.0727 + 22.0732i 0.384341 + 0.766170i
\(831\) 5.32372 0.184678
\(832\) −8.54398 + 23.2728i −0.296209 + 0.806840i
\(833\) 16.2650 4.23592i 0.563549 0.146766i
\(834\) −14.0168 + 7.03135i −0.485361 + 0.243476i
\(835\) 8.04236i 0.278317i
\(836\) 1.28748 + 0.960347i 0.0445283 + 0.0332143i
\(837\) 22.6900i 0.784282i
\(838\) 18.8316 9.44668i 0.650528 0.326330i
\(839\) 9.90610i 0.341997i −0.985271 0.170998i \(-0.945301\pi\)
0.985271 0.170998i \(-0.0546993\pi\)
\(840\) 17.7533 + 3.15584i 0.612546 + 0.108887i
\(841\) −27.0504 −0.932772
\(842\) −2.98878 5.95803i −0.103000 0.205327i
\(843\) 11.0980 0.382237
\(844\) 3.04361 4.08038i 0.104765 0.140452i
\(845\) 3.39650 0.116843
\(846\) −4.37420 + 2.19427i −0.150388 + 0.0754405i
\(847\) 68.5037i 2.35382i
\(848\) 3.19584 0.950319i 0.109745 0.0326341i
\(849\) −5.15743 −0.177003
\(850\) 4.38478 3.84366i 0.150397 0.131836i
\(851\) 2.21490i 0.0759259i
\(852\) −40.0799 29.8961i −1.37311 1.02422i
\(853\) −34.4721 −1.18030 −0.590151 0.807293i \(-0.700932\pi\)
−0.590151 + 0.807293i \(0.700932\pi\)
\(854\) 21.2124 + 42.2862i 0.725874 + 1.44701i
\(855\) 0.0956376i 0.00327074i
\(856\) −0.617134 + 3.47171i −0.0210932 + 0.118661i
\(857\) 36.4740i 1.24593i 0.782251 + 0.622963i \(0.214071\pi\)
−0.782251 + 0.622963i \(0.785929\pi\)
\(858\) −21.1543 42.1703i −0.722195 1.43967i
\(859\) 26.3038i 0.897475i −0.893664 0.448738i \(-0.851874\pi\)
0.893664 0.448738i \(-0.148126\pi\)
\(860\) 16.4011 + 12.2338i 0.559273 + 0.417170i
\(861\) 31.3188 1.06734
\(862\) −2.80319 5.58807i −0.0954771 0.190330i
\(863\) 11.9283 0.406044 0.203022 0.979174i \(-0.434924\pi\)
0.203022 + 0.979174i \(0.434924\pi\)
\(864\) 17.2889 + 18.4104i 0.588180 + 0.626336i
\(865\) −13.1004 −0.445426
\(866\) −4.34753 + 2.18089i −0.147735 + 0.0741097i
\(867\) −28.4273 + 15.8841i −0.965441 + 0.539451i
\(868\) −20.2260 + 27.1158i −0.686516 + 0.920369i
\(869\) 76.2630i 2.58705i
\(870\) 3.38095 1.69601i 0.114625 0.0575002i
\(871\) 41.0272 1.39015
\(872\) 2.51840 14.1674i 0.0852839 0.479767i
\(873\) 3.12813i 0.105871i
\(874\) −0.356453 + 0.178810i −0.0120572 + 0.00604835i
\(875\) 3.32813i 0.112511i
\(876\) −26.0045 19.3971i −0.878611 0.655368i
\(877\) −42.4524 −1.43352 −0.716759 0.697321i \(-0.754375\pi\)
−0.716759 + 0.697321i \(0.754375\pi\)
\(878\) 10.9564 + 21.8411i 0.369759 + 0.737103i
\(879\) 18.5974i 0.627276i
\(880\) −6.40729 21.5471i −0.215990 0.726354i
\(881\) 12.5082i 0.421413i −0.977549 0.210707i \(-0.932423\pi\)
0.977549 0.210707i \(-0.0675765\pi\)
\(882\) 3.44861 1.72996i 0.116121 0.0582506i
\(883\) 54.1517i 1.82235i 0.412021 + 0.911174i \(0.364823\pi\)
−0.412021 + 0.911174i \(0.635177\pi\)
\(884\) 23.6733 + 9.62352i 0.796220 + 0.323674i
\(885\) 3.41808i 0.114898i
\(886\) −14.2127 28.3325i −0.477485 0.951850i
\(887\) 10.2928i 0.345597i 0.984957 + 0.172798i \(0.0552809\pi\)
−0.984957 + 0.172798i \(0.944719\pi\)
\(888\) 1.06434 5.98751i 0.0357171 0.200928i
\(889\) 38.7028i 1.29805i
\(890\) −16.2758 + 8.16460i −0.545568 + 0.273678i
\(891\) −59.3453 −1.98814
\(892\) −31.1551 + 41.7677i −1.04315 + 1.39849i
\(893\) 0.738880i 0.0247257i
\(894\) −2.25755 4.50036i −0.0755039 0.150515i
\(895\) 21.1603i 0.707310i
\(896\) 4.24995 + 37.4128i 0.141981 + 1.24988i
\(897\) 11.7136 0.391106
\(898\) −8.40643 16.7579i −0.280526 0.559219i
\(899\) 7.09619i 0.236671i
\(900\) 0.800293 1.07290i 0.0266764 0.0357634i
\(901\) −0.866147 3.32581i −0.0288555 0.110799i
\(902\) −17.5070 34.8995i −0.582918 1.16203i
\(903\) 65.2215 2.17043
\(904\) 5.81962 + 1.03450i 0.193558 + 0.0344070i
\(905\) 1.42312 0.0473060
\(906\) −49.4231 + 24.7925i −1.64197 + 0.823676i
\(907\) −25.5730 −0.849139 −0.424570 0.905395i \(-0.639575\pi\)
−0.424570 + 0.905395i \(0.639575\pi\)
\(908\) −10.2764 + 13.7769i −0.341034 + 0.457203i
\(909\) 5.57859i 0.185030i
\(910\) −13.0374 + 6.54004i −0.432184 + 0.216800i
\(911\) 54.8104i 1.81595i −0.419024 0.907975i \(-0.637628\pi\)
0.419024 0.907975i \(-0.362372\pi\)
\(912\) −1.04952 + 0.312086i −0.0347530 + 0.0103342i
\(913\) 98.1337i 3.24775i
\(914\) −25.5532 + 12.8185i −0.845226 + 0.423998i
\(915\) 19.2536 0.636506
\(916\) −22.6649 16.9061i −0.748870 0.558593i
\(917\) 44.3818i 1.46562i
\(918\) 19.5764 17.1605i 0.646116 0.566379i
\(919\) −49.1629 −1.62173 −0.810867 0.585230i \(-0.801004\pi\)
−0.810867 + 0.585230i \(0.801004\pi\)
\(920\) 5.49512 + 0.976817i 0.181169 + 0.0322047i
\(921\) 61.1524i 2.01504i
\(922\) 26.1542 + 52.1375i 0.861341 + 1.71706i
\(923\) 40.4465 1.33131
\(924\) −57.4365 42.8427i −1.88952 1.40942i
\(925\) 1.12245 0.0369060
\(926\) −38.8076 + 19.4674i −1.27530 + 0.639739i
\(927\) 3.89067 0.127786
\(928\) 5.40701 + 5.75777i 0.177494 + 0.189008i
\(929\) 4.73083i 0.155213i 0.996984 + 0.0776067i \(0.0247278\pi\)
−0.996984 + 0.0776067i \(0.975272\pi\)
\(930\) 6.17313 + 12.3059i 0.202425 + 0.403528i
\(931\) 0.582531i 0.0190917i
\(932\) −24.7940 18.4942i −0.812154 0.605797i
\(933\) 51.4673i 1.68497i
\(934\) −3.53179 7.04051i −0.115564 0.230373i
\(935\) −22.4235 + 5.83978i −0.733326 + 0.190981i
\(936\) 5.77556 + 1.02667i 0.188780 + 0.0335577i
\(937\) 25.4046 0.829933 0.414966 0.909837i \(-0.363793\pi\)
0.414966 + 0.909837i \(0.363793\pi\)
\(938\) 55.6970 27.9398i 1.81857 0.912266i
\(939\) 54.1474i 1.76703i
\(940\) 6.18293 8.28907i 0.201665 0.270360i
\(941\) −24.7856 −0.807988 −0.403994 0.914762i \(-0.632378\pi\)
−0.403994 + 0.914762i \(0.632378\pi\)
\(942\) 15.6924 + 31.2823i 0.511287 + 1.01923i
\(943\) 9.69401 0.315680
\(944\) −6.84155 + 2.03441i −0.222674 + 0.0662146i
\(945\) 14.8588i 0.483357i
\(946\) −36.4583 72.6785i −1.18536 2.36298i
\(947\) 17.4224 0.566154 0.283077 0.959097i \(-0.408645\pi\)
0.283077 + 0.959097i \(0.408645\pi\)
\(948\) −41.6721 31.0838i −1.35345 1.00955i
\(949\) 26.2424 0.851865
\(950\) −0.0906161 0.180640i −0.00293998 0.00586074i
\(951\) 15.5001 0.502624
\(952\) 38.6917 3.05714i 1.25401 0.0990826i
\(953\) 37.0229 1.19929 0.599644 0.800267i \(-0.295309\pi\)
0.599644 + 0.800267i \(0.295309\pi\)
\(954\) −0.353736 0.705160i −0.0114526 0.0228304i
\(955\) −18.7557 −0.606920
\(956\) 28.6330 38.3865i 0.926058 1.24151i
\(957\) −15.0311 −0.485888
\(958\) 19.6022 + 39.0764i 0.633319 + 1.26250i
\(959\) 56.9919i 1.84036i
\(960\) 14.3854 + 5.28122i 0.464288 + 0.170451i
\(961\) 5.17135 0.166818
\(962\) 2.20571 + 4.39701i 0.0711150 + 0.141765i
\(963\) 0.834340 0.0268862
\(964\) 28.0441 + 20.9185i 0.903240 + 0.673740i
\(965\) 21.7003i 0.698558i
\(966\) 15.9020 7.97704i 0.511637 0.256657i
\(967\) 43.1977 1.38915 0.694573 0.719423i \(-0.255593\pi\)
0.694573 + 0.719423i \(0.255593\pi\)
\(968\) −10.1892 + 57.3197i −0.327493 + 1.84233i
\(969\) 0.284444 + 1.09220i 0.00913765 + 0.0350866i
\(970\) −2.96388 5.90840i −0.0951645 0.189707i
\(971\) 15.7513i 0.505482i −0.967534 0.252741i \(-0.918668\pi\)
0.967534 0.252741i \(-0.0813321\pi\)
\(972\) 8.17196 10.9556i 0.262116 0.351402i
\(973\) 19.2657i 0.617628i
\(974\) −20.5463 40.9584i −0.658346 1.31239i
\(975\) 5.93613i 0.190108i
\(976\) 11.4596 + 38.5376i 0.366813 + 1.23356i
\(977\) 20.3273 0.650326 0.325163 0.945658i \(-0.394581\pi\)
0.325163 + 0.945658i \(0.394581\pi\)
\(978\) 39.0956 19.6119i 1.25014 0.627118i
\(979\) 72.3598 2.31263
\(980\) −4.87461 + 6.53508i −0.155714 + 0.208755i
\(981\) −3.40478 −0.108706
\(982\) 1.12079 + 2.23425i 0.0357657 + 0.0712977i
\(983\) 10.3559i 0.330303i −0.986268 0.165152i \(-0.947189\pi\)
0.986268 0.165152i \(-0.0528113\pi\)
\(984\) 26.2056 + 4.65833i 0.835404 + 0.148502i
\(985\) 0.446645 0.0142313
\(986\) 6.12241 5.36684i 0.194977 0.170915i
\(987\) 32.9627i 1.04921i
\(988\) 0.529559 0.709946i 0.0168475 0.0225864i
\(989\) 20.1878 0.641935
\(990\) −4.75437 + 2.38498i −0.151104 + 0.0757995i
\(991\) 55.8294i 1.77348i 0.462268 + 0.886740i \(0.347036\pi\)
−0.462268 + 0.886740i \(0.652964\pi\)
\(992\) −20.9571 + 19.6804i −0.665388 + 0.624853i
\(993\) 8.09495i 0.256886i
\(994\) 54.9087 27.5443i 1.74160 0.873653i
\(995\) 0.799910i 0.0253588i
\(996\) 53.6228 + 39.9980i 1.69910 + 1.26738i
\(997\) −14.3259 −0.453706 −0.226853 0.973929i \(-0.572844\pi\)
−0.226853 + 0.973929i \(0.572844\pi\)
\(998\) −23.9066 + 11.9925i −0.756750 + 0.379615i
\(999\) 5.01132 0.158551
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.l.a.101.8 yes 36
4.3 odd 2 2720.2.l.b.2481.28 36
8.3 odd 2 2720.2.l.a.2481.10 36
8.5 even 2 680.2.l.b.101.7 yes 36
17.16 even 2 680.2.l.b.101.8 yes 36
68.67 odd 2 2720.2.l.a.2481.9 36
136.67 odd 2 2720.2.l.b.2481.27 36
136.101 even 2 inner 680.2.l.a.101.7 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.l.a.101.7 36 136.101 even 2 inner
680.2.l.a.101.8 yes 36 1.1 even 1 trivial
680.2.l.b.101.7 yes 36 8.5 even 2
680.2.l.b.101.8 yes 36 17.16 even 2
2720.2.l.a.2481.9 36 68.67 odd 2
2720.2.l.a.2481.10 36 8.3 odd 2
2720.2.l.b.2481.27 36 136.67 odd 2
2720.2.l.b.2481.28 36 4.3 odd 2