Properties

Label 680.2.bd.b.361.6
Level $680$
Weight $2$
Character 680.361
Analytic conductor $5.430$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(81,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.bd (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 38 x^{18} + 597 x^{16} + 5004 x^{14} + 24072 x^{12} + 66452 x^{10} + 99328 x^{8} + 70784 x^{6} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 361.6
Root \(-0.155688i\) of defining polynomial
Character \(\chi\) \(=\) 680.361
Dual form 680.2.bd.b.81.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.110088 - 0.110088i) q^{3} +(-0.707107 + 0.707107i) q^{5} +(-1.59814 - 1.59814i) q^{7} +2.97576i q^{9} +(2.29246 + 2.29246i) q^{11} -6.35384 q^{13} +0.155688i q^{15} +(-3.14352 - 2.66801i) q^{17} +3.74959i q^{19} -0.351873 q^{21} +(1.61226 + 1.61226i) q^{23} -1.00000i q^{25} +(0.657861 + 0.657861i) q^{27} +(-3.11528 + 3.11528i) q^{29} +(-5.15119 + 5.15119i) q^{31} +0.504746 q^{33} +2.26011 q^{35} +(1.52587 - 1.52587i) q^{37} +(-0.699484 + 0.699484i) q^{39} +(1.63254 + 1.63254i) q^{41} +10.1998i q^{43} +(-2.10418 - 2.10418i) q^{45} -6.71856 q^{47} -1.89191i q^{49} +(-0.639782 + 0.0523473i) q^{51} +2.23744i q^{53} -3.24203 q^{55} +(0.412786 + 0.412786i) q^{57} -5.91043i q^{59} +(-5.35172 - 5.35172i) q^{61} +(4.75568 - 4.75568i) q^{63} +(4.49284 - 4.49284i) q^{65} +9.42323 q^{67} +0.354982 q^{69} +(3.13126 - 3.13126i) q^{71} +(-5.11930 + 5.11930i) q^{73} +(-0.110088 - 0.110088i) q^{75} -7.32733i q^{77} +(4.51283 + 4.51283i) q^{79} -8.78244 q^{81} +2.99110i q^{83} +(4.10937 - 0.336231i) q^{85} +0.685912i q^{87} -3.95093 q^{89} +(10.1543 + 10.1543i) q^{91} +1.13417i q^{93} +(-2.65136 - 2.65136i) q^{95} +(1.15110 - 1.15110i) q^{97} +(-6.82181 + 6.82181i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 4 q^{3} + 4 q^{7} + 12 q^{11} + 4 q^{13} + 4 q^{17} + 16 q^{21} - 4 q^{23} - 16 q^{27} - 4 q^{29} - 4 q^{31} + 16 q^{33} - 8 q^{35} - 8 q^{37} - 8 q^{39} - 8 q^{41} + 4 q^{47} - 4 q^{51} - 8 q^{55}+ \cdots + 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.110088 0.110088i 0.0635595 0.0635595i −0.674613 0.738172i \(-0.735689\pi\)
0.738172 + 0.674613i \(0.235689\pi\)
\(4\) 0 0
\(5\) −0.707107 + 0.707107i −0.316228 + 0.316228i
\(6\) 0 0
\(7\) −1.59814 1.59814i −0.604039 0.604039i 0.337343 0.941382i \(-0.390472\pi\)
−0.941382 + 0.337343i \(0.890472\pi\)
\(8\) 0 0
\(9\) 2.97576i 0.991920i
\(10\) 0 0
\(11\) 2.29246 + 2.29246i 0.691202 + 0.691202i 0.962496 0.271294i \(-0.0874517\pi\)
−0.271294 + 0.962496i \(0.587452\pi\)
\(12\) 0 0
\(13\) −6.35384 −1.76224 −0.881119 0.472894i \(-0.843209\pi\)
−0.881119 + 0.472894i \(0.843209\pi\)
\(14\) 0 0
\(15\) 0.155688i 0.0401986i
\(16\) 0 0
\(17\) −3.14352 2.66801i −0.762415 0.647089i
\(18\) 0 0
\(19\) 3.74959i 0.860214i 0.902778 + 0.430107i \(0.141524\pi\)
−0.902778 + 0.430107i \(0.858476\pi\)
\(20\) 0 0
\(21\) −0.351873 −0.0767849
\(22\) 0 0
\(23\) 1.61226 + 1.61226i 0.336180 + 0.336180i 0.854927 0.518748i \(-0.173602\pi\)
−0.518748 + 0.854927i \(0.673602\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0.657861 + 0.657861i 0.126606 + 0.126606i
\(28\) 0 0
\(29\) −3.11528 + 3.11528i −0.578493 + 0.578493i −0.934488 0.355995i \(-0.884142\pi\)
0.355995 + 0.934488i \(0.384142\pi\)
\(30\) 0 0
\(31\) −5.15119 + 5.15119i −0.925182 + 0.925182i −0.997390 0.0722081i \(-0.976995\pi\)
0.0722081 + 0.997390i \(0.476995\pi\)
\(32\) 0 0
\(33\) 0.504746 0.0878650
\(34\) 0 0
\(35\) 2.26011 0.382028
\(36\) 0 0
\(37\) 1.52587 1.52587i 0.250851 0.250851i −0.570468 0.821320i \(-0.693238\pi\)
0.821320 + 0.570468i \(0.193238\pi\)
\(38\) 0 0
\(39\) −0.699484 + 0.699484i −0.112007 + 0.112007i
\(40\) 0 0
\(41\) 1.63254 + 1.63254i 0.254960 + 0.254960i 0.823000 0.568041i \(-0.192298\pi\)
−0.568041 + 0.823000i \(0.692298\pi\)
\(42\) 0 0
\(43\) 10.1998i 1.55545i 0.628605 + 0.777725i \(0.283626\pi\)
−0.628605 + 0.777725i \(0.716374\pi\)
\(44\) 0 0
\(45\) −2.10418 2.10418i −0.313673 0.313673i
\(46\) 0 0
\(47\) −6.71856 −0.980002 −0.490001 0.871722i \(-0.663004\pi\)
−0.490001 + 0.871722i \(0.663004\pi\)
\(48\) 0 0
\(49\) 1.89191i 0.270273i
\(50\) 0 0
\(51\) −0.639782 + 0.0523473i −0.0895874 + 0.00733008i
\(52\) 0 0
\(53\) 2.23744i 0.307336i 0.988123 + 0.153668i \(0.0491087\pi\)
−0.988123 + 0.153668i \(0.950891\pi\)
\(54\) 0 0
\(55\) −3.24203 −0.437155
\(56\) 0 0
\(57\) 0.412786 + 0.412786i 0.0546748 + 0.0546748i
\(58\) 0 0
\(59\) 5.91043i 0.769473i −0.923026 0.384737i \(-0.874292\pi\)
0.923026 0.384737i \(-0.125708\pi\)
\(60\) 0 0
\(61\) −5.35172 5.35172i −0.685218 0.685218i 0.275953 0.961171i \(-0.411007\pi\)
−0.961171 + 0.275953i \(0.911007\pi\)
\(62\) 0 0
\(63\) 4.75568 4.75568i 0.599159 0.599159i
\(64\) 0 0
\(65\) 4.49284 4.49284i 0.557269 0.557269i
\(66\) 0 0
\(67\) 9.42323 1.15123 0.575615 0.817721i \(-0.304763\pi\)
0.575615 + 0.817721i \(0.304763\pi\)
\(68\) 0 0
\(69\) 0.354982 0.0427348
\(70\) 0 0
\(71\) 3.13126 3.13126i 0.371612 0.371612i −0.496452 0.868064i \(-0.665364\pi\)
0.868064 + 0.496452i \(0.165364\pi\)
\(72\) 0 0
\(73\) −5.11930 + 5.11930i −0.599168 + 0.599168i −0.940091 0.340923i \(-0.889261\pi\)
0.340923 + 0.940091i \(0.389261\pi\)
\(74\) 0 0
\(75\) −0.110088 0.110088i −0.0127119 0.0127119i
\(76\) 0 0
\(77\) 7.32733i 0.835027i
\(78\) 0 0
\(79\) 4.51283 + 4.51283i 0.507734 + 0.507734i 0.913830 0.406097i \(-0.133110\pi\)
−0.406097 + 0.913830i \(0.633110\pi\)
\(80\) 0 0
\(81\) −8.78244 −0.975826
\(82\) 0 0
\(83\) 2.99110i 0.328316i 0.986434 + 0.164158i \(0.0524906\pi\)
−0.986434 + 0.164158i \(0.947509\pi\)
\(84\) 0 0
\(85\) 4.10937 0.336231i 0.445724 0.0364694i
\(86\) 0 0
\(87\) 0.685912i 0.0735375i
\(88\) 0 0
\(89\) −3.95093 −0.418798 −0.209399 0.977830i \(-0.567151\pi\)
−0.209399 + 0.977830i \(0.567151\pi\)
\(90\) 0 0
\(91\) 10.1543 + 10.1543i 1.06446 + 1.06446i
\(92\) 0 0
\(93\) 1.13417i 0.117608i
\(94\) 0 0
\(95\) −2.65136 2.65136i −0.272024 0.272024i
\(96\) 0 0
\(97\) 1.15110 1.15110i 0.116876 0.116876i −0.646250 0.763126i \(-0.723664\pi\)
0.763126 + 0.646250i \(0.223664\pi\)
\(98\) 0 0
\(99\) −6.82181 + 6.82181i −0.685617 + 0.685617i
\(100\) 0 0
\(101\) −7.30222 −0.726598 −0.363299 0.931673i \(-0.618350\pi\)
−0.363299 + 0.931673i \(0.618350\pi\)
\(102\) 0 0
\(103\) 16.1560 1.59190 0.795949 0.605364i \(-0.206973\pi\)
0.795949 + 0.605364i \(0.206973\pi\)
\(104\) 0 0
\(105\) 0.248812 0.248812i 0.0242815 0.0242815i
\(106\) 0 0
\(107\) 4.84617 4.84617i 0.468497 0.468497i −0.432931 0.901427i \(-0.642520\pi\)
0.901427 + 0.432931i \(0.142520\pi\)
\(108\) 0 0
\(109\) 11.0534 + 11.0534i 1.05873 + 1.05873i 0.998164 + 0.0605625i \(0.0192894\pi\)
0.0605625 + 0.998164i \(0.480711\pi\)
\(110\) 0 0
\(111\) 0.335960i 0.0318879i
\(112\) 0 0
\(113\) −4.34740 4.34740i −0.408969 0.408969i 0.472410 0.881379i \(-0.343384\pi\)
−0.881379 + 0.472410i \(0.843384\pi\)
\(114\) 0 0
\(115\) −2.28008 −0.212619
\(116\) 0 0
\(117\) 18.9075i 1.74800i
\(118\) 0 0
\(119\) 0.759919 + 9.28763i 0.0696616 + 0.851396i
\(120\) 0 0
\(121\) 0.489271i 0.0444792i
\(122\) 0 0
\(123\) 0.359447 0.0324102
\(124\) 0 0
\(125\) 0.707107 + 0.707107i 0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 16.0773i 1.42663i −0.700845 0.713313i \(-0.747194\pi\)
0.700845 0.713313i \(-0.252806\pi\)
\(128\) 0 0
\(129\) 1.12288 + 1.12288i 0.0988637 + 0.0988637i
\(130\) 0 0
\(131\) 11.5325 11.5325i 1.00760 1.00760i 0.00763061 0.999971i \(-0.497571\pi\)
0.999971 0.00763061i \(-0.00242892\pi\)
\(132\) 0 0
\(133\) 5.99236 5.99236i 0.519603 0.519603i
\(134\) 0 0
\(135\) −0.930357 −0.0800724
\(136\) 0 0
\(137\) −14.6889 −1.25495 −0.627477 0.778635i \(-0.715912\pi\)
−0.627477 + 0.778635i \(0.715912\pi\)
\(138\) 0 0
\(139\) −11.0894 + 11.0894i −0.940587 + 0.940587i −0.998331 0.0577442i \(-0.981609\pi\)
0.0577442 + 0.998331i \(0.481609\pi\)
\(140\) 0 0
\(141\) −0.739635 + 0.739635i −0.0622885 + 0.0622885i
\(142\) 0 0
\(143\) −14.5659 14.5659i −1.21806 1.21806i
\(144\) 0 0
\(145\) 4.40567i 0.365871i
\(146\) 0 0
\(147\) −0.208277 0.208277i −0.0171784 0.0171784i
\(148\) 0 0
\(149\) 15.7780 1.29259 0.646294 0.763089i \(-0.276318\pi\)
0.646294 + 0.763089i \(0.276318\pi\)
\(150\) 0 0
\(151\) 20.9005i 1.70085i −0.526093 0.850427i \(-0.676343\pi\)
0.526093 0.850427i \(-0.323657\pi\)
\(152\) 0 0
\(153\) 7.93937 9.35436i 0.641860 0.756255i
\(154\) 0 0
\(155\) 7.28489i 0.585136i
\(156\) 0 0
\(157\) 12.2692 0.979189 0.489595 0.871950i \(-0.337145\pi\)
0.489595 + 0.871950i \(0.337145\pi\)
\(158\) 0 0
\(159\) 0.246316 + 0.246316i 0.0195342 + 0.0195342i
\(160\) 0 0
\(161\) 5.15323i 0.406132i
\(162\) 0 0
\(163\) 12.2783 + 12.2783i 0.961708 + 0.961708i 0.999293 0.0375855i \(-0.0119667\pi\)
−0.0375855 + 0.999293i \(0.511967\pi\)
\(164\) 0 0
\(165\) −0.356909 + 0.356909i −0.0277853 + 0.0277853i
\(166\) 0 0
\(167\) 6.54441 6.54441i 0.506422 0.506422i −0.407004 0.913426i \(-0.633427\pi\)
0.913426 + 0.407004i \(0.133427\pi\)
\(168\) 0 0
\(169\) 27.3713 2.10548
\(170\) 0 0
\(171\) −11.1579 −0.853264
\(172\) 0 0
\(173\) −15.5882 + 15.5882i −1.18515 + 1.18515i −0.206756 + 0.978392i \(0.566291\pi\)
−0.978392 + 0.206756i \(0.933709\pi\)
\(174\) 0 0
\(175\) −1.59814 + 1.59814i −0.120808 + 0.120808i
\(176\) 0 0
\(177\) −0.650670 0.650670i −0.0489073 0.0489073i
\(178\) 0 0
\(179\) 1.00295i 0.0749643i −0.999297 0.0374822i \(-0.988066\pi\)
0.999297 0.0374822i \(-0.0119337\pi\)
\(180\) 0 0
\(181\) 11.6481 + 11.6481i 0.865797 + 0.865797i 0.992004 0.126207i \(-0.0402802\pi\)
−0.126207 + 0.992004i \(0.540280\pi\)
\(182\) 0 0
\(183\) −1.17832 −0.0871043
\(184\) 0 0
\(185\) 2.15790i 0.158652i
\(186\) 0 0
\(187\) −1.09007 13.3227i −0.0797138 0.974252i
\(188\) 0 0
\(189\) 2.10271i 0.152949i
\(190\) 0 0
\(191\) −4.58530 −0.331781 −0.165890 0.986144i \(-0.553050\pi\)
−0.165890 + 0.986144i \(0.553050\pi\)
\(192\) 0 0
\(193\) 2.85427 + 2.85427i 0.205455 + 0.205455i 0.802332 0.596877i \(-0.203592\pi\)
−0.596877 + 0.802332i \(0.703592\pi\)
\(194\) 0 0
\(195\) 0.989219i 0.0708395i
\(196\) 0 0
\(197\) −12.3384 12.3384i −0.879074 0.879074i 0.114365 0.993439i \(-0.463517\pi\)
−0.993439 + 0.114365i \(0.963517\pi\)
\(198\) 0 0
\(199\) −12.4256 + 12.4256i −0.880829 + 0.880829i −0.993619 0.112790i \(-0.964021\pi\)
0.112790 + 0.993619i \(0.464021\pi\)
\(200\) 0 0
\(201\) 1.03739 1.03739i 0.0731716 0.0731716i
\(202\) 0 0
\(203\) 9.95730 0.698865
\(204\) 0 0
\(205\) −2.30876 −0.161251
\(206\) 0 0
\(207\) −4.79770 + 4.79770i −0.333464 + 0.333464i
\(208\) 0 0
\(209\) −8.59577 + 8.59577i −0.594582 + 0.594582i
\(210\) 0 0
\(211\) 10.6791 + 10.6791i 0.735179 + 0.735179i 0.971641 0.236462i \(-0.0759879\pi\)
−0.236462 + 0.971641i \(0.575988\pi\)
\(212\) 0 0
\(213\) 0.689430i 0.0472390i
\(214\) 0 0
\(215\) −7.21233 7.21233i −0.491876 0.491876i
\(216\) 0 0
\(217\) 16.4646 1.11769
\(218\) 0 0
\(219\) 1.12715i 0.0761657i
\(220\) 0 0
\(221\) 19.9734 + 16.9521i 1.34356 + 1.14032i
\(222\) 0 0
\(223\) 2.95689i 0.198008i 0.995087 + 0.0990039i \(0.0315656\pi\)
−0.995087 + 0.0990039i \(0.968434\pi\)
\(224\) 0 0
\(225\) 2.97576 0.198384
\(226\) 0 0
\(227\) 9.41235 + 9.41235i 0.624719 + 0.624719i 0.946735 0.322015i \(-0.104360\pi\)
−0.322015 + 0.946735i \(0.604360\pi\)
\(228\) 0 0
\(229\) 18.0840i 1.19502i −0.801860 0.597511i \(-0.796156\pi\)
0.801860 0.597511i \(-0.203844\pi\)
\(230\) 0 0
\(231\) −0.806653 0.806653i −0.0530739 0.0530739i
\(232\) 0 0
\(233\) −12.1221 + 12.1221i −0.794145 + 0.794145i −0.982165 0.188020i \(-0.939793\pi\)
0.188020 + 0.982165i \(0.439793\pi\)
\(234\) 0 0
\(235\) 4.75074 4.75074i 0.309904 0.309904i
\(236\) 0 0
\(237\) 0.993621 0.0645426
\(238\) 0 0
\(239\) −9.17681 −0.593599 −0.296799 0.954940i \(-0.595919\pi\)
−0.296799 + 0.954940i \(0.595919\pi\)
\(240\) 0 0
\(241\) −4.11535 + 4.11535i −0.265093 + 0.265093i −0.827119 0.562027i \(-0.810022\pi\)
0.562027 + 0.827119i \(0.310022\pi\)
\(242\) 0 0
\(243\) −2.94043 + 2.94043i −0.188629 + 0.188629i
\(244\) 0 0
\(245\) 1.33778 + 1.33778i 0.0854677 + 0.0854677i
\(246\) 0 0
\(247\) 23.8243i 1.51590i
\(248\) 0 0
\(249\) 0.329285 + 0.329285i 0.0208676 + 0.0208676i
\(250\) 0 0
\(251\) 21.5093 1.35765 0.678826 0.734299i \(-0.262489\pi\)
0.678826 + 0.734299i \(0.262489\pi\)
\(252\) 0 0
\(253\) 7.39208i 0.464736i
\(254\) 0 0
\(255\) 0.415379 0.489409i 0.0260120 0.0306480i
\(256\) 0 0
\(257\) 10.6671i 0.665398i −0.943033 0.332699i \(-0.892041\pi\)
0.943033 0.332699i \(-0.107959\pi\)
\(258\) 0 0
\(259\) −4.87709 −0.303048
\(260\) 0 0
\(261\) −9.27033 9.27033i −0.573819 0.573819i
\(262\) 0 0
\(263\) 4.92413i 0.303635i −0.988409 0.151817i \(-0.951487\pi\)
0.988409 0.151817i \(-0.0485126\pi\)
\(264\) 0 0
\(265\) −1.58211 1.58211i −0.0971883 0.0971883i
\(266\) 0 0
\(267\) −0.434951 + 0.434951i −0.0266186 + 0.0266186i
\(268\) 0 0
\(269\) 7.15963 7.15963i 0.436530 0.436530i −0.454312 0.890843i \(-0.650115\pi\)
0.890843 + 0.454312i \(0.150115\pi\)
\(270\) 0 0
\(271\) −18.1444 −1.10219 −0.551096 0.834442i \(-0.685790\pi\)
−0.551096 + 0.834442i \(0.685790\pi\)
\(272\) 0 0
\(273\) 2.23574 0.135313
\(274\) 0 0
\(275\) 2.29246 2.29246i 0.138240 0.138240i
\(276\) 0 0
\(277\) −18.8451 + 18.8451i −1.13229 + 1.13229i −0.142497 + 0.989795i \(0.545513\pi\)
−0.989795 + 0.142497i \(0.954487\pi\)
\(278\) 0 0
\(279\) −15.3287 15.3287i −0.917706 0.917706i
\(280\) 0 0
\(281\) 20.6326i 1.23084i 0.788201 + 0.615418i \(0.211013\pi\)
−0.788201 + 0.615418i \(0.788987\pi\)
\(282\) 0 0
\(283\) 9.58317 + 9.58317i 0.569660 + 0.569660i 0.932033 0.362373i \(-0.118033\pi\)
−0.362373 + 0.932033i \(0.618033\pi\)
\(284\) 0 0
\(285\) −0.583767 −0.0345794
\(286\) 0 0
\(287\) 5.21805i 0.308012i
\(288\) 0 0
\(289\) 2.76340 + 16.7739i 0.162553 + 0.986700i
\(290\) 0 0
\(291\) 0.253445i 0.0148572i
\(292\) 0 0
\(293\) −28.8138 −1.68332 −0.841660 0.540008i \(-0.818421\pi\)
−0.841660 + 0.540008i \(0.818421\pi\)
\(294\) 0 0
\(295\) 4.17931 + 4.17931i 0.243329 + 0.243329i
\(296\) 0 0
\(297\) 3.01624i 0.175020i
\(298\) 0 0
\(299\) −10.2441 10.2441i −0.592429 0.592429i
\(300\) 0 0
\(301\) 16.3006 16.3006i 0.939553 0.939553i
\(302\) 0 0
\(303\) −0.803889 + 0.803889i −0.0461822 + 0.0461822i
\(304\) 0 0
\(305\) 7.56848 0.433370
\(306\) 0 0
\(307\) −29.1337 −1.66275 −0.831375 0.555712i \(-0.812446\pi\)
−0.831375 + 0.555712i \(0.812446\pi\)
\(308\) 0 0
\(309\) 1.77859 1.77859i 0.101180 0.101180i
\(310\) 0 0
\(311\) −20.3810 + 20.3810i −1.15570 + 1.15570i −0.170313 + 0.985390i \(0.554478\pi\)
−0.985390 + 0.170313i \(0.945522\pi\)
\(312\) 0 0
\(313\) −17.4936 17.4936i −0.988796 0.988796i 0.0111421 0.999938i \(-0.496453\pi\)
−0.999938 + 0.0111421i \(0.996453\pi\)
\(314\) 0 0
\(315\) 6.72554i 0.378941i
\(316\) 0 0
\(317\) 12.3914 + 12.3914i 0.695970 + 0.695970i 0.963539 0.267569i \(-0.0862203\pi\)
−0.267569 + 0.963539i \(0.586220\pi\)
\(318\) 0 0
\(319\) −14.2833 −0.799711
\(320\) 0 0
\(321\) 1.06701i 0.0595549i
\(322\) 0 0
\(323\) 10.0040 11.7869i 0.556635 0.655840i
\(324\) 0 0
\(325\) 6.35384i 0.352448i
\(326\) 0 0
\(327\) 2.43371 0.134584
\(328\) 0 0
\(329\) 10.7372 + 10.7372i 0.591960 + 0.591960i
\(330\) 0 0
\(331\) 15.2629i 0.838923i 0.907773 + 0.419461i \(0.137781\pi\)
−0.907773 + 0.419461i \(0.862219\pi\)
\(332\) 0 0
\(333\) 4.54062 + 4.54062i 0.248824 + 0.248824i
\(334\) 0 0
\(335\) −6.66323 + 6.66323i −0.364051 + 0.364051i
\(336\) 0 0
\(337\) −15.5078 + 15.5078i −0.844766 + 0.844766i −0.989474 0.144709i \(-0.953776\pi\)
0.144709 + 0.989474i \(0.453776\pi\)
\(338\) 0 0
\(339\) −0.957196 −0.0519878
\(340\) 0 0
\(341\) −23.6178 −1.27897
\(342\) 0 0
\(343\) −14.2105 + 14.2105i −0.767295 + 0.767295i
\(344\) 0 0
\(345\) −0.251010 + 0.251010i −0.0135139 + 0.0135139i
\(346\) 0 0
\(347\) −6.88455 6.88455i −0.369582 0.369582i 0.497743 0.867325i \(-0.334162\pi\)
−0.867325 + 0.497743i \(0.834162\pi\)
\(348\) 0 0
\(349\) 36.1613i 1.93567i 0.251589 + 0.967834i \(0.419047\pi\)
−0.251589 + 0.967834i \(0.580953\pi\)
\(350\) 0 0
\(351\) −4.17995 4.17995i −0.223109 0.223109i
\(352\) 0 0
\(353\) 24.0430 1.27968 0.639839 0.768509i \(-0.279001\pi\)
0.639839 + 0.768509i \(0.279001\pi\)
\(354\) 0 0
\(355\) 4.42827i 0.235028i
\(356\) 0 0
\(357\) 1.10612 + 0.938801i 0.0585420 + 0.0496866i
\(358\) 0 0
\(359\) 8.62910i 0.455426i −0.973728 0.227713i \(-0.926875\pi\)
0.973728 0.227713i \(-0.0731248\pi\)
\(360\) 0 0
\(361\) 4.94060 0.260032
\(362\) 0 0
\(363\) −0.0538630 0.0538630i −0.00282708 0.00282708i
\(364\) 0 0
\(365\) 7.23978i 0.378947i
\(366\) 0 0
\(367\) 13.9153 + 13.9153i 0.726373 + 0.726373i 0.969895 0.243522i \(-0.0783030\pi\)
−0.243522 + 0.969895i \(0.578303\pi\)
\(368\) 0 0
\(369\) −4.85805 + 4.85805i −0.252900 + 0.252900i
\(370\) 0 0
\(371\) 3.57574 3.57574i 0.185643 0.185643i
\(372\) 0 0
\(373\) 17.7649 0.919830 0.459915 0.887963i \(-0.347880\pi\)
0.459915 + 0.887963i \(0.347880\pi\)
\(374\) 0 0
\(375\) 0.155688 0.00803971
\(376\) 0 0
\(377\) 19.7940 19.7940i 1.01944 1.01944i
\(378\) 0 0
\(379\) −4.83105 + 4.83105i −0.248154 + 0.248154i −0.820213 0.572059i \(-0.806145\pi\)
0.572059 + 0.820213i \(0.306145\pi\)
\(380\) 0 0
\(381\) −1.76992 1.76992i −0.0906757 0.0906757i
\(382\) 0 0
\(383\) 20.5719i 1.05118i 0.850739 + 0.525588i \(0.176155\pi\)
−0.850739 + 0.525588i \(0.823845\pi\)
\(384\) 0 0
\(385\) 5.18120 + 5.18120i 0.264059 + 0.264059i
\(386\) 0 0
\(387\) −30.3521 −1.54288
\(388\) 0 0
\(389\) 15.0964i 0.765418i 0.923869 + 0.382709i \(0.125009\pi\)
−0.923869 + 0.382709i \(0.874991\pi\)
\(390\) 0 0
\(391\) −0.766634 9.36971i −0.0387704 0.473846i
\(392\) 0 0
\(393\) 2.53919i 0.128085i
\(394\) 0 0
\(395\) −6.38211 −0.321119
\(396\) 0 0
\(397\) 14.1646 + 14.1646i 0.710899 + 0.710899i 0.966723 0.255824i \(-0.0823468\pi\)
−0.255824 + 0.966723i \(0.582347\pi\)
\(398\) 0 0
\(399\) 1.31938i 0.0660515i
\(400\) 0 0
\(401\) −21.5575 21.5575i −1.07653 1.07653i −0.996818 0.0797099i \(-0.974601\pi\)
−0.0797099 0.996818i \(-0.525399\pi\)
\(402\) 0 0
\(403\) 32.7299 32.7299i 1.63039 1.63039i
\(404\) 0 0
\(405\) 6.21012 6.21012i 0.308583 0.308583i
\(406\) 0 0
\(407\) 6.99598 0.346778
\(408\) 0 0
\(409\) 18.4810 0.913829 0.456914 0.889511i \(-0.348955\pi\)
0.456914 + 0.889511i \(0.348955\pi\)
\(410\) 0 0
\(411\) −1.61707 + 1.61707i −0.0797642 + 0.0797642i
\(412\) 0 0
\(413\) −9.44569 + 9.44569i −0.464792 + 0.464792i
\(414\) 0 0
\(415\) −2.11503 2.11503i −0.103822 0.103822i
\(416\) 0 0
\(417\) 2.44162i 0.119567i
\(418\) 0 0
\(419\) 14.1681 + 14.1681i 0.692158 + 0.692158i 0.962706 0.270549i \(-0.0872051\pi\)
−0.270549 + 0.962706i \(0.587205\pi\)
\(420\) 0 0
\(421\) −23.9933 −1.16936 −0.584681 0.811263i \(-0.698780\pi\)
−0.584681 + 0.811263i \(0.698780\pi\)
\(422\) 0 0
\(423\) 19.9928i 0.972084i
\(424\) 0 0
\(425\) −2.66801 + 3.14352i −0.129418 + 0.152483i
\(426\) 0 0
\(427\) 17.1056i 0.827798i
\(428\) 0 0
\(429\) −3.20707 −0.154839
\(430\) 0 0
\(431\) −0.287583 0.287583i −0.0138524 0.0138524i 0.700147 0.713999i \(-0.253118\pi\)
−0.713999 + 0.700147i \(0.753118\pi\)
\(432\) 0 0
\(433\) 6.37599i 0.306410i 0.988194 + 0.153205i \(0.0489595\pi\)
−0.988194 + 0.153205i \(0.951040\pi\)
\(434\) 0 0
\(435\) −0.485013 0.485013i −0.0232546 0.0232546i
\(436\) 0 0
\(437\) −6.04531 + 6.04531i −0.289187 + 0.289187i
\(438\) 0 0
\(439\) −13.9079 + 13.9079i −0.663790 + 0.663790i −0.956271 0.292481i \(-0.905519\pi\)
0.292481 + 0.956271i \(0.405519\pi\)
\(440\) 0 0
\(441\) 5.62987 0.268089
\(442\) 0 0
\(443\) −30.2115 −1.43539 −0.717697 0.696356i \(-0.754804\pi\)
−0.717697 + 0.696356i \(0.754804\pi\)
\(444\) 0 0
\(445\) 2.79373 2.79373i 0.132436 0.132436i
\(446\) 0 0
\(447\) 1.73698 1.73698i 0.0821562 0.0821562i
\(448\) 0 0
\(449\) −12.5317 12.5317i −0.591406 0.591406i 0.346605 0.938011i \(-0.387334\pi\)
−0.938011 + 0.346605i \(0.887334\pi\)
\(450\) 0 0
\(451\) 7.48506i 0.352458i
\(452\) 0 0
\(453\) −2.30090 2.30090i −0.108105 0.108105i
\(454\) 0 0
\(455\) −14.3604 −0.673225
\(456\) 0 0
\(457\) 9.06827i 0.424196i 0.977248 + 0.212098i \(0.0680296\pi\)
−0.977248 + 0.212098i \(0.931970\pi\)
\(458\) 0 0
\(459\) −0.312815 3.82318i −0.0146009 0.178451i
\(460\) 0 0
\(461\) 6.13947i 0.285944i −0.989727 0.142972i \(-0.954334\pi\)
0.989727 0.142972i \(-0.0456659\pi\)
\(462\) 0 0
\(463\) 23.8176 1.10690 0.553450 0.832883i \(-0.313311\pi\)
0.553450 + 0.832883i \(0.313311\pi\)
\(464\) 0 0
\(465\) −0.801981 0.801981i −0.0371910 0.0371910i
\(466\) 0 0
\(467\) 8.03489i 0.371810i 0.982568 + 0.185905i \(0.0595217\pi\)
−0.982568 + 0.185905i \(0.940478\pi\)
\(468\) 0 0
\(469\) −15.0596 15.0596i −0.695388 0.695388i
\(470\) 0 0
\(471\) 1.35070 1.35070i 0.0622368 0.0622368i
\(472\) 0 0
\(473\) −23.3825 + 23.3825i −1.07513 + 1.07513i
\(474\) 0 0
\(475\) 3.74959 0.172043
\(476\) 0 0
\(477\) −6.65809 −0.304853
\(478\) 0 0
\(479\) 17.2392 17.2392i 0.787679 0.787679i −0.193434 0.981113i \(-0.561963\pi\)
0.981113 + 0.193434i \(0.0619626\pi\)
\(480\) 0 0
\(481\) −9.69512 + 9.69512i −0.442059 + 0.442059i
\(482\) 0 0
\(483\) −0.567311 0.567311i −0.0258135 0.0258135i
\(484\) 0 0
\(485\) 1.62790i 0.0739192i
\(486\) 0 0
\(487\) 14.6286 + 14.6286i 0.662887 + 0.662887i 0.956059 0.293173i \(-0.0947111\pi\)
−0.293173 + 0.956059i \(0.594711\pi\)
\(488\) 0 0
\(489\) 2.70339 0.122251
\(490\) 0 0
\(491\) 31.4474i 1.41920i −0.704604 0.709601i \(-0.748875\pi\)
0.704604 0.709601i \(-0.251125\pi\)
\(492\) 0 0
\(493\) 18.1046 1.48132i 0.815388 0.0667155i
\(494\) 0 0
\(495\) 9.64749i 0.433623i
\(496\) 0 0
\(497\) −10.0084 −0.448937
\(498\) 0 0
\(499\) 5.22038 + 5.22038i 0.233696 + 0.233696i 0.814234 0.580537i \(-0.197157\pi\)
−0.580537 + 0.814234i \(0.697157\pi\)
\(500\) 0 0
\(501\) 1.44093i 0.0643759i
\(502\) 0 0
\(503\) −13.8503 13.8503i −0.617553 0.617553i 0.327350 0.944903i \(-0.393844\pi\)
−0.944903 + 0.327350i \(0.893844\pi\)
\(504\) 0 0
\(505\) 5.16345 5.16345i 0.229770 0.229770i
\(506\) 0 0
\(507\) 3.01326 3.01326i 0.133824 0.133824i
\(508\) 0 0
\(509\) 36.3104 1.60943 0.804715 0.593661i \(-0.202318\pi\)
0.804715 + 0.593661i \(0.202318\pi\)
\(510\) 0 0
\(511\) 16.3627 0.723843
\(512\) 0 0
\(513\) −2.46671 + 2.46671i −0.108908 + 0.108908i
\(514\) 0 0
\(515\) −11.4240 + 11.4240i −0.503402 + 0.503402i
\(516\) 0 0
\(517\) −15.4020 15.4020i −0.677380 0.677380i
\(518\) 0 0
\(519\) 3.43216i 0.150655i
\(520\) 0 0
\(521\) 13.5155 + 13.5155i 0.592125 + 0.592125i 0.938205 0.346080i \(-0.112488\pi\)
−0.346080 + 0.938205i \(0.612488\pi\)
\(522\) 0 0
\(523\) −11.6507 −0.509449 −0.254724 0.967014i \(-0.581985\pi\)
−0.254724 + 0.967014i \(0.581985\pi\)
\(524\) 0 0
\(525\) 0.351873i 0.0153570i
\(526\) 0 0
\(527\) 29.9363 2.44941i 1.30405 0.106698i
\(528\) 0 0
\(529\) 17.8012i 0.773966i
\(530\) 0 0
\(531\) 17.5880 0.763256
\(532\) 0 0
\(533\) −10.3729 10.3729i −0.449300 0.449300i
\(534\) 0 0
\(535\) 6.85352i 0.296303i
\(536\) 0 0
\(537\) −0.110414 0.110414i −0.00476470 0.00476470i
\(538\) 0 0
\(539\) 4.33712 4.33712i 0.186813 0.186813i
\(540\) 0 0
\(541\) 6.17032 6.17032i 0.265283 0.265283i −0.561913 0.827196i \(-0.689935\pi\)
0.827196 + 0.561913i \(0.189935\pi\)
\(542\) 0 0
\(543\) 2.56464 0.110059
\(544\) 0 0
\(545\) −15.6319 −0.669598
\(546\) 0 0
\(547\) −18.6105 + 18.6105i −0.795729 + 0.795729i −0.982419 0.186690i \(-0.940224\pi\)
0.186690 + 0.982419i \(0.440224\pi\)
\(548\) 0 0
\(549\) 15.9255 15.9255i 0.679682 0.679682i
\(550\) 0 0
\(551\) −11.6810 11.6810i −0.497628 0.497628i
\(552\) 0 0
\(553\) 14.4243i 0.613382i
\(554\) 0 0
\(555\) 0.237560 + 0.237560i 0.0100839 + 0.0100839i
\(556\) 0 0
\(557\) 3.77947 0.160141 0.0800707 0.996789i \(-0.474485\pi\)
0.0800707 + 0.996789i \(0.474485\pi\)
\(558\) 0 0
\(559\) 64.8077i 2.74107i
\(560\) 0 0
\(561\) −1.58668 1.34667i −0.0669895 0.0568564i
\(562\) 0 0
\(563\) 12.0518i 0.507922i 0.967214 + 0.253961i \(0.0817336\pi\)
−0.967214 + 0.253961i \(0.918266\pi\)
\(564\) 0 0
\(565\) 6.14815 0.258655
\(566\) 0 0
\(567\) 14.0355 + 14.0355i 0.589438 + 0.589438i
\(568\) 0 0
\(569\) 45.8883i 1.92374i −0.273510 0.961869i \(-0.588185\pi\)
0.273510 0.961869i \(-0.411815\pi\)
\(570\) 0 0
\(571\) 29.6260 + 29.6260i 1.23981 + 1.23981i 0.960079 + 0.279730i \(0.0902450\pi\)
0.279730 + 0.960079i \(0.409755\pi\)
\(572\) 0 0
\(573\) −0.504788 + 0.504788i −0.0210878 + 0.0210878i
\(574\) 0 0
\(575\) 1.61226 1.61226i 0.0672359 0.0672359i
\(576\) 0 0
\(577\) 35.9945 1.49847 0.749236 0.662303i \(-0.230421\pi\)
0.749236 + 0.662303i \(0.230421\pi\)
\(578\) 0 0
\(579\) 0.628444 0.0261173
\(580\) 0 0
\(581\) 4.78019 4.78019i 0.198316 0.198316i
\(582\) 0 0
\(583\) −5.12924 + 5.12924i −0.212432 + 0.212432i
\(584\) 0 0
\(585\) 13.3696 + 13.3696i 0.552766 + 0.552766i
\(586\) 0 0
\(587\) 13.6745i 0.564408i 0.959354 + 0.282204i \(0.0910655\pi\)
−0.959354 + 0.282204i \(0.908935\pi\)
\(588\) 0 0
\(589\) −19.3148 19.3148i −0.795854 0.795854i
\(590\) 0 0
\(591\) −2.71662 −0.111747
\(592\) 0 0
\(593\) 16.1481i 0.663122i −0.943434 0.331561i \(-0.892425\pi\)
0.943434 0.331561i \(-0.107575\pi\)
\(594\) 0 0
\(595\) −7.10469 6.03000i −0.291264 0.247206i
\(596\) 0 0
\(597\) 2.73583i 0.111970i
\(598\) 0 0
\(599\) −28.7857 −1.17615 −0.588076 0.808806i \(-0.700114\pi\)
−0.588076 + 0.808806i \(0.700114\pi\)
\(600\) 0 0
\(601\) −0.605266 0.605266i −0.0246893 0.0246893i 0.694654 0.719344i \(-0.255557\pi\)
−0.719344 + 0.694654i \(0.755557\pi\)
\(602\) 0 0
\(603\) 28.0413i 1.14193i
\(604\) 0 0
\(605\) 0.345967 + 0.345967i 0.0140656 + 0.0140656i
\(606\) 0 0
\(607\) −5.16467 + 5.16467i −0.209627 + 0.209627i −0.804109 0.594482i \(-0.797357\pi\)
0.594482 + 0.804109i \(0.297357\pi\)
\(608\) 0 0
\(609\) 1.09618 1.09618i 0.0444195 0.0444195i
\(610\) 0 0
\(611\) 42.6886 1.72700
\(612\) 0 0
\(613\) −8.72541 −0.352416 −0.176208 0.984353i \(-0.556383\pi\)
−0.176208 + 0.984353i \(0.556383\pi\)
\(614\) 0 0
\(615\) −0.254167 + 0.254167i −0.0102490 + 0.0102490i
\(616\) 0 0
\(617\) −17.7377 + 17.7377i −0.714093 + 0.714093i −0.967389 0.253296i \(-0.918485\pi\)
0.253296 + 0.967389i \(0.418485\pi\)
\(618\) 0 0
\(619\) 20.1175 + 20.1175i 0.808591 + 0.808591i 0.984421 0.175830i \(-0.0562609\pi\)
−0.175830 + 0.984421i \(0.556261\pi\)
\(620\) 0 0
\(621\) 2.12129i 0.0851244i
\(622\) 0 0
\(623\) 6.31413 + 6.31413i 0.252970 + 0.252970i
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 1.89259i 0.0755827i
\(628\) 0 0
\(629\) −8.86763 + 0.725554i −0.353575 + 0.0289297i
\(630\) 0 0
\(631\) 5.58672i 0.222404i 0.993798 + 0.111202i \(0.0354700\pi\)
−0.993798 + 0.111202i \(0.964530\pi\)
\(632\) 0 0
\(633\) 2.35128 0.0934552
\(634\) 0 0
\(635\) 11.3683 + 11.3683i 0.451139 + 0.451139i
\(636\) 0 0
\(637\) 12.0209i 0.476285i
\(638\) 0 0
\(639\) 9.31788 + 9.31788i 0.368610 + 0.368610i
\(640\) 0 0
\(641\) −9.53481 + 9.53481i −0.376603 + 0.376603i −0.869875 0.493272i \(-0.835801\pi\)
0.493272 + 0.869875i \(0.335801\pi\)
\(642\) 0 0
\(643\) 17.4747 17.4747i 0.689135 0.689135i −0.272906 0.962041i \(-0.587985\pi\)
0.962041 + 0.272906i \(0.0879848\pi\)
\(644\) 0 0
\(645\) −1.58799 −0.0625269
\(646\) 0 0
\(647\) 35.8120 1.40791 0.703957 0.710243i \(-0.251415\pi\)
0.703957 + 0.710243i \(0.251415\pi\)
\(648\) 0 0
\(649\) 13.5494 13.5494i 0.531861 0.531861i
\(650\) 0 0
\(651\) 1.81256 1.81256i 0.0710400 0.0710400i
\(652\) 0 0
\(653\) −14.6559 14.6559i −0.573529 0.573529i 0.359584 0.933113i \(-0.382919\pi\)
−0.933113 + 0.359584i \(0.882919\pi\)
\(654\) 0 0
\(655\) 16.3095i 0.637263i
\(656\) 0 0
\(657\) −15.2338 15.2338i −0.594327 0.594327i
\(658\) 0 0
\(659\) −32.6942 −1.27359 −0.636793 0.771035i \(-0.719739\pi\)
−0.636793 + 0.771035i \(0.719739\pi\)
\(660\) 0 0
\(661\) 0.329952i 0.0128336i −0.999979 0.00641682i \(-0.997957\pi\)
0.999979 0.00641682i \(-0.00204255\pi\)
\(662\) 0 0
\(663\) 4.06507 0.332606i 0.157874 0.0129174i
\(664\) 0 0
\(665\) 8.47447i 0.328626i
\(666\) 0 0
\(667\) −10.0453 −0.388955
\(668\) 0 0
\(669\) 0.325519 + 0.325519i 0.0125853 + 0.0125853i
\(670\) 0 0
\(671\) 24.5372i 0.947248i
\(672\) 0 0
\(673\) −21.5369 21.5369i −0.830187 0.830187i 0.157355 0.987542i \(-0.449703\pi\)
−0.987542 + 0.157355i \(0.949703\pi\)
\(674\) 0 0
\(675\) 0.657861 0.657861i 0.0253211 0.0253211i
\(676\) 0 0
\(677\) 6.09948 6.09948i 0.234422 0.234422i −0.580114 0.814536i \(-0.696992\pi\)
0.814536 + 0.580114i \(0.196992\pi\)
\(678\) 0 0
\(679\) −3.67923 −0.141196
\(680\) 0 0
\(681\) 2.07238 0.0794137
\(682\) 0 0
\(683\) 24.3481 24.3481i 0.931653 0.931653i −0.0661559 0.997809i \(-0.521073\pi\)
0.997809 + 0.0661559i \(0.0210735\pi\)
\(684\) 0 0
\(685\) 10.3866 10.3866i 0.396851 0.396851i
\(686\) 0 0
\(687\) −1.99083 1.99083i −0.0759551 0.0759551i
\(688\) 0 0
\(689\) 14.2164i 0.541600i
\(690\) 0 0
\(691\) −17.5503 17.5503i −0.667643 0.667643i 0.289527 0.957170i \(-0.406502\pi\)
−0.957170 + 0.289527i \(0.906502\pi\)
\(692\) 0 0
\(693\) 21.8044 0.828280
\(694\) 0 0
\(695\) 15.6827i 0.594880i
\(696\) 0 0
\(697\) −0.776277 9.48755i −0.0294036 0.359367i
\(698\) 0 0
\(699\) 2.66900i 0.100951i
\(700\) 0 0
\(701\) 17.8489 0.674142 0.337071 0.941479i \(-0.390564\pi\)
0.337071 + 0.941479i \(0.390564\pi\)
\(702\) 0 0
\(703\) 5.72137 + 5.72137i 0.215786 + 0.215786i
\(704\) 0 0
\(705\) 1.04600i 0.0393947i
\(706\) 0 0
\(707\) 11.6700 + 11.6700i 0.438894 + 0.438894i
\(708\) 0 0
\(709\) 4.23484 4.23484i 0.159043 0.159043i −0.623100 0.782142i \(-0.714127\pi\)
0.782142 + 0.623100i \(0.214127\pi\)
\(710\) 0 0
\(711\) −13.4291 + 13.4291i −0.503631 + 0.503631i
\(712\) 0 0
\(713\) −16.6101 −0.622055
\(714\) 0 0
\(715\) 20.5993 0.770371
\(716\) 0 0
\(717\) −1.01026 + 1.01026i −0.0377288 + 0.0377288i
\(718\) 0 0
\(719\) 30.4445 30.4445i 1.13539 1.13539i 0.146121 0.989267i \(-0.453321\pi\)
0.989267 0.146121i \(-0.0466787\pi\)
\(720\) 0 0
\(721\) −25.8195 25.8195i −0.961569 0.961569i
\(722\) 0 0
\(723\) 0.906103i 0.0336983i
\(724\) 0 0
\(725\) 3.11528 + 3.11528i 0.115699 + 0.115699i
\(726\) 0 0
\(727\) 3.48872 0.129390 0.0646948 0.997905i \(-0.479393\pi\)
0.0646948 + 0.997905i \(0.479393\pi\)
\(728\) 0 0
\(729\) 25.6999i 0.951848i
\(730\) 0 0
\(731\) 27.2131 32.0631i 1.00651 1.18590i
\(732\) 0 0
\(733\) 31.1271i 1.14971i −0.818257 0.574853i \(-0.805059\pi\)
0.818257 0.574853i \(-0.194941\pi\)
\(734\) 0 0
\(735\) 0.294548 0.0108646
\(736\) 0 0
\(737\) 21.6024 + 21.6024i 0.795733 + 0.795733i
\(738\) 0 0
\(739\) 45.9291i 1.68953i −0.535139 0.844764i \(-0.679741\pi\)
0.535139 0.844764i \(-0.320259\pi\)
\(740\) 0 0
\(741\) −2.62277 2.62277i −0.0963500 0.0963500i
\(742\) 0 0
\(743\) 31.8533 31.8533i 1.16858 1.16858i 0.186043 0.982542i \(-0.440434\pi\)
0.982542 0.186043i \(-0.0595662\pi\)
\(744\) 0 0
\(745\) −11.1568 + 11.1568i −0.408752 + 0.408752i
\(746\) 0 0
\(747\) −8.90079 −0.325663
\(748\) 0 0
\(749\) −15.4897 −0.565981
\(750\) 0 0
\(751\) −37.5622 + 37.5622i −1.37066 + 1.37066i −0.511205 + 0.859459i \(0.670801\pi\)
−0.859459 + 0.511205i \(0.829199\pi\)
\(752\) 0 0
\(753\) 2.36792 2.36792i 0.0862917 0.0862917i
\(754\) 0 0
\(755\) 14.7789 + 14.7789i 0.537857 + 0.537857i
\(756\) 0 0
\(757\) 1.41070i 0.0512729i −0.999671 0.0256365i \(-0.991839\pi\)
0.999671 0.0256365i \(-0.00816124\pi\)
\(758\) 0 0
\(759\) 0.813782 + 0.813782i 0.0295384 + 0.0295384i
\(760\) 0 0
\(761\) 18.6971 0.677768 0.338884 0.940828i \(-0.389951\pi\)
0.338884 + 0.940828i \(0.389951\pi\)
\(762\) 0 0
\(763\) 35.3298i 1.27903i
\(764\) 0 0
\(765\) 1.00054 + 12.2285i 0.0361747 + 0.442123i
\(766\) 0 0
\(767\) 37.5540i 1.35599i
\(768\) 0 0
\(769\) −17.7284 −0.639301 −0.319651 0.947535i \(-0.603566\pi\)
−0.319651 + 0.947535i \(0.603566\pi\)
\(770\) 0 0
\(771\) −1.17433 1.17433i −0.0422924 0.0422924i
\(772\) 0 0
\(773\) 20.3379i 0.731503i −0.930713 0.365751i \(-0.880812\pi\)
0.930713 0.365751i \(-0.119188\pi\)
\(774\) 0 0
\(775\) 5.15119 + 5.15119i 0.185036 + 0.185036i
\(776\) 0 0
\(777\) −0.536911 + 0.536911i −0.0192616 + 0.0192616i
\(778\) 0 0
\(779\) −6.12135 + 6.12135i −0.219320 + 0.219320i
\(780\) 0 0
\(781\) 14.3566 0.513718
\(782\) 0 0
\(783\) −4.09885 −0.146481
\(784\) 0 0
\(785\) −8.67564 + 8.67564i −0.309647 + 0.309647i
\(786\) 0 0
\(787\) −16.0350 + 16.0350i −0.571585 + 0.571585i −0.932571 0.360986i \(-0.882440\pi\)
0.360986 + 0.932571i \(0.382440\pi\)
\(788\) 0 0
\(789\) −0.542089 0.542089i −0.0192989 0.0192989i
\(790\) 0 0
\(791\) 13.8955i 0.494067i
\(792\) 0 0
\(793\) 34.0040 + 34.0040i 1.20752 + 1.20752i
\(794\) 0 0
\(795\) −0.348344 −0.0123545
\(796\) 0 0
\(797\) 26.2980i 0.931522i 0.884910 + 0.465761i \(0.154219\pi\)
−0.884910 + 0.465761i \(0.845781\pi\)
\(798\) 0 0
\(799\) 21.1199 + 17.9252i 0.747168 + 0.634148i
\(800\) 0 0
\(801\) 11.7570i 0.415414i
\(802\) 0 0
\(803\) −23.4716 −0.828293
\(804\) 0 0
\(805\) 3.64389 + 3.64389i 0.128430 + 0.128430i
\(806\) 0 0
\(807\) 1.57638i 0.0554913i
\(808\) 0 0
\(809\) 26.4838 + 26.4838i 0.931120 + 0.931120i 0.997776 0.0666563i \(-0.0212331\pi\)
−0.0666563 + 0.997776i \(0.521233\pi\)
\(810\) 0 0
\(811\) 1.14490 1.14490i 0.0402029 0.0402029i −0.686720 0.726922i \(-0.740950\pi\)
0.726922 + 0.686720i \(0.240950\pi\)
\(812\) 0 0
\(813\) −1.99748 + 1.99748i −0.0700549 + 0.0700549i
\(814\) 0 0
\(815\) −17.3641 −0.608237
\(816\) 0 0
\(817\) −38.2449 −1.33802
\(818\) 0 0
\(819\) −30.2168 + 30.2168i −1.05586 + 1.05586i
\(820\) 0 0
\(821\) −16.1479 + 16.1479i −0.563566 + 0.563566i −0.930319 0.366753i \(-0.880470\pi\)
0.366753 + 0.930319i \(0.380470\pi\)
\(822\) 0 0
\(823\) 25.3910 + 25.3910i 0.885073 + 0.885073i 0.994045 0.108972i \(-0.0347558\pi\)
−0.108972 + 0.994045i \(0.534756\pi\)
\(824\) 0 0
\(825\) 0.504746i 0.0175730i
\(826\) 0 0
\(827\) −21.1096 21.1096i −0.734053 0.734053i 0.237367 0.971420i \(-0.423716\pi\)
−0.971420 + 0.237367i \(0.923716\pi\)
\(828\) 0 0
\(829\) −31.8056 −1.10466 −0.552328 0.833627i \(-0.686260\pi\)
−0.552328 + 0.833627i \(0.686260\pi\)
\(830\) 0 0
\(831\) 4.14925i 0.143936i
\(832\) 0 0
\(833\) −5.04764 + 5.94725i −0.174890 + 0.206060i
\(834\) 0 0
\(835\) 9.25520i 0.320289i
\(836\) 0 0
\(837\) −6.77754 −0.234266
\(838\) 0 0
\(839\) 27.6685 + 27.6685i 0.955224 + 0.955224i 0.999040 0.0438159i \(-0.0139515\pi\)
−0.0438159 + 0.999040i \(0.513951\pi\)
\(840\) 0 0
\(841\) 9.59005i 0.330691i
\(842\) 0 0
\(843\) 2.27140 + 2.27140i 0.0782313 + 0.0782313i
\(844\) 0 0
\(845\) −19.3544 + 19.3544i −0.665812 + 0.665812i
\(846\) 0 0
\(847\) −0.781923 + 0.781923i −0.0268672 + 0.0268672i
\(848\) 0 0
\(849\) 2.10999 0.0724146
\(850\) 0 0
\(851\) 4.92019 0.168662
\(852\) 0 0
\(853\) 1.24673 1.24673i 0.0426872 0.0426872i −0.685441 0.728128i \(-0.740391\pi\)
0.728128 + 0.685441i \(0.240391\pi\)
\(854\) 0 0
\(855\) 7.88981 7.88981i 0.269826 0.269826i
\(856\) 0 0
\(857\) 38.6780 + 38.6780i 1.32122 + 1.32122i 0.912792 + 0.408425i \(0.133922\pi\)
0.408425 + 0.912792i \(0.366078\pi\)
\(858\) 0 0
\(859\) 21.1269i 0.720842i −0.932790 0.360421i \(-0.882633\pi\)
0.932790 0.360421i \(-0.117367\pi\)
\(860\) 0 0
\(861\) −0.574446 0.574446i −0.0195771 0.0195771i
\(862\) 0 0
\(863\) 7.08367 0.241131 0.120565 0.992705i \(-0.461529\pi\)
0.120565 + 0.992705i \(0.461529\pi\)
\(864\) 0 0
\(865\) 22.0450i 0.749554i
\(866\) 0 0
\(867\) 2.15083 + 1.54239i 0.0730459 + 0.0523824i
\(868\) 0 0
\(869\) 20.6910i 0.701893i
\(870\) 0 0
\(871\) −59.8737 −2.02874
\(872\) 0 0
\(873\) 3.42540 + 3.42540i 0.115932 + 0.115932i
\(874\) 0 0
\(875\) 2.26011i 0.0764056i
\(876\) 0 0
\(877\) −8.26296 8.26296i −0.279020 0.279020i 0.553698 0.832718i \(-0.313216\pi\)
−0.832718 + 0.553698i \(0.813216\pi\)
\(878\) 0 0
\(879\) −3.17206 + 3.17206i −0.106991 + 0.106991i
\(880\) 0 0
\(881\) 35.3498 35.3498i 1.19096 1.19096i 0.214167 0.976797i \(-0.431296\pi\)
0.976797 0.214167i \(-0.0687036\pi\)
\(882\) 0 0
\(883\) −41.3693 −1.39219 −0.696093 0.717951i \(-0.745080\pi\)
−0.696093 + 0.717951i \(0.745080\pi\)
\(884\) 0 0
\(885\) 0.920186 0.0309317
\(886\) 0 0
\(887\) −5.69731 + 5.69731i −0.191297 + 0.191297i −0.796256 0.604959i \(-0.793189\pi\)
0.604959 + 0.796256i \(0.293189\pi\)
\(888\) 0 0
\(889\) −25.6937 + 25.6937i −0.861739 + 0.861739i
\(890\) 0 0
\(891\) −20.1334 20.1334i −0.674493 0.674493i
\(892\) 0 0
\(893\) 25.1918i 0.843012i
\(894\) 0 0
\(895\) 0.709196 + 0.709196i 0.0237058 + 0.0237058i
\(896\) 0 0
\(897\) −2.25550 −0.0753090
\(898\) 0 0
\(899\) 32.0948i 1.07042i
\(900\) 0 0
\(901\) 5.96953 7.03344i 0.198874 0.234318i
\(902\) 0 0
\(903\) 3.58902i 0.119435i
\(904\) 0 0
\(905\) −16.4729 −0.547578
\(906\) 0 0
\(907\) 1.94441 + 1.94441i 0.0645629 + 0.0645629i 0.738651 0.674088i \(-0.235463\pi\)
−0.674088 + 0.738651i \(0.735463\pi\)
\(908\) 0 0
\(909\) 21.7297i 0.720727i
\(910\) 0 0
\(911\) 17.9083 + 17.9083i 0.593329 + 0.593329i 0.938529 0.345200i \(-0.112189\pi\)
−0.345200 + 0.938529i \(0.612189\pi\)
\(912\) 0 0
\(913\) −6.85697 + 6.85697i −0.226932 + 0.226932i
\(914\) 0 0
\(915\) 0.833201 0.833201i 0.0275448 0.0275448i
\(916\) 0 0
\(917\) −36.8611 −1.21726
\(918\) 0 0
\(919\) 54.7178 1.80497 0.902486 0.430719i \(-0.141740\pi\)
0.902486 + 0.430719i \(0.141740\pi\)
\(920\) 0 0
\(921\) −3.20728 + 3.20728i −0.105684 + 0.105684i
\(922\) 0 0
\(923\) −19.8955 + 19.8955i −0.654869 + 0.654869i
\(924\) 0 0
\(925\) −1.52587 1.52587i −0.0501702 0.0501702i
\(926\) 0 0
\(927\) 48.0764i 1.57904i
\(928\) 0 0
\(929\) −38.8266 38.8266i −1.27386 1.27386i −0.944046 0.329814i \(-0.893014\pi\)
−0.329814 0.944046i \(-0.606986\pi\)
\(930\) 0 0
\(931\) 7.09387 0.232492
\(932\) 0 0
\(933\) 4.48743i 0.146912i
\(934\) 0 0
\(935\) 10.1914 + 8.64977i 0.333293 + 0.282878i
\(936\) 0 0
\(937\) 16.2957i 0.532358i −0.963924 0.266179i \(-0.914239\pi\)
0.963924 0.266179i \(-0.0857612\pi\)
\(938\) 0 0
\(939\) −3.85168 −0.125695
\(940\) 0 0
\(941\) 11.1227 + 11.1227i 0.362588 + 0.362588i 0.864765 0.502177i \(-0.167467\pi\)
−0.502177 + 0.864765i \(0.667467\pi\)
\(942\) 0 0
\(943\) 5.26416i 0.171425i
\(944\) 0 0
\(945\) 1.48684 + 1.48684i 0.0483669 + 0.0483669i
\(946\) 0 0
\(947\) 15.1051 15.1051i 0.490849 0.490849i −0.417725 0.908574i \(-0.637172\pi\)
0.908574 + 0.417725i \(0.137172\pi\)
\(948\) 0 0
\(949\) 32.5272 32.5272i 1.05588 1.05588i
\(950\) 0 0
\(951\) 2.72829 0.0884710
\(952\) 0 0
\(953\) −43.2594 −1.40131 −0.700655 0.713500i \(-0.747109\pi\)
−0.700655 + 0.713500i \(0.747109\pi\)
\(954\) 0 0
\(955\) 3.24230 3.24230i 0.104918 0.104918i
\(956\) 0 0
\(957\) −1.57242 + 1.57242i −0.0508293 + 0.0508293i
\(958\) 0 0
\(959\) 23.4748 + 23.4748i 0.758041 + 0.758041i
\(960\) 0 0
\(961\) 22.0696i 0.711922i
\(962\) 0 0
\(963\) 14.4210 + 14.4210i 0.464711 + 0.464711i
\(964\) 0 0
\(965\) −4.03655 −0.129941
\(966\) 0 0
\(967\) 4.94557i 0.159039i 0.996833 + 0.0795194i \(0.0253386\pi\)
−0.996833 + 0.0795194i \(0.974661\pi\)
\(968\) 0 0
\(969\) −0.196281 2.39892i −0.00630544 0.0770643i
\(970\) 0 0
\(971\) 2.33246i 0.0748521i −0.999299 0.0374260i \(-0.988084\pi\)
0.999299 0.0374260i \(-0.0119159\pi\)
\(972\) 0 0
\(973\) 35.4447 1.13630
\(974\) 0 0
\(975\) 0.699484 + 0.699484i 0.0224014 + 0.0224014i
\(976\) 0 0
\(977\) 22.9940i 0.735642i −0.929897 0.367821i \(-0.880104\pi\)
0.929897 0.367821i \(-0.119896\pi\)
\(978\) 0 0
\(979\) −9.05734 9.05734i −0.289474 0.289474i
\(980\) 0 0
\(981\) −32.8924 + 32.8924i −1.05017 + 1.05017i
\(982\) 0 0
\(983\) −27.8553 + 27.8553i −0.888445 + 0.888445i −0.994374 0.105929i \(-0.966218\pi\)
0.105929 + 0.994374i \(0.466218\pi\)
\(984\) 0 0
\(985\) 17.4491 0.555975
\(986\) 0 0
\(987\) 2.36408 0.0752494
\(988\) 0 0
\(989\) −16.4447 + 16.4447i −0.522911 + 0.522911i
\(990\) 0 0
\(991\) −2.49805 + 2.49805i −0.0793531 + 0.0793531i −0.745669 0.666316i \(-0.767870\pi\)
0.666316 + 0.745669i \(0.267870\pi\)
\(992\) 0 0
\(993\) 1.68026 + 1.68026i 0.0533215 + 0.0533215i
\(994\) 0 0
\(995\) 17.5725i 0.557085i
\(996\) 0 0
\(997\) 22.4811 + 22.4811i 0.711983 + 0.711983i 0.966950 0.254967i \(-0.0820645\pi\)
−0.254967 + 0.966950i \(0.582065\pi\)
\(998\) 0 0
\(999\) 2.00762 0.0635183
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.bd.b.361.6 yes 20
4.3 odd 2 1360.2.bt.f.1041.5 20
17.13 even 4 inner 680.2.bd.b.81.6 20
68.47 odd 4 1360.2.bt.f.81.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.bd.b.81.6 20 17.13 even 4 inner
680.2.bd.b.361.6 yes 20 1.1 even 1 trivial
1360.2.bt.f.81.5 20 68.47 odd 4
1360.2.bt.f.1041.5 20 4.3 odd 2