Properties

Label 680.2.l.a.101.12
Level $680$
Weight $2$
Character 680.101
Analytic conductor $5.430$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(101,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.l (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 101.12
Character \(\chi\) \(=\) 680.101
Dual form 680.2.l.a.101.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.775550 + 1.18259i) q^{2} -0.0722782 q^{3} +(-0.797044 - 1.83432i) q^{4} +1.00000 q^{5} +(0.0560554 - 0.0854756i) q^{6} -0.600402i q^{7} +(2.78740 + 0.480027i) q^{8} -2.99478 q^{9} +(-0.775550 + 1.18259i) q^{10} -3.24363 q^{11} +(0.0576089 + 0.132581i) q^{12} -2.10838i q^{13} +(0.710030 + 0.465642i) q^{14} -0.0722782 q^{15} +(-2.72944 + 2.92406i) q^{16} +(-3.65966 + 1.89918i) q^{17} +(2.32260 - 3.54160i) q^{18} +1.70170i q^{19} +(-0.797044 - 1.83432i) q^{20} +0.0433960i q^{21} +(2.51560 - 3.83589i) q^{22} +8.88923i q^{23} +(-0.201468 - 0.0346955i) q^{24} +1.00000 q^{25} +(2.49335 + 1.63515i) q^{26} +0.433292 q^{27} +(-1.10133 + 0.478547i) q^{28} -5.60163 q^{29} +(0.0560554 - 0.0854756i) q^{30} +6.14500i q^{31} +(-1.34115 - 5.49557i) q^{32} +0.234444 q^{33} +(0.592295 - 5.80079i) q^{34} -0.600402i q^{35} +(2.38697 + 5.49337i) q^{36} -6.98930 q^{37} +(-2.01242 - 1.31975i) q^{38} +0.152390i q^{39} +(2.78740 + 0.480027i) q^{40} +4.41572i q^{41} +(-0.0513197 - 0.0336558i) q^{42} -2.96494i q^{43} +(2.58532 + 5.94985i) q^{44} -2.99478 q^{45} +(-10.5123 - 6.89404i) q^{46} -10.8952 q^{47} +(0.197279 - 0.211346i) q^{48} +6.63952 q^{49} +(-0.775550 + 1.18259i) q^{50} +(0.264514 - 0.137269i) q^{51} +(-3.86743 + 1.68047i) q^{52} -12.8747i q^{53} +(-0.336039 + 0.512407i) q^{54} -3.24363 q^{55} +(0.288209 - 1.67356i) q^{56} -0.122996i q^{57} +(4.34434 - 6.62443i) q^{58} +2.86583i q^{59} +(0.0576089 + 0.132581i) q^{60} -3.10854 q^{61} +(-7.26703 - 4.76576i) q^{62} +1.79807i q^{63} +(7.53915 + 2.67605i) q^{64} -2.10838i q^{65} +(-0.181823 + 0.277251i) q^{66} -8.26082i q^{67} +(6.40061 + 5.19925i) q^{68} -0.642498i q^{69} +(0.710030 + 0.465642i) q^{70} -0.467480i q^{71} +(-8.34762 - 1.43757i) q^{72} -11.4399i q^{73} +(5.42055 - 8.26548i) q^{74} -0.0722782 q^{75} +(3.12146 - 1.35633i) q^{76} +1.94748i q^{77} +(-0.180215 - 0.118186i) q^{78} +10.3817i q^{79} +(-2.72944 + 2.92406i) q^{80} +8.95301 q^{81} +(-5.22199 - 3.42461i) q^{82} +5.97721i q^{83} +(0.0796020 - 0.0345885i) q^{84} +(-3.65966 + 1.89918i) q^{85} +(3.50631 + 2.29946i) q^{86} +0.404876 q^{87} +(-9.04128 - 1.55703i) q^{88} -5.24445 q^{89} +(2.32260 - 3.54160i) q^{90} -1.26587 q^{91} +(16.3057 - 7.08511i) q^{92} -0.444150i q^{93} +(8.44976 - 12.8846i) q^{94} +1.70170i q^{95} +(0.0969363 + 0.397210i) q^{96} -13.7724i q^{97} +(-5.14928 + 7.85184i) q^{98} +9.71395 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 4 q^{3} + 2 q^{4} + 36 q^{5} + 36 q^{9} - 8 q^{11} - 2 q^{12} + 2 q^{14} - 4 q^{15} + 6 q^{16} - 10 q^{18} + 2 q^{20} + 26 q^{24} + 36 q^{25} + 6 q^{26} - 16 q^{27} + 14 q^{28} - 10 q^{32} - 8 q^{33}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.775550 + 1.18259i −0.548397 + 0.836218i
\(3\) −0.0722782 −0.0417299 −0.0208649 0.999782i \(-0.506642\pi\)
−0.0208649 + 0.999782i \(0.506642\pi\)
\(4\) −0.797044 1.83432i −0.398522 0.917159i
\(5\) 1.00000 0.447214
\(6\) 0.0560554 0.0854756i 0.0228845 0.0348953i
\(7\) 0.600402i 0.226931i −0.993542 0.113465i \(-0.963805\pi\)
0.993542 0.113465i \(-0.0361951\pi\)
\(8\) 2.78740 + 0.480027i 0.985493 + 0.169715i
\(9\) −2.99478 −0.998259
\(10\) −0.775550 + 1.18259i −0.245250 + 0.373968i
\(11\) −3.24363 −0.977991 −0.488996 0.872286i \(-0.662637\pi\)
−0.488996 + 0.872286i \(0.662637\pi\)
\(12\) 0.0576089 + 0.132581i 0.0166303 + 0.0382729i
\(13\) 2.10838i 0.584759i −0.956302 0.292379i \(-0.905553\pi\)
0.956302 0.292379i \(-0.0944470\pi\)
\(14\) 0.710030 + 0.465642i 0.189764 + 0.124448i
\(15\) −0.0722782 −0.0186622
\(16\) −2.72944 + 2.92406i −0.682360 + 0.731016i
\(17\) −3.65966 + 1.89918i −0.887598 + 0.460619i
\(18\) 2.32260 3.54160i 0.547442 0.834762i
\(19\) 1.70170i 0.390397i 0.980764 + 0.195198i \(0.0625351\pi\)
−0.980764 + 0.195198i \(0.937465\pi\)
\(20\) −0.797044 1.83432i −0.178225 0.410166i
\(21\) 0.0433960i 0.00946978i
\(22\) 2.51560 3.83589i 0.536327 0.817814i
\(23\) 8.88923i 1.85353i 0.375639 + 0.926766i \(0.377423\pi\)
−0.375639 + 0.926766i \(0.622577\pi\)
\(24\) −0.201468 0.0346955i −0.0411245 0.00708220i
\(25\) 1.00000 0.200000
\(26\) 2.49335 + 1.63515i 0.488986 + 0.320680i
\(27\) 0.433292 0.0833870
\(28\) −1.10133 + 0.478547i −0.208131 + 0.0904369i
\(29\) −5.60163 −1.04020 −0.520098 0.854107i \(-0.674105\pi\)
−0.520098 + 0.854107i \(0.674105\pi\)
\(30\) 0.0560554 0.0854756i 0.0102343 0.0156056i
\(31\) 6.14500i 1.10367i 0.833952 + 0.551837i \(0.186073\pi\)
−0.833952 + 0.551837i \(0.813927\pi\)
\(32\) −1.34115 5.49557i −0.237085 0.971489i
\(33\) 0.234444 0.0408114
\(34\) 0.592295 5.80079i 0.101578 0.994828i
\(35\) 0.600402i 0.101486i
\(36\) 2.38697 + 5.49337i 0.397828 + 0.915562i
\(37\) −6.98930 −1.14903 −0.574517 0.818493i \(-0.694810\pi\)
−0.574517 + 0.818493i \(0.694810\pi\)
\(38\) −2.01242 1.31975i −0.326457 0.214092i
\(39\) 0.152390i 0.0244019i
\(40\) 2.78740 + 0.480027i 0.440726 + 0.0758990i
\(41\) 4.41572i 0.689619i 0.938673 + 0.344809i \(0.112056\pi\)
−0.938673 + 0.344809i \(0.887944\pi\)
\(42\) −0.0513197 0.0336558i −0.00791881 0.00519320i
\(43\) 2.96494i 0.452148i −0.974110 0.226074i \(-0.927411\pi\)
0.974110 0.226074i \(-0.0725892\pi\)
\(44\) 2.58532 + 5.94985i 0.389751 + 0.896973i
\(45\) −2.99478 −0.446435
\(46\) −10.5123 6.89404i −1.54996 1.01647i
\(47\) −10.8952 −1.58923 −0.794613 0.607116i \(-0.792326\pi\)
−0.794613 + 0.607116i \(0.792326\pi\)
\(48\) 0.197279 0.211346i 0.0284748 0.0305052i
\(49\) 6.63952 0.948502
\(50\) −0.775550 + 1.18259i −0.109679 + 0.167244i
\(51\) 0.264514 0.137269i 0.0370393 0.0192216i
\(52\) −3.86743 + 1.68047i −0.536317 + 0.233039i
\(53\) 12.8747i 1.76848i −0.467032 0.884240i \(-0.654677\pi\)
0.467032 0.884240i \(-0.345323\pi\)
\(54\) −0.336039 + 0.512407i −0.0457292 + 0.0697298i
\(55\) −3.24363 −0.437371
\(56\) 0.288209 1.67356i 0.0385136 0.223639i
\(57\) 0.122996i 0.0162912i
\(58\) 4.34434 6.62443i 0.570440 0.869831i
\(59\) 2.86583i 0.373099i 0.982446 + 0.186550i \(0.0597305\pi\)
−0.982446 + 0.186550i \(0.940269\pi\)
\(60\) 0.0576089 + 0.132581i 0.00743728 + 0.0171162i
\(61\) −3.10854 −0.398008 −0.199004 0.979999i \(-0.563771\pi\)
−0.199004 + 0.979999i \(0.563771\pi\)
\(62\) −7.26703 4.76576i −0.922913 0.605252i
\(63\) 1.79807i 0.226535i
\(64\) 7.53915 + 2.67605i 0.942393 + 0.334507i
\(65\) 2.10838i 0.261512i
\(66\) −0.181823 + 0.277251i −0.0223809 + 0.0341273i
\(67\) 8.26082i 1.00922i −0.863347 0.504610i \(-0.831636\pi\)
0.863347 0.504610i \(-0.168364\pi\)
\(68\) 6.40061 + 5.19925i 0.776188 + 0.630501i
\(69\) 0.642498i 0.0773476i
\(70\) 0.710030 + 0.465642i 0.0848648 + 0.0556548i
\(71\) 0.467480i 0.0554797i −0.999615 0.0277398i \(-0.991169\pi\)
0.999615 0.0277398i \(-0.00883099\pi\)
\(72\) −8.34762 1.43757i −0.983777 0.169420i
\(73\) 11.4399i 1.33894i −0.742839 0.669470i \(-0.766521\pi\)
0.742839 0.669470i \(-0.233479\pi\)
\(74\) 5.42055 8.26548i 0.630126 0.960843i
\(75\) −0.0722782 −0.00834597
\(76\) 3.12146 1.35633i 0.358056 0.155582i
\(77\) 1.94748i 0.221936i
\(78\) −0.180215 0.118186i −0.0204053 0.0133819i
\(79\) 10.3817i 1.16804i 0.811740 + 0.584019i \(0.198520\pi\)
−0.811740 + 0.584019i \(0.801480\pi\)
\(80\) −2.72944 + 2.92406i −0.305161 + 0.326920i
\(81\) 8.95301 0.994779
\(82\) −5.22199 3.42461i −0.576672 0.378185i
\(83\) 5.97721i 0.656084i 0.944663 + 0.328042i \(0.106389\pi\)
−0.944663 + 0.328042i \(0.893611\pi\)
\(84\) 0.0796020 0.0345885i 0.00868529 0.00377392i
\(85\) −3.65966 + 1.89918i −0.396946 + 0.205995i
\(86\) 3.50631 + 2.29946i 0.378095 + 0.247957i
\(87\) 0.404876 0.0434072
\(88\) −9.04128 1.55703i −0.963804 0.165980i
\(89\) −5.24445 −0.555911 −0.277955 0.960594i \(-0.589657\pi\)
−0.277955 + 0.960594i \(0.589657\pi\)
\(90\) 2.32260 3.54160i 0.244823 0.373317i
\(91\) −1.26587 −0.132700
\(92\) 16.3057 7.08511i 1.69998 0.738674i
\(93\) 0.444150i 0.0460562i
\(94\) 8.44976 12.8846i 0.871527 1.32894i
\(95\) 1.70170i 0.174591i
\(96\) 0.0969363 + 0.397210i 0.00989352 + 0.0405401i
\(97\) 13.7724i 1.39837i −0.714939 0.699186i \(-0.753546\pi\)
0.714939 0.699186i \(-0.246454\pi\)
\(98\) −5.14928 + 7.85184i −0.520156 + 0.793155i
\(99\) 9.71395 0.976288
\(100\) −0.797044 1.83432i −0.0797044 0.183432i
\(101\) 3.84878i 0.382968i 0.981496 + 0.191484i \(0.0613300\pi\)
−0.981496 + 0.191484i \(0.938670\pi\)
\(102\) −0.0428101 + 0.419271i −0.00423883 + 0.0415140i
\(103\) 5.90603 0.581938 0.290969 0.956732i \(-0.406022\pi\)
0.290969 + 0.956732i \(0.406022\pi\)
\(104\) 1.01208 5.87688i 0.0992425 0.576276i
\(105\) 0.0433960i 0.00423502i
\(106\) 15.2255 + 9.98500i 1.47884 + 0.969829i
\(107\) 3.95376 0.382225 0.191112 0.981568i \(-0.438791\pi\)
0.191112 + 0.981568i \(0.438791\pi\)
\(108\) −0.345353 0.794795i −0.0332316 0.0764792i
\(109\) 1.65160 0.158195 0.0790975 0.996867i \(-0.474796\pi\)
0.0790975 + 0.996867i \(0.474796\pi\)
\(110\) 2.51560 3.83589i 0.239853 0.365738i
\(111\) 0.505174 0.0479490
\(112\) 1.75561 + 1.63876i 0.165890 + 0.154848i
\(113\) 11.0712i 1.04149i 0.853712 + 0.520746i \(0.174346\pi\)
−0.853712 + 0.520746i \(0.825654\pi\)
\(114\) 0.145454 + 0.0953894i 0.0136230 + 0.00893404i
\(115\) 8.88923i 0.828925i
\(116\) 4.46474 + 10.2752i 0.414541 + 0.954025i
\(117\) 6.31412i 0.583740i
\(118\) −3.38911 2.22259i −0.311992 0.204606i
\(119\) 1.14027 + 2.19727i 0.104529 + 0.201423i
\(120\) −0.201468 0.0346955i −0.0183914 0.00316725i
\(121\) −0.478864 −0.0435330
\(122\) 2.41083 3.67614i 0.218266 0.332822i
\(123\) 0.319160i 0.0287777i
\(124\) 11.2719 4.89784i 1.01225 0.439839i
\(125\) 1.00000 0.0894427
\(126\) −2.12638 1.39449i −0.189433 0.124231i
\(127\) −15.3744 −1.36426 −0.682128 0.731233i \(-0.738945\pi\)
−0.682128 + 0.731233i \(0.738945\pi\)
\(128\) −9.01166 + 6.84032i −0.796526 + 0.604604i
\(129\) 0.214300i 0.0188681i
\(130\) 2.49335 + 1.63515i 0.218681 + 0.143412i
\(131\) 14.1739 1.23838 0.619188 0.785243i \(-0.287462\pi\)
0.619188 + 0.785243i \(0.287462\pi\)
\(132\) −0.186862 0.430044i −0.0162643 0.0374306i
\(133\) 1.02170 0.0885930
\(134\) 9.76918 + 6.40668i 0.843928 + 0.553453i
\(135\) 0.433292 0.0372918
\(136\) −11.1126 + 3.53703i −0.952896 + 0.303298i
\(137\) −5.31352 −0.453965 −0.226982 0.973899i \(-0.572886\pi\)
−0.226982 + 0.973899i \(0.572886\pi\)
\(138\) 0.759812 + 0.498289i 0.0646795 + 0.0424172i
\(139\) −17.9875 −1.52568 −0.762841 0.646587i \(-0.776196\pi\)
−0.762841 + 0.646587i \(0.776196\pi\)
\(140\) −1.10133 + 0.478547i −0.0930792 + 0.0404446i
\(141\) 0.787485 0.0663182
\(142\) 0.552838 + 0.362554i 0.0463931 + 0.0304249i
\(143\) 6.83880i 0.571889i
\(144\) 8.17406 8.75692i 0.681172 0.729743i
\(145\) −5.60163 −0.465190
\(146\) 13.5287 + 8.87223i 1.11965 + 0.734271i
\(147\) −0.479893 −0.0395809
\(148\) 5.57078 + 12.8206i 0.457915 + 1.05385i
\(149\) 1.20281i 0.0985381i −0.998786 0.0492691i \(-0.984311\pi\)
0.998786 0.0492691i \(-0.0156892\pi\)
\(150\) 0.0560554 0.0854756i 0.00457690 0.00697905i
\(151\) −11.2014 −0.911553 −0.455777 0.890094i \(-0.650638\pi\)
−0.455777 + 0.890094i \(0.650638\pi\)
\(152\) −0.816863 + 4.74331i −0.0662563 + 0.384733i
\(153\) 10.9599 5.68762i 0.886052 0.459817i
\(154\) −2.30308 1.51037i −0.185587 0.121709i
\(155\) 6.14500i 0.493578i
\(156\) 0.279531 0.121461i 0.0223804 0.00972470i
\(157\) 7.88359i 0.629179i −0.949228 0.314590i \(-0.898133\pi\)
0.949228 0.314590i \(-0.101867\pi\)
\(158\) −12.2774 8.05156i −0.976734 0.640548i
\(159\) 0.930563i 0.0737984i
\(160\) −1.34115 5.49557i −0.106028 0.434463i
\(161\) 5.33711 0.420623
\(162\) −6.94351 + 10.5878i −0.545533 + 0.831852i
\(163\) 16.4803 1.29084 0.645418 0.763830i \(-0.276683\pi\)
0.645418 + 0.763830i \(0.276683\pi\)
\(164\) 8.09982 3.51952i 0.632490 0.274828i
\(165\) 0.234444 0.0182514
\(166\) −7.06860 4.63563i −0.548630 0.359795i
\(167\) 17.4160i 1.34769i 0.738871 + 0.673846i \(0.235359\pi\)
−0.738871 + 0.673846i \(0.764641\pi\)
\(168\) −0.0208313 + 0.120962i −0.00160717 + 0.00933241i
\(169\) 8.55474 0.658057
\(170\) 0.592295 5.80079i 0.0454270 0.444900i
\(171\) 5.09621i 0.389717i
\(172\) −5.43863 + 2.36318i −0.414692 + 0.180191i
\(173\) 12.5295 0.952597 0.476298 0.879284i \(-0.341978\pi\)
0.476298 + 0.879284i \(0.341978\pi\)
\(174\) −0.314001 + 0.478802i −0.0238044 + 0.0362979i
\(175\) 0.600402i 0.0453861i
\(176\) 8.85330 9.48458i 0.667342 0.714927i
\(177\) 0.207137i 0.0155694i
\(178\) 4.06733 6.20204i 0.304860 0.464863i
\(179\) 17.1015i 1.27823i 0.769111 + 0.639115i \(0.220699\pi\)
−0.769111 + 0.639115i \(0.779301\pi\)
\(180\) 2.38697 + 5.49337i 0.177914 + 0.409452i
\(181\) −22.0934 −1.64219 −0.821093 0.570795i \(-0.806635\pi\)
−0.821093 + 0.570795i \(0.806635\pi\)
\(182\) 0.981749 1.49701i 0.0727721 0.110966i
\(183\) 0.224680 0.0166088
\(184\) −4.26707 + 24.7778i −0.314573 + 1.82664i
\(185\) −6.98930 −0.513863
\(186\) 0.525248 + 0.344460i 0.0385130 + 0.0252571i
\(187\) 11.8706 6.16024i 0.868063 0.450481i
\(188\) 8.68395 + 19.9852i 0.633342 + 1.45757i
\(189\) 0.260149i 0.0189231i
\(190\) −2.01242 1.31975i −0.145996 0.0957450i
\(191\) 10.5298 0.761907 0.380954 0.924594i \(-0.375596\pi\)
0.380954 + 0.924594i \(0.375596\pi\)
\(192\) −0.544916 0.193420i −0.0393259 0.0139589i
\(193\) 8.45792i 0.608814i 0.952542 + 0.304407i \(0.0984583\pi\)
−0.952542 + 0.304407i \(0.901542\pi\)
\(194\) 16.2871 + 10.6812i 1.16934 + 0.766863i
\(195\) 0.152390i 0.0109129i
\(196\) −5.29199 12.1790i −0.377999 0.869927i
\(197\) 21.8192 1.55455 0.777275 0.629160i \(-0.216601\pi\)
0.777275 + 0.629160i \(0.216601\pi\)
\(198\) −7.53365 + 11.4876i −0.535393 + 0.816390i
\(199\) 0.867086i 0.0614661i −0.999528 0.0307330i \(-0.990216\pi\)
0.999528 0.0307330i \(-0.00978417\pi\)
\(200\) 2.78740 + 0.480027i 0.197099 + 0.0339431i
\(201\) 0.597078i 0.0421146i
\(202\) −4.55153 2.98492i −0.320245 0.210018i
\(203\) 3.36323i 0.236052i
\(204\) −0.462625 0.375792i −0.0323902 0.0263107i
\(205\) 4.41572i 0.308407i
\(206\) −4.58042 + 6.98441i −0.319133 + 0.486627i
\(207\) 26.6212i 1.85030i
\(208\) 6.16503 + 5.75469i 0.427468 + 0.399016i
\(209\) 5.51968i 0.381805i
\(210\) −0.0513197 0.0336558i −0.00354140 0.00232247i
\(211\) 20.4773 1.40971 0.704857 0.709350i \(-0.251011\pi\)
0.704857 + 0.709350i \(0.251011\pi\)
\(212\) −23.6163 + 10.2617i −1.62198 + 0.704779i
\(213\) 0.0337886i 0.00231516i
\(214\) −3.06634 + 4.67568i −0.209611 + 0.319623i
\(215\) 2.96494i 0.202207i
\(216\) 1.20776 + 0.207992i 0.0821774 + 0.0141521i
\(217\) 3.68947 0.250458
\(218\) −1.28090 + 1.95317i −0.0867536 + 0.132286i
\(219\) 0.826857i 0.0558738i
\(220\) 2.58532 + 5.94985i 0.174302 + 0.401139i
\(221\) 4.00419 + 7.71595i 0.269351 + 0.519031i
\(222\) −0.391788 + 0.597414i −0.0262951 + 0.0400958i
\(223\) 15.6305 1.04669 0.523347 0.852120i \(-0.324683\pi\)
0.523347 + 0.852120i \(0.324683\pi\)
\(224\) −3.29955 + 0.805232i −0.220461 + 0.0538018i
\(225\) −2.99478 −0.199652
\(226\) −13.0927 8.58628i −0.870915 0.571151i
\(227\) 7.35013 0.487845 0.243923 0.969795i \(-0.421566\pi\)
0.243923 + 0.969795i \(0.421566\pi\)
\(228\) −0.225613 + 0.0980331i −0.0149416 + 0.00649240i
\(229\) 26.0928i 1.72426i 0.506688 + 0.862129i \(0.330869\pi\)
−0.506688 + 0.862129i \(0.669131\pi\)
\(230\) −10.5123 6.89404i −0.693162 0.454580i
\(231\) 0.140761i 0.00926136i
\(232\) −15.6139 2.68893i −1.02511 0.176537i
\(233\) 20.1080i 1.31732i −0.752440 0.658661i \(-0.771123\pi\)
0.752440 0.658661i \(-0.228877\pi\)
\(234\) −7.46702 4.89691i −0.488134 0.320121i
\(235\) −10.8952 −0.710724
\(236\) 5.25684 2.28419i 0.342191 0.148688i
\(237\) 0.750374i 0.0487420i
\(238\) −3.48281 0.355615i −0.225757 0.0230511i
\(239\) −12.0248 −0.777822 −0.388911 0.921275i \(-0.627149\pi\)
−0.388911 + 0.921275i \(0.627149\pi\)
\(240\) 0.197279 0.211346i 0.0127343 0.0136423i
\(241\) 18.6565i 1.20177i −0.799336 0.600885i \(-0.794815\pi\)
0.799336 0.600885i \(-0.205185\pi\)
\(242\) 0.371383 0.566300i 0.0238734 0.0364031i
\(243\) −1.94698 −0.124899
\(244\) 2.47765 + 5.70205i 0.158615 + 0.365037i
\(245\) 6.63952 0.424183
\(246\) 0.377436 + 0.247525i 0.0240644 + 0.0157816i
\(247\) 3.58783 0.228288
\(248\) −2.94977 + 17.1286i −0.187311 + 1.08766i
\(249\) 0.432022i 0.0273783i
\(250\) −0.775550 + 1.18259i −0.0490501 + 0.0747936i
\(251\) 24.6401i 1.55527i −0.628718 0.777633i \(-0.716420\pi\)
0.628718 0.777633i \(-0.283580\pi\)
\(252\) 3.29823 1.43314i 0.207769 0.0902794i
\(253\) 28.8334i 1.81274i
\(254\) 11.9236 18.1816i 0.748153 1.14082i
\(255\) 0.264514 0.137269i 0.0165645 0.00859614i
\(256\) −1.10030 15.9621i −0.0687689 0.997633i
\(257\) 6.72149 0.419275 0.209638 0.977779i \(-0.432772\pi\)
0.209638 + 0.977779i \(0.432772\pi\)
\(258\) −0.253430 0.166201i −0.0157778 0.0103472i
\(259\) 4.19639i 0.260751i
\(260\) −3.86743 + 1.68047i −0.239848 + 0.104218i
\(261\) 16.7756 1.03838
\(262\) −10.9925 + 16.7619i −0.679122 + 1.03555i
\(263\) 13.6373 0.840912 0.420456 0.907313i \(-0.361870\pi\)
0.420456 + 0.907313i \(0.361870\pi\)
\(264\) 0.653488 + 0.112539i 0.0402194 + 0.00692633i
\(265\) 12.8747i 0.790889i
\(266\) −0.792382 + 1.20826i −0.0485841 + 0.0740831i
\(267\) 0.379060 0.0231981
\(268\) −15.1530 + 6.58424i −0.925615 + 0.402196i
\(269\) −24.0488 −1.46628 −0.733140 0.680077i \(-0.761946\pi\)
−0.733140 + 0.680077i \(0.761946\pi\)
\(270\) −0.336039 + 0.512407i −0.0204507 + 0.0311841i
\(271\) −9.39314 −0.570592 −0.285296 0.958439i \(-0.592092\pi\)
−0.285296 + 0.958439i \(0.592092\pi\)
\(272\) 4.43550 15.8848i 0.268942 0.963156i
\(273\) 0.0914951 0.00553754
\(274\) 4.12090 6.28372i 0.248953 0.379614i
\(275\) −3.24363 −0.195598
\(276\) −1.17854 + 0.512099i −0.0709401 + 0.0308247i
\(277\) −28.9718 −1.74075 −0.870373 0.492393i \(-0.836122\pi\)
−0.870373 + 0.492393i \(0.836122\pi\)
\(278\) 13.9502 21.2719i 0.836679 1.27580i
\(279\) 18.4029i 1.10175i
\(280\) 0.288209 1.67356i 0.0172238 0.100014i
\(281\) 13.2167 0.788444 0.394222 0.919015i \(-0.371014\pi\)
0.394222 + 0.919015i \(0.371014\pi\)
\(282\) −0.610734 + 0.931273i −0.0363687 + 0.0554565i
\(283\) −26.9621 −1.60273 −0.801364 0.598176i \(-0.795892\pi\)
−0.801364 + 0.598176i \(0.795892\pi\)
\(284\) −0.857507 + 0.372602i −0.0508837 + 0.0221099i
\(285\) 0.122996i 0.00728564i
\(286\) −8.08750 5.30383i −0.478224 0.313622i
\(287\) 2.65120 0.156496
\(288\) 4.01646 + 16.4580i 0.236672 + 0.969797i
\(289\) 9.78623 13.9007i 0.575660 0.817689i
\(290\) 4.34434 6.62443i 0.255109 0.389000i
\(291\) 0.995443i 0.0583539i
\(292\) −20.9844 + 9.11812i −1.22802 + 0.533597i
\(293\) 6.29350i 0.367670i −0.982957 0.183835i \(-0.941149\pi\)
0.982957 0.183835i \(-0.0588513\pi\)
\(294\) 0.372181 0.567517i 0.0217060 0.0330983i
\(295\) 2.86583i 0.166855i
\(296\) −19.4819 3.35505i −1.13236 0.195009i
\(297\) −1.40544 −0.0815518
\(298\) 1.42243 + 0.932840i 0.0823994 + 0.0540380i
\(299\) 18.7419 1.08387
\(300\) 0.0576089 + 0.132581i 0.00332605 + 0.00765458i
\(301\) −1.78015 −0.102606
\(302\) 8.68721 13.2466i 0.499893 0.762258i
\(303\) 0.278183i 0.0159812i
\(304\) −4.97588 4.64469i −0.285386 0.266391i
\(305\) −3.10854 −0.177995
\(306\) −1.77379 + 17.3721i −0.101401 + 0.993095i
\(307\) 27.4747i 1.56806i 0.620721 + 0.784032i \(0.286840\pi\)
−0.620721 + 0.784032i \(0.713160\pi\)
\(308\) 3.57230 1.55223i 0.203551 0.0884465i
\(309\) −0.426877 −0.0242842
\(310\) −7.26703 4.76576i −0.412739 0.270677i
\(311\) 18.2426i 1.03445i 0.855851 + 0.517223i \(0.173034\pi\)
−0.855851 + 0.517223i \(0.826966\pi\)
\(312\) −0.0731513 + 0.424771i −0.00414138 + 0.0240479i
\(313\) 14.3390i 0.810490i 0.914208 + 0.405245i \(0.132814\pi\)
−0.914208 + 0.405245i \(0.867186\pi\)
\(314\) 9.32307 + 6.11412i 0.526131 + 0.345040i
\(315\) 1.79807i 0.101310i
\(316\) 19.0434 8.27471i 1.07128 0.465489i
\(317\) −8.71699 −0.489595 −0.244797 0.969574i \(-0.578721\pi\)
−0.244797 + 0.969574i \(0.578721\pi\)
\(318\) −1.10048 0.721698i −0.0617116 0.0404708i
\(319\) 18.1696 1.01730
\(320\) 7.53915 + 2.67605i 0.421451 + 0.149596i
\(321\) −0.285771 −0.0159502
\(322\) −4.13920 + 6.31162i −0.230668 + 0.351733i
\(323\) −3.23183 6.22764i −0.179824 0.346515i
\(324\) −7.13594 16.4227i −0.396441 0.912370i
\(325\) 2.10838i 0.116952i
\(326\) −12.7813 + 19.4894i −0.707890 + 1.07942i
\(327\) −0.119375 −0.00660146
\(328\) −2.11966 + 12.3083i −0.117039 + 0.679615i
\(329\) 6.54149i 0.360644i
\(330\) −0.181823 + 0.277251i −0.0100090 + 0.0152622i
\(331\) 20.7382i 1.13987i −0.821689 0.569936i \(-0.806968\pi\)
0.821689 0.569936i \(-0.193032\pi\)
\(332\) 10.9641 4.76410i 0.601734 0.261464i
\(333\) 20.9314 1.14703
\(334\) −20.5960 13.5070i −1.12697 0.739070i
\(335\) 8.26082i 0.451337i
\(336\) −0.126893 0.118447i −0.00692256 0.00646180i
\(337\) 5.54913i 0.302280i −0.988512 0.151140i \(-0.951706\pi\)
0.988512 0.151140i \(-0.0482945\pi\)
\(338\) −6.63463 + 10.1168i −0.360876 + 0.550279i
\(339\) 0.800208i 0.0434613i
\(340\) 6.40061 + 5.19925i 0.347122 + 0.281969i
\(341\) 19.9321i 1.07938i
\(342\) 6.02673 + 3.95237i 0.325888 + 0.213719i
\(343\) 8.18919i 0.442175i
\(344\) 1.42325 8.26445i 0.0767365 0.445589i
\(345\) 0.642498i 0.0345909i
\(346\) −9.71722 + 14.8172i −0.522401 + 0.796579i
\(347\) −30.8060 −1.65375 −0.826877 0.562383i \(-0.809885\pi\)
−0.826877 + 0.562383i \(0.809885\pi\)
\(348\) −0.322704 0.742671i −0.0172987 0.0398113i
\(349\) 5.21987i 0.279413i 0.990193 + 0.139707i \(0.0446159\pi\)
−0.990193 + 0.139707i \(0.955384\pi\)
\(350\) 0.710030 + 0.465642i 0.0379527 + 0.0248896i
\(351\) 0.913543i 0.0487613i
\(352\) 4.35021 + 17.8256i 0.231867 + 0.950108i
\(353\) −22.8777 −1.21766 −0.608828 0.793303i \(-0.708360\pi\)
−0.608828 + 0.793303i \(0.708360\pi\)
\(354\) 0.244959 + 0.160645i 0.0130194 + 0.00853820i
\(355\) 0.467480i 0.0248113i
\(356\) 4.18006 + 9.61999i 0.221543 + 0.509858i
\(357\) −0.0824168 0.158815i −0.00436196 0.00840536i
\(358\) −20.2241 13.2631i −1.06888 0.700977i
\(359\) −12.2004 −0.643910 −0.321955 0.946755i \(-0.604340\pi\)
−0.321955 + 0.946755i \(0.604340\pi\)
\(360\) −8.34762 1.43757i −0.439958 0.0757668i
\(361\) 16.1042 0.847590
\(362\) 17.1345 26.1274i 0.900569 1.37323i
\(363\) 0.0346114 0.00181663
\(364\) 1.00896 + 2.32201i 0.0528837 + 0.121707i
\(365\) 11.4399i 0.598792i
\(366\) −0.174251 + 0.265705i −0.00910822 + 0.0138886i
\(367\) 0.161194i 0.00841425i 0.999991 + 0.00420713i \(0.00133917\pi\)
−0.999991 + 0.00420713i \(0.998661\pi\)
\(368\) −25.9927 24.2626i −1.35496 1.26478i
\(369\) 13.2241i 0.688418i
\(370\) 5.42055 8.26548i 0.281801 0.429702i
\(371\) −7.73002 −0.401322
\(372\) −0.814712 + 0.354007i −0.0422408 + 0.0183544i
\(373\) 25.0872i 1.29897i −0.760376 0.649483i \(-0.774985\pi\)
0.760376 0.649483i \(-0.225015\pi\)
\(374\) −1.92119 + 18.8156i −0.0993422 + 0.972933i
\(375\) −0.0722782 −0.00373243
\(376\) −30.3692 5.22999i −1.56617 0.269716i
\(377\) 11.8103i 0.608264i
\(378\) 0.307650 + 0.201759i 0.0158238 + 0.0103774i
\(379\) −13.0004 −0.667783 −0.333892 0.942611i \(-0.608362\pi\)
−0.333892 + 0.942611i \(0.608362\pi\)
\(380\) 3.12146 1.35633i 0.160127 0.0695783i
\(381\) 1.11123 0.0569302
\(382\) −8.16636 + 12.4524i −0.417827 + 0.637121i
\(383\) −10.3152 −0.527083 −0.263542 0.964648i \(-0.584891\pi\)
−0.263542 + 0.964648i \(0.584891\pi\)
\(384\) 0.651347 0.494406i 0.0332389 0.0252301i
\(385\) 1.94748i 0.0992529i
\(386\) −10.0023 6.55954i −0.509102 0.333872i
\(387\) 8.87932i 0.451361i
\(388\) −25.2629 + 10.9772i −1.28253 + 0.557283i
\(389\) 29.7338i 1.50756i 0.657124 + 0.753782i \(0.271773\pi\)
−0.657124 + 0.753782i \(0.728227\pi\)
\(390\) −0.180215 0.118186i −0.00912553 0.00598458i
\(391\) −16.8823 32.5316i −0.853772 1.64519i
\(392\) 18.5070 + 3.18715i 0.934743 + 0.160975i
\(393\) −1.02446 −0.0516773
\(394\) −16.9219 + 25.8031i −0.852511 + 1.29994i
\(395\) 10.3817i 0.522362i
\(396\) −7.74244 17.8185i −0.389072 0.895411i
\(397\) 12.5346 0.629093 0.314546 0.949242i \(-0.398148\pi\)
0.314546 + 0.949242i \(0.398148\pi\)
\(398\) 1.02541 + 0.672468i 0.0513991 + 0.0337078i
\(399\) −0.0738469 −0.00369697
\(400\) −2.72944 + 2.92406i −0.136472 + 0.146203i
\(401\) 5.73963i 0.286623i 0.989678 + 0.143312i \(0.0457751\pi\)
−0.989678 + 0.143312i \(0.954225\pi\)
\(402\) −0.706099 0.463064i −0.0352170 0.0230955i
\(403\) 12.9560 0.645384
\(404\) 7.05988 3.06765i 0.351242 0.152621i
\(405\) 8.95301 0.444879
\(406\) −3.97732 2.60835i −0.197391 0.129450i
\(407\) 22.6707 1.12374
\(408\) 0.803198 0.255650i 0.0397642 0.0126566i
\(409\) 5.00882 0.247670 0.123835 0.992303i \(-0.460481\pi\)
0.123835 + 0.992303i \(0.460481\pi\)
\(410\) −5.22199 3.42461i −0.257896 0.169129i
\(411\) 0.384052 0.0189439
\(412\) −4.70736 10.8335i −0.231915 0.533729i
\(413\) 1.72065 0.0846677
\(414\) 31.4821 + 20.6461i 1.54726 + 1.01470i
\(415\) 5.97721i 0.293410i
\(416\) −11.5867 + 2.82766i −0.568087 + 0.138637i
\(417\) 1.30011 0.0636665
\(418\) 6.52753 + 4.28079i 0.319272 + 0.209380i
\(419\) −19.0222 −0.929296 −0.464648 0.885495i \(-0.653819\pi\)
−0.464648 + 0.885495i \(0.653819\pi\)
\(420\) 0.0796020 0.0345885i 0.00388418 0.00168775i
\(421\) 13.5055i 0.658217i 0.944292 + 0.329108i \(0.106748\pi\)
−0.944292 + 0.329108i \(0.893252\pi\)
\(422\) −15.8811 + 24.2162i −0.773082 + 1.17883i
\(423\) 32.6286 1.58646
\(424\) 6.18023 35.8870i 0.300138 1.74283i
\(425\) −3.65966 + 1.89918i −0.177520 + 0.0921238i
\(426\) −0.0399581 0.0262048i −0.00193598 0.00126963i
\(427\) 1.86638i 0.0903202i
\(428\) −3.15132 7.25245i −0.152325 0.350561i
\(429\) 0.494296i 0.0238648i
\(430\) 3.50631 + 2.29946i 0.169089 + 0.110890i
\(431\) 17.5514i 0.845421i −0.906265 0.422710i \(-0.861079\pi\)
0.906265 0.422710i \(-0.138921\pi\)
\(432\) −1.18264 + 1.26697i −0.0569000 + 0.0609573i
\(433\) −14.0622 −0.675787 −0.337894 0.941184i \(-0.609714\pi\)
−0.337894 + 0.941184i \(0.609714\pi\)
\(434\) −2.86137 + 4.36314i −0.137350 + 0.209437i
\(435\) 0.404876 0.0194123
\(436\) −1.31640 3.02957i −0.0630442 0.145090i
\(437\) −15.1268 −0.723613
\(438\) −0.977833 0.641269i −0.0467227 0.0306410i
\(439\) 0.897327i 0.0428271i 0.999771 + 0.0214135i \(0.00681666\pi\)
−0.999771 + 0.0214135i \(0.993183\pi\)
\(440\) −9.04128 1.55703i −0.431026 0.0742286i
\(441\) −19.8839 −0.946851
\(442\) −12.2303 1.24878i −0.581734 0.0593985i
\(443\) 9.90397i 0.470552i 0.971929 + 0.235276i \(0.0755994\pi\)
−0.971929 + 0.235276i \(0.924401\pi\)
\(444\) −0.402646 0.926650i −0.0191087 0.0439768i
\(445\) −5.24445 −0.248611
\(446\) −12.1222 + 18.4845i −0.574003 + 0.875264i
\(447\) 0.0869371i 0.00411198i
\(448\) 1.60671 4.52652i 0.0759098 0.213858i
\(449\) 41.1008i 1.93967i 0.243772 + 0.969833i \(0.421615\pi\)
−0.243772 + 0.969833i \(0.578385\pi\)
\(450\) 2.32260 3.54160i 0.109488 0.166952i
\(451\) 14.3229i 0.674441i
\(452\) 20.3081 8.82425i 0.955214 0.415058i
\(453\) 0.809614 0.0380390
\(454\) −5.70039 + 8.69220i −0.267533 + 0.407945i
\(455\) −1.26587 −0.0593451
\(456\) 0.0590414 0.342838i 0.00276487 0.0160549i
\(457\) 3.84405 0.179817 0.0899086 0.995950i \(-0.471342\pi\)
0.0899086 + 0.995950i \(0.471342\pi\)
\(458\) −30.8571 20.2362i −1.44186 0.945578i
\(459\) −1.58570 + 0.822899i −0.0740142 + 0.0384097i
\(460\) 16.3057 7.08511i 0.760256 0.330345i
\(461\) 20.6103i 0.959918i 0.877291 + 0.479959i \(0.159348\pi\)
−0.877291 + 0.479959i \(0.840652\pi\)
\(462\) 0.166462 + 0.109167i 0.00774452 + 0.00507890i
\(463\) 11.7981 0.548302 0.274151 0.961687i \(-0.411603\pi\)
0.274151 + 0.961687i \(0.411603\pi\)
\(464\) 15.2893 16.3795i 0.709788 0.760400i
\(465\) 0.444150i 0.0205970i
\(466\) 23.7796 + 15.5948i 1.10157 + 0.722415i
\(467\) 29.7822i 1.37815i −0.724688 0.689077i \(-0.758016\pi\)
0.724688 0.689077i \(-0.241984\pi\)
\(468\) 11.5821 5.03263i 0.535383 0.232633i
\(469\) −4.95981 −0.229023
\(470\) 8.44976 12.8846i 0.389759 0.594320i
\(471\) 0.569812i 0.0262556i
\(472\) −1.37568 + 7.98820i −0.0633207 + 0.367687i
\(473\) 9.61715i 0.442197i
\(474\) 0.887386 + 0.581952i 0.0407590 + 0.0267300i
\(475\) 1.70170i 0.0780793i
\(476\) 3.12164 3.84294i 0.143080 0.176141i
\(477\) 38.5569i 1.76540i
\(478\) 9.32587 14.2205i 0.426555 0.650429i
\(479\) 29.1071i 1.32994i −0.746872 0.664968i \(-0.768445\pi\)
0.746872 0.664968i \(-0.231555\pi\)
\(480\) 0.0969363 + 0.397210i 0.00442452 + 0.0181301i
\(481\) 14.7361i 0.671907i
\(482\) 22.0630 + 14.4690i 1.00494 + 0.659046i
\(483\) −0.385757 −0.0175525
\(484\) 0.381675 + 0.878388i 0.0173489 + 0.0399267i
\(485\) 13.7724i 0.625371i
\(486\) 1.50998 2.30249i 0.0684942 0.104443i
\(487\) 7.71241i 0.349483i 0.984614 + 0.174741i \(0.0559089\pi\)
−0.984614 + 0.174741i \(0.944091\pi\)
\(488\) −8.66474 1.49219i −0.392234 0.0675481i
\(489\) −1.19117 −0.0538664
\(490\) −5.14928 + 7.85184i −0.232621 + 0.354710i
\(491\) 21.0539i 0.950151i −0.879945 0.475076i \(-0.842421\pi\)
0.879945 0.475076i \(-0.157579\pi\)
\(492\) −0.585441 + 0.254385i −0.0263937 + 0.0114685i
\(493\) 20.5001 10.6385i 0.923276 0.479134i
\(494\) −2.78254 + 4.24293i −0.125192 + 0.190898i
\(495\) 9.71395 0.436609
\(496\) −17.9684 16.7724i −0.806804 0.753104i
\(497\) −0.280676 −0.0125900
\(498\) 0.510906 + 0.335055i 0.0228942 + 0.0150142i
\(499\) 10.3562 0.463607 0.231803 0.972763i \(-0.425537\pi\)
0.231803 + 0.972763i \(0.425537\pi\)
\(500\) −0.797044 1.83432i −0.0356449 0.0820332i
\(501\) 1.25880i 0.0562390i
\(502\) 29.1391 + 19.1096i 1.30054 + 0.852903i
\(503\) 6.63644i 0.295904i −0.988995 0.147952i \(-0.952732\pi\)
0.988995 0.147952i \(-0.0472681\pi\)
\(504\) −0.863123 + 5.01193i −0.0384465 + 0.223249i
\(505\) 3.84878i 0.171268i
\(506\) 34.0981 + 22.3617i 1.51585 + 0.994100i
\(507\) −0.618322 −0.0274606
\(508\) 12.2541 + 28.2015i 0.543686 + 1.25124i
\(509\) 29.4523i 1.30545i 0.757596 + 0.652724i \(0.226374\pi\)
−0.757596 + 0.652724i \(0.773626\pi\)
\(510\) −0.0428101 + 0.419271i −0.00189566 + 0.0185656i
\(511\) −6.86855 −0.303847
\(512\) 19.7300 + 11.0782i 0.871951 + 0.489593i
\(513\) 0.737332i 0.0325540i
\(514\) −5.21285 + 7.94878i −0.229929 + 0.350605i
\(515\) 5.90603 0.260251
\(516\) 0.393095 0.170807i 0.0173050 0.00751935i
\(517\) 35.3400 1.55425
\(518\) −4.96261 3.25451i −0.218045 0.142995i
\(519\) −0.905607 −0.0397517
\(520\) 1.01208 5.87688i 0.0443826 0.257718i
\(521\) 15.0438i 0.659082i 0.944141 + 0.329541i \(0.106894\pi\)
−0.944141 + 0.329541i \(0.893106\pi\)
\(522\) −13.0103 + 19.8387i −0.569447 + 0.868316i
\(523\) 9.50197i 0.415492i 0.978183 + 0.207746i \(0.0666128\pi\)
−0.978183 + 0.207746i \(0.933387\pi\)
\(524\) −11.2972 25.9994i −0.493520 1.13579i
\(525\) 0.0433960i 0.00189396i
\(526\) −10.5764 + 16.1273i −0.461153 + 0.703186i
\(527\) −11.6705 22.4886i −0.508374 0.979620i
\(528\) −0.639901 + 0.685529i −0.0278481 + 0.0298338i
\(529\) −56.0184 −2.43558
\(530\) 15.2255 + 9.98500i 0.661356 + 0.433721i
\(531\) 8.58252i 0.372450i
\(532\) −0.814343 1.87413i −0.0353063 0.0812538i
\(533\) 9.31000 0.403261
\(534\) −0.293980 + 0.448273i −0.0127217 + 0.0193987i
\(535\) 3.95376 0.170936
\(536\) 3.96542 23.0262i 0.171280 0.994579i
\(537\) 1.23607i 0.0533403i
\(538\) 18.6510 28.4399i 0.804104 1.22613i
\(539\) −21.5361 −0.927627
\(540\) −0.345353 0.794795i −0.0148616 0.0342025i
\(541\) −9.89478 −0.425410 −0.212705 0.977116i \(-0.568227\pi\)
−0.212705 + 0.977116i \(0.568227\pi\)
\(542\) 7.28485 11.1082i 0.312911 0.477140i
\(543\) 1.59687 0.0685282
\(544\) 15.3453 + 17.5648i 0.657922 + 0.753086i
\(545\) 1.65160 0.0707470
\(546\) −0.0709591 + 0.108201i −0.00303677 + 0.00463059i
\(547\) 9.85752 0.421477 0.210739 0.977542i \(-0.432413\pi\)
0.210739 + 0.977542i \(0.432413\pi\)
\(548\) 4.23511 + 9.74669i 0.180915 + 0.416358i
\(549\) 9.30939 0.397315
\(550\) 2.51560 3.83589i 0.107265 0.163563i
\(551\) 9.53229i 0.406089i
\(552\) 0.308417 1.79090i 0.0131271 0.0762256i
\(553\) 6.23322 0.265063
\(554\) 22.4691 34.2618i 0.954619 1.45564i
\(555\) 0.505174 0.0214434
\(556\) 14.3368 + 32.9948i 0.608018 + 1.39929i
\(557\) 6.85866i 0.290611i 0.989387 + 0.145305i \(0.0464165\pi\)
−0.989387 + 0.145305i \(0.953584\pi\)
\(558\) 21.7631 + 14.2724i 0.921306 + 0.604198i
\(559\) −6.25120 −0.264398
\(560\) 1.75561 + 1.63876i 0.0741882 + 0.0692503i
\(561\) −0.857985 + 0.445251i −0.0362241 + 0.0187985i
\(562\) −10.2502 + 15.6300i −0.432380 + 0.659311i
\(563\) 6.24108i 0.263030i −0.991314 0.131515i \(-0.958016\pi\)
0.991314 0.131515i \(-0.0419842\pi\)
\(564\) −0.627660 1.44450i −0.0264293 0.0608243i
\(565\) 11.0712i 0.465769i
\(566\) 20.9104 31.8851i 0.878931 1.34023i
\(567\) 5.37541i 0.225746i
\(568\) 0.224403 1.30305i 0.00941575 0.0546748i
\(569\) 10.1745 0.426536 0.213268 0.976994i \(-0.431589\pi\)
0.213268 + 0.976994i \(0.431589\pi\)
\(570\) 0.145454 + 0.0953894i 0.00609239 + 0.00399542i
\(571\) 31.1761 1.30468 0.652339 0.757927i \(-0.273788\pi\)
0.652339 + 0.757927i \(0.273788\pi\)
\(572\) 12.5445 5.45082i 0.524513 0.227910i
\(573\) −0.761073 −0.0317943
\(574\) −2.05614 + 3.13529i −0.0858217 + 0.130865i
\(575\) 8.88923i 0.370706i
\(576\) −22.5781 8.01418i −0.940752 0.333924i
\(577\) 29.3283 1.22095 0.610476 0.792035i \(-0.290978\pi\)
0.610476 + 0.792035i \(0.290978\pi\)
\(578\) 8.84915 + 22.3538i 0.368076 + 0.929796i
\(579\) 0.611323i 0.0254057i
\(580\) 4.46474 + 10.2752i 0.185388 + 0.426653i
\(581\) 3.58873 0.148886
\(582\) −1.17720 0.772016i −0.0487966 0.0320011i
\(583\) 41.7609i 1.72956i
\(584\) 5.49147 31.8876i 0.227239 1.31952i
\(585\) 6.31412i 0.261057i
\(586\) 7.44264 + 4.88093i 0.307453 + 0.201629i
\(587\) 17.6605i 0.728929i −0.931217 0.364464i \(-0.881252\pi\)
0.931217 0.364464i \(-0.118748\pi\)
\(588\) 0.382496 + 0.880275i 0.0157739 + 0.0363019i
\(589\) −10.4569 −0.430871
\(590\) −3.38911 2.22259i −0.139527 0.0915028i
\(591\) −1.57705 −0.0648712
\(592\) 19.0769 20.4372i 0.784055 0.839962i
\(593\) 8.67511 0.356244 0.178122 0.984008i \(-0.442998\pi\)
0.178122 + 0.984008i \(0.442998\pi\)
\(594\) 1.08999 1.66206i 0.0447227 0.0681951i
\(595\) 1.14027 + 2.19727i 0.0467466 + 0.0900792i
\(596\) −2.20634 + 0.958694i −0.0903751 + 0.0392696i
\(597\) 0.0626714i 0.00256497i
\(598\) −14.5352 + 22.1640i −0.594390 + 0.906351i
\(599\) −36.1426 −1.47674 −0.738372 0.674393i \(-0.764405\pi\)
−0.738372 + 0.674393i \(0.764405\pi\)
\(600\) −0.201468 0.0346955i −0.00822490 0.00141644i
\(601\) 29.1531i 1.18918i 0.804029 + 0.594590i \(0.202686\pi\)
−0.804029 + 0.594590i \(0.797314\pi\)
\(602\) 1.38060 2.10519i 0.0562690 0.0858013i
\(603\) 24.7393i 1.00746i
\(604\) 8.92797 + 20.5468i 0.363274 + 0.836039i
\(605\) −0.478864 −0.0194686
\(606\) 0.328977 + 0.215745i 0.0133638 + 0.00876404i
\(607\) 27.3526i 1.11021i 0.831781 + 0.555104i \(0.187322\pi\)
−0.831781 + 0.555104i \(0.812678\pi\)
\(608\) 9.35181 2.28224i 0.379266 0.0925572i
\(609\) 0.243088i 0.00985043i
\(610\) 2.41083 3.67614i 0.0976117 0.148842i
\(611\) 22.9712i 0.929314i
\(612\) −19.1684 15.5706i −0.774836 0.629403i
\(613\) 45.5742i 1.84073i −0.391065 0.920363i \(-0.627893\pi\)
0.391065 0.920363i \(-0.372107\pi\)
\(614\) −32.4913 21.3080i −1.31124 0.859921i
\(615\) 0.319160i 0.0128698i
\(616\) −0.934845 + 5.42840i −0.0376660 + 0.218717i
\(617\) 36.9239i 1.48650i 0.669013 + 0.743250i \(0.266717\pi\)
−0.669013 + 0.743250i \(0.733283\pi\)
\(618\) 0.331065 0.504821i 0.0133174 0.0203069i
\(619\) −0.856032 −0.0344068 −0.0172034 0.999852i \(-0.505476\pi\)
−0.0172034 + 0.999852i \(0.505476\pi\)
\(620\) 11.2719 4.89784i 0.452690 0.196702i
\(621\) 3.85163i 0.154561i
\(622\) −21.5736 14.1481i −0.865022 0.567286i
\(623\) 3.14878i 0.126153i
\(624\) −0.445598 0.415939i −0.0178382 0.0166509i
\(625\) 1.00000 0.0400000
\(626\) −16.9572 11.1206i −0.677747 0.444470i
\(627\) 0.398953i 0.0159326i
\(628\) −14.4610 + 6.28357i −0.577057 + 0.250742i
\(629\) 25.5785 13.2739i 1.01988 0.529267i
\(630\) −2.12638 1.39449i −0.0847171 0.0555579i
\(631\) −7.32017 −0.291412 −0.145706 0.989328i \(-0.546545\pi\)
−0.145706 + 0.989328i \(0.546545\pi\)
\(632\) −4.98352 + 28.9380i −0.198234 + 1.15109i
\(633\) −1.48006 −0.0588271
\(634\) 6.76046 10.3086i 0.268492 0.409408i
\(635\) −15.3744 −0.610114
\(636\) 1.70695 0.741700i 0.0676849 0.0294103i
\(637\) 13.9986i 0.554645i
\(638\) −14.0914 + 21.4872i −0.557885 + 0.850687i
\(639\) 1.40000i 0.0553830i
\(640\) −9.01166 + 6.84032i −0.356217 + 0.270387i
\(641\) 15.1115i 0.596869i 0.954430 + 0.298434i \(0.0964644\pi\)
−0.954430 + 0.298434i \(0.903536\pi\)
\(642\) 0.221630 0.337950i 0.00874702 0.0133378i
\(643\) −7.16882 −0.282711 −0.141355 0.989959i \(-0.545146\pi\)
−0.141355 + 0.989959i \(0.545146\pi\)
\(644\) −4.25391 9.78996i −0.167628 0.385778i
\(645\) 0.214300i 0.00843807i
\(646\) 9.87121 + 1.00791i 0.388377 + 0.0396556i
\(647\) 20.8410 0.819346 0.409673 0.912233i \(-0.365643\pi\)
0.409673 + 0.912233i \(0.365643\pi\)
\(648\) 24.9556 + 4.29769i 0.980348 + 0.168829i
\(649\) 9.29569i 0.364888i
\(650\) 2.49335 + 1.63515i 0.0977972 + 0.0641360i
\(651\) −0.266668 −0.0104516
\(652\) −13.1355 30.2301i −0.514426 1.18390i
\(653\) 2.07393 0.0811591 0.0405796 0.999176i \(-0.487080\pi\)
0.0405796 + 0.999176i \(0.487080\pi\)
\(654\) 0.0925813 0.141172i 0.00362022 0.00552026i
\(655\) 14.1739 0.553819
\(656\) −12.9118 12.0524i −0.504123 0.470569i
\(657\) 34.2600i 1.33661i
\(658\) −7.73591 5.07326i −0.301577 0.197776i
\(659\) 6.06141i 0.236119i −0.993007 0.118060i \(-0.962333\pi\)
0.993007 0.118060i \(-0.0376674\pi\)
\(660\) −0.186862 0.430044i −0.00727360 0.0167395i
\(661\) 20.3183i 0.790289i 0.918619 + 0.395145i \(0.129306\pi\)
−0.918619 + 0.395145i \(0.870694\pi\)
\(662\) 24.5248 + 16.0835i 0.953182 + 0.625102i
\(663\) −0.289416 0.557695i −0.0112400 0.0216591i
\(664\) −2.86923 + 16.6609i −0.111348 + 0.646567i
\(665\) 1.02170 0.0396200
\(666\) −16.2333 + 24.7533i −0.629029 + 0.959170i
\(667\) 49.7941i 1.92804i
\(668\) 31.9465 13.8813i 1.23605 0.537085i
\(669\) −1.12974 −0.0436784
\(670\) 9.76918 + 6.40668i 0.377416 + 0.247512i
\(671\) 10.0830 0.389249
\(672\) 0.238486 0.0582007i 0.00919979 0.00224514i
\(673\) 48.1640i 1.85659i −0.371848 0.928294i \(-0.621276\pi\)
0.371848 0.928294i \(-0.378724\pi\)
\(674\) 6.56235 + 4.30362i 0.252772 + 0.165769i
\(675\) 0.433292 0.0166774
\(676\) −6.81851 15.6921i −0.262250 0.603543i
\(677\) −6.64023 −0.255205 −0.127602 0.991825i \(-0.540728\pi\)
−0.127602 + 0.991825i \(0.540728\pi\)
\(678\) 0.946319 + 0.620601i 0.0363431 + 0.0238340i
\(679\) −8.26896 −0.317334
\(680\) −11.1126 + 3.53703i −0.426148 + 0.135639i
\(681\) −0.531254 −0.0203577
\(682\) 23.5715 + 15.4584i 0.902601 + 0.591931i
\(683\) −37.0078 −1.41606 −0.708032 0.706180i \(-0.750417\pi\)
−0.708032 + 0.706180i \(0.750417\pi\)
\(684\) −9.34806 + 4.06190i −0.357432 + 0.155311i
\(685\) −5.31352 −0.203019
\(686\) 9.68447 + 6.35113i 0.369755 + 0.242487i
\(687\) 1.88594i 0.0719531i
\(688\) 8.66966 + 8.09262i 0.330528 + 0.308528i
\(689\) −27.1448 −1.03413
\(690\) 0.759812 + 0.498289i 0.0289256 + 0.0189695i
\(691\) −5.25264 −0.199820 −0.0999100 0.994996i \(-0.531855\pi\)
−0.0999100 + 0.994996i \(0.531855\pi\)
\(692\) −9.98653 22.9830i −0.379631 0.873682i
\(693\) 5.83227i 0.221550i
\(694\) 23.8916 36.4309i 0.906913 1.38290i
\(695\) −17.9875 −0.682305
\(696\) 1.12855 + 0.194351i 0.0427775 + 0.00736687i
\(697\) −8.38624 16.1600i −0.317652 0.612104i
\(698\) −6.17297 4.04827i −0.233650 0.153229i
\(699\) 1.45337i 0.0549717i
\(700\) −1.10133 + 0.478547i −0.0416263 + 0.0180874i
\(701\) 15.2674i 0.576640i 0.957534 + 0.288320i \(0.0930967\pi\)
−0.957534 + 0.288320i \(0.906903\pi\)
\(702\) 1.08035 + 0.708498i 0.0407751 + 0.0267405i
\(703\) 11.8937i 0.448579i
\(704\) −24.4542 8.68013i −0.921653 0.327145i
\(705\) 0.787485 0.0296584
\(706\) 17.7428 27.0549i 0.667758 1.01823i
\(707\) 2.31082 0.0869072
\(708\) −0.379955 + 0.165097i −0.0142796 + 0.00620474i
\(709\) 11.8011 0.443200 0.221600 0.975138i \(-0.428872\pi\)
0.221600 + 0.975138i \(0.428872\pi\)
\(710\) 0.552838 + 0.362554i 0.0207476 + 0.0136064i
\(711\) 31.0910i 1.16600i
\(712\) −14.6184 2.51748i −0.547846 0.0943466i
\(713\) −54.6243 −2.04570
\(714\) 0.251731 + 0.0257032i 0.00942080 + 0.000961920i
\(715\) 6.83880i 0.255757i
\(716\) 31.3697 13.6307i 1.17234 0.509403i
\(717\) 0.869134 0.0324584
\(718\) 9.46199 14.4280i 0.353118 0.538449i
\(719\) 41.5687i 1.55025i 0.631807 + 0.775125i \(0.282313\pi\)
−0.631807 + 0.775125i \(0.717687\pi\)
\(720\) 8.17406 8.75692i 0.304629 0.326351i
\(721\) 3.54599i 0.132060i
\(722\) −12.4896 + 19.0447i −0.464816 + 0.708771i
\(723\) 1.34846i 0.0501497i
\(724\) 17.6094 + 40.5262i 0.654447 + 1.50615i
\(725\) −5.60163 −0.208039
\(726\) −0.0268429 + 0.0409312i −0.000996233 + 0.00151910i
\(727\) 16.5087 0.612273 0.306136 0.951988i \(-0.400964\pi\)
0.306136 + 0.951988i \(0.400964\pi\)
\(728\) −3.52849 0.607654i −0.130775 0.0225212i
\(729\) −26.7183 −0.989567
\(730\) 13.5287 + 8.87223i 0.500721 + 0.328376i
\(731\) 5.63095 + 10.8507i 0.208268 + 0.401326i
\(732\) −0.179080 0.412134i −0.00661898 0.0152329i
\(733\) 7.56946i 0.279584i 0.990181 + 0.139792i \(0.0446435\pi\)
−0.990181 + 0.139792i \(0.955357\pi\)
\(734\) −0.190627 0.125014i −0.00703615 0.00461435i
\(735\) −0.479893 −0.0177011
\(736\) 48.8514 11.9218i 1.80069 0.439445i
\(737\) 26.7950i 0.987008i
\(738\) 15.6387 + 10.2559i 0.575668 + 0.377526i
\(739\) 28.7104i 1.05613i 0.849204 + 0.528064i \(0.177082\pi\)
−0.849204 + 0.528064i \(0.822918\pi\)
\(740\) 5.57078 + 12.8206i 0.204786 + 0.471294i
\(741\) −0.259322 −0.00952642
\(742\) 5.99501 9.14145i 0.220084 0.335593i
\(743\) 9.41700i 0.345476i −0.984968 0.172738i \(-0.944739\pi\)
0.984968 0.172738i \(-0.0552614\pi\)
\(744\) 0.213204 1.23802i 0.00781644 0.0453881i
\(745\) 1.20281i 0.0440676i
\(746\) 29.6679 + 19.4564i 1.08622 + 0.712349i
\(747\) 17.9004i 0.654942i
\(748\) −20.7612 16.8644i −0.759105 0.616625i
\(749\) 2.37385i 0.0867384i
\(750\) 0.0560554 0.0854756i 0.00204685 0.00312113i
\(751\) 6.20328i 0.226361i −0.993574 0.113181i \(-0.963896\pi\)
0.993574 0.113181i \(-0.0361038\pi\)
\(752\) 29.7378 31.8582i 1.08443 1.16175i
\(753\) 1.78094i 0.0649011i
\(754\) −13.9668 9.15951i −0.508641 0.333570i
\(755\) −11.2014 −0.407659
\(756\) −0.477196 + 0.207350i −0.0173555 + 0.00754126i
\(757\) 22.6850i 0.824499i 0.911071 + 0.412250i \(0.135257\pi\)
−0.911071 + 0.412250i \(0.864743\pi\)
\(758\) 10.0824 15.3741i 0.366210 0.558413i
\(759\) 2.08403i 0.0756453i
\(760\) −0.816863 + 4.74331i −0.0296307 + 0.172058i
\(761\) 16.4440 0.596096 0.298048 0.954551i \(-0.403664\pi\)
0.298048 + 0.954551i \(0.403664\pi\)
\(762\) −0.861817 + 1.31413i −0.0312203 + 0.0476061i
\(763\) 0.991627i 0.0358993i
\(764\) −8.39269 19.3149i −0.303637 0.698790i
\(765\) 10.9599 5.68762i 0.396255 0.205636i
\(766\) 7.99997 12.1987i 0.289051 0.440757i
\(767\) 6.04225 0.218173
\(768\) 0.0795280 + 1.15371i 0.00286972 + 0.0416311i
\(769\) 19.4363 0.700892 0.350446 0.936583i \(-0.386030\pi\)
0.350446 + 0.936583i \(0.386030\pi\)
\(770\) −2.30308 1.51037i −0.0829971 0.0544299i
\(771\) −0.485817 −0.0174963
\(772\) 15.5145 6.74133i 0.558379 0.242626i
\(773\) 27.8588i 1.00201i 0.865444 + 0.501006i \(0.167037\pi\)
−0.865444 + 0.501006i \(0.832963\pi\)
\(774\) −10.5006 6.88636i −0.377436 0.247525i
\(775\) 6.14500i 0.220735i
\(776\) 6.61112 38.3891i 0.237325 1.37809i
\(777\) 0.303308i 0.0108811i
\(778\) −35.1630 23.0601i −1.26065 0.826743i
\(779\) −7.51422 −0.269225
\(780\) 0.279531 0.121461i 0.0100088 0.00434902i
\(781\) 1.51633i 0.0542586i
\(782\) 51.5646 + 5.26505i 1.84395 + 0.188278i
\(783\) −2.42714 −0.0867389
\(784\) −18.1222 + 19.4144i −0.647220 + 0.693371i
\(785\) 7.88359i 0.281378i
\(786\) 0.794522 1.21152i 0.0283396 0.0432135i
\(787\) 46.8253 1.66914 0.834572 0.550899i \(-0.185715\pi\)
0.834572 + 0.550899i \(0.185715\pi\)
\(788\) −17.3908 40.0233i −0.619523 1.42577i
\(789\) −0.985680 −0.0350911
\(790\) −12.2774 8.05156i −0.436809 0.286462i
\(791\) 6.64718 0.236346
\(792\) 27.0766 + 4.66296i 0.962125 + 0.165691i
\(793\) 6.55398i 0.232739i
\(794\) −9.72120 + 14.8233i −0.344992 + 0.526059i
\(795\) 0.930563i 0.0330037i
\(796\) −1.59051 + 0.691106i −0.0563742 + 0.0244956i
\(797\) 19.4665i 0.689540i −0.938687 0.344770i \(-0.887957\pi\)
0.938687 0.344770i \(-0.112043\pi\)
\(798\) 0.0572720 0.0873308i 0.00202741 0.00309148i
\(799\) 39.8727 20.6919i 1.41059 0.732028i
\(800\) −1.34115 5.49557i −0.0474170 0.194298i
\(801\) 15.7060 0.554943
\(802\) −6.78763 4.45137i −0.239680 0.157183i
\(803\) 37.1068i 1.30947i
\(804\) 1.09523 0.475897i 0.0386258 0.0167836i
\(805\) 5.33711 0.188108
\(806\) −10.0480 + 15.3216i −0.353926 + 0.539682i
\(807\) 1.73820 0.0611877
\(808\) −1.84752 + 10.7281i −0.0649955 + 0.377412i
\(809\) 15.4185i 0.542085i −0.962567 0.271043i \(-0.912632\pi\)
0.962567 0.271043i \(-0.0873684\pi\)
\(810\) −6.94351 + 10.5878i −0.243970 + 0.372016i
\(811\) −41.0529 −1.44156 −0.720781 0.693163i \(-0.756217\pi\)
−0.720781 + 0.693163i \(0.756217\pi\)
\(812\) 6.16923 2.68064i 0.216497 0.0940721i
\(813\) 0.678919 0.0238107
\(814\) −17.5823 + 26.8102i −0.616258 + 0.939696i
\(815\) 16.4803 0.577279
\(816\) −0.320590 + 1.14812i −0.0112229 + 0.0401924i
\(817\) 5.04543 0.176517
\(818\) −3.88459 + 5.92339i −0.135822 + 0.207107i
\(819\) 3.79101 0.132469
\(820\) 8.09982 3.51952i 0.282858 0.122907i
\(821\) −34.2501 −1.19534 −0.597668 0.801744i \(-0.703906\pi\)
−0.597668 + 0.801744i \(0.703906\pi\)
\(822\) −0.297852 + 0.454177i −0.0103888 + 0.0158412i
\(823\) 2.29212i 0.0798982i 0.999202 + 0.0399491i \(0.0127196\pi\)
−0.999202 + 0.0399491i \(0.987280\pi\)
\(824\) 16.4624 + 2.83505i 0.573496 + 0.0987638i
\(825\) 0.234444 0.00816229
\(826\) −1.33445 + 2.03483i −0.0464315 + 0.0708007i
\(827\) −30.0936 −1.04646 −0.523229 0.852192i \(-0.675273\pi\)
−0.523229 + 0.852192i \(0.675273\pi\)
\(828\) −48.8318 + 21.2183i −1.69702 + 0.737387i
\(829\) 47.5949i 1.65304i −0.562908 0.826519i \(-0.690318\pi\)
0.562908 0.826519i \(-0.309682\pi\)
\(830\) −7.06860 4.63563i −0.245355 0.160905i
\(831\) 2.09403 0.0726411
\(832\) 5.64213 15.8954i 0.195606 0.551073i
\(833\) −24.2984 + 12.6096i −0.841889 + 0.436898i
\(834\) −1.00830 + 1.53749i −0.0349145 + 0.0532391i
\(835\) 17.4160i 0.602707i
\(836\) −10.1249 + 4.39943i −0.350175 + 0.152158i
\(837\) 2.66258i 0.0920322i
\(838\) 14.7527 22.4955i 0.509623 0.777094i
\(839\) 33.5374i 1.15784i −0.815385 0.578920i \(-0.803474\pi\)
0.815385 0.578920i \(-0.196526\pi\)
\(840\) −0.0208313 + 0.120962i −0.000718747 + 0.00417358i
\(841\) 2.37822 0.0820077
\(842\) −15.9715 10.4742i −0.550413 0.360964i
\(843\) −0.955282 −0.0329017
\(844\) −16.3213 37.5618i −0.561802 1.29293i
\(845\) 8.55474 0.294292
\(846\) −25.3051 + 38.5864i −0.870009 + 1.32663i
\(847\) 0.287511i 0.00987898i
\(848\) 37.6465 + 35.1408i 1.29279 + 1.20674i
\(849\) 1.94877 0.0668816
\(850\) 0.592295 5.80079i 0.0203156 0.198966i
\(851\) 62.1295i 2.12977i
\(852\) 0.0619791 0.0269310i 0.00212337 0.000922642i
\(853\) −1.81771 −0.0622373 −0.0311186 0.999516i \(-0.509907\pi\)
−0.0311186 + 0.999516i \(0.509907\pi\)
\(854\) −2.20716 1.44747i −0.0755274 0.0495313i
\(855\) 5.09621i 0.174287i
\(856\) 11.0207 + 1.89791i 0.376680 + 0.0648694i
\(857\) 10.8395i 0.370271i 0.982713 + 0.185135i \(0.0592724\pi\)
−0.982713 + 0.185135i \(0.940728\pi\)
\(858\) 0.584550 + 0.383351i 0.0199562 + 0.0130874i
\(859\) 8.54352i 0.291501i 0.989321 + 0.145751i \(0.0465597\pi\)
−0.989321 + 0.145751i \(0.953440\pi\)
\(860\) −5.43863 + 2.36318i −0.185456 + 0.0805839i
\(861\) −0.191624 −0.00653054
\(862\) 20.7561 + 13.6120i 0.706956 + 0.463626i
\(863\) −10.5865 −0.360369 −0.180185 0.983633i \(-0.557670\pi\)
−0.180185 + 0.983633i \(0.557670\pi\)
\(864\) −0.581111 2.38119i −0.0197698 0.0810096i
\(865\) 12.5295 0.426014
\(866\) 10.9060 16.6299i 0.370600 0.565106i
\(867\) −0.707331 + 1.00472i −0.0240222 + 0.0341220i
\(868\) −2.94067 6.76766i −0.0998129 0.229709i
\(869\) 33.6745i 1.14233i
\(870\) −0.314001 + 0.478802i −0.0106456 + 0.0162329i
\(871\) −17.4169 −0.590150
\(872\) 4.60368 + 0.792816i 0.155900 + 0.0268481i
\(873\) 41.2452i 1.39594i
\(874\) 11.7316 17.8888i 0.396827 0.605098i
\(875\) 0.600402i 0.0202973i
\(876\) 1.51672 0.659041i 0.0512451 0.0222669i
\(877\) −16.2737 −0.549524 −0.274762 0.961512i \(-0.588599\pi\)
−0.274762 + 0.961512i \(0.588599\pi\)
\(878\) −1.06117 0.695922i −0.0358128 0.0234862i
\(879\) 0.454883i 0.0153428i
\(880\) 8.85330 9.48458i 0.298445 0.319725i
\(881\) 30.7607i 1.03635i 0.855273 + 0.518177i \(0.173389\pi\)
−0.855273 + 0.518177i \(0.826611\pi\)
\(882\) 15.4209 23.5145i 0.519250 0.791774i
\(883\) 34.3181i 1.15489i 0.816428 + 0.577447i \(0.195951\pi\)
−0.816428 + 0.577447i \(0.804049\pi\)
\(884\) 10.9620 13.4949i 0.368691 0.453883i
\(885\) 0.207137i 0.00696284i
\(886\) −11.7123 7.68102i −0.393484 0.258049i
\(887\) 30.5930i 1.02721i −0.858026 0.513607i \(-0.828309\pi\)
0.858026 0.513607i \(-0.171691\pi\)
\(888\) 1.40812 + 0.242497i 0.0472534 + 0.00813768i
\(889\) 9.23081i 0.309591i
\(890\) 4.06733 6.20204i 0.136337 0.207893i
\(891\) −29.0403 −0.972885
\(892\) −12.4582 28.6712i −0.417130 0.959984i
\(893\) 18.5403i 0.620429i
\(894\) −0.102811 0.0674240i −0.00343851 0.00225500i
\(895\) 17.1015i 0.571642i
\(896\) 4.10694 + 5.41062i 0.137203 + 0.180756i
\(897\) −1.35463 −0.0452297
\(898\) −48.6054 31.8757i −1.62198 1.06371i
\(899\) 34.4220i 1.14804i
\(900\) 2.38697 + 5.49337i 0.0795656 + 0.183112i
\(901\) 24.4514 + 47.1172i 0.814596 + 1.56970i
\(902\) 16.9382 + 11.1082i 0.563980 + 0.369861i
\(903\) 0.128666 0.00428175
\(904\) −5.31449 + 30.8598i −0.176757 + 1.02638i
\(905\) −22.0934 −0.734408
\(906\) −0.627896 + 0.957443i −0.0208605 + 0.0318089i
\(907\) −25.1500 −0.835093 −0.417547 0.908655i \(-0.637110\pi\)
−0.417547 + 0.908655i \(0.637110\pi\)
\(908\) −5.85838 13.4825i −0.194417 0.447432i
\(909\) 11.5262i 0.382301i
\(910\) 0.981749 1.49701i 0.0325447 0.0496255i
\(911\) 46.0371i 1.52528i 0.646825 + 0.762639i \(0.276097\pi\)
−0.646825 + 0.762639i \(0.723903\pi\)
\(912\) 0.359648 + 0.335710i 0.0119091 + 0.0111165i
\(913\) 19.3879i 0.641645i
\(914\) −2.98126 + 4.54594i −0.0986112 + 0.150366i
\(915\) 0.224680 0.00742769
\(916\) 47.8624 20.7971i 1.58142 0.687155i
\(917\) 8.51002i 0.281026i
\(918\) 0.256637 2.51344i 0.00847027 0.0829557i
\(919\) −10.1555 −0.334998 −0.167499 0.985872i \(-0.553569\pi\)
−0.167499 + 0.985872i \(0.553569\pi\)
\(920\) −4.26707 + 24.7778i −0.140681 + 0.816900i
\(921\) 1.98582i 0.0654350i
\(922\) −24.3736 15.9843i −0.802701 0.526416i
\(923\) −0.985624 −0.0324422
\(924\) −0.258200 + 0.112192i −0.00849414 + 0.00369086i
\(925\) −6.98930 −0.229807
\(926\) −9.14999 + 13.9523i −0.300687 + 0.458501i
\(927\) −17.6872 −0.580925
\(928\) 7.51265 + 30.7841i 0.246615 + 1.01054i
\(929\) 7.21799i 0.236815i 0.992965 + 0.118407i \(0.0377789\pi\)
−0.992965 + 0.118407i \(0.962221\pi\)
\(930\) 0.525248 + 0.344460i 0.0172236 + 0.0112953i
\(931\) 11.2985i 0.370292i
\(932\) −36.8845 + 16.0270i −1.20819 + 0.524982i
\(933\) 1.31855i 0.0431673i
\(934\) 35.2201 + 23.0976i 1.15244 + 0.755775i
\(935\) 11.8706 6.16024i 0.388210 0.201461i
\(936\) −3.03095 + 17.5999i −0.0990697 + 0.575272i
\(937\) 47.6772 1.55755 0.778774 0.627305i \(-0.215842\pi\)
0.778774 + 0.627305i \(0.215842\pi\)
\(938\) 3.84658 5.86543i 0.125595 0.191513i
\(939\) 1.03640i 0.0338216i
\(940\) 8.68395 + 19.9852i 0.283239 + 0.651846i
\(941\) 13.9923 0.456137 0.228069 0.973645i \(-0.426759\pi\)
0.228069 + 0.973645i \(0.426759\pi\)
\(942\) −0.673855 0.441918i −0.0219554 0.0143985i
\(943\) −39.2523 −1.27823
\(944\) −8.37987 7.82212i −0.272742 0.254588i
\(945\) 0.260149i 0.00846266i
\(946\) −11.3732 7.45858i −0.369773 0.242500i
\(947\) 36.7607 1.19456 0.597281 0.802032i \(-0.296248\pi\)
0.597281 + 0.802032i \(0.296248\pi\)
\(948\) −1.37642 + 0.598081i −0.0447042 + 0.0194248i
\(949\) −24.1197 −0.782957
\(950\) −2.01242 1.31975i −0.0652914 0.0428184i
\(951\) 0.630048 0.0204307
\(952\) 2.12364 + 6.67201i 0.0688276 + 0.216241i
\(953\) −43.3201 −1.40328 −0.701638 0.712534i \(-0.747547\pi\)
−0.701638 + 0.712534i \(0.747547\pi\)
\(954\) −45.5971 29.9028i −1.47626 0.968140i
\(955\) 10.5298 0.340735
\(956\) 9.58433 + 22.0574i 0.309979 + 0.713386i
\(957\) −1.31327 −0.0424519
\(958\) 34.4218 + 22.5740i 1.11212 + 0.729333i
\(959\) 3.19025i 0.103019i
\(960\) −0.544916 0.193420i −0.0175871 0.00624262i
\(961\) −6.76105 −0.218098
\(962\) −17.4268 11.4286i −0.561861 0.368472i
\(963\) −11.8406 −0.381559
\(964\) −34.2219 + 14.8700i −1.10221 + 0.478932i
\(965\) 8.45792i 0.272270i
\(966\) 0.299174 0.456193i 0.00962576 0.0146778i
\(967\) −56.8267 −1.82742 −0.913711 0.406364i \(-0.866797\pi\)
−0.913711 + 0.406364i \(0.866797\pi\)
\(968\) −1.33478 0.229868i −0.0429015 0.00738823i
\(969\) 0.233591 + 0.450123i 0.00750403 + 0.0144600i
\(970\) 16.2871 + 10.6812i 0.522947 + 0.342952i
\(971\) 18.6599i 0.598823i −0.954124 0.299412i \(-0.903210\pi\)
0.954124 0.299412i \(-0.0967904\pi\)
\(972\) 1.55183 + 3.57139i 0.0497750 + 0.114552i
\(973\) 10.7997i 0.346224i
\(974\) −9.12063 5.98136i −0.292244 0.191655i
\(975\) 0.152390i 0.00488038i
\(976\) 8.48459 9.08958i 0.271585 0.290950i
\(977\) −6.17905 −0.197685 −0.0988427 0.995103i \(-0.531514\pi\)
−0.0988427 + 0.995103i \(0.531514\pi\)
\(978\) 0.923808 1.40866i 0.0295401 0.0450440i
\(979\) 17.0111 0.543676
\(980\) −5.29199 12.1790i −0.169046 0.389043i
\(981\) −4.94619 −0.157920
\(982\) 24.8982 + 16.3284i 0.794534 + 0.521060i
\(983\) 2.60855i 0.0832000i −0.999134 0.0416000i \(-0.986754\pi\)
0.999134 0.0416000i \(-0.0132455\pi\)
\(984\) 0.153206 0.889626i 0.00488402 0.0283602i
\(985\) 21.8192 0.695216
\(986\) −3.31782 + 32.4939i −0.105661 + 1.03482i
\(987\) 0.472808i 0.0150496i
\(988\) −2.85966 6.58121i −0.0909778 0.209376i
\(989\) 26.3560 0.838072
\(990\) −7.53365 + 11.4876i −0.239435 + 0.365101i
\(991\) 31.1921i 0.990850i 0.868651 + 0.495425i \(0.164988\pi\)
−0.868651 + 0.495425i \(0.835012\pi\)
\(992\) 33.7703 8.24140i 1.07221 0.261665i
\(993\) 1.49892i 0.0475667i
\(994\) 0.217678 0.331925i 0.00690433 0.0105280i
\(995\) 0.867086i 0.0274885i
\(996\) −0.792466 + 0.344341i −0.0251103 + 0.0109109i
\(997\) −22.5159 −0.713084 −0.356542 0.934279i \(-0.616044\pi\)
−0.356542 + 0.934279i \(0.616044\pi\)
\(998\) −8.03174 + 12.2471i −0.254240 + 0.387676i
\(999\) −3.02841 −0.0958145
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.l.a.101.12 yes 36
4.3 odd 2 2720.2.l.b.2481.17 36
8.3 odd 2 2720.2.l.a.2481.19 36
8.5 even 2 680.2.l.b.101.11 yes 36
17.16 even 2 680.2.l.b.101.12 yes 36
68.67 odd 2 2720.2.l.a.2481.20 36
136.67 odd 2 2720.2.l.b.2481.18 36
136.101 even 2 inner 680.2.l.a.101.11 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.l.a.101.11 36 136.101 even 2 inner
680.2.l.a.101.12 yes 36 1.1 even 1 trivial
680.2.l.b.101.11 yes 36 8.5 even 2
680.2.l.b.101.12 yes 36 17.16 even 2
2720.2.l.a.2481.19 36 8.3 odd 2
2720.2.l.a.2481.20 36 68.67 odd 2
2720.2.l.b.2481.17 36 4.3 odd 2
2720.2.l.b.2481.18 36 136.67 odd 2