Defining parameters
Level: | \( N \) | \(=\) | \( 680 = 2^{3} \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 680.k (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 680 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(108\) | ||
Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(680, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 12 | 12 | 0 |
Cusp forms | 8 | 8 | 0 |
Eisenstein series | 4 | 4 | 0 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 8 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(680, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
680.1.k.a | $1$ | $0.339$ | \(\Q\) | $D_{3}$ | \(\Q(\sqrt{-170}) \) | None | \(-1\) | \(-1\) | \(-1\) | \(0\) | \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-q^{8}+\cdots\) |
680.1.k.b | $1$ | $0.339$ | \(\Q\) | $D_{3}$ | \(\Q(\sqrt{-170}) \) | None | \(-1\) | \(1\) | \(1\) | \(0\) | \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}-q^{8}+\cdots\) |
680.1.k.c | $1$ | $0.339$ | \(\Q\) | $D_{3}$ | \(\Q(\sqrt{-170}) \) | None | \(1\) | \(-1\) | \(1\) | \(0\) | \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+q^{8}+\cdots\) |
680.1.k.d | $1$ | $0.339$ | \(\Q\) | $D_{3}$ | \(\Q(\sqrt{-170}) \) | None | \(1\) | \(1\) | \(-1\) | \(0\) | \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+q^{8}+\cdots\) |
680.1.k.e | $4$ | $0.339$ | \(\Q(\zeta_{8})\) | $D_{4}$ | \(\Q(\sqrt{-34}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{8}^{2}q^{2}-q^{4}-\zeta_{8}q^{5}+(-\zeta_{8}-\zeta_{8}^{3}+\cdots)q^{7}+\cdots\) |