Properties

Label 680.2.l.a.101.24
Level $680$
Weight $2$
Character 680.101
Analytic conductor $5.430$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(101,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.l (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 101.24
Character \(\chi\) \(=\) 680.101
Dual form 680.2.l.a.101.23

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.629773 + 1.26625i) q^{2} -0.528085 q^{3} +(-1.20677 + 1.59490i) q^{4} +1.00000 q^{5} +(-0.332573 - 0.668687i) q^{6} -4.36555i q^{7} +(-2.77953 - 0.523652i) q^{8} -2.72113 q^{9} +(0.629773 + 1.26625i) q^{10} +0.873286 q^{11} +(0.637278 - 0.842241i) q^{12} -6.88027i q^{13} +(5.52788 - 2.74931i) q^{14} -0.528085 q^{15} +(-1.08740 - 3.84936i) q^{16} +(-3.39745 - 2.33609i) q^{17} +(-1.71369 - 3.44562i) q^{18} +3.88862i q^{19} +(-1.20677 + 1.59490i) q^{20} +2.30538i q^{21} +(0.549971 + 1.10580i) q^{22} -4.09430i q^{23} +(1.46783 + 0.276533i) q^{24} +1.00000 q^{25} +(8.71213 - 4.33300i) q^{26} +3.02124 q^{27} +(6.96261 + 5.26823i) q^{28} -6.41784 q^{29} +(-0.332573 - 0.668687i) q^{30} +6.12329i q^{31} +(4.18943 - 3.80114i) q^{32} -0.461169 q^{33} +(0.818452 - 5.77323i) q^{34} -4.36555i q^{35} +(3.28378 - 4.33992i) q^{36} +6.96168 q^{37} +(-4.92396 + 2.44895i) q^{38} +3.63336i q^{39} +(-2.77953 - 0.523652i) q^{40} -12.0257i q^{41} +(-2.91919 + 1.45187i) q^{42} +9.29275i q^{43} +(-1.05386 + 1.39280i) q^{44} -2.72113 q^{45} +(5.18441 - 2.57848i) q^{46} +1.39613 q^{47} +(0.574239 + 2.03279i) q^{48} -12.0581 q^{49} +(0.629773 + 1.26625i) q^{50} +(1.79414 + 1.23365i) q^{51} +(10.9733 + 8.30292i) q^{52} +5.12849i q^{53} +(1.90269 + 3.82564i) q^{54} +0.873286 q^{55} +(-2.28603 + 12.1342i) q^{56} -2.05352i q^{57} +(-4.04178 - 8.12658i) q^{58} -5.18909i q^{59} +(0.637278 - 0.842241i) q^{60} +7.45546 q^{61} +(-7.75362 + 3.85628i) q^{62} +11.8792i q^{63} +(7.45158 + 2.91101i) q^{64} -6.88027i q^{65} +(-0.290432 - 0.583955i) q^{66} +1.10485i q^{67} +(7.82578 - 2.59946i) q^{68} +2.16214i q^{69} +(5.52788 - 2.74931i) q^{70} -8.33370i q^{71} +(7.56345 + 1.42492i) q^{72} -1.86189i q^{73} +(4.38428 + 8.81522i) q^{74} -0.528085 q^{75} +(-6.20195 - 4.69268i) q^{76} -3.81238i q^{77} +(-4.60074 + 2.28819i) q^{78} +3.18110i q^{79} +(-1.08740 - 3.84936i) q^{80} +6.56791 q^{81} +(15.2275 - 7.57344i) q^{82} +4.38088i q^{83} +(-3.67685 - 2.78207i) q^{84} +(-3.39745 - 2.33609i) q^{85} +(-11.7669 + 5.85232i) q^{86} +3.38916 q^{87} +(-2.42732 - 0.457298i) q^{88} +9.98438 q^{89} +(-1.71369 - 3.44562i) q^{90} -30.0362 q^{91} +(6.52999 + 4.94089i) q^{92} -3.23362i q^{93} +(0.879244 + 1.76785i) q^{94} +3.88862i q^{95} +(-2.21238 + 2.00732i) q^{96} -6.33811i q^{97} +(-7.59384 - 15.2685i) q^{98} -2.37632 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 4 q^{3} + 2 q^{4} + 36 q^{5} + 36 q^{9} - 8 q^{11} - 2 q^{12} + 2 q^{14} - 4 q^{15} + 6 q^{16} - 10 q^{18} + 2 q^{20} + 26 q^{24} + 36 q^{25} + 6 q^{26} - 16 q^{27} + 14 q^{28} - 10 q^{32} - 8 q^{33}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.629773 + 1.26625i 0.445316 + 0.895373i
\(3\) −0.528085 −0.304890 −0.152445 0.988312i \(-0.548715\pi\)
−0.152445 + 0.988312i \(0.548715\pi\)
\(4\) −1.20677 + 1.59490i −0.603386 + 0.797449i
\(5\) 1.00000 0.447214
\(6\) −0.332573 0.668687i −0.135773 0.272990i
\(7\) 4.36555i 1.65002i −0.565115 0.825012i \(-0.691168\pi\)
0.565115 0.825012i \(-0.308832\pi\)
\(8\) −2.77953 0.523652i −0.982712 0.185139i
\(9\) −2.72113 −0.907042
\(10\) 0.629773 + 1.26625i 0.199152 + 0.400423i
\(11\) 0.873286 0.263306 0.131653 0.991296i \(-0.457972\pi\)
0.131653 + 0.991296i \(0.457972\pi\)
\(12\) 0.637278 0.842241i 0.183966 0.243134i
\(13\) 6.88027i 1.90824i −0.299420 0.954121i \(-0.596793\pi\)
0.299420 0.954121i \(-0.403207\pi\)
\(14\) 5.52788 2.74931i 1.47739 0.734783i
\(15\) −0.528085 −0.136351
\(16\) −1.08740 3.84936i −0.271850 0.962340i
\(17\) −3.39745 2.33609i −0.824003 0.566585i
\(18\) −1.71369 3.44562i −0.403921 0.812141i
\(19\) 3.88862i 0.892111i 0.895005 + 0.446056i \(0.147172\pi\)
−0.895005 + 0.446056i \(0.852828\pi\)
\(20\) −1.20677 + 1.59490i −0.269843 + 0.356630i
\(21\) 2.30538i 0.503076i
\(22\) 0.549971 + 1.10580i 0.117254 + 0.235757i
\(23\) 4.09430i 0.853721i −0.904317 0.426861i \(-0.859620\pi\)
0.904317 0.426861i \(-0.140380\pi\)
\(24\) 1.46783 + 0.276533i 0.299619 + 0.0564470i
\(25\) 1.00000 0.200000
\(26\) 8.71213 4.33300i 1.70859 0.849772i
\(27\) 3.02124 0.581438
\(28\) 6.96261 + 5.26823i 1.31581 + 0.995602i
\(29\) −6.41784 −1.19176 −0.595881 0.803073i \(-0.703197\pi\)
−0.595881 + 0.803073i \(0.703197\pi\)
\(30\) −0.332573 0.668687i −0.0607193 0.122085i
\(31\) 6.12329i 1.09978i 0.835238 + 0.549888i \(0.185330\pi\)
−0.835238 + 0.549888i \(0.814670\pi\)
\(32\) 4.18943 3.80114i 0.740594 0.671953i
\(33\) −0.461169 −0.0802792
\(34\) 0.818452 5.77323i 0.140363 0.990100i
\(35\) 4.36555i 0.737913i
\(36\) 3.28378 4.33992i 0.547297 0.723320i
\(37\) 6.96168 1.14449 0.572247 0.820081i \(-0.306072\pi\)
0.572247 + 0.820081i \(0.306072\pi\)
\(38\) −4.92396 + 2.44895i −0.798772 + 0.397272i
\(39\) 3.63336i 0.581804i
\(40\) −2.77953 0.523652i −0.439482 0.0827967i
\(41\) 12.0257i 1.87810i −0.343786 0.939048i \(-0.611710\pi\)
0.343786 0.939048i \(-0.388290\pi\)
\(42\) −2.91919 + 1.45187i −0.450441 + 0.224028i
\(43\) 9.29275i 1.41713i 0.705645 + 0.708566i \(0.250657\pi\)
−0.705645 + 0.708566i \(0.749343\pi\)
\(44\) −1.05386 + 1.39280i −0.158875 + 0.209973i
\(45\) −2.72113 −0.405642
\(46\) 5.18441 2.57848i 0.764399 0.380176i
\(47\) 1.39613 0.203646 0.101823 0.994803i \(-0.467532\pi\)
0.101823 + 0.994803i \(0.467532\pi\)
\(48\) 0.574239 + 2.03279i 0.0828842 + 0.293408i
\(49\) −12.0581 −1.72258
\(50\) 0.629773 + 1.26625i 0.0890633 + 0.179075i
\(51\) 1.79414 + 1.23365i 0.251230 + 0.172746i
\(52\) 10.9733 + 8.30292i 1.52173 + 1.15141i
\(53\) 5.12849i 0.704452i 0.935915 + 0.352226i \(0.114575\pi\)
−0.935915 + 0.352226i \(0.885425\pi\)
\(54\) 1.90269 + 3.82564i 0.258924 + 0.520604i
\(55\) 0.873286 0.117754
\(56\) −2.28603 + 12.1342i −0.305484 + 1.62150i
\(57\) 2.05352i 0.271996i
\(58\) −4.04178 8.12658i −0.530711 1.06707i
\(59\) 5.18909i 0.675562i −0.941225 0.337781i \(-0.890324\pi\)
0.941225 0.337781i \(-0.109676\pi\)
\(60\) 0.637278 0.842241i 0.0822723 0.108733i
\(61\) 7.45546 0.954574 0.477287 0.878748i \(-0.341620\pi\)
0.477287 + 0.878748i \(0.341620\pi\)
\(62\) −7.75362 + 3.85628i −0.984710 + 0.489748i
\(63\) 11.8792i 1.49664i
\(64\) 7.45158 + 2.91101i 0.931447 + 0.363877i
\(65\) 6.88027i 0.853392i
\(66\) −0.290432 0.583955i −0.0357497 0.0718799i
\(67\) 1.10485i 0.134978i 0.997720 + 0.0674892i \(0.0214988\pi\)
−0.997720 + 0.0674892i \(0.978501\pi\)
\(68\) 7.82578 2.59946i 0.949015 0.315230i
\(69\) 2.16214i 0.260291i
\(70\) 5.52788 2.74931i 0.660708 0.328605i
\(71\) 8.33370i 0.989028i −0.869170 0.494514i \(-0.835346\pi\)
0.869170 0.494514i \(-0.164654\pi\)
\(72\) 7.56345 + 1.42492i 0.891362 + 0.167929i
\(73\) 1.86189i 0.217917i −0.994046 0.108959i \(-0.965248\pi\)
0.994046 0.108959i \(-0.0347516\pi\)
\(74\) 4.38428 + 8.81522i 0.509662 + 1.02475i
\(75\) −0.528085 −0.0609780
\(76\) −6.20195 4.69268i −0.711413 0.538288i
\(77\) 3.81238i 0.434461i
\(78\) −4.60074 + 2.28819i −0.520932 + 0.259087i
\(79\) 3.18110i 0.357902i 0.983858 + 0.178951i \(0.0572704\pi\)
−0.983858 + 0.178951i \(0.942730\pi\)
\(80\) −1.08740 3.84936i −0.121575 0.430371i
\(81\) 6.56791 0.729768
\(82\) 15.2275 7.57344i 1.68160 0.836347i
\(83\) 4.38088i 0.480864i 0.970666 + 0.240432i \(0.0772891\pi\)
−0.970666 + 0.240432i \(0.922711\pi\)
\(84\) −3.67685 2.78207i −0.401177 0.303549i
\(85\) −3.39745 2.33609i −0.368505 0.253385i
\(86\) −11.7669 + 5.85232i −1.26886 + 0.631072i
\(87\) 3.38916 0.363356
\(88\) −2.42732 0.457298i −0.258754 0.0487481i
\(89\) 9.98438 1.05834 0.529171 0.848515i \(-0.322503\pi\)
0.529171 + 0.848515i \(0.322503\pi\)
\(90\) −1.71369 3.44562i −0.180639 0.363201i
\(91\) −30.0362 −3.14865
\(92\) 6.52999 + 4.94089i 0.680799 + 0.515124i
\(93\) 3.23362i 0.335311i
\(94\) 0.879244 + 1.76785i 0.0906871 + 0.182340i
\(95\) 3.88862i 0.398964i
\(96\) −2.21238 + 2.00732i −0.225800 + 0.204872i
\(97\) 6.33811i 0.643538i −0.946818 0.321769i \(-0.895723\pi\)
0.946818 0.321769i \(-0.104277\pi\)
\(98\) −7.59384 15.2685i −0.767093 1.54235i
\(99\) −2.37632 −0.238829
\(100\) −1.20677 + 1.59490i −0.120677 + 0.159490i
\(101\) 7.56609i 0.752854i −0.926446 0.376427i \(-0.877153\pi\)
0.926446 0.376427i \(-0.122847\pi\)
\(102\) −0.432212 + 3.04875i −0.0427954 + 0.301872i
\(103\) −7.19929 −0.709368 −0.354684 0.934986i \(-0.615411\pi\)
−0.354684 + 0.934986i \(0.615411\pi\)
\(104\) −3.60287 + 19.1239i −0.353290 + 1.87525i
\(105\) 2.30538i 0.224982i
\(106\) −6.49394 + 3.22978i −0.630747 + 0.313704i
\(107\) −17.9909 −1.73925 −0.869624 0.493714i \(-0.835639\pi\)
−0.869624 + 0.493714i \(0.835639\pi\)
\(108\) −3.64595 + 4.81857i −0.350832 + 0.463667i
\(109\) −11.5234 −1.10374 −0.551869 0.833931i \(-0.686085\pi\)
−0.551869 + 0.833931i \(0.686085\pi\)
\(110\) 0.549971 + 1.10580i 0.0524377 + 0.105434i
\(111\) −3.67636 −0.348945
\(112\) −16.8046 + 4.74710i −1.58788 + 0.448558i
\(113\) 5.44751i 0.512459i −0.966616 0.256229i \(-0.917520\pi\)
0.966616 0.256229i \(-0.0824802\pi\)
\(114\) 2.60027 1.29325i 0.243538 0.121124i
\(115\) 4.09430i 0.381796i
\(116\) 7.74487 10.2358i 0.719093 0.950370i
\(117\) 18.7221i 1.73086i
\(118\) 6.57068 3.26795i 0.604880 0.300839i
\(119\) −10.1983 + 14.8318i −0.934880 + 1.35962i
\(120\) 1.46783 + 0.276533i 0.133994 + 0.0252439i
\(121\) −10.2374 −0.930670
\(122\) 4.69524 + 9.44047i 0.425087 + 0.854700i
\(123\) 6.35058i 0.572613i
\(124\) −9.76603 7.38943i −0.877015 0.663590i
\(125\) 1.00000 0.0894427
\(126\) −15.0421 + 7.48121i −1.34005 + 0.666479i
\(127\) 18.0289 1.59981 0.799903 0.600130i \(-0.204884\pi\)
0.799903 + 0.600130i \(0.204884\pi\)
\(128\) 1.00673 + 11.2688i 0.0889833 + 0.996033i
\(129\) 4.90736i 0.432069i
\(130\) 8.71213 4.33300i 0.764104 0.380030i
\(131\) −0.416326 −0.0363746 −0.0181873 0.999835i \(-0.505790\pi\)
−0.0181873 + 0.999835i \(0.505790\pi\)
\(132\) 0.556526 0.735517i 0.0484394 0.0640186i
\(133\) 16.9760 1.47201
\(134\) −1.39901 + 0.695802i −0.120856 + 0.0601081i
\(135\) 3.02124 0.260027
\(136\) 8.22002 + 8.27232i 0.704861 + 0.709346i
\(137\) −2.39871 −0.204936 −0.102468 0.994736i \(-0.532674\pi\)
−0.102468 + 0.994736i \(0.532674\pi\)
\(138\) −2.73781 + 1.36166i −0.233058 + 0.115912i
\(139\) 8.52596 0.723163 0.361581 0.932341i \(-0.382237\pi\)
0.361581 + 0.932341i \(0.382237\pi\)
\(140\) 6.96261 + 5.26823i 0.588448 + 0.445247i
\(141\) −0.737275 −0.0620897
\(142\) 10.5525 5.24833i 0.885549 0.440430i
\(143\) 6.00844i 0.502451i
\(144\) 2.95895 + 10.4746i 0.246579 + 0.872883i
\(145\) −6.41784 −0.532972
\(146\) 2.35761 1.17257i 0.195117 0.0970422i
\(147\) 6.36768 0.525197
\(148\) −8.40117 + 11.1032i −0.690572 + 0.912675i
\(149\) 7.04895i 0.577473i 0.957409 + 0.288736i \(0.0932351\pi\)
−0.957409 + 0.288736i \(0.906765\pi\)
\(150\) −0.332573 0.668687i −0.0271545 0.0545981i
\(151\) 9.79384 0.797011 0.398506 0.917166i \(-0.369529\pi\)
0.398506 + 0.917166i \(0.369529\pi\)
\(152\) 2.03628 10.8085i 0.165165 0.876689i
\(153\) 9.24489 + 6.35680i 0.747405 + 0.513917i
\(154\) 4.82742 2.40093i 0.389004 0.193472i
\(155\) 6.12329i 0.491835i
\(156\) −5.79485 4.38465i −0.463959 0.351053i
\(157\) 1.38378i 0.110438i −0.998474 0.0552188i \(-0.982414\pi\)
0.998474 0.0552188i \(-0.0175856\pi\)
\(158\) −4.02807 + 2.00337i −0.320456 + 0.159380i
\(159\) 2.70828i 0.214780i
\(160\) 4.18943 3.80114i 0.331204 0.300506i
\(161\) −17.8739 −1.40866
\(162\) 4.13629 + 8.31661i 0.324978 + 0.653414i
\(163\) 5.50427 0.431128 0.215564 0.976490i \(-0.430841\pi\)
0.215564 + 0.976490i \(0.430841\pi\)
\(164\) 19.1797 + 14.5123i 1.49769 + 1.13322i
\(165\) −0.461169 −0.0359020
\(166\) −5.54728 + 2.75896i −0.430553 + 0.214137i
\(167\) 13.3312i 1.03160i −0.856710 0.515798i \(-0.827496\pi\)
0.856710 0.515798i \(-0.172504\pi\)
\(168\) 1.20722 6.40788i 0.0931389 0.494379i
\(169\) −34.3381 −2.64139
\(170\) 0.818452 5.77323i 0.0627724 0.442786i
\(171\) 10.5814i 0.809182i
\(172\) −14.8210 11.2142i −1.13009 0.855078i
\(173\) 0.0617819 0.00469719 0.00234859 0.999997i \(-0.499252\pi\)
0.00234859 + 0.999997i \(0.499252\pi\)
\(174\) 2.13440 + 4.29152i 0.161809 + 0.325340i
\(175\) 4.36555i 0.330005i
\(176\) −0.949609 3.36159i −0.0715795 0.253389i
\(177\) 2.74028i 0.205972i
\(178\) 6.28789 + 12.6427i 0.471297 + 0.947611i
\(179\) 10.4747i 0.782913i −0.920197 0.391457i \(-0.871971\pi\)
0.920197 0.391457i \(-0.128029\pi\)
\(180\) 3.28378 4.33992i 0.244759 0.323478i
\(181\) 4.45365 0.331037 0.165518 0.986207i \(-0.447070\pi\)
0.165518 + 0.986207i \(0.447070\pi\)
\(182\) −18.9160 38.0333i −1.40214 2.81921i
\(183\) −3.93711 −0.291040
\(184\) −2.14399 + 11.3802i −0.158057 + 0.838962i
\(185\) 6.96168 0.511833
\(186\) 4.09457 2.03644i 0.300228 0.149319i
\(187\) −2.96695 2.04008i −0.216965 0.149185i
\(188\) −1.68481 + 2.22668i −0.122878 + 0.162398i
\(189\) 13.1894i 0.959387i
\(190\) −4.92396 + 2.44895i −0.357222 + 0.177665i
\(191\) 14.0445 1.01622 0.508111 0.861292i \(-0.330344\pi\)
0.508111 + 0.861292i \(0.330344\pi\)
\(192\) −3.93506 1.53726i −0.283989 0.110942i
\(193\) 4.18068i 0.300932i 0.988615 + 0.150466i \(0.0480774\pi\)
−0.988615 + 0.150466i \(0.951923\pi\)
\(194\) 8.02563 3.99157i 0.576206 0.286578i
\(195\) 3.63336i 0.260191i
\(196\) 14.5513 19.2314i 1.03938 1.37367i
\(197\) −7.26818 −0.517836 −0.258918 0.965899i \(-0.583366\pi\)
−0.258918 + 0.965899i \(0.583366\pi\)
\(198\) −1.49654 3.00901i −0.106355 0.213841i
\(199\) 17.6226i 1.24924i 0.780930 + 0.624618i \(0.214745\pi\)
−0.780930 + 0.624618i \(0.785255\pi\)
\(200\) −2.77953 0.523652i −0.196542 0.0370278i
\(201\) 0.583453i 0.0411536i
\(202\) 9.58055 4.76491i 0.674085 0.335258i
\(203\) 28.0174i 1.96644i
\(204\) −4.13268 + 1.37273i −0.289345 + 0.0961105i
\(205\) 12.0257i 0.839910i
\(206\) −4.53392 9.11610i −0.315893 0.635149i
\(207\) 11.1411i 0.774361i
\(208\) −26.4846 + 7.48159i −1.83638 + 0.518755i
\(209\) 3.39588i 0.234898i
\(210\) −2.91919 + 1.45187i −0.201443 + 0.100188i
\(211\) 17.8735 1.23046 0.615231 0.788347i \(-0.289063\pi\)
0.615231 + 0.788347i \(0.289063\pi\)
\(212\) −8.17941 6.18892i −0.561764 0.425057i
\(213\) 4.40090i 0.301545i
\(214\) −11.3302 22.7810i −0.774516 1.55728i
\(215\) 9.29275i 0.633760i
\(216\) −8.39763 1.58208i −0.571386 0.107647i
\(217\) 26.7316 1.81466
\(218\) −7.25710 14.5915i −0.491513 0.988258i
\(219\) 0.983235i 0.0664408i
\(220\) −1.05386 + 1.39280i −0.0710511 + 0.0939027i
\(221\) −16.0729 + 23.3754i −1.08118 + 1.57240i
\(222\) −2.31527 4.65519i −0.155391 0.312436i
\(223\) 7.40463 0.495851 0.247925 0.968779i \(-0.420251\pi\)
0.247925 + 0.968779i \(0.420251\pi\)
\(224\) −16.5941 18.2892i −1.10874 1.22200i
\(225\) −2.72113 −0.181408
\(226\) 6.89790 3.43069i 0.458842 0.228206i
\(227\) 4.35476 0.289036 0.144518 0.989502i \(-0.453837\pi\)
0.144518 + 0.989502i \(0.453837\pi\)
\(228\) 3.27516 + 2.47814i 0.216903 + 0.164119i
\(229\) 13.1678i 0.870155i −0.900393 0.435078i \(-0.856721\pi\)
0.900393 0.435078i \(-0.143279\pi\)
\(230\) 5.18441 2.57848i 0.341850 0.170020i
\(231\) 2.01326i 0.132463i
\(232\) 17.8386 + 3.36071i 1.17116 + 0.220642i
\(233\) 25.3191i 1.65871i −0.558724 0.829353i \(-0.688709\pi\)
0.558724 0.829353i \(-0.311291\pi\)
\(234\) −23.7068 + 11.7907i −1.54976 + 0.770779i
\(235\) 1.39613 0.0910735
\(236\) 8.27607 + 6.26205i 0.538726 + 0.407625i
\(237\) 1.67989i 0.109121i
\(238\) −25.2033 3.57300i −1.63369 0.231603i
\(239\) −19.0546 −1.23254 −0.616270 0.787535i \(-0.711357\pi\)
−0.616270 + 0.787535i \(0.711357\pi\)
\(240\) 0.574239 + 2.03279i 0.0370669 + 0.131216i
\(241\) 22.7240i 1.46378i 0.681422 + 0.731890i \(0.261362\pi\)
−0.681422 + 0.731890i \(0.738638\pi\)
\(242\) −6.44722 12.9631i −0.414443 0.833297i
\(243\) −12.5321 −0.803937
\(244\) −8.99705 + 11.8907i −0.575977 + 0.761224i
\(245\) −12.0581 −0.770361
\(246\) −8.04142 + 3.99942i −0.512702 + 0.254994i
\(247\) 26.7548 1.70236
\(248\) 3.20648 17.0199i 0.203611 1.08076i
\(249\) 2.31348i 0.146611i
\(250\) 0.629773 + 1.26625i 0.0398303 + 0.0800846i
\(251\) 8.04157i 0.507579i 0.967259 + 0.253790i \(0.0816771\pi\)
−0.967259 + 0.253790i \(0.918323\pi\)
\(252\) −18.9461 14.3355i −1.19350 0.903053i
\(253\) 3.57550i 0.224790i
\(254\) 11.3541 + 22.8291i 0.712420 + 1.43242i
\(255\) 1.79414 + 1.23365i 0.112354 + 0.0772545i
\(256\) −13.6351 + 8.37157i −0.852196 + 0.523223i
\(257\) 8.62751 0.538169 0.269085 0.963117i \(-0.413279\pi\)
0.269085 + 0.963117i \(0.413279\pi\)
\(258\) 6.21394 3.09052i 0.386863 0.192407i
\(259\) 30.3916i 1.88844i
\(260\) 10.9733 + 8.30292i 0.680537 + 0.514925i
\(261\) 17.4637 1.08098
\(262\) −0.262191 0.527173i −0.0161982 0.0325688i
\(263\) 28.1526 1.73597 0.867983 0.496595i \(-0.165416\pi\)
0.867983 + 0.496595i \(0.165416\pi\)
\(264\) 1.28183 + 0.241492i 0.0788914 + 0.0148628i
\(265\) 5.12849i 0.315040i
\(266\) 10.6910 + 21.4958i 0.655508 + 1.31799i
\(267\) −5.27260 −0.322678
\(268\) −1.76212 1.33330i −0.107638 0.0814442i
\(269\) 26.1781 1.59610 0.798052 0.602588i \(-0.205864\pi\)
0.798052 + 0.602588i \(0.205864\pi\)
\(270\) 1.90269 + 3.82564i 0.115794 + 0.232821i
\(271\) 21.6829 1.31714 0.658571 0.752518i \(-0.271161\pi\)
0.658571 + 0.752518i \(0.271161\pi\)
\(272\) −5.29807 + 15.6183i −0.321243 + 0.946997i
\(273\) 15.8616 0.959991
\(274\) −1.51064 3.03737i −0.0912614 0.183494i
\(275\) 0.873286 0.0526611
\(276\) −3.44839 2.60921i −0.207569 0.157056i
\(277\) −1.06364 −0.0639077 −0.0319538 0.999489i \(-0.510173\pi\)
−0.0319538 + 0.999489i \(0.510173\pi\)
\(278\) 5.36942 + 10.7960i 0.322036 + 0.647500i
\(279\) 16.6623i 0.997543i
\(280\) −2.28603 + 12.1342i −0.136616 + 0.725157i
\(281\) −18.1539 −1.08297 −0.541486 0.840710i \(-0.682138\pi\)
−0.541486 + 0.840710i \(0.682138\pi\)
\(282\) −0.464316 0.933574i −0.0276496 0.0555935i
\(283\) 32.5756 1.93642 0.968209 0.250142i \(-0.0804774\pi\)
0.968209 + 0.250142i \(0.0804774\pi\)
\(284\) 13.2914 + 10.0569i 0.788699 + 0.596766i
\(285\) 2.05352i 0.121640i
\(286\) 7.60818 3.78395i 0.449881 0.223750i
\(287\) −52.4988 −3.09890
\(288\) −11.4000 + 10.3434i −0.671750 + 0.609489i
\(289\) 6.08535 + 15.8735i 0.357962 + 0.933736i
\(290\) −4.04178 8.12658i −0.237341 0.477209i
\(291\) 3.34706i 0.196208i
\(292\) 2.96952 + 2.24688i 0.173778 + 0.131488i
\(293\) 11.6157i 0.678596i −0.940679 0.339298i \(-0.889811\pi\)
0.940679 0.339298i \(-0.110189\pi\)
\(294\) 4.01019 + 8.06307i 0.233879 + 0.470248i
\(295\) 5.18909i 0.302121i
\(296\) −19.3502 3.64550i −1.12471 0.211890i
\(297\) 2.63841 0.153096
\(298\) −8.92573 + 4.43924i −0.517054 + 0.257158i
\(299\) −28.1699 −1.62911
\(300\) 0.637278 0.842241i 0.0367933 0.0486268i
\(301\) 40.5680 2.33830
\(302\) 6.16789 + 12.4014i 0.354922 + 0.713623i
\(303\) 3.99554i 0.229538i
\(304\) 14.9687 4.22848i 0.858514 0.242520i
\(305\) 7.45546 0.426898
\(306\) −2.22711 + 15.7097i −0.127316 + 0.898062i
\(307\) 1.91250i 0.109152i 0.998510 + 0.0545762i \(0.0173808\pi\)
−0.998510 + 0.0545762i \(0.982619\pi\)
\(308\) 6.08035 + 4.60067i 0.346460 + 0.262148i
\(309\) 3.80184 0.216279
\(310\) −7.75362 + 3.85628i −0.440376 + 0.219022i
\(311\) 22.7149i 1.28805i 0.765006 + 0.644023i \(0.222736\pi\)
−0.765006 + 0.644023i \(0.777264\pi\)
\(312\) 1.90262 10.0990i 0.107715 0.571746i
\(313\) 10.0256i 0.566682i −0.959019 0.283341i \(-0.908557\pi\)
0.959019 0.283341i \(-0.0914429\pi\)
\(314\) 1.75221 0.871466i 0.0988828 0.0491797i
\(315\) 11.8792i 0.669318i
\(316\) −5.07353 3.83887i −0.285409 0.215953i
\(317\) 12.0074 0.674403 0.337202 0.941432i \(-0.390520\pi\)
0.337202 + 0.941432i \(0.390520\pi\)
\(318\) 3.42935 1.70560i 0.192309 0.0956452i
\(319\) −5.60461 −0.313798
\(320\) 7.45158 + 2.91101i 0.416556 + 0.162731i
\(321\) 9.50073 0.530279
\(322\) −11.2565 22.6328i −0.627300 1.26128i
\(323\) 9.08418 13.2114i 0.505457 0.735102i
\(324\) −7.92597 + 10.4751i −0.440332 + 0.581952i
\(325\) 6.88027i 0.381649i
\(326\) 3.46644 + 6.96978i 0.191988 + 0.386020i
\(327\) 6.08532 0.336519
\(328\) −6.29727 + 33.4257i −0.347709 + 1.84563i
\(329\) 6.09488i 0.336022i
\(330\) −0.290432 0.583955i −0.0159877 0.0321456i
\(331\) 4.89226i 0.268903i −0.990920 0.134452i \(-0.957073\pi\)
0.990920 0.134452i \(-0.0429273\pi\)
\(332\) −6.98706 5.28673i −0.383464 0.290147i
\(333\) −18.9436 −1.03810
\(334\) 16.8806 8.39559i 0.923663 0.459386i
\(335\) 1.10485i 0.0603642i
\(336\) 8.87425 2.50687i 0.484130 0.136761i
\(337\) 27.5016i 1.49811i −0.662509 0.749054i \(-0.730508\pi\)
0.662509 0.749054i \(-0.269492\pi\)
\(338\) −21.6252 43.4806i −1.17625 2.36503i
\(339\) 2.87675i 0.156243i
\(340\) 7.82578 2.59946i 0.424413 0.140975i
\(341\) 5.34739i 0.289577i
\(342\) 13.3987 6.66390i 0.724520 0.360342i
\(343\) 22.0812i 1.19228i
\(344\) 4.86617 25.8295i 0.262366 1.39263i
\(345\) 2.16214i 0.116406i
\(346\) 0.0389085 + 0.0782312i 0.00209174 + 0.00420574i
\(347\) −0.154619 −0.00830038 −0.00415019 0.999991i \(-0.501321\pi\)
−0.00415019 + 0.999991i \(0.501321\pi\)
\(348\) −4.08995 + 5.40537i −0.219244 + 0.289758i
\(349\) 20.5204i 1.09843i −0.835680 0.549216i \(-0.814926\pi\)
0.835680 0.549216i \(-0.185074\pi\)
\(350\) 5.52788 2.74931i 0.295478 0.146957i
\(351\) 20.7869i 1.10952i
\(352\) 3.65857 3.31948i 0.195003 0.176929i
\(353\) 8.41354 0.447808 0.223904 0.974611i \(-0.428120\pi\)
0.223904 + 0.974611i \(0.428120\pi\)
\(354\) −3.46988 + 1.72575i −0.184422 + 0.0917228i
\(355\) 8.33370i 0.442307i
\(356\) −12.0489 + 15.9241i −0.638589 + 0.843974i
\(357\) 5.38559 7.83243i 0.285035 0.414536i
\(358\) 13.2635 6.59666i 0.700999 0.348644i
\(359\) 7.54413 0.398164 0.199082 0.979983i \(-0.436204\pi\)
0.199082 + 0.979983i \(0.436204\pi\)
\(360\) 7.56345 + 1.42492i 0.398629 + 0.0751001i
\(361\) 3.87862 0.204138
\(362\) 2.80478 + 5.63942i 0.147416 + 0.296402i
\(363\) 5.40620 0.283752
\(364\) 36.2468 47.9046i 1.89985 2.51089i
\(365\) 1.86189i 0.0974556i
\(366\) −2.47949 4.98537i −0.129605 0.260589i
\(367\) 22.1579i 1.15664i 0.815812 + 0.578318i \(0.196291\pi\)
−0.815812 + 0.578318i \(0.803709\pi\)
\(368\) −15.7604 + 4.45214i −0.821570 + 0.232084i
\(369\) 32.7234i 1.70351i
\(370\) 4.38428 + 8.81522i 0.227928 + 0.458282i
\(371\) 22.3887 1.16236
\(372\) 5.15729 + 3.90224i 0.267393 + 0.202322i
\(373\) 6.34772i 0.328672i −0.986404 0.164336i \(-0.947452\pi\)
0.986404 0.164336i \(-0.0525482\pi\)
\(374\) 0.714743 5.04168i 0.0369585 0.260699i
\(375\) −0.528085 −0.0272702
\(376\) −3.88058 0.731086i −0.200126 0.0377029i
\(377\) 44.1564i 2.27417i
\(378\) 16.7010 8.30631i 0.859009 0.427231i
\(379\) −6.11516 −0.314115 −0.157057 0.987589i \(-0.550201\pi\)
−0.157057 + 0.987589i \(0.550201\pi\)
\(380\) −6.20195 4.69268i −0.318154 0.240730i
\(381\) −9.52078 −0.487765
\(382\) 8.84481 + 17.7838i 0.452540 + 0.909897i
\(383\) −18.2832 −0.934230 −0.467115 0.884197i \(-0.654707\pi\)
−0.467115 + 0.884197i \(0.654707\pi\)
\(384\) −0.531640 5.95090i −0.0271301 0.303680i
\(385\) 3.81238i 0.194297i
\(386\) −5.29378 + 2.63288i −0.269446 + 0.134010i
\(387\) 25.2868i 1.28540i
\(388\) 10.1086 + 7.64866i 0.513188 + 0.388302i
\(389\) 2.01710i 0.102271i −0.998692 0.0511355i \(-0.983716\pi\)
0.998692 0.0511355i \(-0.0162840\pi\)
\(390\) −4.60074 + 2.28819i −0.232968 + 0.115867i
\(391\) −9.56467 + 13.9102i −0.483706 + 0.703469i
\(392\) 33.5158 + 6.31423i 1.69280 + 0.318917i
\(393\) 0.219856 0.0110903
\(394\) −4.57730 9.20332i −0.230601 0.463657i
\(395\) 3.18110i 0.160059i
\(396\) 2.86768 3.78999i 0.144106 0.190454i
\(397\) −23.2575 −1.16726 −0.583631 0.812019i \(-0.698368\pi\)
−0.583631 + 0.812019i \(0.698368\pi\)
\(398\) −22.3147 + 11.0983i −1.11853 + 0.556306i
\(399\) −8.96476 −0.448799
\(400\) −1.08740 3.84936i −0.0543699 0.192468i
\(401\) 8.22710i 0.410842i 0.978674 + 0.205421i \(0.0658563\pi\)
−0.978674 + 0.205421i \(0.934144\pi\)
\(402\) 0.738796 0.367442i 0.0368478 0.0183264i
\(403\) 42.1299 2.09864
\(404\) 12.0671 + 9.13055i 0.600362 + 0.454262i
\(405\) 6.56791 0.326362
\(406\) −35.4770 + 17.6446i −1.76070 + 0.875687i
\(407\) 6.07954 0.301352
\(408\) −4.34087 4.36849i −0.214905 0.216272i
\(409\) 18.3658 0.908130 0.454065 0.890969i \(-0.349973\pi\)
0.454065 + 0.890969i \(0.349973\pi\)
\(410\) 15.2275 7.57344i 0.752033 0.374026i
\(411\) 1.26672 0.0624829
\(412\) 8.68791 11.4821i 0.428023 0.565684i
\(413\) −22.6533 −1.11469
\(414\) −14.1074 + 7.01637i −0.693342 + 0.344836i
\(415\) 4.38088i 0.215049i
\(416\) −26.1528 28.8244i −1.28225 1.41323i
\(417\) −4.50243 −0.220485
\(418\) −4.30003 + 2.13863i −0.210321 + 0.104604i
\(419\) −18.1101 −0.884738 −0.442369 0.896833i \(-0.645862\pi\)
−0.442369 + 0.896833i \(0.645862\pi\)
\(420\) −3.67685 2.78207i −0.179412 0.135751i
\(421\) 36.7654i 1.79184i 0.444219 + 0.895918i \(0.353481\pi\)
−0.444219 + 0.895918i \(0.646519\pi\)
\(422\) 11.2562 + 22.6323i 0.547945 + 1.10172i
\(423\) −3.79905 −0.184716
\(424\) 2.68554 14.2548i 0.130421 0.692274i
\(425\) −3.39745 2.33609i −0.164801 0.113317i
\(426\) −5.57263 + 2.77157i −0.269995 + 0.134283i
\(427\) 32.5472i 1.57507i
\(428\) 21.7110 28.6937i 1.04944 1.38696i
\(429\) 3.17297i 0.153192i
\(430\) −11.7669 + 5.85232i −0.567452 + 0.282224i
\(431\) 25.4830i 1.22747i −0.789512 0.613735i \(-0.789666\pi\)
0.789512 0.613735i \(-0.210334\pi\)
\(432\) −3.28529 11.6298i −0.158064 0.559541i
\(433\) −8.52916 −0.409885 −0.204943 0.978774i \(-0.565701\pi\)
−0.204943 + 0.978774i \(0.565701\pi\)
\(434\) 16.8348 + 33.8488i 0.808097 + 1.62480i
\(435\) 3.38916 0.162498
\(436\) 13.9061 18.3786i 0.665981 0.880175i
\(437\) 15.9212 0.761614
\(438\) −1.24502 + 0.619214i −0.0594893 + 0.0295872i
\(439\) 7.77824i 0.371235i −0.982622 0.185618i \(-0.940571\pi\)
0.982622 0.185618i \(-0.0594286\pi\)
\(440\) −2.42732 0.457298i −0.115718 0.0218008i
\(441\) 32.8115 1.56245
\(442\) −39.7213 5.63117i −1.88935 0.267847i
\(443\) 17.4505i 0.829098i 0.910027 + 0.414549i \(0.136061\pi\)
−0.910027 + 0.414549i \(0.863939\pi\)
\(444\) 4.43653 5.86342i 0.210548 0.278265i
\(445\) 9.98438 0.473305
\(446\) 4.66323 + 9.37610i 0.220810 + 0.443971i
\(447\) 3.72244i 0.176066i
\(448\) 12.7082 32.5303i 0.600405 1.53691i
\(449\) 28.7365i 1.35616i 0.734988 + 0.678080i \(0.237188\pi\)
−0.734988 + 0.678080i \(0.762812\pi\)
\(450\) −1.71369 3.44562i −0.0807842 0.162428i
\(451\) 10.5019i 0.494513i
\(452\) 8.68822 + 6.57391i 0.408660 + 0.309211i
\(453\) −5.17198 −0.243001
\(454\) 2.74251 + 5.51421i 0.128712 + 0.258795i
\(455\) −30.0362 −1.40812
\(456\) −1.07533 + 5.70783i −0.0503570 + 0.267294i
\(457\) 10.9671 0.513021 0.256510 0.966541i \(-0.417427\pi\)
0.256510 + 0.966541i \(0.417427\pi\)
\(458\) 16.6738 8.29274i 0.779114 0.387494i
\(459\) −10.2645 7.05789i −0.479107 0.329434i
\(460\) 6.52999 + 4.94089i 0.304463 + 0.230370i
\(461\) 33.5453i 1.56236i 0.624307 + 0.781179i \(0.285382\pi\)
−0.624307 + 0.781179i \(0.714618\pi\)
\(462\) −2.54929 + 1.26789i −0.118604 + 0.0589878i
\(463\) −26.2145 −1.21829 −0.609145 0.793059i \(-0.708487\pi\)
−0.609145 + 0.793059i \(0.708487\pi\)
\(464\) 6.97874 + 24.7046i 0.323980 + 1.14688i
\(465\) 3.23362i 0.149955i
\(466\) 32.0602 15.9453i 1.48516 0.738650i
\(467\) 13.2337i 0.612380i 0.951970 + 0.306190i \(0.0990544\pi\)
−0.951970 + 0.306190i \(0.900946\pi\)
\(468\) −29.8598 22.5933i −1.38027 1.04438i
\(469\) 4.82327 0.222718
\(470\) 0.879244 + 1.76785i 0.0405565 + 0.0815447i
\(471\) 0.730752i 0.0336713i
\(472\) −2.71728 + 14.4232i −0.125073 + 0.663883i
\(473\) 8.11523i 0.373139i
\(474\) 2.12716 1.05795i 0.0977038 0.0485933i
\(475\) 3.88862i 0.178422i
\(476\) −11.3481 34.1639i −0.520138 1.56590i
\(477\) 13.9553i 0.638968i
\(478\) −12.0001 24.1279i −0.548871 1.10358i
\(479\) 27.1795i 1.24186i −0.783865 0.620931i \(-0.786755\pi\)
0.783865 0.620931i \(-0.213245\pi\)
\(480\) −2.21238 + 2.00732i −0.100981 + 0.0916213i
\(481\) 47.8982i 2.18397i
\(482\) −28.7742 + 14.3109i −1.31063 + 0.651846i
\(483\) 9.43893 0.429486
\(484\) 12.3542 16.3276i 0.561554 0.742162i
\(485\) 6.33811i 0.287799i
\(486\) −7.89239 15.8688i −0.358006 0.719823i
\(487\) 16.8533i 0.763694i −0.924226 0.381847i \(-0.875288\pi\)
0.924226 0.381847i \(-0.124712\pi\)
\(488\) −20.7227 3.90407i −0.938071 0.176729i
\(489\) −2.90672 −0.131447
\(490\) −7.59384 15.2685i −0.343055 0.689761i
\(491\) 35.5251i 1.60323i −0.597842 0.801614i \(-0.703975\pi\)
0.597842 0.801614i \(-0.296025\pi\)
\(492\) −10.1285 7.66371i −0.456629 0.345507i
\(493\) 21.8043 + 14.9927i 0.982016 + 0.675235i
\(494\) 16.8494 + 33.8782i 0.758091 + 1.52425i
\(495\) −2.37632 −0.106808
\(496\) 23.5708 6.65846i 1.05836 0.298974i
\(497\) −36.3812 −1.63192
\(498\) 2.92944 1.45696i 0.131271 0.0652881i
\(499\) 13.8837 0.621519 0.310759 0.950489i \(-0.399417\pi\)
0.310759 + 0.950489i \(0.399417\pi\)
\(500\) −1.20677 + 1.59490i −0.0539685 + 0.0713260i
\(501\) 7.03998i 0.314523i
\(502\) −10.1826 + 5.06436i −0.454473 + 0.226033i
\(503\) 18.5408i 0.826692i −0.910574 0.413346i \(-0.864360\pi\)
0.910574 0.413346i \(-0.135640\pi\)
\(504\) 6.22058 33.0187i 0.277087 1.47077i
\(505\) 7.56609i 0.336686i
\(506\) 4.52747 2.25175i 0.201271 0.100102i
\(507\) 18.1334 0.805333
\(508\) −21.7568 + 28.7542i −0.965301 + 1.27576i
\(509\) 1.95559i 0.0866798i −0.999060 0.0433399i \(-0.986200\pi\)
0.999060 0.0433399i \(-0.0137998\pi\)
\(510\) −0.432212 + 3.04875i −0.0191387 + 0.135001i
\(511\) −8.12817 −0.359569
\(512\) −19.1875 11.9933i −0.847977 0.530033i
\(513\) 11.7485i 0.518707i
\(514\) 5.43337 + 10.9246i 0.239656 + 0.481862i
\(515\) −7.19929 −0.317239
\(516\) 7.82674 + 5.92207i 0.344553 + 0.260705i
\(517\) 1.21922 0.0536212
\(518\) 38.4833 19.1398i 1.69086 0.840955i
\(519\) −0.0326261 −0.00143213
\(520\) −3.60287 + 19.1239i −0.157996 + 0.838639i
\(521\) 1.28044i 0.0560971i 0.999607 + 0.0280485i \(0.00892929\pi\)
−0.999607 + 0.0280485i \(0.991071\pi\)
\(522\) 10.9982 + 22.1135i 0.481378 + 0.967879i
\(523\) 27.2314i 1.19075i 0.803449 + 0.595374i \(0.202996\pi\)
−0.803449 + 0.595374i \(0.797004\pi\)
\(524\) 0.502411 0.663998i 0.0219479 0.0290069i
\(525\) 2.30538i 0.100615i
\(526\) 17.7298 + 35.6482i 0.773054 + 1.55434i
\(527\) 14.3046 20.8036i 0.623117 0.906219i
\(528\) 0.501474 + 1.77520i 0.0218239 + 0.0772559i
\(529\) 6.23669 0.271160
\(530\) −6.49394 + 3.22978i −0.282079 + 0.140293i
\(531\) 14.1202i 0.612763i
\(532\) −20.4862 + 27.0750i −0.888188 + 1.17385i
\(533\) −82.7399 −3.58386
\(534\) −3.32054 6.67642i −0.143694 0.288917i
\(535\) −17.9909 −0.777815
\(536\) 0.578555 3.07095i 0.0249898 0.132645i
\(537\) 5.53151i 0.238702i
\(538\) 16.4862 + 33.1479i 0.710772 + 1.42911i
\(539\) −10.5301 −0.453565
\(540\) −3.64595 + 4.81857i −0.156897 + 0.207358i
\(541\) −6.70395 −0.288225 −0.144113 0.989561i \(-0.546033\pi\)
−0.144113 + 0.989561i \(0.546033\pi\)
\(542\) 13.6553 + 27.4560i 0.586545 + 1.17933i
\(543\) −2.35190 −0.100930
\(544\) −23.1132 + 3.12728i −0.990970 + 0.134081i
\(545\) −11.5234 −0.493607
\(546\) 9.98923 + 20.0848i 0.427500 + 0.859550i
\(547\) 24.6055 1.05206 0.526028 0.850467i \(-0.323681\pi\)
0.526028 + 0.850467i \(0.323681\pi\)
\(548\) 2.89470 3.82570i 0.123656 0.163426i
\(549\) −20.2872 −0.865838
\(550\) 0.549971 + 1.10580i 0.0234509 + 0.0471514i
\(551\) 24.9565i 1.06318i
\(552\) 1.13221 6.00973i 0.0481900 0.255791i
\(553\) 13.8873 0.590547
\(554\) −0.669848 1.34683i −0.0284591 0.0572212i
\(555\) −3.67636 −0.156053
\(556\) −10.2889 + 13.5980i −0.436346 + 0.576685i
\(557\) 18.7515i 0.794528i −0.917704 0.397264i \(-0.869960\pi\)
0.917704 0.397264i \(-0.130040\pi\)
\(558\) 21.0986 10.4934i 0.893174 0.444222i
\(559\) 63.9366 2.70423
\(560\) −16.8046 + 4.74710i −0.710123 + 0.200601i
\(561\) 1.56680 + 1.07733i 0.0661503 + 0.0454850i
\(562\) −11.4328 22.9874i −0.482265 0.969664i
\(563\) 18.6069i 0.784188i 0.919925 + 0.392094i \(0.128249\pi\)
−0.919925 + 0.392094i \(0.871751\pi\)
\(564\) 0.889723 1.17588i 0.0374641 0.0495134i
\(565\) 5.44751i 0.229179i
\(566\) 20.5152 + 41.2488i 0.862319 + 1.73382i
\(567\) 28.6726i 1.20413i
\(568\) −4.36396 + 23.1638i −0.183108 + 0.971930i
\(569\) −20.0128 −0.838979 −0.419490 0.907760i \(-0.637791\pi\)
−0.419490 + 0.907760i \(0.637791\pi\)
\(570\) 2.60027 1.29325i 0.108913 0.0541684i
\(571\) −26.4577 −1.10722 −0.553609 0.832777i \(-0.686750\pi\)
−0.553609 + 0.832777i \(0.686750\pi\)
\(572\) 9.58285 + 7.25082i 0.400679 + 0.303172i
\(573\) −7.41667 −0.309836
\(574\) −33.0623 66.4765i −1.37999 2.77468i
\(575\) 4.09430i 0.170744i
\(576\) −20.2767 7.92123i −0.844862 0.330051i
\(577\) −25.9220 −1.07915 −0.539573 0.841939i \(-0.681414\pi\)
−0.539573 + 0.841939i \(0.681414\pi\)
\(578\) −16.2674 + 17.7023i −0.676636 + 0.736318i
\(579\) 2.20775i 0.0917511i
\(580\) 7.74487 10.2358i 0.321588 0.425018i
\(581\) 19.1250 0.793437
\(582\) −4.23821 + 2.10789i −0.175680 + 0.0873747i
\(583\) 4.47863i 0.185486i
\(584\) −0.974981 + 5.17517i −0.0403450 + 0.214150i
\(585\) 18.7221i 0.774063i
\(586\) 14.7083 7.31524i 0.607596 0.302190i
\(587\) 10.0183i 0.413500i 0.978394 + 0.206750i \(0.0662886\pi\)
−0.978394 + 0.206750i \(0.933711\pi\)
\(588\) −7.68434 + 10.1558i −0.316897 + 0.418818i
\(589\) −23.8112 −0.981123
\(590\) 6.57068 3.26795i 0.270511 0.134539i
\(591\) 3.83821 0.157883
\(592\) −7.57012 26.7980i −0.311130 1.10139i
\(593\) 26.4028 1.08423 0.542116 0.840303i \(-0.317623\pi\)
0.542116 + 0.840303i \(0.317623\pi\)
\(594\) 1.66160 + 3.34088i 0.0681761 + 0.137078i
\(595\) −10.1983 + 14.8318i −0.418091 + 0.608043i
\(596\) −11.2424 8.50648i −0.460505 0.348439i
\(597\) 9.30625i 0.380880i
\(598\) −17.7406 35.6701i −0.725468 1.45866i
\(599\) −29.1150 −1.18960 −0.594802 0.803872i \(-0.702770\pi\)
−0.594802 + 0.803872i \(0.702770\pi\)
\(600\) 1.46783 + 0.276533i 0.0599238 + 0.0112894i
\(601\) 29.3695i 1.19801i 0.800746 + 0.599004i \(0.204437\pi\)
−0.800746 + 0.599004i \(0.795563\pi\)
\(602\) 25.5486 + 51.3692i 1.04128 + 2.09365i
\(603\) 3.00643i 0.122431i
\(604\) −11.8189 + 15.6202i −0.480906 + 0.635576i
\(605\) −10.2374 −0.416208
\(606\) −5.05934 + 2.51628i −0.205522 + 0.102217i
\(607\) 9.38687i 0.381001i −0.981687 0.190501i \(-0.938989\pi\)
0.981687 0.190501i \(-0.0610111\pi\)
\(608\) 14.7812 + 16.2911i 0.599456 + 0.660692i
\(609\) 14.7956i 0.599547i
\(610\) 4.69524 + 9.44047i 0.190105 + 0.382233i
\(611\) 9.60575i 0.388607i
\(612\) −21.2949 + 7.07345i −0.860797 + 0.285927i
\(613\) 12.9115i 0.521492i −0.965407 0.260746i \(-0.916031\pi\)
0.965407 0.260746i \(-0.0839685\pi\)
\(614\) −2.42171 + 1.20444i −0.0977321 + 0.0486073i
\(615\) 6.35058i 0.256080i
\(616\) −1.99636 + 10.5966i −0.0804356 + 0.426950i
\(617\) 14.3911i 0.579362i −0.957123 0.289681i \(-0.906451\pi\)
0.957123 0.289681i \(-0.0935493\pi\)
\(618\) 2.39429 + 4.81407i 0.0963126 + 0.193650i
\(619\) −41.8855 −1.68352 −0.841759 0.539853i \(-0.818480\pi\)
−0.841759 + 0.539853i \(0.818480\pi\)
\(620\) −9.76603 7.38943i −0.392213 0.296766i
\(621\) 12.3699i 0.496386i
\(622\) −28.7628 + 14.3052i −1.15328 + 0.573588i
\(623\) 43.5873i 1.74629i
\(624\) 13.9861 3.95091i 0.559893 0.158163i
\(625\) 1.00000 0.0400000
\(626\) 12.6949 6.31387i 0.507392 0.252353i
\(627\) 1.79331i 0.0716180i
\(628\) 2.20699 + 1.66991i 0.0880683 + 0.0666365i
\(629\) −23.6520 16.2631i −0.943066 0.648454i
\(630\) −15.0421 + 7.48121i −0.599290 + 0.298059i
\(631\) 1.87504 0.0746443 0.0373221 0.999303i \(-0.488117\pi\)
0.0373221 + 0.999303i \(0.488117\pi\)
\(632\) 1.66579 8.84197i 0.0662616 0.351715i
\(633\) −9.43872 −0.375155
\(634\) 7.56194 + 15.2044i 0.300323 + 0.603842i
\(635\) 18.0289 0.715455
\(636\) 4.31942 + 3.26827i 0.171276 + 0.129596i
\(637\) 82.9627i 3.28710i
\(638\) −3.52963 7.09683i −0.139739 0.280966i
\(639\) 22.6770i 0.897090i
\(640\) 1.00673 + 11.2688i 0.0397946 + 0.445440i
\(641\) 15.3284i 0.605436i 0.953080 + 0.302718i \(0.0978940\pi\)
−0.953080 + 0.302718i \(0.902106\pi\)
\(642\) 5.98330 + 12.0303i 0.236142 + 0.474798i
\(643\) −27.6479 −1.09033 −0.545164 0.838329i \(-0.683533\pi\)
−0.545164 + 0.838329i \(0.683533\pi\)
\(644\) 21.5697 28.5070i 0.849967 1.12333i
\(645\) 4.90736i 0.193227i
\(646\) 22.4499 + 3.18265i 0.883279 + 0.125220i
\(647\) 26.4175 1.03858 0.519289 0.854599i \(-0.326197\pi\)
0.519289 + 0.854599i \(0.326197\pi\)
\(648\) −18.2557 3.43930i −0.717152 0.135108i
\(649\) 4.53156i 0.177879i
\(650\) 8.71213 4.33300i 0.341718 0.169954i
\(651\) −14.1165 −0.553271
\(652\) −6.64240 + 8.77875i −0.260137 + 0.343802i
\(653\) 41.1531 1.61044 0.805222 0.592974i \(-0.202046\pi\)
0.805222 + 0.592974i \(0.202046\pi\)
\(654\) 3.83237 + 7.70553i 0.149857 + 0.301310i
\(655\) −0.416326 −0.0162672
\(656\) −46.2912 + 13.0767i −1.80737 + 0.510560i
\(657\) 5.06643i 0.197660i
\(658\) 7.71764 3.83839i 0.300865 0.149636i
\(659\) 41.4752i 1.61564i 0.589427 + 0.807822i \(0.299354\pi\)
−0.589427 + 0.807822i \(0.700646\pi\)
\(660\) 0.556526 0.735517i 0.0216628 0.0286300i
\(661\) 13.3874i 0.520711i −0.965513 0.260356i \(-0.916160\pi\)
0.965513 0.260356i \(-0.0838398\pi\)
\(662\) 6.19482 3.08101i 0.240769 0.119747i
\(663\) 8.48787 12.3442i 0.329642 0.479408i
\(664\) 2.29406 12.1768i 0.0890267 0.472551i
\(665\) 16.9760 0.658301
\(666\) −11.9302 23.9873i −0.462285 0.929491i
\(667\) 26.2766i 1.01743i
\(668\) 21.2618 + 16.0877i 0.822645 + 0.622451i
\(669\) −3.91027 −0.151180
\(670\) −1.39901 + 0.695802i −0.0540485 + 0.0268812i
\(671\) 6.51075 0.251345
\(672\) 8.76308 + 9.65825i 0.338043 + 0.372575i
\(673\) 37.1662i 1.43265i −0.697767 0.716325i \(-0.745823\pi\)
0.697767 0.716325i \(-0.254177\pi\)
\(674\) 34.8239 17.3198i 1.34137 0.667132i
\(675\) 3.02124 0.116288
\(676\) 41.4383 54.7657i 1.59378 2.10637i
\(677\) −12.9242 −0.496717 −0.248358 0.968668i \(-0.579891\pi\)
−0.248358 + 0.968668i \(0.579891\pi\)
\(678\) −3.64268 + 1.81170i −0.139896 + 0.0695778i
\(679\) −27.6694 −1.06185
\(680\) 8.22002 + 8.27232i 0.315223 + 0.317229i
\(681\) −2.29968 −0.0881241
\(682\) −6.77112 + 3.36764i −0.259280 + 0.128953i
\(683\) 17.2012 0.658185 0.329092 0.944298i \(-0.393257\pi\)
0.329092 + 0.944298i \(0.393257\pi\)
\(684\) 16.8763 + 12.7694i 0.645282 + 0.488250i
\(685\) −2.39871 −0.0916501
\(686\) −27.9604 + 13.9062i −1.06753 + 0.530940i
\(687\) 6.95374i 0.265302i
\(688\) 35.7711 10.1049i 1.36376 0.385247i
\(689\) 35.2854 1.34427
\(690\) −2.73781 + 1.36166i −0.104227 + 0.0518374i
\(691\) −25.6782 −0.976846 −0.488423 0.872607i \(-0.662428\pi\)
−0.488423 + 0.872607i \(0.662428\pi\)
\(692\) −0.0745567 + 0.0985358i −0.00283422 + 0.00374577i
\(693\) 10.3740i 0.394074i
\(694\) −0.0973748 0.195786i −0.00369630 0.00743194i
\(695\) 8.52596 0.323408
\(696\) −9.42028 1.77474i −0.357075 0.0672714i
\(697\) −28.0931 + 40.8567i −1.06410 + 1.54756i
\(698\) 25.9839 12.9232i 0.983507 0.489150i
\(699\) 13.3706i 0.505723i
\(700\) 6.96261 + 5.26823i 0.263162 + 0.199120i
\(701\) 29.0433i 1.09695i 0.836167 + 0.548475i \(0.184791\pi\)
−0.836167 + 0.548475i \(0.815209\pi\)
\(702\) 26.3214 13.0910i 0.993439 0.494090i
\(703\) 27.0714i 1.02102i
\(704\) 6.50736 + 2.54215i 0.245255 + 0.0958107i
\(705\) −0.737275 −0.0277674
\(706\) 5.29862 + 10.6536i 0.199416 + 0.400955i
\(707\) −33.0302 −1.24223
\(708\) −4.37047 3.30690i −0.164252 0.124281i
\(709\) 26.2551 0.986032 0.493016 0.870020i \(-0.335894\pi\)
0.493016 + 0.870020i \(0.335894\pi\)
\(710\) 10.5525 5.24833i 0.396030 0.196966i
\(711\) 8.65618i 0.324632i
\(712\) −27.7519 5.22834i −1.04005 0.195940i
\(713\) 25.0706 0.938902
\(714\) 13.3095 + 1.88685i 0.498095 + 0.0706134i
\(715\) 6.00844i 0.224703i
\(716\) 16.7060 + 12.6405i 0.624333 + 0.472399i
\(717\) 10.0625 0.375789
\(718\) 4.75109 + 9.55275i 0.177309 + 0.356505i
\(719\) 21.7421i 0.810843i −0.914130 0.405421i \(-0.867125\pi\)
0.914130 0.405421i \(-0.132875\pi\)
\(720\) 2.95895 + 10.4746i 0.110273 + 0.390365i
\(721\) 31.4289i 1.17047i
\(722\) 2.44265 + 4.91130i 0.0909059 + 0.182780i
\(723\) 12.0002i 0.446292i
\(724\) −5.37454 + 7.10311i −0.199743 + 0.263985i
\(725\) −6.41784 −0.238352
\(726\) 3.40468 + 6.84560i 0.126359 + 0.254064i
\(727\) −52.0930 −1.93202 −0.966011 0.258499i \(-0.916772\pi\)
−0.966011 + 0.258499i \(0.916772\pi\)
\(728\) 83.4865 + 15.7285i 3.09421 + 0.582937i
\(729\) −13.0857 −0.484655
\(730\) 2.35761 1.17257i 0.0872592 0.0433986i
\(731\) 21.7087 31.5717i 0.802926 1.16772i
\(732\) 4.75120 6.27930i 0.175610 0.232089i
\(733\) 6.56217i 0.242379i −0.992629 0.121190i \(-0.961329\pi\)
0.992629 0.121190i \(-0.0386709\pi\)
\(734\) −28.0575 + 13.9545i −1.03562 + 0.515069i
\(735\) 6.36768 0.234875
\(736\) −15.5630 17.1528i −0.573660 0.632261i
\(737\) 0.964847i 0.0355406i
\(738\) −41.4360 + 20.6083i −1.52528 + 0.758602i
\(739\) 30.8831i 1.13605i −0.823010 0.568026i \(-0.807707\pi\)
0.823010 0.568026i \(-0.192293\pi\)
\(740\) −8.40117 + 11.1032i −0.308833 + 0.408161i
\(741\) −14.1288 −0.519034
\(742\) 14.0998 + 28.3497i 0.517619 + 1.04075i
\(743\) 34.7514i 1.27490i 0.770490 + 0.637452i \(0.220012\pi\)
−0.770490 + 0.637452i \(0.779988\pi\)
\(744\) −1.69329 + 8.98794i −0.0620791 + 0.329514i
\(745\) 7.04895i 0.258254i
\(746\) 8.03779 3.99762i 0.294284 0.146363i
\(747\) 11.9209i 0.436164i
\(748\) 6.83414 2.27007i 0.249881 0.0830019i
\(749\) 78.5403i 2.86980i
\(750\) −0.332573 0.668687i −0.0121439 0.0244170i
\(751\) 8.49846i 0.310113i 0.987906 + 0.155057i \(0.0495560\pi\)
−0.987906 + 0.155057i \(0.950444\pi\)
\(752\) −1.51815 5.37420i −0.0553612 0.195977i
\(753\) 4.24663i 0.154756i
\(754\) −55.9130 + 27.8085i −2.03623 + 1.01273i
\(755\) 9.79384 0.356434
\(756\) 21.0357 + 15.9166i 0.765062 + 0.578881i
\(757\) 17.5911i 0.639358i 0.947526 + 0.319679i \(0.103575\pi\)
−0.947526 + 0.319679i \(0.896425\pi\)
\(758\) −3.85116 7.74332i −0.139880 0.281250i
\(759\) 1.88817i 0.0685361i
\(760\) 2.03628 10.8085i 0.0738638 0.392067i
\(761\) −16.4486 −0.596262 −0.298131 0.954525i \(-0.596363\pi\)
−0.298131 + 0.954525i \(0.596363\pi\)
\(762\) −5.99593 12.0557i −0.217210 0.436731i
\(763\) 50.3059i 1.82120i
\(764\) −16.9485 + 22.3995i −0.613174 + 0.810385i
\(765\) 9.24489 + 6.35680i 0.334250 + 0.229831i
\(766\) −11.5143 23.1511i −0.416028 0.836485i
\(767\) −35.7023 −1.28914
\(768\) 7.20051 4.42090i 0.259826 0.159526i
\(769\) 45.5271 1.64175 0.820874 0.571110i \(-0.193487\pi\)
0.820874 + 0.571110i \(0.193487\pi\)
\(770\) 4.82742 2.40093i 0.173968 0.0865235i
\(771\) −4.55605 −0.164082
\(772\) −6.66776 5.04513i −0.239978 0.181578i
\(773\) 48.9953i 1.76224i −0.472895 0.881119i \(-0.656791\pi\)
0.472895 0.881119i \(-0.343209\pi\)
\(774\) 32.0193 15.9249i 1.15091 0.572409i
\(775\) 6.12329i 0.219955i
\(776\) −3.31896 + 17.6170i −0.119144 + 0.632412i
\(777\) 16.0493i 0.575767i
\(778\) 2.55415 1.27031i 0.0915706 0.0455429i
\(779\) 46.7633 1.67547
\(780\) −5.79485 4.38465i −0.207489 0.156996i
\(781\) 7.27770i 0.260416i
\(782\) −23.6373 3.35099i −0.845269 0.119831i
\(783\) −19.3898 −0.692936
\(784\) 13.1119 + 46.4158i 0.468283 + 1.65771i
\(785\) 1.38378i 0.0493892i
\(786\) 0.138459 + 0.278392i 0.00493867 + 0.00992991i
\(787\) 23.0782 0.822648 0.411324 0.911489i \(-0.365066\pi\)
0.411324 + 0.911489i \(0.365066\pi\)
\(788\) 8.77104 11.5920i 0.312455 0.412948i
\(789\) −14.8670 −0.529278
\(790\) −4.02807 + 2.00337i −0.143312 + 0.0712768i
\(791\) −23.7814 −0.845569
\(792\) 6.60506 + 1.24437i 0.234700 + 0.0442166i
\(793\) 51.2955i 1.82156i
\(794\) −14.6469 29.4498i −0.519801 1.04513i
\(795\) 2.70828i 0.0960527i
\(796\) −28.1063 21.2665i −0.996202 0.753772i
\(797\) 30.6176i 1.08453i 0.840207 + 0.542265i \(0.182433\pi\)
−0.840207 + 0.542265i \(0.817567\pi\)
\(798\) −5.64576 11.3516i −0.199858 0.401843i
\(799\) −4.74328 3.26149i −0.167805 0.115383i
\(800\) 4.18943 3.80114i 0.148119 0.134391i
\(801\) −27.1688 −0.959961
\(802\) −10.4176 + 5.18120i −0.367857 + 0.182955i
\(803\) 1.62596i 0.0573789i
\(804\) 0.930547 + 0.704095i 0.0328179 + 0.0248315i
\(805\) −17.8739 −0.629972
\(806\) 26.5323 + 53.3469i 0.934559 + 1.87907i
\(807\) −13.8242 −0.486636
\(808\) −3.96200 + 21.0302i −0.139383 + 0.739839i
\(809\) 33.7864i 1.18787i −0.804514 0.593933i \(-0.797574\pi\)
0.804514 0.593933i \(-0.202426\pi\)
\(810\) 4.13629 + 8.31661i 0.145334 + 0.292216i
\(811\) −39.0651 −1.37176 −0.685880 0.727714i \(-0.740583\pi\)
−0.685880 + 0.727714i \(0.740583\pi\)
\(812\) −44.6849 33.8107i −1.56813 1.18652i
\(813\) −11.4504 −0.401584
\(814\) 3.82873 + 7.69821i 0.134197 + 0.269822i
\(815\) 5.50427 0.192806
\(816\) 2.79783 8.24777i 0.0979437 0.288730i
\(817\) −36.1360 −1.26424
\(818\) 11.5663 + 23.2557i 0.404405 + 0.813115i
\(819\) 81.7322 2.85596
\(820\) 19.1797 + 14.5123i 0.669785 + 0.506790i
\(821\) −42.3273 −1.47723 −0.738617 0.674125i \(-0.764521\pi\)
−0.738617 + 0.674125i \(0.764521\pi\)
\(822\) 0.797748 + 1.60399i 0.0278247 + 0.0559455i
\(823\) 56.0530i 1.95388i −0.213505 0.976942i \(-0.568488\pi\)
0.213505 0.976942i \(-0.431512\pi\)
\(824\) 20.0107 + 3.76993i 0.697104 + 0.131332i
\(825\) −0.461169 −0.0160558
\(826\) −14.2664 28.6847i −0.496392 0.998067i
\(827\) −52.6744 −1.83167 −0.915834 0.401556i \(-0.868469\pi\)
−0.915834 + 0.401556i \(0.868469\pi\)
\(828\) −17.7689 13.4448i −0.617513 0.467239i
\(829\) 44.0897i 1.53130i −0.643259 0.765649i \(-0.722418\pi\)
0.643259 0.765649i \(-0.277582\pi\)
\(830\) −5.54728 + 2.75896i −0.192549 + 0.0957648i
\(831\) 0.561690 0.0194848
\(832\) 20.0285 51.2688i 0.694365 1.77743i
\(833\) 40.9667 + 28.1687i 1.41941 + 0.975989i
\(834\) −2.83551 5.70120i −0.0981856 0.197416i
\(835\) 13.3312i 0.461344i
\(836\) −5.41608 4.09805i −0.187319 0.141734i
\(837\) 18.4999i 0.639452i
\(838\) −11.4053 22.9320i −0.393989 0.792171i
\(839\) 39.6273i 1.36809i −0.729442 0.684043i \(-0.760220\pi\)
0.729442 0.684043i \(-0.239780\pi\)
\(840\) 1.20722 6.40788i 0.0416530 0.221093i
\(841\) 12.1886 0.420298
\(842\) −46.5542 + 23.1539i −1.60436 + 0.797935i
\(843\) 9.58681 0.330187
\(844\) −21.5692 + 28.5064i −0.742444 + 0.981230i
\(845\) −34.3381 −1.18127
\(846\) −2.39253 4.81054i −0.0822570 0.165390i
\(847\) 44.6918i 1.53563i
\(848\) 19.7414 5.57671i 0.677922 0.191505i
\(849\) −17.2027 −0.590394
\(850\) 0.818452 5.77323i 0.0280727 0.198020i
\(851\) 28.5032i 0.977078i
\(852\) −7.01898 5.31088i −0.240466 0.181948i
\(853\) −19.0981 −0.653905 −0.326953 0.945041i \(-0.606022\pi\)
−0.326953 + 0.945041i \(0.606022\pi\)
\(854\) 41.2129 20.4973i 1.41028 0.701405i
\(855\) 10.5814i 0.361877i
\(856\) 50.0063 + 9.42098i 1.70918 + 0.322003i
\(857\) 4.23888i 0.144798i 0.997376 + 0.0723988i \(0.0230654\pi\)
−0.997376 + 0.0723988i \(0.976935\pi\)
\(858\) −4.01776 + 1.99825i −0.137164 + 0.0682190i
\(859\) 33.5933i 1.14619i 0.819490 + 0.573094i \(0.194257\pi\)
−0.819490 + 0.573094i \(0.805743\pi\)
\(860\) −14.8210 11.2142i −0.505392 0.382402i
\(861\) 27.7238 0.944825
\(862\) 32.2678 16.0485i 1.09904 0.546613i
\(863\) 35.9961 1.22532 0.612661 0.790346i \(-0.290099\pi\)
0.612661 + 0.790346i \(0.290099\pi\)
\(864\) 12.6573 11.4841i 0.430610 0.390699i
\(865\) 0.0617819 0.00210065
\(866\) −5.37143 10.8000i −0.182529 0.367000i
\(867\) −3.21358 8.38256i −0.109139 0.284687i
\(868\) −32.2589 + 42.6341i −1.09494 + 1.44710i
\(869\) 2.77801i 0.0942376i
\(870\) 2.13440 + 4.29152i 0.0723630 + 0.145496i
\(871\) 7.60164 0.257572
\(872\) 32.0296 + 6.03424i 1.08466 + 0.204345i
\(873\) 17.2468i 0.583716i
\(874\) 10.0267 + 20.1602i 0.339159 + 0.681929i
\(875\) 4.36555i 0.147583i
\(876\) −1.56816 1.18654i −0.0529832 0.0400895i
\(877\) 32.2329 1.08843 0.544214 0.838947i \(-0.316828\pi\)
0.544214 + 0.838947i \(0.316828\pi\)
\(878\) 9.84919 4.89852i 0.332394 0.165317i
\(879\) 6.13407i 0.206897i
\(880\) −0.949609 3.36159i −0.0320113 0.113319i
\(881\) 0.697366i 0.0234949i 0.999931 + 0.0117474i \(0.00373941\pi\)
−0.999931 + 0.0117474i \(0.996261\pi\)
\(882\) 20.6638 + 41.5475i 0.695786 + 1.39898i
\(883\) 16.4181i 0.552514i −0.961084 0.276257i \(-0.910906\pi\)
0.961084 0.276257i \(-0.0890941\pi\)
\(884\) −17.8849 53.8435i −0.601536 1.81095i
\(885\) 2.74028i 0.0921135i
\(886\) −22.0967 + 10.9898i −0.742352 + 0.369211i
\(887\) 25.9180i 0.870240i 0.900373 + 0.435120i \(0.143294\pi\)
−0.900373 + 0.435120i \(0.856706\pi\)
\(888\) 10.2186 + 1.92513i 0.342912 + 0.0646032i
\(889\) 78.7061i 2.63972i
\(890\) 6.28789 + 12.6427i 0.210771 + 0.423785i
\(891\) 5.73566 0.192152
\(892\) −8.93570 + 11.8096i −0.299189 + 0.395415i
\(893\) 5.42902i 0.181675i
\(894\) 4.71354 2.34429i 0.157644 0.0784049i
\(895\) 10.4747i 0.350129i
\(896\) 49.1947 4.39494i 1.64348 0.146825i
\(897\) 14.8761 0.496698
\(898\) −36.3876 + 18.0975i −1.21427 + 0.603920i
\(899\) 39.2983i 1.31067i
\(900\) 3.28378 4.33992i 0.109459 0.144664i
\(901\) 11.9806 17.4238i 0.399132 0.580470i
\(902\) 13.2980 6.61378i 0.442774 0.220215i
\(903\) −21.4234 −0.712925
\(904\) −2.85260 + 15.1415i −0.0948761 + 0.503600i
\(905\) 4.45365 0.148044
\(906\) −3.25717 6.54901i −0.108212 0.217576i
\(907\) −50.7214 −1.68418 −0.842089 0.539339i \(-0.818674\pi\)
−0.842089 + 0.539339i \(0.818674\pi\)
\(908\) −5.25521 + 6.94540i −0.174400 + 0.230491i
\(909\) 20.5883i 0.682870i
\(910\) −18.9160 38.0333i −0.627058 1.26079i
\(911\) 15.5598i 0.515519i 0.966209 + 0.257759i \(0.0829842\pi\)
−0.966209 + 0.257759i \(0.917016\pi\)
\(912\) −7.90474 + 2.23300i −0.261752 + 0.0739419i
\(913\) 3.82576i 0.126614i
\(914\) 6.90680 + 13.8871i 0.228457 + 0.459345i
\(915\) −3.93711 −0.130157
\(916\) 21.0014 + 15.8906i 0.693904 + 0.525040i
\(917\) 1.81750i 0.0600190i
\(918\) 2.47274 17.4423i 0.0816126 0.575682i
\(919\) −14.7019 −0.484971 −0.242486 0.970155i \(-0.577963\pi\)
−0.242486 + 0.970155i \(0.577963\pi\)
\(920\) −2.14399 + 11.3802i −0.0706852 + 0.375195i
\(921\) 1.00996i 0.0332794i
\(922\) −42.4767 + 21.1259i −1.39889 + 0.695744i
\(923\) −57.3380 −1.88730
\(924\) −3.21094 2.42955i −0.105632 0.0799262i
\(925\) 6.96168 0.228899
\(926\) −16.5091 33.1940i −0.542524 1.09082i
\(927\) 19.5902 0.643426
\(928\) −26.8871 + 24.3951i −0.882612 + 0.800808i
\(929\) 2.30440i 0.0756050i 0.999285 + 0.0378025i \(0.0120358\pi\)
−0.999285 + 0.0378025i \(0.987964\pi\)
\(930\) 4.09457 2.03644i 0.134266 0.0667777i
\(931\) 46.8892i 1.53673i
\(932\) 40.3813 + 30.5544i 1.32273 + 1.00084i
\(933\) 11.9954i 0.392712i
\(934\) −16.7571 + 8.33419i −0.548309 + 0.272703i
\(935\) −2.96695 2.04008i −0.0970295 0.0667176i
\(936\) 9.80385 52.0386i 0.320449 1.70093i
\(937\) 28.9950 0.947225 0.473612 0.880733i \(-0.342950\pi\)
0.473612 + 0.880733i \(0.342950\pi\)
\(938\) 3.03756 + 6.10746i 0.0991799 + 0.199416i
\(939\) 5.29439i 0.172776i
\(940\) −1.68481 + 2.22668i −0.0549525 + 0.0726264i
\(941\) −36.3601 −1.18531 −0.592653 0.805458i \(-0.701919\pi\)
−0.592653 + 0.805458i \(0.701919\pi\)
\(942\) −0.925315 + 0.460208i −0.0301484 + 0.0149944i
\(943\) −49.2368 −1.60337
\(944\) −19.9747 + 5.64261i −0.650120 + 0.183651i
\(945\) 13.1894i 0.429051i
\(946\) −10.2759 + 5.11075i −0.334098 + 0.166165i
\(947\) 10.9938 0.357251 0.178625 0.983917i \(-0.442835\pi\)
0.178625 + 0.983917i \(0.442835\pi\)
\(948\) 2.67926 + 2.02725i 0.0870182 + 0.0658420i
\(949\) −12.8103 −0.415839
\(950\) −4.92396 + 2.44895i −0.159754 + 0.0794544i
\(951\) −6.34093 −0.205619
\(952\) 36.1133 35.8849i 1.17044 1.16304i
\(953\) 18.8369 0.610187 0.305093 0.952322i \(-0.401312\pi\)
0.305093 + 0.952322i \(0.401312\pi\)
\(954\) 17.6708 8.78864i 0.572114 0.284543i
\(955\) 14.0445 0.454468
\(956\) 22.9946 30.3902i 0.743698 0.982888i
\(957\) 2.95971 0.0956738
\(958\) 34.4160 17.1169i 1.11193 0.553022i
\(959\) 10.4717i 0.338149i
\(960\) −3.93506 1.53726i −0.127004 0.0496149i
\(961\) −6.49474 −0.209508
\(962\) 60.6511 30.1650i 1.95547 0.972559i
\(963\) 48.9556 1.57757
\(964\) −36.2424 27.4227i −1.16729 0.883226i
\(965\) 4.18068i 0.134581i
\(966\) 5.94438 + 11.9520i 0.191257 + 0.384551i
\(967\) 17.2985 0.556282 0.278141 0.960540i \(-0.410282\pi\)
0.278141 + 0.960540i \(0.410282\pi\)
\(968\) 28.4551 + 5.36082i 0.914581 + 0.172303i
\(969\) −4.79722 + 6.97674i −0.154109 + 0.224125i
\(970\) 8.02563 3.99157i 0.257687 0.128162i
\(971\) 37.7748i 1.21225i 0.795370 + 0.606125i \(0.207277\pi\)
−0.795370 + 0.606125i \(0.792723\pi\)
\(972\) 15.1234 19.9875i 0.485085 0.641098i
\(973\) 37.2205i 1.19324i
\(974\) 21.3404 10.6137i 0.683791 0.340086i
\(975\) 3.63336i 0.116361i
\(976\) −8.10705 28.6987i −0.259500 0.918624i
\(977\) 5.78792 0.185172 0.0925859 0.995705i \(-0.470487\pi\)
0.0925859 + 0.995705i \(0.470487\pi\)
\(978\) −1.83057 3.68063i −0.0585353 0.117694i
\(979\) 8.71922 0.278667
\(980\) 14.5513 19.2314i 0.464826 0.614324i
\(981\) 31.3565 1.00114
\(982\) 44.9837 22.3728i 1.43549 0.713944i
\(983\) 9.58334i 0.305661i −0.988252 0.152830i \(-0.951161\pi\)
0.988252 0.152830i \(-0.0488389\pi\)
\(984\) 3.32549 17.6516i 0.106013 0.562713i
\(985\) −7.26818 −0.231583
\(986\) −5.25269 + 37.0516i −0.167280 + 1.17996i
\(987\) 3.21861i 0.102450i
\(988\) −32.2869 + 42.6711i −1.02718 + 1.35755i
\(989\) 38.0473 1.20984
\(990\) −1.49654 3.00901i −0.0475632 0.0956327i
\(991\) 38.7288i 1.23026i −0.788425 0.615131i \(-0.789103\pi\)
0.788425 0.615131i \(-0.210897\pi\)
\(992\) 23.2755 + 25.6531i 0.738997 + 0.814488i
\(993\) 2.58353i 0.0819858i
\(994\) −22.9119 46.0677i −0.726721 1.46118i
\(995\) 17.6226i 0.558675i
\(996\) 3.68976 + 2.79184i 0.116914 + 0.0884628i
\(997\) 30.4509 0.964388 0.482194 0.876064i \(-0.339840\pi\)
0.482194 + 0.876064i \(0.339840\pi\)
\(998\) 8.74356 + 17.5802i 0.276773 + 0.556491i
\(999\) 21.0329 0.665452
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.l.a.101.24 yes 36
4.3 odd 2 2720.2.l.b.2481.19 36
8.3 odd 2 2720.2.l.a.2481.17 36
8.5 even 2 680.2.l.b.101.23 yes 36
17.16 even 2 680.2.l.b.101.24 yes 36
68.67 odd 2 2720.2.l.a.2481.18 36
136.67 odd 2 2720.2.l.b.2481.20 36
136.101 even 2 inner 680.2.l.a.101.23 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.l.a.101.23 36 136.101 even 2 inner
680.2.l.a.101.24 yes 36 1.1 even 1 trivial
680.2.l.b.101.23 yes 36 8.5 even 2
680.2.l.b.101.24 yes 36 17.16 even 2
2720.2.l.a.2481.17 36 8.3 odd 2
2720.2.l.a.2481.18 36 68.67 odd 2
2720.2.l.b.2481.19 36 4.3 odd 2
2720.2.l.b.2481.20 36 136.67 odd 2