Properties

Label 680.1.k.d
Level $680$
Weight $1$
Character orbit 680.k
Self dual yes
Analytic conductor $0.339$
Analytic rank $0$
Dimension $1$
Projective image $D_{3}$
CM discriminant -680
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,1,Mod(339,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.339"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 680.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,1,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.339364208590\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.680.1
Artin image: $D_6$
Artin field: Galois closure of 6.2.7860800.1
Stark unit: Root of $x^{6} - 2486x^{5} + 233707x^{4} - 5717756x^{3} + 233707x^{2} - 2486x + 1$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{8} - q^{10} + q^{12} - q^{13} - q^{15} + q^{16} - q^{17} - q^{19} - q^{20} + q^{24} + q^{25} - q^{26} - q^{27} + q^{29} - q^{30} + q^{31}+ \cdots + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
339.1
0
1.00000 1.00000 1.00000 −1.00000 1.00000 0 1.00000 0 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
680.k odd 2 1 CM by \(\Q(\sqrt{-170}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 680.1.k.d yes 1
4.b odd 2 1 2720.1.k.a 1
5.b even 2 1 680.1.k.a 1
5.c odd 4 2 3400.1.g.e 2
8.b even 2 1 2720.1.k.b 1
8.d odd 2 1 680.1.k.b yes 1
17.b even 2 1 680.1.k.c yes 1
20.d odd 2 1 2720.1.k.c 1
40.e odd 2 1 680.1.k.c yes 1
40.f even 2 1 2720.1.k.d 1
40.k even 4 2 3400.1.g.d 2
68.d odd 2 1 2720.1.k.d 1
85.c even 2 1 680.1.k.b yes 1
85.g odd 4 2 3400.1.g.d 2
136.e odd 2 1 680.1.k.a 1
136.h even 2 1 2720.1.k.c 1
340.d odd 2 1 2720.1.k.b 1
680.h even 2 1 2720.1.k.a 1
680.k odd 2 1 CM 680.1.k.d yes 1
680.u even 4 2 3400.1.g.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
680.1.k.a 1 5.b even 2 1
680.1.k.a 1 136.e odd 2 1
680.1.k.b yes 1 8.d odd 2 1
680.1.k.b yes 1 85.c even 2 1
680.1.k.c yes 1 17.b even 2 1
680.1.k.c yes 1 40.e odd 2 1
680.1.k.d yes 1 1.a even 1 1 trivial
680.1.k.d yes 1 680.k odd 2 1 CM
2720.1.k.a 1 4.b odd 2 1
2720.1.k.a 1 680.h even 2 1
2720.1.k.b 1 8.b even 2 1
2720.1.k.b 1 340.d odd 2 1
2720.1.k.c 1 20.d odd 2 1
2720.1.k.c 1 136.h even 2 1
2720.1.k.d 1 40.f even 2 1
2720.1.k.d 1 68.d odd 2 1
3400.1.g.d 2 40.k even 4 2
3400.1.g.d 2 85.g odd 4 2
3400.1.g.e 2 5.c odd 4 2
3400.1.g.e 2 680.u even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(680, [\chi])\):

\( T_{3} - 1 \) Copy content Toggle raw display
\( T_{13} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T + 1 \) Copy content Toggle raw display
$19$ \( T + 1 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T - 1 \) Copy content Toggle raw display
$31$ \( T - 1 \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T + 1 \) Copy content Toggle raw display
$53$ \( T + 1 \) Copy content Toggle raw display
$59$ \( T + 1 \) Copy content Toggle raw display
$61$ \( T - 1 \) Copy content Toggle raw display
$67$ \( T \) Copy content Toggle raw display
$71$ \( T - 1 \) Copy content Toggle raw display
$73$ \( T - 1 \) Copy content Toggle raw display
$79$ \( T + 2 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T + 1 \) Copy content Toggle raw display
$97$ \( T - 1 \) Copy content Toggle raw display
show more
show less