Properties

Label 680.1.k
Level $680$
Weight $1$
Character orbit 680.k
Rep. character $\chi_{680}(339,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $5$
Sturm bound $108$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 680.k (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 680 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(108\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(680, [\chi])\).

Total New Old
Modular forms 12 12 0
Cusp forms 8 8 0
Eisenstein series 4 4 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 8 0 0 0

Trace form

\( 8 q - 4 q^{9} + 8 q^{16} - 4 q^{19} + 4 q^{25} - 4 q^{26} - 4 q^{30} + 4 q^{34} - 4 q^{35} + 4 q^{36} - 4 q^{50} - 4 q^{51} + 4 q^{59} - 4 q^{70} - 4 q^{76} - 4 q^{89} - 4 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(680, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
680.1.k.a 680.k 680.k $1$ $0.339$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-170}) \) None 680.1.k.a \(-1\) \(-1\) \(-1\) \(0\) \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{8}+\cdots\)
680.1.k.b 680.k 680.k $1$ $0.339$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-170}) \) None 680.1.k.a \(-1\) \(1\) \(1\) \(0\) \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}-q^{8}+\cdots\)
680.1.k.c 680.k 680.k $1$ $0.339$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-170}) \) None 680.1.k.a \(1\) \(-1\) \(1\) \(0\) \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{8}+\cdots\)
680.1.k.d 680.k 680.k $1$ $0.339$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-170}) \) None 680.1.k.a \(1\) \(1\) \(-1\) \(0\) \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{8}+\cdots\)
680.1.k.e 680.k 680.k $4$ $0.339$ \(\Q(\zeta_{8})\) $D_{4}$ \(\Q(\sqrt{-34}) \) None 680.1.k.e \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{8}^{2}q^{2}-q^{4}-\zeta_{8}q^{5}+(-\zeta_{8}-\zeta_{8}^{3}+\cdots)q^{7}+\cdots\)