Properties

Label 680.2.bd.b.81.7
Level $680$
Weight $2$
Character 680.81
Analytic conductor $5.430$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(81,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.bd (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 38 x^{18} + 597 x^{16} + 5004 x^{14} + 24072 x^{12} + 66452 x^{10} + 99328 x^{8} + 70784 x^{6} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 81.7
Root \(-0.205791i\) of defining polynomial
Character \(\chi\) \(=\) 680.81
Dual form 680.2.bd.b.361.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.145516 + 0.145516i) q^{3} +(0.707107 + 0.707107i) q^{5} +(2.63491 - 2.63491i) q^{7} -2.95765i q^{9} +(0.218606 - 0.218606i) q^{11} -0.787596 q^{13} +0.205791i q^{15} +(-2.62024 - 3.18345i) q^{17} +1.28179i q^{19} +0.766846 q^{21} +(2.21824 - 2.21824i) q^{23} +1.00000i q^{25} +(0.866936 - 0.866936i) q^{27} +(-3.63514 - 3.63514i) q^{29} +(2.89651 + 2.89651i) q^{31} +0.0636215 q^{33} +3.72633 q^{35} +(2.44736 + 2.44736i) q^{37} +(-0.114608 - 0.114608i) q^{39} +(6.82926 - 6.82926i) q^{41} +8.35792i q^{43} +(2.09137 - 2.09137i) q^{45} +9.08591 q^{47} -6.88550i q^{49} +(0.0819568 - 0.844532i) q^{51} -3.79803i q^{53} +0.309156 q^{55} +(-0.186522 + 0.186522i) q^{57} +7.49443i q^{59} +(-4.19949 + 4.19949i) q^{61} +(-7.79314 - 7.79314i) q^{63} +(-0.556915 - 0.556915i) q^{65} +8.77184 q^{67} +0.645582 q^{69} +(-1.97955 - 1.97955i) q^{71} +(-1.44255 - 1.44255i) q^{73} +(-0.145516 + 0.145516i) q^{75} -1.15201i q^{77} +(-7.20162 + 7.20162i) q^{79} -8.62064 q^{81} -6.52587i q^{83} +(0.398252 - 4.10383i) q^{85} -1.05795i q^{87} -5.13917 q^{89} +(-2.07525 + 2.07525i) q^{91} +0.842980i q^{93} +(-0.906364 + 0.906364i) q^{95} +(4.75240 + 4.75240i) q^{97} +(-0.646560 - 0.646560i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 4 q^{3} + 4 q^{7} + 12 q^{11} + 4 q^{13} + 4 q^{17} + 16 q^{21} - 4 q^{23} - 16 q^{27} - 4 q^{29} - 4 q^{31} + 16 q^{33} - 8 q^{35} - 8 q^{37} - 8 q^{39} - 8 q^{41} + 4 q^{47} - 4 q^{51} - 8 q^{55}+ \cdots + 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.145516 + 0.145516i 0.0840140 + 0.0840140i 0.747865 0.663851i \(-0.231079\pi\)
−0.663851 + 0.747865i \(0.731079\pi\)
\(4\) 0 0
\(5\) 0.707107 + 0.707107i 0.316228 + 0.316228i
\(6\) 0 0
\(7\) 2.63491 2.63491i 0.995902 0.995902i −0.00408920 0.999992i \(-0.501302\pi\)
0.999992 + 0.00408920i \(0.00130164\pi\)
\(8\) 0 0
\(9\) 2.95765i 0.985883i
\(10\) 0 0
\(11\) 0.218606 0.218606i 0.0659122 0.0659122i −0.673382 0.739294i \(-0.735159\pi\)
0.739294 + 0.673382i \(0.235159\pi\)
\(12\) 0 0
\(13\) −0.787596 −0.218440 −0.109220 0.994018i \(-0.534835\pi\)
−0.109220 + 0.994018i \(0.534835\pi\)
\(14\) 0 0
\(15\) 0.205791i 0.0531351i
\(16\) 0 0
\(17\) −2.62024 3.18345i −0.635501 0.772100i
\(18\) 0 0
\(19\) 1.28179i 0.294063i 0.989132 + 0.147032i \(0.0469719\pi\)
−0.989132 + 0.147032i \(0.953028\pi\)
\(20\) 0 0
\(21\) 0.766846 0.167339
\(22\) 0 0
\(23\) 2.21824 2.21824i 0.462536 0.462536i −0.436950 0.899486i \(-0.643941\pi\)
0.899486 + 0.436950i \(0.143941\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0.866936 0.866936i 0.166842 0.166842i
\(28\) 0 0
\(29\) −3.63514 3.63514i −0.675029 0.675029i 0.283842 0.958871i \(-0.408391\pi\)
−0.958871 + 0.283842i \(0.908391\pi\)
\(30\) 0 0
\(31\) 2.89651 + 2.89651i 0.520228 + 0.520228i 0.917640 0.397412i \(-0.130092\pi\)
−0.397412 + 0.917640i \(0.630092\pi\)
\(32\) 0 0
\(33\) 0.0636215 0.0110751
\(34\) 0 0
\(35\) 3.72633 0.629864
\(36\) 0 0
\(37\) 2.44736 + 2.44736i 0.402343 + 0.402343i 0.879058 0.476715i \(-0.158173\pi\)
−0.476715 + 0.879058i \(0.658173\pi\)
\(38\) 0 0
\(39\) −0.114608 0.114608i −0.0183520 0.0183520i
\(40\) 0 0
\(41\) 6.82926 6.82926i 1.06655 1.06655i 0.0689297 0.997622i \(-0.478042\pi\)
0.997622 0.0689297i \(-0.0219584\pi\)
\(42\) 0 0
\(43\) 8.35792i 1.27457i 0.770628 + 0.637286i \(0.219943\pi\)
−0.770628 + 0.637286i \(0.780057\pi\)
\(44\) 0 0
\(45\) 2.09137 2.09137i 0.311764 0.311764i
\(46\) 0 0
\(47\) 9.08591 1.32532 0.662658 0.748922i \(-0.269428\pi\)
0.662658 + 0.748922i \(0.269428\pi\)
\(48\) 0 0
\(49\) 6.88550i 0.983643i
\(50\) 0 0
\(51\) 0.0819568 0.844532i 0.0114762 0.118258i
\(52\) 0 0
\(53\) 3.79803i 0.521700i −0.965379 0.260850i \(-0.915997\pi\)
0.965379 0.260850i \(-0.0840028\pi\)
\(54\) 0 0
\(55\) 0.309156 0.0416865
\(56\) 0 0
\(57\) −0.186522 + 0.186522i −0.0247054 + 0.0247054i
\(58\) 0 0
\(59\) 7.49443i 0.975692i 0.872930 + 0.487846i \(0.162217\pi\)
−0.872930 + 0.487846i \(0.837783\pi\)
\(60\) 0 0
\(61\) −4.19949 + 4.19949i −0.537689 + 0.537689i −0.922850 0.385160i \(-0.874146\pi\)
0.385160 + 0.922850i \(0.374146\pi\)
\(62\) 0 0
\(63\) −7.79314 7.79314i −0.981844 0.981844i
\(64\) 0 0
\(65\) −0.556915 0.556915i −0.0690768 0.0690768i
\(66\) 0 0
\(67\) 8.77184 1.07165 0.535825 0.844329i \(-0.320001\pi\)
0.535825 + 0.844329i \(0.320001\pi\)
\(68\) 0 0
\(69\) 0.645582 0.0777189
\(70\) 0 0
\(71\) −1.97955 1.97955i −0.234929 0.234929i 0.579817 0.814747i \(-0.303124\pi\)
−0.814747 + 0.579817i \(0.803124\pi\)
\(72\) 0 0
\(73\) −1.44255 1.44255i −0.168837 0.168837i 0.617631 0.786468i \(-0.288093\pi\)
−0.786468 + 0.617631i \(0.788093\pi\)
\(74\) 0 0
\(75\) −0.145516 + 0.145516i −0.0168028 + 0.0168028i
\(76\) 0 0
\(77\) 1.15201i 0.131284i
\(78\) 0 0
\(79\) −7.20162 + 7.20162i −0.810245 + 0.810245i −0.984670 0.174425i \(-0.944193\pi\)
0.174425 + 0.984670i \(0.444193\pi\)
\(80\) 0 0
\(81\) −8.62064 −0.957849
\(82\) 0 0
\(83\) 6.52587i 0.716307i −0.933663 0.358153i \(-0.883406\pi\)
0.933663 0.358153i \(-0.116594\pi\)
\(84\) 0 0
\(85\) 0.398252 4.10383i 0.0431965 0.445123i
\(86\) 0 0
\(87\) 1.05795i 0.113424i
\(88\) 0 0
\(89\) −5.13917 −0.544751 −0.272376 0.962191i \(-0.587809\pi\)
−0.272376 + 0.962191i \(0.587809\pi\)
\(90\) 0 0
\(91\) −2.07525 + 2.07525i −0.217545 + 0.217545i
\(92\) 0 0
\(93\) 0.842980i 0.0874129i
\(94\) 0 0
\(95\) −0.906364 + 0.906364i −0.0929910 + 0.0929910i
\(96\) 0 0
\(97\) 4.75240 + 4.75240i 0.482533 + 0.482533i 0.905940 0.423406i \(-0.139166\pi\)
−0.423406 + 0.905940i \(0.639166\pi\)
\(98\) 0 0
\(99\) −0.646560 0.646560i −0.0649817 0.0649817i
\(100\) 0 0
\(101\) −12.8725 −1.28086 −0.640431 0.768016i \(-0.721244\pi\)
−0.640431 + 0.768016i \(0.721244\pi\)
\(102\) 0 0
\(103\) −0.468663 −0.0461787 −0.0230894 0.999733i \(-0.507350\pi\)
−0.0230894 + 0.999733i \(0.507350\pi\)
\(104\) 0 0
\(105\) 0.542242 + 0.542242i 0.0529174 + 0.0529174i
\(106\) 0 0
\(107\) 11.6043 + 11.6043i 1.12183 + 1.12183i 0.991466 + 0.130368i \(0.0416160\pi\)
0.130368 + 0.991466i \(0.458384\pi\)
\(108\) 0 0
\(109\) 2.28031 2.28031i 0.218414 0.218414i −0.589416 0.807830i \(-0.700642\pi\)
0.807830 + 0.589416i \(0.200642\pi\)
\(110\) 0 0
\(111\) 0.712262i 0.0676049i
\(112\) 0 0
\(113\) −10.6982 + 10.6982i −1.00640 + 1.00640i −0.00642546 + 0.999979i \(0.502045\pi\)
−0.999979 + 0.00642546i \(0.997955\pi\)
\(114\) 0 0
\(115\) 3.13707 0.292533
\(116\) 0 0
\(117\) 2.32943i 0.215356i
\(118\) 0 0
\(119\) −15.2922 1.48402i −1.40183 0.136040i
\(120\) 0 0
\(121\) 10.9044i 0.991311i
\(122\) 0 0
\(123\) 1.98754 0.179210
\(124\) 0 0
\(125\) −0.707107 + 0.707107i −0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 10.0472i 0.891546i 0.895146 + 0.445773i \(0.147071\pi\)
−0.895146 + 0.445773i \(0.852929\pi\)
\(128\) 0 0
\(129\) −1.21622 + 1.21622i −0.107082 + 0.107082i
\(130\) 0 0
\(131\) −4.61692 4.61692i −0.403382 0.403382i 0.476041 0.879423i \(-0.342071\pi\)
−0.879423 + 0.476041i \(0.842071\pi\)
\(132\) 0 0
\(133\) 3.37741 + 3.37741i 0.292858 + 0.292858i
\(134\) 0 0
\(135\) 1.22603 0.105520
\(136\) 0 0
\(137\) 20.3491 1.73854 0.869269 0.494340i \(-0.164590\pi\)
0.869269 + 0.494340i \(0.164590\pi\)
\(138\) 0 0
\(139\) 4.78213 + 4.78213i 0.405615 + 0.405615i 0.880206 0.474591i \(-0.157404\pi\)
−0.474591 + 0.880206i \(0.657404\pi\)
\(140\) 0 0
\(141\) 1.32215 + 1.32215i 0.111345 + 0.111345i
\(142\) 0 0
\(143\) −0.172173 + 0.172173i −0.0143979 + 0.0143979i
\(144\) 0 0
\(145\) 5.14087i 0.426926i
\(146\) 0 0
\(147\) 1.00195 1.00195i 0.0826398 0.0826398i
\(148\) 0 0
\(149\) −20.2934 −1.66250 −0.831252 0.555897i \(-0.812375\pi\)
−0.831252 + 0.555897i \(0.812375\pi\)
\(150\) 0 0
\(151\) 4.63707i 0.377360i −0.982039 0.188680i \(-0.939579\pi\)
0.982039 0.188680i \(-0.0604208\pi\)
\(152\) 0 0
\(153\) −9.41553 + 7.74974i −0.761201 + 0.626530i
\(154\) 0 0
\(155\) 4.09628i 0.329021i
\(156\) 0 0
\(157\) 2.95080 0.235500 0.117750 0.993043i \(-0.462432\pi\)
0.117750 + 0.993043i \(0.462432\pi\)
\(158\) 0 0
\(159\) 0.552677 0.552677i 0.0438301 0.0438301i
\(160\) 0 0
\(161\) 11.6897i 0.921281i
\(162\) 0 0
\(163\) 1.11213 1.11213i 0.0871085 0.0871085i −0.662210 0.749318i \(-0.730381\pi\)
0.749318 + 0.662210i \(0.230381\pi\)
\(164\) 0 0
\(165\) 0.0449872 + 0.0449872i 0.00350225 + 0.00350225i
\(166\) 0 0
\(167\) −10.2368 10.2368i −0.792149 0.792149i 0.189694 0.981843i \(-0.439250\pi\)
−0.981843 + 0.189694i \(0.939250\pi\)
\(168\) 0 0
\(169\) −12.3797 −0.952284
\(170\) 0 0
\(171\) 3.79109 0.289912
\(172\) 0 0
\(173\) 1.78759 + 1.78759i 0.135908 + 0.135908i 0.771788 0.635880i \(-0.219363\pi\)
−0.635880 + 0.771788i \(0.719363\pi\)
\(174\) 0 0
\(175\) 2.63491 + 2.63491i 0.199180 + 0.199180i
\(176\) 0 0
\(177\) −1.09056 + 1.09056i −0.0819718 + 0.0819718i
\(178\) 0 0
\(179\) 23.7133i 1.77241i 0.463290 + 0.886207i \(0.346669\pi\)
−0.463290 + 0.886207i \(0.653331\pi\)
\(180\) 0 0
\(181\) −1.89581 + 1.89581i −0.140914 + 0.140914i −0.774045 0.633131i \(-0.781770\pi\)
0.633131 + 0.774045i \(0.281770\pi\)
\(182\) 0 0
\(183\) −1.22219 −0.0903468
\(184\) 0 0
\(185\) 3.46109i 0.254464i
\(186\) 0 0
\(187\) −1.26872 0.123122i −0.0927781 0.00900356i
\(188\) 0 0
\(189\) 4.56860i 0.332317i
\(190\) 0 0
\(191\) −2.01974 −0.146143 −0.0730716 0.997327i \(-0.523280\pi\)
−0.0730716 + 0.997327i \(0.523280\pi\)
\(192\) 0 0
\(193\) −12.2369 + 12.2369i −0.880829 + 0.880829i −0.993619 0.112790i \(-0.964021\pi\)
0.112790 + 0.993619i \(0.464021\pi\)
\(194\) 0 0
\(195\) 0.162080i 0.0116068i
\(196\) 0 0
\(197\) 6.13046 6.13046i 0.436777 0.436777i −0.454149 0.890926i \(-0.650057\pi\)
0.890926 + 0.454149i \(0.150057\pi\)
\(198\) 0 0
\(199\) −5.92452 5.92452i −0.419978 0.419978i 0.465218 0.885196i \(-0.345976\pi\)
−0.885196 + 0.465218i \(0.845976\pi\)
\(200\) 0 0
\(201\) 1.27645 + 1.27645i 0.0900336 + 0.0900336i
\(202\) 0 0
\(203\) −19.1565 −1.34453
\(204\) 0 0
\(205\) 9.65803 0.674546
\(206\) 0 0
\(207\) −6.56079 6.56079i −0.456006 0.456006i
\(208\) 0 0
\(209\) 0.280208 + 0.280208i 0.0193824 + 0.0193824i
\(210\) 0 0
\(211\) 3.65661 3.65661i 0.251731 0.251731i −0.569949 0.821680i \(-0.693037\pi\)
0.821680 + 0.569949i \(0.193037\pi\)
\(212\) 0 0
\(213\) 0.576114i 0.0394747i
\(214\) 0 0
\(215\) −5.90995 + 5.90995i −0.403055 + 0.403055i
\(216\) 0 0
\(217\) 15.2641 1.03619
\(218\) 0 0
\(219\) 0.419828i 0.0283694i
\(220\) 0 0
\(221\) 2.06369 + 2.50727i 0.138819 + 0.168657i
\(222\) 0 0
\(223\) 5.66618i 0.379436i −0.981839 0.189718i \(-0.939243\pi\)
0.981839 0.189718i \(-0.0607573\pi\)
\(224\) 0 0
\(225\) 2.95765 0.197177
\(226\) 0 0
\(227\) −11.6771 + 11.6771i −0.775039 + 0.775039i −0.978983 0.203944i \(-0.934624\pi\)
0.203944 + 0.978983i \(0.434624\pi\)
\(228\) 0 0
\(229\) 21.8971i 1.44700i −0.690324 0.723501i \(-0.742532\pi\)
0.690324 0.723501i \(-0.257468\pi\)
\(230\) 0 0
\(231\) 0.167637 0.167637i 0.0110297 0.0110297i
\(232\) 0 0
\(233\) 16.8292 + 16.8292i 1.10252 + 1.10252i 0.994106 + 0.108415i \(0.0345774\pi\)
0.108415 + 0.994106i \(0.465423\pi\)
\(234\) 0 0
\(235\) 6.42471 + 6.42471i 0.419102 + 0.419102i
\(236\) 0 0
\(237\) −2.09591 −0.136144
\(238\) 0 0
\(239\) −28.3825 −1.83591 −0.917956 0.396683i \(-0.870161\pi\)
−0.917956 + 0.396683i \(0.870161\pi\)
\(240\) 0 0
\(241\) 10.2423 + 10.2423i 0.659765 + 0.659765i 0.955324 0.295560i \(-0.0955061\pi\)
−0.295560 + 0.955324i \(0.595506\pi\)
\(242\) 0 0
\(243\) −3.85525 3.85525i −0.247315 0.247315i
\(244\) 0 0
\(245\) 4.86879 4.86879i 0.311055 0.311055i
\(246\) 0 0
\(247\) 1.00953i 0.0642352i
\(248\) 0 0
\(249\) 0.949621 0.949621i 0.0601798 0.0601798i
\(250\) 0 0
\(251\) 16.5272 1.04318 0.521592 0.853195i \(-0.325338\pi\)
0.521592 + 0.853195i \(0.325338\pi\)
\(252\) 0 0
\(253\) 0.969843i 0.0609735i
\(254\) 0 0
\(255\) 0.655127 0.539222i 0.0410256 0.0337674i
\(256\) 0 0
\(257\) 9.26318i 0.577822i −0.957356 0.288911i \(-0.906707\pi\)
0.957356 0.288911i \(-0.0932931\pi\)
\(258\) 0 0
\(259\) 12.8971 0.801389
\(260\) 0 0
\(261\) −10.7515 + 10.7515i −0.665500 + 0.665500i
\(262\) 0 0
\(263\) 27.4019i 1.68967i −0.535023 0.844837i \(-0.679697\pi\)
0.535023 0.844837i \(-0.320303\pi\)
\(264\) 0 0
\(265\) 2.68562 2.68562i 0.164976 0.164976i
\(266\) 0 0
\(267\) −0.747834 0.747834i −0.0457667 0.0457667i
\(268\) 0 0
\(269\) 2.58696 + 2.58696i 0.157730 + 0.157730i 0.781560 0.623830i \(-0.214424\pi\)
−0.623830 + 0.781560i \(0.714424\pi\)
\(270\) 0 0
\(271\) −13.7714 −0.836550 −0.418275 0.908320i \(-0.637365\pi\)
−0.418275 + 0.908320i \(0.637365\pi\)
\(272\) 0 0
\(273\) −0.603965 −0.0365536
\(274\) 0 0
\(275\) 0.218606 + 0.218606i 0.0131824 + 0.0131824i
\(276\) 0 0
\(277\) 18.4646 + 18.4646i 1.10943 + 1.10943i 0.993225 + 0.116206i \(0.0370733\pi\)
0.116206 + 0.993225i \(0.462927\pi\)
\(278\) 0 0
\(279\) 8.56686 8.56686i 0.512884 0.512884i
\(280\) 0 0
\(281\) 2.85126i 0.170092i −0.996377 0.0850458i \(-0.972896\pi\)
0.996377 0.0850458i \(-0.0271037\pi\)
\(282\) 0 0
\(283\) 13.9476 13.9476i 0.829097 0.829097i −0.158295 0.987392i \(-0.550600\pi\)
0.987392 + 0.158295i \(0.0505996\pi\)
\(284\) 0 0
\(285\) −0.263782 −0.0156251
\(286\) 0 0
\(287\) 35.9890i 2.12436i
\(288\) 0 0
\(289\) −3.26871 + 16.6828i −0.192277 + 0.981341i
\(290\) 0 0
\(291\) 1.38311i 0.0810791i
\(292\) 0 0
\(293\) 6.07154 0.354703 0.177352 0.984148i \(-0.443247\pi\)
0.177352 + 0.984148i \(0.443247\pi\)
\(294\) 0 0
\(295\) −5.29937 + 5.29937i −0.308541 + 0.308541i
\(296\) 0 0
\(297\) 0.379035i 0.0219938i
\(298\) 0 0
\(299\) −1.74708 + 1.74708i −0.101036 + 0.101036i
\(300\) 0 0
\(301\) 22.0224 + 22.0224i 1.26935 + 1.26935i
\(302\) 0 0
\(303\) −1.87316 1.87316i −0.107610 0.107610i
\(304\) 0 0
\(305\) −5.93897 −0.340065
\(306\) 0 0
\(307\) 26.5578 1.51573 0.757867 0.652409i \(-0.226242\pi\)
0.757867 + 0.652409i \(0.226242\pi\)
\(308\) 0 0
\(309\) −0.0681981 0.0681981i −0.00387966 0.00387966i
\(310\) 0 0
\(311\) 0.717230 + 0.717230i 0.0406704 + 0.0406704i 0.727150 0.686479i \(-0.240845\pi\)
−0.686479 + 0.727150i \(0.740845\pi\)
\(312\) 0 0
\(313\) −6.54837 + 6.54837i −0.370136 + 0.370136i −0.867526 0.497391i \(-0.834291\pi\)
0.497391 + 0.867526i \(0.334291\pi\)
\(314\) 0 0
\(315\) 11.0212i 0.620972i
\(316\) 0 0
\(317\) 7.10289 7.10289i 0.398938 0.398938i −0.478920 0.877858i \(-0.658972\pi\)
0.877858 + 0.478920i \(0.158972\pi\)
\(318\) 0 0
\(319\) −1.58933 −0.0889853
\(320\) 0 0
\(321\) 3.37725i 0.188499i
\(322\) 0 0
\(323\) 4.08052 3.35860i 0.227046 0.186878i
\(324\) 0 0
\(325\) 0.787596i 0.0436880i
\(326\) 0 0
\(327\) 0.663647 0.0366997
\(328\) 0 0
\(329\) 23.9405 23.9405i 1.31989 1.31989i
\(330\) 0 0
\(331\) 24.5152i 1.34748i −0.738970 0.673738i \(-0.764688\pi\)
0.738970 0.673738i \(-0.235312\pi\)
\(332\) 0 0
\(333\) 7.23843 7.23843i 0.396663 0.396663i
\(334\) 0 0
\(335\) 6.20263 + 6.20263i 0.338886 + 0.338886i
\(336\) 0 0
\(337\) −18.7248 18.7248i −1.02000 1.02000i −0.999796 0.0202089i \(-0.993567\pi\)
−0.0202089 0.999796i \(-0.506433\pi\)
\(338\) 0 0
\(339\) −3.11354 −0.169104
\(340\) 0 0
\(341\) 1.26639 0.0685788
\(342\) 0 0
\(343\) 0.301688 + 0.301688i 0.0162896 + 0.0162896i
\(344\) 0 0
\(345\) 0.456495 + 0.456495i 0.0245769 + 0.0245769i
\(346\) 0 0
\(347\) −23.5332 + 23.5332i −1.26333 + 1.26333i −0.313857 + 0.949470i \(0.601621\pi\)
−0.949470 + 0.313857i \(0.898379\pi\)
\(348\) 0 0
\(349\) 26.1012i 1.39716i 0.715530 + 0.698582i \(0.246185\pi\)
−0.715530 + 0.698582i \(0.753815\pi\)
\(350\) 0 0
\(351\) −0.682796 + 0.682796i −0.0364449 + 0.0364449i
\(352\) 0 0
\(353\) 7.37556 0.392562 0.196281 0.980548i \(-0.437114\pi\)
0.196281 + 0.980548i \(0.437114\pi\)
\(354\) 0 0
\(355\) 2.79951i 0.148582i
\(356\) 0 0
\(357\) −2.00932 2.44122i −0.106344 0.129203i
\(358\) 0 0
\(359\) 18.1134i 0.955987i −0.878363 0.477993i \(-0.841364\pi\)
0.878363 0.477993i \(-0.158636\pi\)
\(360\) 0 0
\(361\) 17.3570 0.913527
\(362\) 0 0
\(363\) −1.58677 + 1.58677i −0.0832840 + 0.0832840i
\(364\) 0 0
\(365\) 2.04007i 0.106782i
\(366\) 0 0
\(367\) 16.7983 16.7983i 0.876865 0.876865i −0.116344 0.993209i \(-0.537117\pi\)
0.993209 + 0.116344i \(0.0371174\pi\)
\(368\) 0 0
\(369\) −20.1986 20.1986i −1.05150 1.05150i
\(370\) 0 0
\(371\) −10.0075 10.0075i −0.519562 0.519562i
\(372\) 0 0
\(373\) −9.58726 −0.496409 −0.248205 0.968708i \(-0.579841\pi\)
−0.248205 + 0.968708i \(0.579841\pi\)
\(374\) 0 0
\(375\) −0.205791 −0.0106270
\(376\) 0 0
\(377\) 2.86302 + 2.86302i 0.147453 + 0.147453i
\(378\) 0 0
\(379\) 12.3147 + 12.3147i 0.632566 + 0.632566i 0.948711 0.316145i \(-0.102389\pi\)
−0.316145 + 0.948711i \(0.602389\pi\)
\(380\) 0 0
\(381\) −1.46203 + 1.46203i −0.0749023 + 0.0749023i
\(382\) 0 0
\(383\) 0.106779i 0.00545613i −0.999996 0.00272806i \(-0.999132\pi\)
0.999996 0.00272806i \(-0.000868371\pi\)
\(384\) 0 0
\(385\) 0.814597 0.814597i 0.0415157 0.0415157i
\(386\) 0 0
\(387\) 24.7198 1.25658
\(388\) 0 0
\(389\) 17.3747i 0.880934i −0.897769 0.440467i \(-0.854813\pi\)
0.897769 0.440467i \(-0.145187\pi\)
\(390\) 0 0
\(391\) −12.8740 1.24934i −0.651066 0.0631820i
\(392\) 0 0
\(393\) 1.34368i 0.0677795i
\(394\) 0 0
\(395\) −10.1846 −0.512444
\(396\) 0 0
\(397\) −23.0576 + 23.0576i −1.15723 + 1.15723i −0.172161 + 0.985069i \(0.555075\pi\)
−0.985069 + 0.172161i \(0.944925\pi\)
\(398\) 0 0
\(399\) 0.982937i 0.0492084i
\(400\) 0 0
\(401\) 17.9393 17.9393i 0.895848 0.895848i −0.0992182 0.995066i \(-0.531634\pi\)
0.995066 + 0.0992182i \(0.0316342\pi\)
\(402\) 0 0
\(403\) −2.28128 2.28128i −0.113639 0.113639i
\(404\) 0 0
\(405\) −6.09571 6.09571i −0.302899 0.302899i
\(406\) 0 0
\(407\) 1.07001 0.0530386
\(408\) 0 0
\(409\) 19.8305 0.980554 0.490277 0.871567i \(-0.336896\pi\)
0.490277 + 0.871567i \(0.336896\pi\)
\(410\) 0 0
\(411\) 2.96112 + 2.96112i 0.146061 + 0.146061i
\(412\) 0 0
\(413\) 19.7472 + 19.7472i 0.971694 + 0.971694i
\(414\) 0 0
\(415\) 4.61448 4.61448i 0.226516 0.226516i
\(416\) 0 0
\(417\) 1.39176i 0.0681546i
\(418\) 0 0
\(419\) −18.3160 + 18.3160i −0.894793 + 0.894793i −0.994970 0.100176i \(-0.968059\pi\)
0.100176 + 0.994970i \(0.468059\pi\)
\(420\) 0 0
\(421\) −4.46855 −0.217784 −0.108892 0.994054i \(-0.534730\pi\)
−0.108892 + 0.994054i \(0.534730\pi\)
\(422\) 0 0
\(423\) 26.8729i 1.30661i
\(424\) 0 0
\(425\) 3.18345 2.62024i 0.154420 0.127100i
\(426\) 0 0
\(427\) 22.1305i 1.07097i
\(428\) 0 0
\(429\) −0.0501081 −0.00241924
\(430\) 0 0
\(431\) −7.54183 + 7.54183i −0.363277 + 0.363277i −0.865018 0.501741i \(-0.832693\pi\)
0.501741 + 0.865018i \(0.332693\pi\)
\(432\) 0 0
\(433\) 31.3924i 1.50862i −0.656517 0.754312i \(-0.727971\pi\)
0.656517 0.754312i \(-0.272029\pi\)
\(434\) 0 0
\(435\) 0.748081 0.748081i 0.0358677 0.0358677i
\(436\) 0 0
\(437\) 2.84333 + 2.84333i 0.136015 + 0.136015i
\(438\) 0 0
\(439\) 22.0920 + 22.0920i 1.05439 + 1.05439i 0.998433 + 0.0559602i \(0.0178220\pi\)
0.0559602 + 0.998433i \(0.482178\pi\)
\(440\) 0 0
\(441\) −20.3649 −0.969758
\(442\) 0 0
\(443\) 2.70863 0.128691 0.0643454 0.997928i \(-0.479504\pi\)
0.0643454 + 0.997928i \(0.479504\pi\)
\(444\) 0 0
\(445\) −3.63394 3.63394i −0.172265 0.172265i
\(446\) 0 0
\(447\) −2.95303 2.95303i −0.139673 0.139673i
\(448\) 0 0
\(449\) 13.5378 13.5378i 0.638889 0.638889i −0.311392 0.950281i \(-0.600795\pi\)
0.950281 + 0.311392i \(0.100795\pi\)
\(450\) 0 0
\(451\) 2.98583i 0.140597i
\(452\) 0 0
\(453\) 0.674770 0.674770i 0.0317035 0.0317035i
\(454\) 0 0
\(455\) −2.93484 −0.137587
\(456\) 0 0
\(457\) 25.1155i 1.17485i 0.809277 + 0.587427i \(0.199859\pi\)
−0.809277 + 0.587427i \(0.800141\pi\)
\(458\) 0 0
\(459\) −5.03143 0.488270i −0.234847 0.0227905i
\(460\) 0 0
\(461\) 35.8956i 1.67183i −0.548863 0.835913i \(-0.684939\pi\)
0.548863 0.835913i \(-0.315061\pi\)
\(462\) 0 0
\(463\) 15.7696 0.732874 0.366437 0.930443i \(-0.380578\pi\)
0.366437 + 0.930443i \(0.380578\pi\)
\(464\) 0 0
\(465\) −0.596077 + 0.596077i −0.0276424 + 0.0276424i
\(466\) 0 0
\(467\) 14.9165i 0.690255i −0.938556 0.345127i \(-0.887836\pi\)
0.938556 0.345127i \(-0.112164\pi\)
\(468\) 0 0
\(469\) 23.1130 23.1130i 1.06726 1.06726i
\(470\) 0 0
\(471\) 0.429391 + 0.429391i 0.0197853 + 0.0197853i
\(472\) 0 0
\(473\) 1.82709 + 1.82709i 0.0840098 + 0.0840098i
\(474\) 0 0
\(475\) −1.28179 −0.0588127
\(476\) 0 0
\(477\) −11.2333 −0.514336
\(478\) 0 0
\(479\) 25.5319 + 25.5319i 1.16658 + 1.16658i 0.983006 + 0.183574i \(0.0587668\pi\)
0.183574 + 0.983006i \(0.441233\pi\)
\(480\) 0 0
\(481\) −1.92753 1.92753i −0.0878878 0.0878878i
\(482\) 0 0
\(483\) 1.70105 1.70105i 0.0774005 0.0774005i
\(484\) 0 0
\(485\) 6.72091i 0.305181i
\(486\) 0 0
\(487\) −1.59399 + 1.59399i −0.0722308 + 0.0722308i −0.742299 0.670068i \(-0.766265\pi\)
0.670068 + 0.742299i \(0.266265\pi\)
\(488\) 0 0
\(489\) 0.323666 0.0146367
\(490\) 0 0
\(491\) 29.5542i 1.33376i −0.745165 0.666880i \(-0.767629\pi\)
0.745165 0.666880i \(-0.232371\pi\)
\(492\) 0 0
\(493\) −2.04736 + 21.0972i −0.0922085 + 0.950172i
\(494\) 0 0
\(495\) 0.914374i 0.0410981i
\(496\) 0 0
\(497\) −10.4319 −0.467933
\(498\) 0 0
\(499\) −13.0094 + 13.0094i −0.582380 + 0.582380i −0.935557 0.353176i \(-0.885102\pi\)
0.353176 + 0.935557i \(0.385102\pi\)
\(500\) 0 0
\(501\) 2.97925i 0.133103i
\(502\) 0 0
\(503\) −25.8407 + 25.8407i −1.15218 + 1.15218i −0.166063 + 0.986115i \(0.553105\pi\)
−0.986115 + 0.166063i \(0.946895\pi\)
\(504\) 0 0
\(505\) −9.10223 9.10223i −0.405044 0.405044i
\(506\) 0 0
\(507\) −1.80145 1.80145i −0.0800052 0.0800052i
\(508\) 0 0
\(509\) −4.02666 −0.178479 −0.0892394 0.996010i \(-0.528444\pi\)
−0.0892394 + 0.996010i \(0.528444\pi\)
\(510\) 0 0
\(511\) −7.60195 −0.336291
\(512\) 0 0
\(513\) 1.11123 + 1.11123i 0.0490621 + 0.0490621i
\(514\) 0 0
\(515\) −0.331395 0.331395i −0.0146030 0.0146030i
\(516\) 0 0
\(517\) 1.98623 1.98623i 0.0873545 0.0873545i
\(518\) 0 0
\(519\) 0.520248i 0.0228364i
\(520\) 0 0
\(521\) −23.0572 + 23.0572i −1.01015 + 1.01015i −0.0102053 + 0.999948i \(0.503248\pi\)
−0.999948 + 0.0102053i \(0.996752\pi\)
\(522\) 0 0
\(523\) 24.2516 1.06045 0.530225 0.847857i \(-0.322107\pi\)
0.530225 + 0.847857i \(0.322107\pi\)
\(524\) 0 0
\(525\) 0.766846i 0.0334679i
\(526\) 0 0
\(527\) 1.63135 16.8104i 0.0710628 0.732274i
\(528\) 0 0
\(529\) 13.1588i 0.572121i
\(530\) 0 0
\(531\) 22.1659 0.961919
\(532\) 0 0
\(533\) −5.37870 + 5.37870i −0.232977 + 0.232977i
\(534\) 0 0
\(535\) 16.4110i 0.709510i
\(536\) 0 0
\(537\) −3.45067 + 3.45067i −0.148907 + 0.148907i
\(538\) 0 0
\(539\) −1.50521 1.50521i −0.0648341 0.0648341i
\(540\) 0 0
\(541\) 25.6963 + 25.6963i 1.10477 + 1.10477i 0.993827 + 0.110942i \(0.0353868\pi\)
0.110942 + 0.993827i \(0.464613\pi\)
\(542\) 0 0
\(543\) −0.551743 −0.0236775
\(544\) 0 0
\(545\) 3.22485 0.138137
\(546\) 0 0
\(547\) −0.987573 0.987573i −0.0422256 0.0422256i 0.685679 0.727904i \(-0.259506\pi\)
−0.727904 + 0.685679i \(0.759506\pi\)
\(548\) 0 0
\(549\) 12.4206 + 12.4206i 0.530099 + 0.530099i
\(550\) 0 0
\(551\) 4.65950 4.65950i 0.198501 0.198501i
\(552\) 0 0
\(553\) 37.9512i 1.61385i
\(554\) 0 0
\(555\) −0.503645 + 0.503645i −0.0213785 + 0.0213785i
\(556\) 0 0
\(557\) −4.66974 −0.197863 −0.0989316 0.995094i \(-0.531543\pi\)
−0.0989316 + 0.995094i \(0.531543\pi\)
\(558\) 0 0
\(559\) 6.58267i 0.278417i
\(560\) 0 0
\(561\) −0.166704 0.202536i −0.00703823 0.00855108i
\(562\) 0 0
\(563\) 40.3498i 1.70054i 0.526347 + 0.850270i \(0.323561\pi\)
−0.526347 + 0.850270i \(0.676439\pi\)
\(564\) 0 0
\(565\) −15.1296 −0.636506
\(566\) 0 0
\(567\) −22.7146 + 22.7146i −0.953924 + 0.953924i
\(568\) 0 0
\(569\) 14.0333i 0.588307i −0.955758 0.294154i \(-0.904962\pi\)
0.955758 0.294154i \(-0.0950378\pi\)
\(570\) 0 0
\(571\) −19.9923 + 19.9923i −0.836652 + 0.836652i −0.988417 0.151764i \(-0.951505\pi\)
0.151764 + 0.988417i \(0.451505\pi\)
\(572\) 0 0
\(573\) −0.293905 0.293905i −0.0122781 0.0122781i
\(574\) 0 0
\(575\) 2.21824 + 2.21824i 0.0925072 + 0.0925072i
\(576\) 0 0
\(577\) −34.5210 −1.43713 −0.718565 0.695460i \(-0.755201\pi\)
−0.718565 + 0.695460i \(0.755201\pi\)
\(578\) 0 0
\(579\) −3.56133 −0.148004
\(580\) 0 0
\(581\) −17.1951 17.1951i −0.713372 0.713372i
\(582\) 0 0
\(583\) −0.830273 0.830273i −0.0343864 0.0343864i
\(584\) 0 0
\(585\) −1.64716 + 1.64716i −0.0681016 + 0.0681016i
\(586\) 0 0
\(587\) 0.102673i 0.00423777i −0.999998 0.00211888i \(-0.999326\pi\)
0.999998 0.00211888i \(-0.000674462\pi\)
\(588\) 0 0
\(589\) −3.71272 + 3.71272i −0.152980 + 0.152980i
\(590\) 0 0
\(591\) 1.78417 0.0733907
\(592\) 0 0
\(593\) 24.0826i 0.988955i −0.869191 0.494477i \(-0.835359\pi\)
0.869191 0.494477i \(-0.164641\pi\)
\(594\) 0 0
\(595\) −9.76386 11.8626i −0.400279 0.486318i
\(596\) 0 0
\(597\) 1.72423i 0.0705681i
\(598\) 0 0
\(599\) 8.44769 0.345163 0.172582 0.984995i \(-0.444789\pi\)
0.172582 + 0.984995i \(0.444789\pi\)
\(600\) 0 0
\(601\) −20.4341 + 20.4341i −0.833526 + 0.833526i −0.987997 0.154471i \(-0.950633\pi\)
0.154471 + 0.987997i \(0.450633\pi\)
\(602\) 0 0
\(603\) 25.9440i 1.05652i
\(604\) 0 0
\(605\) −7.71059 + 7.71059i −0.313480 + 0.313480i
\(606\) 0 0
\(607\) −27.8178 27.8178i −1.12909 1.12909i −0.990325 0.138764i \(-0.955687\pi\)
−0.138764 0.990325i \(-0.544313\pi\)
\(608\) 0 0
\(609\) −2.78759 2.78759i −0.112959 0.112959i
\(610\) 0 0
\(611\) −7.15603 −0.289502
\(612\) 0 0
\(613\) −24.3227 −0.982386 −0.491193 0.871051i \(-0.663439\pi\)
−0.491193 + 0.871051i \(0.663439\pi\)
\(614\) 0 0
\(615\) 1.40540 + 1.40540i 0.0566713 + 0.0566713i
\(616\) 0 0
\(617\) 7.06490 + 7.06490i 0.284422 + 0.284422i 0.834870 0.550448i \(-0.185543\pi\)
−0.550448 + 0.834870i \(0.685543\pi\)
\(618\) 0 0
\(619\) 20.9225 20.9225i 0.840947 0.840947i −0.148035 0.988982i \(-0.547295\pi\)
0.988982 + 0.148035i \(0.0472950\pi\)
\(620\) 0 0
\(621\) 3.84615i 0.154341i
\(622\) 0 0
\(623\) −13.5413 + 13.5413i −0.542519 + 0.542519i
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 0.0815496i 0.00325678i
\(628\) 0 0
\(629\) 1.37838 14.2037i 0.0549598 0.566339i
\(630\) 0 0
\(631\) 28.7809i 1.14575i 0.819643 + 0.572875i \(0.194172\pi\)
−0.819643 + 0.572875i \(0.805828\pi\)
\(632\) 0 0
\(633\) 1.06419 0.0422979
\(634\) 0 0
\(635\) −7.10445 + 7.10445i −0.281931 + 0.281931i
\(636\) 0 0
\(637\) 5.42300i 0.214867i
\(638\) 0 0
\(639\) −5.85482 + 5.85482i −0.231613 + 0.231613i
\(640\) 0 0
\(641\) 11.2401 + 11.2401i 0.443958 + 0.443958i 0.893340 0.449382i \(-0.148356\pi\)
−0.449382 + 0.893340i \(0.648356\pi\)
\(642\) 0 0
\(643\) 5.77814 + 5.77814i 0.227867 + 0.227867i 0.811801 0.583934i \(-0.198487\pi\)
−0.583934 + 0.811801i \(0.698487\pi\)
\(644\) 0 0
\(645\) −1.71999 −0.0677245
\(646\) 0 0
\(647\) 0.927072 0.0364469 0.0182235 0.999834i \(-0.494199\pi\)
0.0182235 + 0.999834i \(0.494199\pi\)
\(648\) 0 0
\(649\) 1.63833 + 1.63833i 0.0643100 + 0.0643100i
\(650\) 0 0
\(651\) 2.22118 + 2.22118i 0.0870547 + 0.0870547i
\(652\) 0 0
\(653\) −20.2482 + 20.2482i −0.792373 + 0.792373i −0.981879 0.189507i \(-0.939311\pi\)
0.189507 + 0.981879i \(0.439311\pi\)
\(654\) 0 0
\(655\) 6.52932i 0.255121i
\(656\) 0 0
\(657\) −4.26654 + 4.26654i −0.166454 + 0.166454i
\(658\) 0 0
\(659\) −3.92658 −0.152958 −0.0764789 0.997071i \(-0.524368\pi\)
−0.0764789 + 0.997071i \(0.524368\pi\)
\(660\) 0 0
\(661\) 21.0735i 0.819664i −0.912161 0.409832i \(-0.865587\pi\)
0.912161 0.409832i \(-0.134413\pi\)
\(662\) 0 0
\(663\) −0.0645488 + 0.665150i −0.00250687 + 0.0258323i
\(664\) 0 0
\(665\) 4.77638i 0.185220i
\(666\) 0 0
\(667\) −16.1273 −0.624450
\(668\) 0 0
\(669\) 0.824523 0.824523i 0.0318779 0.0318779i
\(670\) 0 0
\(671\) 1.83607i 0.0708806i
\(672\) 0 0
\(673\) 33.6996 33.6996i 1.29902 1.29902i 0.369985 0.929038i \(-0.379363\pi\)
0.929038 0.369985i \(-0.120637\pi\)
\(674\) 0 0
\(675\) 0.866936 + 0.866936i 0.0333684 + 0.0333684i
\(676\) 0 0
\(677\) −32.0336 32.0336i −1.23115 1.23115i −0.963522 0.267629i \(-0.913760\pi\)
−0.267629 0.963522i \(-0.586240\pi\)
\(678\) 0 0
\(679\) 25.0443 0.961112
\(680\) 0 0
\(681\) −3.39843 −0.130228
\(682\) 0 0
\(683\) 17.2754 + 17.2754i 0.661024 + 0.661024i 0.955621 0.294598i \(-0.0951856\pi\)
−0.294598 + 0.955621i \(0.595186\pi\)
\(684\) 0 0
\(685\) 14.3890 + 14.3890i 0.549774 + 0.549774i
\(686\) 0 0
\(687\) 3.18639 3.18639i 0.121568 0.121568i
\(688\) 0 0
\(689\) 2.99132i 0.113960i
\(690\) 0 0
\(691\) 12.9696 12.9696i 0.493385 0.493385i −0.415986 0.909371i \(-0.636563\pi\)
0.909371 + 0.415986i \(0.136563\pi\)
\(692\) 0 0
\(693\) −3.40726 −0.129431
\(694\) 0 0
\(695\) 6.76295i 0.256533i
\(696\) 0 0
\(697\) −39.6349 3.84633i −1.50128 0.145690i
\(698\) 0 0
\(699\) 4.89786i 0.185254i
\(700\) 0 0
\(701\) −6.46378 −0.244134 −0.122067 0.992522i \(-0.538952\pi\)
−0.122067 + 0.992522i \(0.538952\pi\)
\(702\) 0 0
\(703\) −3.13701 + 3.13701i −0.118314 + 0.118314i
\(704\) 0 0
\(705\) 1.86980i 0.0704208i
\(706\) 0 0
\(707\) −33.9179 + 33.9179i −1.27561 + 1.27561i
\(708\) 0 0
\(709\) −23.1984 23.1984i −0.871235 0.871235i 0.121372 0.992607i \(-0.461271\pi\)
−0.992607 + 0.121372i \(0.961271\pi\)
\(710\) 0 0
\(711\) 21.2999 + 21.2999i 0.798807 + 0.798807i
\(712\) 0 0
\(713\) 12.8503 0.481249
\(714\) 0 0
\(715\) −0.243490 −0.00910600
\(716\) 0 0
\(717\) −4.13012 4.13012i −0.154242 0.154242i
\(718\) 0 0
\(719\) 13.7918 + 13.7918i 0.514349 + 0.514349i 0.915856 0.401507i \(-0.131514\pi\)
−0.401507 + 0.915856i \(0.631514\pi\)
\(720\) 0 0
\(721\) −1.23488 + 1.23488i −0.0459895 + 0.0459895i
\(722\) 0 0
\(723\) 2.98085i 0.110859i
\(724\) 0 0
\(725\) 3.63514 3.63514i 0.135006 0.135006i
\(726\) 0 0
\(727\) −23.5795 −0.874516 −0.437258 0.899336i \(-0.644050\pi\)
−0.437258 + 0.899336i \(0.644050\pi\)
\(728\) 0 0
\(729\) 24.7399i 0.916293i
\(730\) 0 0
\(731\) 26.6070 21.8997i 0.984097 0.809991i
\(732\) 0 0
\(733\) 50.3403i 1.85936i −0.368368 0.929680i \(-0.620083\pi\)
0.368368 0.929680i \(-0.379917\pi\)
\(734\) 0 0
\(735\) 1.41698 0.0522660
\(736\) 0 0
\(737\) 1.91758 1.91758i 0.0706349 0.0706349i
\(738\) 0 0
\(739\) 47.5180i 1.74798i 0.485947 + 0.873988i \(0.338475\pi\)
−0.485947 + 0.873988i \(0.661525\pi\)
\(740\) 0 0
\(741\) 0.146904 0.146904i 0.00539665 0.00539665i
\(742\) 0 0
\(743\) 12.8360 + 12.8360i 0.470909 + 0.470909i 0.902209 0.431300i \(-0.141945\pi\)
−0.431300 + 0.902209i \(0.641945\pi\)
\(744\) 0 0
\(745\) −14.3496 14.3496i −0.525730 0.525730i
\(746\) 0 0
\(747\) −19.3012 −0.706195
\(748\) 0 0
\(749\) 61.1528 2.23447
\(750\) 0 0
\(751\) 37.7958 + 37.7958i 1.37919 + 1.37919i 0.845991 + 0.533198i \(0.179010\pi\)
0.533198 + 0.845991i \(0.320990\pi\)
\(752\) 0 0
\(753\) 2.40497 + 2.40497i 0.0876421 + 0.0876421i
\(754\) 0 0
\(755\) 3.27891 3.27891i 0.119332 0.119332i
\(756\) 0 0
\(757\) 13.8366i 0.502899i −0.967870 0.251449i \(-0.919093\pi\)
0.967870 0.251449i \(-0.0809072\pi\)
\(758\) 0 0
\(759\) 0.141128 0.141128i 0.00512263 0.00512263i
\(760\) 0 0
\(761\) 0.584674 0.0211944 0.0105972 0.999944i \(-0.496627\pi\)
0.0105972 + 0.999944i \(0.496627\pi\)
\(762\) 0 0
\(763\) 12.0168i 0.435039i
\(764\) 0 0
\(765\) −12.1377 1.17789i −0.438839 0.0425867i
\(766\) 0 0
\(767\) 5.90259i 0.213130i
\(768\) 0 0
\(769\) −12.9605 −0.467366 −0.233683 0.972313i \(-0.575078\pi\)
−0.233683 + 0.972313i \(0.575078\pi\)
\(770\) 0 0
\(771\) 1.34795 1.34795i 0.0485451 0.0485451i
\(772\) 0 0
\(773\) 22.5429i 0.810811i 0.914137 + 0.405406i \(0.132870\pi\)
−0.914137 + 0.405406i \(0.867130\pi\)
\(774\) 0 0
\(775\) −2.89651 + 2.89651i −0.104046 + 0.104046i
\(776\) 0 0
\(777\) 1.87675 + 1.87675i 0.0673279 + 0.0673279i
\(778\) 0 0
\(779\) 8.75369 + 8.75369i 0.313634 + 0.313634i
\(780\) 0 0
\(781\) −0.865483 −0.0309694
\(782\) 0 0
\(783\) −6.30287 −0.225246
\(784\) 0 0
\(785\) 2.08653 + 2.08653i 0.0744716 + 0.0744716i
\(786\) 0 0
\(787\) 0.598097 + 0.598097i 0.0213198 + 0.0213198i 0.717686 0.696367i \(-0.245201\pi\)
−0.696367 + 0.717686i \(0.745201\pi\)
\(788\) 0 0
\(789\) 3.98743 3.98743i 0.141956 0.141956i
\(790\) 0 0
\(791\) 56.3777i 2.00456i
\(792\) 0 0
\(793\) 3.30750 3.30750i 0.117453 0.117453i
\(794\) 0 0
\(795\) 0.781603 0.0277206
\(796\) 0 0
\(797\) 8.29645i 0.293875i −0.989146 0.146938i \(-0.953058\pi\)
0.989146 0.146938i \(-0.0469417\pi\)
\(798\) 0 0
\(799\) −23.8072 28.9245i −0.842239 1.02328i
\(800\) 0 0
\(801\) 15.1999i 0.537061i
\(802\) 0 0
\(803\) −0.630698 −0.0222569
\(804\) 0 0
\(805\) 8.26590 8.26590i 0.291335 0.291335i
\(806\) 0 0
\(807\) 0.752891i 0.0265030i
\(808\) 0 0
\(809\) 8.18012 8.18012i 0.287598 0.287598i −0.548532 0.836130i \(-0.684813\pi\)
0.836130 + 0.548532i \(0.184813\pi\)
\(810\) 0 0
\(811\) −31.5853 31.5853i −1.10911 1.10911i −0.993268 0.115841i \(-0.963044\pi\)
−0.115841 0.993268i \(-0.536956\pi\)
\(812\) 0 0
\(813\) −2.00396 2.00396i −0.0702819 0.0702819i
\(814\) 0 0
\(815\) 1.57279 0.0550923
\(816\) 0 0
\(817\) −10.7131 −0.374805
\(818\) 0 0
\(819\) 6.13785 + 6.13785i 0.214474 + 0.214474i
\(820\) 0 0
\(821\) 15.1168 + 15.1168i 0.527581 + 0.527581i 0.919850 0.392270i \(-0.128310\pi\)
−0.392270 + 0.919850i \(0.628310\pi\)
\(822\) 0 0
\(823\) 27.6470 27.6470i 0.963712 0.963712i −0.0356520 0.999364i \(-0.511351\pi\)
0.999364 + 0.0356520i \(0.0113508\pi\)
\(824\) 0 0
\(825\) 0.0636215i 0.00221502i
\(826\) 0 0
\(827\) −28.7715 + 28.7715i −1.00048 + 1.00048i −0.000484580 1.00000i \(0.500154\pi\)
−1.00000 0.000484580i \(0.999846\pi\)
\(828\) 0 0
\(829\) −42.2942 −1.46894 −0.734469 0.678642i \(-0.762569\pi\)
−0.734469 + 0.678642i \(0.762569\pi\)
\(830\) 0 0
\(831\) 5.37381i 0.186415i
\(832\) 0 0
\(833\) −21.9197 + 18.0417i −0.759471 + 0.625106i
\(834\) 0 0
\(835\) 14.4771i 0.500999i
\(836\) 0 0
\(837\) 5.02218 0.173592
\(838\) 0 0
\(839\) 21.3426 21.3426i 0.736828 0.736828i −0.235135 0.971963i \(-0.575553\pi\)
0.971963 + 0.235135i \(0.0755533\pi\)
\(840\) 0 0
\(841\) 2.57148i 0.0886716i
\(842\) 0 0
\(843\) 0.414905 0.414905i 0.0142901 0.0142901i
\(844\) 0 0
\(845\) −8.75376 8.75376i −0.301139 0.301139i
\(846\) 0 0
\(847\) 28.7322 + 28.7322i 0.987249 + 0.987249i
\(848\) 0 0
\(849\) 4.05920 0.139311
\(850\) 0 0
\(851\) 10.8577 0.372196
\(852\) 0 0
\(853\) −12.4572 12.4572i −0.426526 0.426526i 0.460917 0.887443i \(-0.347520\pi\)
−0.887443 + 0.460917i \(0.847520\pi\)
\(854\) 0 0
\(855\) 2.68071 + 2.68071i 0.0916783 + 0.0916783i
\(856\) 0 0
\(857\) 8.37477 8.37477i 0.286077 0.286077i −0.549450 0.835527i \(-0.685163\pi\)
0.835527 + 0.549450i \(0.185163\pi\)
\(858\) 0 0
\(859\) 44.2165i 1.50865i −0.656503 0.754323i \(-0.727965\pi\)
0.656503 0.754323i \(-0.272035\pi\)
\(860\) 0 0
\(861\) 5.23699 5.23699i 0.178476 0.178476i
\(862\) 0 0
\(863\) 14.1125 0.480394 0.240197 0.970724i \(-0.422788\pi\)
0.240197 + 0.970724i \(0.422788\pi\)
\(864\) 0 0
\(865\) 2.52804i 0.0859559i
\(866\) 0 0
\(867\) −2.90327 + 1.95197i −0.0986003 + 0.0662924i
\(868\) 0 0
\(869\) 3.14863i 0.106810i
\(870\) 0 0
\(871\) −6.90867 −0.234091
\(872\) 0 0
\(873\) 14.0559 14.0559i 0.475722 0.475722i
\(874\) 0 0
\(875\) 3.72633i 0.125973i
\(876\) 0 0
\(877\) 12.5523 12.5523i 0.423863 0.423863i −0.462669 0.886531i \(-0.653108\pi\)
0.886531 + 0.462669i \(0.153108\pi\)
\(878\) 0 0
\(879\) 0.883510 + 0.883510i 0.0298000 + 0.0298000i
\(880\) 0 0
\(881\) −29.9202 29.9202i −1.00804 1.00804i −0.999967 0.00807089i \(-0.997431\pi\)
−0.00807089 0.999967i \(-0.502569\pi\)
\(882\) 0 0
\(883\) −20.5506 −0.691583 −0.345791 0.938311i \(-0.612390\pi\)
−0.345791 + 0.938311i \(0.612390\pi\)
\(884\) 0 0
\(885\) −1.54229 −0.0518435
\(886\) 0 0
\(887\) −2.06591 2.06591i −0.0693666 0.0693666i 0.671572 0.740939i \(-0.265619\pi\)
−0.740939 + 0.671572i \(0.765619\pi\)
\(888\) 0 0
\(889\) 26.4735 + 26.4735i 0.887892 + 0.887892i
\(890\) 0 0
\(891\) −1.88452 + 1.88452i −0.0631339 + 0.0631339i
\(892\) 0 0
\(893\) 11.6462i 0.389727i
\(894\) 0 0
\(895\) −16.7678 + 16.7678i −0.560486 + 0.560486i
\(896\) 0 0
\(897\) −0.508458 −0.0169769
\(898\) 0 0
\(899\) 21.0584i 0.702339i
\(900\) 0 0
\(901\) −12.0909 + 9.95175i −0.402805 + 0.331541i
\(902\) 0 0
\(903\) 6.40924i 0.213286i
\(904\) 0 0
\(905\) −2.68108 −0.0891220
\(906\) 0 0
\(907\) −8.56255 + 8.56255i −0.284315 + 0.284315i −0.834827 0.550512i \(-0.814432\pi\)
0.550512 + 0.834827i \(0.314432\pi\)
\(908\) 0 0
\(909\) 38.0723i 1.26278i
\(910\) 0 0
\(911\) 12.7588 12.7588i 0.422717 0.422717i −0.463421 0.886138i \(-0.653378\pi\)
0.886138 + 0.463421i \(0.153378\pi\)
\(912\) 0 0
\(913\) −1.42659 1.42659i −0.0472134 0.0472134i
\(914\) 0 0
\(915\) −0.864218 0.864218i −0.0285702 0.0285702i
\(916\) 0 0
\(917\) −24.3304 −0.803459
\(918\) 0 0
\(919\) 15.0666 0.497000 0.248500 0.968632i \(-0.420062\pi\)
0.248500 + 0.968632i \(0.420062\pi\)
\(920\) 0 0
\(921\) 3.86460 + 3.86460i 0.127343 + 0.127343i
\(922\) 0 0
\(923\) 1.55909 + 1.55909i 0.0513179 + 0.0513179i
\(924\) 0 0
\(925\) −2.44736 + 2.44736i −0.0804686 + 0.0804686i
\(926\) 0 0
\(927\) 1.38614i 0.0455268i
\(928\) 0 0
\(929\) −19.5976 + 19.5976i −0.642977 + 0.642977i −0.951286 0.308309i \(-0.900237\pi\)
0.308309 + 0.951286i \(0.400237\pi\)
\(930\) 0 0
\(931\) 8.82579 0.289253
\(932\) 0 0
\(933\) 0.208738i 0.00683376i
\(934\) 0 0
\(935\) −0.810061 0.984181i −0.0264918 0.0321862i
\(936\) 0 0
\(937\) 12.8130i 0.418583i −0.977853 0.209292i \(-0.932884\pi\)
0.977853 0.209292i \(-0.0671158\pi\)
\(938\) 0 0
\(939\) −1.90579 −0.0621931
\(940\) 0 0
\(941\) 23.2420 23.2420i 0.757667 0.757667i −0.218231 0.975897i \(-0.570028\pi\)
0.975897 + 0.218231i \(0.0700285\pi\)
\(942\) 0 0
\(943\) 30.2979i 0.986636i
\(944\) 0 0
\(945\) 3.23049 3.23049i 0.105088 0.105088i
\(946\) 0 0
\(947\) −0.802556 0.802556i −0.0260796 0.0260796i 0.693947 0.720026i \(-0.255870\pi\)
−0.720026 + 0.693947i \(0.755870\pi\)
\(948\) 0 0
\(949\) 1.13614 + 1.13614i 0.0368808 + 0.0368808i
\(950\) 0 0
\(951\) 2.06718 0.0670328
\(952\) 0 0
\(953\) 4.74335 0.153652 0.0768261 0.997045i \(-0.475521\pi\)
0.0768261 + 0.997045i \(0.475521\pi\)
\(954\) 0 0
\(955\) −1.42817 1.42817i −0.0462145 0.0462145i
\(956\) 0 0
\(957\) −0.231273 0.231273i −0.00747601 0.00747601i
\(958\) 0 0
\(959\) 53.6179 53.6179i 1.73141 1.73141i
\(960\) 0 0
\(961\) 14.2205i 0.458725i
\(962\) 0 0
\(963\) 34.3216 34.3216i 1.10600 1.10600i
\(964\) 0 0
\(965\) −17.3055 −0.557085
\(966\) 0 0
\(967\) 30.0520i 0.966407i −0.875508 0.483204i \(-0.839473\pi\)
0.875508 0.483204i \(-0.160527\pi\)
\(968\) 0 0
\(969\) 1.08251 + 0.105052i 0.0347754 + 0.00337474i
\(970\) 0 0
\(971\) 18.4225i 0.591206i −0.955311 0.295603i \(-0.904480\pi\)
0.955311 0.295603i \(-0.0955205\pi\)
\(972\) 0 0
\(973\) 25.2010 0.807906
\(974\) 0 0
\(975\) 0.114608 0.114608i 0.00367040 0.00367040i
\(976\) 0 0
\(977\) 22.2649i 0.712317i −0.934426 0.356158i \(-0.884086\pi\)
0.934426 0.356158i \(-0.115914\pi\)
\(978\) 0 0
\(979\) −1.12345 + 1.12345i −0.0359057 + 0.0359057i
\(980\) 0 0
\(981\) −6.74437 6.74437i −0.215331 0.215331i
\(982\) 0 0
\(983\) 19.0722 + 19.0722i 0.608308 + 0.608308i 0.942504 0.334196i \(-0.108465\pi\)
−0.334196 + 0.942504i \(0.608465\pi\)
\(984\) 0 0
\(985\) 8.66978 0.276242
\(986\) 0 0
\(987\) 6.96749 0.221778
\(988\) 0 0
\(989\) 18.5399 + 18.5399i 0.589535 + 0.589535i
\(990\) 0 0
\(991\) −4.02397 4.02397i −0.127826 0.127826i 0.640300 0.768125i \(-0.278810\pi\)
−0.768125 + 0.640300i \(0.778810\pi\)
\(992\) 0 0
\(993\) 3.56736 3.56736i 0.113207 0.113207i
\(994\) 0 0
\(995\) 8.37854i 0.265618i
\(996\) 0 0
\(997\) 3.32705 3.32705i 0.105369 0.105369i −0.652457 0.757826i \(-0.726262\pi\)
0.757826 + 0.652457i \(0.226262\pi\)
\(998\) 0 0
\(999\) 4.24341 0.134255
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.bd.b.81.7 20
4.3 odd 2 1360.2.bt.f.81.4 20
17.4 even 4 inner 680.2.bd.b.361.7 yes 20
68.55 odd 4 1360.2.bt.f.1041.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.bd.b.81.7 20 1.1 even 1 trivial
680.2.bd.b.361.7 yes 20 17.4 even 4 inner
1360.2.bt.f.81.4 20 4.3 odd 2
1360.2.bt.f.1041.4 20 68.55 odd 4