Properties

Label 676.4.e.h.653.2
Level $676$
Weight $4$
Character 676.653
Analytic conductor $39.885$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [676,4,Mod(529,676)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("676.529"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(676, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 676 = 2^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 676.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.8852911639\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 102 x^{14} + 7641 x^{12} - 240214 x^{10} + 5505396 x^{8} - 56148534 x^{6} + 414761593 x^{4} + \cdots + 43046721 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{6} \)
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 653.2
Root \(-3.01134 + 1.73860i\) of defining polynomial
Character \(\chi\) \(=\) 676.653
Dual form 676.4.e.h.529.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.48104 - 7.76138i) q^{3} +11.8097 q^{5} +(16.0936 - 27.8750i) q^{7} +(-26.6594 + 46.1754i) q^{9} +(-6.04263 - 10.4661i) q^{11} +(-52.9195 - 91.6593i) q^{15} +(-44.8791 + 77.7328i) q^{17} +(-9.58572 + 16.6029i) q^{19} -288.465 q^{21} +(-7.88869 - 13.6636i) q^{23} +14.4680 q^{25} +235.870 q^{27} +(-131.197 - 227.240i) q^{29} +84.0297 q^{31} +(-54.1544 + 93.7982i) q^{33} +(190.060 - 329.194i) q^{35} +(-135.599 - 234.864i) q^{37} +(-82.6122 - 143.088i) q^{41} +(-135.153 + 234.092i) q^{43} +(-314.838 + 545.315i) q^{45} -238.811 q^{47} +(-346.511 - 600.174i) q^{49} +804.419 q^{51} -94.2765 q^{53} +(-71.3613 - 123.601i) q^{55} +171.816 q^{57} +(123.655 - 214.177i) q^{59} +(-101.847 + 176.404i) q^{61} +(858.092 + 1486.26i) q^{63} +(115.725 + 200.442i) q^{67} +(-70.6990 + 122.454i) q^{69} +(374.863 - 649.282i) q^{71} +153.347 q^{73} +(-64.8316 - 112.292i) q^{75} -388.991 q^{77} -881.413 q^{79} +(-337.140 - 583.944i) q^{81} -197.016 q^{83} +(-530.006 + 917.998i) q^{85} +(-1175.80 + 2036.54i) q^{87} +(695.321 + 1204.33i) q^{89} +(-376.540 - 652.186i) q^{93} +(-113.204 + 196.075i) q^{95} +(-561.433 + 972.430i) q^{97} +644.370 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 140 q^{9} - 176 q^{17} + 40 q^{23} + 168 q^{25} - 864 q^{27} - 968 q^{29} + 80 q^{35} - 1008 q^{43} - 1844 q^{49} + 3616 q^{51} - 2328 q^{53} - 2256 q^{55} - 2448 q^{61} - 3476 q^{69} - 2896 q^{75}+ \cdots - 4800 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/676\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(509\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.48104 7.76138i −0.862376 1.49368i −0.869630 0.493705i \(-0.835642\pi\)
0.00725381 0.999974i \(-0.497691\pi\)
\(4\) 0 0
\(5\) 11.8097 1.05629 0.528144 0.849155i \(-0.322888\pi\)
0.528144 + 0.849155i \(0.322888\pi\)
\(6\) 0 0
\(7\) 16.0936 27.8750i 0.868975 1.50511i 0.00592959 0.999982i \(-0.498113\pi\)
0.863045 0.505126i \(-0.168554\pi\)
\(8\) 0 0
\(9\) −26.6594 + 46.1754i −0.987384 + 1.71020i
\(10\) 0 0
\(11\) −6.04263 10.4661i −0.165629 0.286878i 0.771249 0.636533i \(-0.219632\pi\)
−0.936879 + 0.349655i \(0.886299\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −52.9195 91.6593i −0.910917 1.57775i
\(16\) 0 0
\(17\) −44.8791 + 77.7328i −0.640281 + 1.10900i 0.345089 + 0.938570i \(0.387849\pi\)
−0.985370 + 0.170429i \(0.945485\pi\)
\(18\) 0 0
\(19\) −9.58572 + 16.6029i −0.115743 + 0.200473i −0.918076 0.396403i \(-0.870258\pi\)
0.802334 + 0.596876i \(0.203592\pi\)
\(20\) 0 0
\(21\) −288.465 −2.99753
\(22\) 0 0
\(23\) −7.88869 13.6636i −0.0715176 0.123872i 0.828049 0.560656i \(-0.189451\pi\)
−0.899567 + 0.436784i \(0.856118\pi\)
\(24\) 0 0
\(25\) 14.4680 0.115744
\(26\) 0 0
\(27\) 235.870 1.68123
\(28\) 0 0
\(29\) −131.197 227.240i −0.840093 1.45508i −0.889815 0.456321i \(-0.849167\pi\)
0.0497219 0.998763i \(-0.484166\pi\)
\(30\) 0 0
\(31\) 84.0297 0.486844 0.243422 0.969920i \(-0.421730\pi\)
0.243422 + 0.969920i \(0.421730\pi\)
\(32\) 0 0
\(33\) −54.1544 + 93.7982i −0.285669 + 0.494793i
\(34\) 0 0
\(35\) 190.060 329.194i 0.917888 1.58983i
\(36\) 0 0
\(37\) −135.599 234.864i −0.602495 1.04355i −0.992442 0.122714i \(-0.960840\pi\)
0.389947 0.920837i \(-0.372493\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −82.6122 143.088i −0.314679 0.545041i 0.664690 0.747119i \(-0.268564\pi\)
−0.979369 + 0.202079i \(0.935230\pi\)
\(42\) 0 0
\(43\) −135.153 + 234.092i −0.479318 + 0.830204i −0.999719 0.0237186i \(-0.992449\pi\)
0.520400 + 0.853922i \(0.325783\pi\)
\(44\) 0 0
\(45\) −314.838 + 545.315i −1.04296 + 1.80646i
\(46\) 0 0
\(47\) −238.811 −0.741153 −0.370577 0.928802i \(-0.620840\pi\)
−0.370577 + 0.928802i \(0.620840\pi\)
\(48\) 0 0
\(49\) −346.511 600.174i −1.01024 1.74978i
\(50\) 0 0
\(51\) 804.419 2.20865
\(52\) 0 0
\(53\) −94.2765 −0.244337 −0.122169 0.992509i \(-0.538985\pi\)
−0.122169 + 0.992509i \(0.538985\pi\)
\(54\) 0 0
\(55\) −71.3613 123.601i −0.174952 0.303026i
\(56\) 0 0
\(57\) 171.816 0.399255
\(58\) 0 0
\(59\) 123.655 214.177i 0.272856 0.472601i −0.696736 0.717328i \(-0.745365\pi\)
0.969592 + 0.244727i \(0.0786983\pi\)
\(60\) 0 0
\(61\) −101.847 + 176.404i −0.213774 + 0.370267i −0.952893 0.303308i \(-0.901909\pi\)
0.739119 + 0.673575i \(0.235242\pi\)
\(62\) 0 0
\(63\) 858.092 + 1486.26i 1.71602 + 2.97224i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 115.725 + 200.442i 0.211016 + 0.365491i 0.952033 0.305996i \(-0.0989893\pi\)
−0.741016 + 0.671487i \(0.765656\pi\)
\(68\) 0 0
\(69\) −70.6990 + 122.454i −0.123350 + 0.213649i
\(70\) 0 0
\(71\) 374.863 649.282i 0.626593 1.08529i −0.361638 0.932319i \(-0.617782\pi\)
0.988231 0.152972i \(-0.0488844\pi\)
\(72\) 0 0
\(73\) 153.347 0.245862 0.122931 0.992415i \(-0.460771\pi\)
0.122931 + 0.992415i \(0.460771\pi\)
\(74\) 0 0
\(75\) −64.8316 112.292i −0.0998148 0.172884i
\(76\) 0 0
\(77\) −388.991 −0.575710
\(78\) 0 0
\(79\) −881.413 −1.25527 −0.627637 0.778506i \(-0.715978\pi\)
−0.627637 + 0.778506i \(0.715978\pi\)
\(80\) 0 0
\(81\) −337.140 583.944i −0.462470 0.801021i
\(82\) 0 0
\(83\) −197.016 −0.260546 −0.130273 0.991478i \(-0.541585\pi\)
−0.130273 + 0.991478i \(0.541585\pi\)
\(84\) 0 0
\(85\) −530.006 + 917.998i −0.676321 + 1.17142i
\(86\) 0 0
\(87\) −1175.80 + 2036.54i −1.44895 + 2.50966i
\(88\) 0 0
\(89\) 695.321 + 1204.33i 0.828133 + 1.43437i 0.899501 + 0.436918i \(0.143930\pi\)
−0.0713683 + 0.997450i \(0.522737\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −376.540 652.186i −0.419843 0.727189i
\(94\) 0 0
\(95\) −113.204 + 196.075i −0.122258 + 0.211757i
\(96\) 0 0
\(97\) −561.433 + 972.430i −0.587679 + 1.01789i 0.406857 + 0.913492i \(0.366625\pi\)
−0.994536 + 0.104398i \(0.966709\pi\)
\(98\) 0 0
\(99\) 644.370 0.654158
\(100\) 0 0
\(101\) 596.702 + 1033.52i 0.587862 + 1.01821i 0.994512 + 0.104623i \(0.0333636\pi\)
−0.406650 + 0.913584i \(0.633303\pi\)
\(102\) 0 0
\(103\) −1367.61 −1.30830 −0.654149 0.756366i \(-0.726973\pi\)
−0.654149 + 0.756366i \(0.726973\pi\)
\(104\) 0 0
\(105\) −3406.67 −3.16626
\(106\) 0 0
\(107\) −868.434 1504.17i −0.784623 1.35901i −0.929224 0.369517i \(-0.879523\pi\)
0.144601 0.989490i \(-0.453810\pi\)
\(108\) 0 0
\(109\) −946.465 −0.831697 −0.415848 0.909434i \(-0.636515\pi\)
−0.415848 + 0.909434i \(0.636515\pi\)
\(110\) 0 0
\(111\) −1215.25 + 2104.87i −1.03915 + 1.79987i
\(112\) 0 0
\(113\) 485.712 841.279i 0.404354 0.700361i −0.589892 0.807482i \(-0.700830\pi\)
0.994246 + 0.107121i \(0.0341631\pi\)
\(114\) 0 0
\(115\) −93.1627 161.362i −0.0755432 0.130845i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1444.54 + 2502.01i 1.11278 + 1.92738i
\(120\) 0 0
\(121\) 592.473 1026.19i 0.445134 0.770995i
\(122\) 0 0
\(123\) −740.376 + 1282.37i −0.542744 + 0.940060i
\(124\) 0 0
\(125\) −1305.35 −0.934029
\(126\) 0 0
\(127\) 801.930 + 1388.98i 0.560313 + 0.970491i 0.997469 + 0.0711048i \(0.0226525\pi\)
−0.437156 + 0.899386i \(0.644014\pi\)
\(128\) 0 0
\(129\) 2422.51 1.65341
\(130\) 0 0
\(131\) 1677.20 1.11861 0.559305 0.828962i \(-0.311068\pi\)
0.559305 + 0.828962i \(0.311068\pi\)
\(132\) 0 0
\(133\) 308.538 + 534.404i 0.201155 + 0.348411i
\(134\) 0 0
\(135\) 2785.55 1.77586
\(136\) 0 0
\(137\) −292.032 + 505.815i −0.182117 + 0.315436i −0.942601 0.333921i \(-0.891628\pi\)
0.760484 + 0.649356i \(0.224962\pi\)
\(138\) 0 0
\(139\) −78.3050 + 135.628i −0.0477823 + 0.0827614i −0.888927 0.458048i \(-0.848549\pi\)
0.841145 + 0.540810i \(0.181882\pi\)
\(140\) 0 0
\(141\) 1070.12 + 1853.51i 0.639153 + 1.10704i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −1549.39 2683.63i −0.887380 1.53699i
\(146\) 0 0
\(147\) −3105.45 + 5378.80i −1.74240 + 3.01793i
\(148\) 0 0
\(149\) −593.508 + 1027.99i −0.326322 + 0.565207i −0.981779 0.190026i \(-0.939143\pi\)
0.655457 + 0.755233i \(0.272476\pi\)
\(150\) 0 0
\(151\) 2022.29 1.08988 0.544939 0.838476i \(-0.316553\pi\)
0.544939 + 0.838476i \(0.316553\pi\)
\(152\) 0 0
\(153\) −2392.89 4144.62i −1.26441 2.19001i
\(154\) 0 0
\(155\) 992.361 0.514248
\(156\) 0 0
\(157\) 1429.86 0.726848 0.363424 0.931624i \(-0.381608\pi\)
0.363424 + 0.931624i \(0.381608\pi\)
\(158\) 0 0
\(159\) 422.457 + 731.716i 0.210711 + 0.364961i
\(160\) 0 0
\(161\) −507.831 −0.248588
\(162\) 0 0
\(163\) 555.347 961.889i 0.266860 0.462215i −0.701189 0.712975i \(-0.747347\pi\)
0.968049 + 0.250760i \(0.0806806\pi\)
\(164\) 0 0
\(165\) −639.545 + 1107.73i −0.301749 + 0.522644i
\(166\) 0 0
\(167\) −142.185 246.272i −0.0658841 0.114115i 0.831202 0.555971i \(-0.187653\pi\)
−0.897086 + 0.441856i \(0.854320\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −511.098 885.248i −0.228565 0.395887i
\(172\) 0 0
\(173\) 2170.41 3759.26i 0.953834 1.65209i 0.216820 0.976212i \(-0.430431\pi\)
0.737014 0.675878i \(-0.236235\pi\)
\(174\) 0 0
\(175\) 232.843 403.295i 0.100579 0.174207i
\(176\) 0 0
\(177\) −2216.41 −0.941219
\(178\) 0 0
\(179\) −325.394 563.599i −0.135872 0.235337i 0.790058 0.613032i \(-0.210050\pi\)
−0.925930 + 0.377694i \(0.876717\pi\)
\(180\) 0 0
\(181\) −454.138 −0.186496 −0.0932482 0.995643i \(-0.529725\pi\)
−0.0932482 + 0.995643i \(0.529725\pi\)
\(182\) 0 0
\(183\) 1825.52 0.737413
\(184\) 0 0
\(185\) −1601.38 2773.66i −0.636408 1.10229i
\(186\) 0 0
\(187\) 1084.75 0.424197
\(188\) 0 0
\(189\) 3796.01 6574.88i 1.46095 2.53044i
\(190\) 0 0
\(191\) 1407.63 2438.09i 0.533259 0.923633i −0.465986 0.884792i \(-0.654300\pi\)
0.999245 0.0388404i \(-0.0123664\pi\)
\(192\) 0 0
\(193\) −576.786 999.023i −0.215119 0.372597i 0.738190 0.674593i \(-0.235681\pi\)
−0.953309 + 0.301995i \(0.902347\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 203.329 + 352.175i 0.0735359 + 0.127368i 0.900449 0.434962i \(-0.143238\pi\)
−0.826913 + 0.562330i \(0.809905\pi\)
\(198\) 0 0
\(199\) 404.699 700.960i 0.144163 0.249697i −0.784898 0.619626i \(-0.787284\pi\)
0.929060 + 0.369929i \(0.120618\pi\)
\(200\) 0 0
\(201\) 1037.14 1796.38i 0.363951 0.630381i
\(202\) 0 0
\(203\) −8445.76 −2.92008
\(204\) 0 0
\(205\) −975.621 1689.83i −0.332392 0.575720i
\(206\) 0 0
\(207\) 841.229 0.282461
\(208\) 0 0
\(209\) 231.692 0.0766815
\(210\) 0 0
\(211\) −1800.27 3118.16i −0.587373 1.01736i −0.994575 0.104021i \(-0.966829\pi\)
0.407202 0.913338i \(-0.366504\pi\)
\(212\) 0 0
\(213\) −6719.10 −2.16143
\(214\) 0 0
\(215\) −1596.11 + 2764.55i −0.506298 + 0.876934i
\(216\) 0 0
\(217\) 1352.34 2342.33i 0.423055 0.732754i
\(218\) 0 0
\(219\) −687.155 1190.19i −0.212026 0.367239i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −1305.40 2261.02i −0.392000 0.678964i 0.600713 0.799465i \(-0.294883\pi\)
−0.992713 + 0.120501i \(0.961550\pi\)
\(224\) 0 0
\(225\) −385.708 + 668.065i −0.114284 + 0.197945i
\(226\) 0 0
\(227\) 2330.43 4036.43i 0.681394 1.18021i −0.293162 0.956063i \(-0.594708\pi\)
0.974556 0.224145i \(-0.0719591\pi\)
\(228\) 0 0
\(229\) −123.893 −0.0357515 −0.0178757 0.999840i \(-0.505690\pi\)
−0.0178757 + 0.999840i \(0.505690\pi\)
\(230\) 0 0
\(231\) 1743.08 + 3019.11i 0.496478 + 0.859926i
\(232\) 0 0
\(233\) 1186.44 0.333590 0.166795 0.985992i \(-0.446658\pi\)
0.166795 + 0.985992i \(0.446658\pi\)
\(234\) 0 0
\(235\) −2820.28 −0.782871
\(236\) 0 0
\(237\) 3949.64 + 6840.98i 1.08252 + 1.87498i
\(238\) 0 0
\(239\) 4543.56 1.22970 0.614850 0.788644i \(-0.289217\pi\)
0.614850 + 0.788644i \(0.289217\pi\)
\(240\) 0 0
\(241\) −3142.08 + 5442.24i −0.839831 + 1.45463i 0.0502054 + 0.998739i \(0.484012\pi\)
−0.890036 + 0.455890i \(0.849321\pi\)
\(242\) 0 0
\(243\) 162.773 281.931i 0.0429707 0.0744275i
\(244\) 0 0
\(245\) −4092.17 7087.85i −1.06710 1.84827i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 882.836 + 1529.12i 0.224689 + 0.389172i
\(250\) 0 0
\(251\) −462.404 + 800.908i −0.116282 + 0.201406i −0.918291 0.395905i \(-0.870431\pi\)
0.802010 + 0.597311i \(0.203764\pi\)
\(252\) 0 0
\(253\) −95.3368 + 165.128i −0.0236908 + 0.0410337i
\(254\) 0 0
\(255\) 9499.91 2.33297
\(256\) 0 0
\(257\) 271.205 + 469.741i 0.0658261 + 0.114014i 0.897060 0.441908i \(-0.145698\pi\)
−0.831234 + 0.555923i \(0.812365\pi\)
\(258\) 0 0
\(259\) −8729.11 −2.09421
\(260\) 0 0
\(261\) 13990.5 3.31798
\(262\) 0 0
\(263\) 2624.40 + 4545.59i 0.615312 + 1.06575i 0.990330 + 0.138734i \(0.0443034\pi\)
−0.375017 + 0.927018i \(0.622363\pi\)
\(264\) 0 0
\(265\) −1113.37 −0.258091
\(266\) 0 0
\(267\) 6231.51 10793.3i 1.42832 2.47393i
\(268\) 0 0
\(269\) 165.080 285.927i 0.0374168 0.0648078i −0.846711 0.532054i \(-0.821420\pi\)
0.884127 + 0.467246i \(0.154754\pi\)
\(270\) 0 0
\(271\) −716.940 1241.78i −0.160705 0.278349i 0.774417 0.632676i \(-0.218043\pi\)
−0.935122 + 0.354327i \(0.884710\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −87.4247 151.424i −0.0191706 0.0332044i
\(276\) 0 0
\(277\) 1070.54 1854.22i 0.232211 0.402200i −0.726248 0.687433i \(-0.758738\pi\)
0.958458 + 0.285233i \(0.0920708\pi\)
\(278\) 0 0
\(279\) −2240.18 + 3880.10i −0.480702 + 0.832600i
\(280\) 0 0
\(281\) 5857.04 1.24342 0.621711 0.783246i \(-0.286438\pi\)
0.621711 + 0.783246i \(0.286438\pi\)
\(282\) 0 0
\(283\) 853.748 + 1478.73i 0.179329 + 0.310606i 0.941651 0.336591i \(-0.109274\pi\)
−0.762322 + 0.647198i \(0.775941\pi\)
\(284\) 0 0
\(285\) 2029.09 0.421729
\(286\) 0 0
\(287\) −5318.12 −1.09379
\(288\) 0 0
\(289\) −1571.76 2722.37i −0.319919 0.554116i
\(290\) 0 0
\(291\) 10063.2 2.02720
\(292\) 0 0
\(293\) −891.643 + 1544.37i −0.177783 + 0.307929i −0.941121 0.338071i \(-0.890226\pi\)
0.763338 + 0.645999i \(0.223559\pi\)
\(294\) 0 0
\(295\) 1460.32 2529.36i 0.288215 0.499203i
\(296\) 0 0
\(297\) −1425.28 2468.65i −0.278461 0.482308i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 4350.22 + 7534.80i 0.833032 + 1.44285i
\(302\) 0 0
\(303\) 5347.69 9262.47i 1.01392 1.75615i
\(304\) 0 0
\(305\) −1202.78 + 2083.28i −0.225807 + 0.391108i
\(306\) 0 0
\(307\) 4027.85 0.748801 0.374400 0.927267i \(-0.377849\pi\)
0.374400 + 0.927267i \(0.377849\pi\)
\(308\) 0 0
\(309\) 6128.31 + 10614.5i 1.12824 + 1.95418i
\(310\) 0 0
\(311\) 80.6308 0.0147014 0.00735072 0.999973i \(-0.497660\pi\)
0.00735072 + 0.999973i \(0.497660\pi\)
\(312\) 0 0
\(313\) −4628.22 −0.835790 −0.417895 0.908495i \(-0.637232\pi\)
−0.417895 + 0.908495i \(0.637232\pi\)
\(314\) 0 0
\(315\) 10133.8 + 17552.2i 1.81261 + 3.13954i
\(316\) 0 0
\(317\) −10723.3 −1.89993 −0.949966 0.312354i \(-0.898882\pi\)
−0.949966 + 0.312354i \(0.898882\pi\)
\(318\) 0 0
\(319\) −1585.55 + 2746.25i −0.278288 + 0.482009i
\(320\) 0 0
\(321\) −7782.97 + 13480.5i −1.35328 + 2.34395i
\(322\) 0 0
\(323\) −860.396 1490.25i −0.148216 0.256717i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 4241.15 + 7345.88i 0.717235 + 1.24229i
\(328\) 0 0
\(329\) −3843.34 + 6656.87i −0.644044 + 1.11552i
\(330\) 0 0
\(331\) 2596.26 4496.86i 0.431128 0.746736i −0.565843 0.824513i \(-0.691449\pi\)
0.996971 + 0.0777775i \(0.0247824\pi\)
\(332\) 0 0
\(333\) 14459.9 2.37957
\(334\) 0 0
\(335\) 1366.68 + 2367.15i 0.222894 + 0.386064i
\(336\) 0 0
\(337\) −2676.49 −0.432635 −0.216317 0.976323i \(-0.569405\pi\)
−0.216317 + 0.976323i \(0.569405\pi\)
\(338\) 0 0
\(339\) −8705.98 −1.39482
\(340\) 0 0
\(341\) −507.760 879.466i −0.0806356 0.139665i
\(342\) 0 0
\(343\) −11266.2 −1.77353
\(344\) 0 0
\(345\) −834.931 + 1446.14i −0.130293 + 0.225674i
\(346\) 0 0
\(347\) 4924.23 8529.02i 0.761806 1.31949i −0.180113 0.983646i \(-0.557646\pi\)
0.941919 0.335840i \(-0.109020\pi\)
\(348\) 0 0
\(349\) −3255.67 5638.99i −0.499347 0.864894i 0.500653 0.865648i \(-0.333093\pi\)
−1.00000 0.000754175i \(0.999760\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −5548.23 9609.82i −0.836552 1.44895i −0.892761 0.450531i \(-0.851235\pi\)
0.0562092 0.998419i \(-0.482099\pi\)
\(354\) 0 0
\(355\) 4427.01 7667.80i 0.661862 1.14638i
\(356\) 0 0
\(357\) 12946.0 22423.2i 1.91926 3.32426i
\(358\) 0 0
\(359\) −7844.27 −1.15322 −0.576608 0.817021i \(-0.695624\pi\)
−0.576608 + 0.817021i \(0.695624\pi\)
\(360\) 0 0
\(361\) 3245.73 + 5621.77i 0.473207 + 0.819619i
\(362\) 0 0
\(363\) −10619.6 −1.53549
\(364\) 0 0
\(365\) 1810.98 0.259701
\(366\) 0 0
\(367\) −1637.80 2836.75i −0.232949 0.403479i 0.725726 0.687984i \(-0.241504\pi\)
−0.958675 + 0.284505i \(0.908171\pi\)
\(368\) 0 0
\(369\) 8809.55 1.24284
\(370\) 0 0
\(371\) −1517.25 + 2627.96i −0.212323 + 0.367754i
\(372\) 0 0
\(373\) 812.650 1407.55i 0.112808 0.195389i −0.804093 0.594503i \(-0.797349\pi\)
0.916901 + 0.399114i \(0.130682\pi\)
\(374\) 0 0
\(375\) 5849.30 + 10131.3i 0.805484 + 1.39514i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 6459.52 + 11188.2i 0.875470 + 1.51636i 0.856262 + 0.516542i \(0.172781\pi\)
0.0192081 + 0.999816i \(0.493885\pi\)
\(380\) 0 0
\(381\) 7186.95 12448.2i 0.966401 1.67386i
\(382\) 0 0
\(383\) −2482.96 + 4300.61i −0.331261 + 0.573762i −0.982759 0.184889i \(-0.940808\pi\)
0.651498 + 0.758650i \(0.274141\pi\)
\(384\) 0 0
\(385\) −4593.86 −0.608116
\(386\) 0 0
\(387\) −7206.20 12481.5i −0.946543 1.63946i
\(388\) 0 0
\(389\) −8704.29 −1.13451 −0.567256 0.823542i \(-0.691995\pi\)
−0.567256 + 0.823542i \(0.691995\pi\)
\(390\) 0 0
\(391\) 1416.15 0.183165
\(392\) 0 0
\(393\) −7515.61 13017.4i −0.964662 1.67084i
\(394\) 0 0
\(395\) −10409.2 −1.32593
\(396\) 0 0
\(397\) 2197.12 3805.52i 0.277759 0.481092i −0.693069 0.720871i \(-0.743742\pi\)
0.970827 + 0.239779i \(0.0770751\pi\)
\(398\) 0 0
\(399\) 2765.14 4789.36i 0.346943 0.600923i
\(400\) 0 0
\(401\) −1624.85 2814.32i −0.202347 0.350475i 0.746937 0.664894i \(-0.231524\pi\)
−0.949284 + 0.314419i \(0.898190\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −3981.51 6896.18i −0.488501 0.846109i
\(406\) 0 0
\(407\) −1638.75 + 2838.39i −0.199581 + 0.345685i
\(408\) 0 0
\(409\) 3282.71 5685.82i 0.396870 0.687398i −0.596468 0.802637i \(-0.703430\pi\)
0.993338 + 0.115238i \(0.0367632\pi\)
\(410\) 0 0
\(411\) 5234.43 0.628213
\(412\) 0 0
\(413\) −3980.12 6893.77i −0.474211 0.821357i
\(414\) 0 0
\(415\) −2326.69 −0.275212
\(416\) 0 0
\(417\) 1403.55 0.164825
\(418\) 0 0
\(419\) 5682.35 + 9842.12i 0.662532 + 1.14754i 0.979948 + 0.199253i \(0.0638516\pi\)
−0.317416 + 0.948286i \(0.602815\pi\)
\(420\) 0 0
\(421\) 3657.27 0.423383 0.211692 0.977337i \(-0.432103\pi\)
0.211692 + 0.977337i \(0.432103\pi\)
\(422\) 0 0
\(423\) 6366.56 11027.2i 0.731803 1.26752i
\(424\) 0 0
\(425\) −649.310 + 1124.64i −0.0741086 + 0.128360i
\(426\) 0 0
\(427\) 3278.18 + 5677.98i 0.371528 + 0.643505i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6683.84 11576.7i −0.746982 1.29381i −0.949263 0.314483i \(-0.898169\pi\)
0.202281 0.979328i \(-0.435165\pi\)
\(432\) 0 0
\(433\) −3031.38 + 5250.50i −0.336440 + 0.582731i −0.983760 0.179487i \(-0.942556\pi\)
0.647320 + 0.762218i \(0.275890\pi\)
\(434\) 0 0
\(435\) −13885.8 + 24050.9i −1.53051 + 2.65092i
\(436\) 0 0
\(437\) 302.475 0.0331106
\(438\) 0 0
\(439\) 855.711 + 1482.13i 0.0930315 + 0.161135i 0.908785 0.417264i \(-0.137011\pi\)
−0.815754 + 0.578399i \(0.803678\pi\)
\(440\) 0 0
\(441\) 36951.0 3.98996
\(442\) 0 0
\(443\) 14253.1 1.52864 0.764320 0.644837i \(-0.223075\pi\)
0.764320 + 0.644837i \(0.223075\pi\)
\(444\) 0 0
\(445\) 8211.50 + 14222.7i 0.874747 + 1.51511i
\(446\) 0 0
\(447\) 10638.1 1.12565
\(448\) 0 0
\(449\) 1766.25 3059.23i 0.185644 0.321546i −0.758149 0.652081i \(-0.773896\pi\)
0.943793 + 0.330536i \(0.107229\pi\)
\(450\) 0 0
\(451\) −998.389 + 1729.26i −0.104240 + 0.180549i
\(452\) 0 0
\(453\) −9061.95 15695.8i −0.939884 1.62793i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2793.74 + 4838.91i 0.285965 + 0.495305i 0.972843 0.231468i \(-0.0743527\pi\)
−0.686878 + 0.726773i \(0.741019\pi\)
\(458\) 0 0
\(459\) −10585.6 + 18334.9i −1.07646 + 1.86448i
\(460\) 0 0
\(461\) 1344.09 2328.04i 0.135793 0.235201i −0.790107 0.612969i \(-0.789975\pi\)
0.925900 + 0.377768i \(0.123308\pi\)
\(462\) 0 0
\(463\) −19314.2 −1.93868 −0.969340 0.245723i \(-0.920975\pi\)
−0.969340 + 0.245723i \(0.920975\pi\)
\(464\) 0 0
\(465\) −4446.81 7702.10i −0.443475 0.768121i
\(466\) 0 0
\(467\) 5482.16 0.543221 0.271611 0.962407i \(-0.412444\pi\)
0.271611 + 0.962407i \(0.412444\pi\)
\(468\) 0 0
\(469\) 7449.77 0.733472
\(470\) 0 0
\(471\) −6407.25 11097.7i −0.626816 1.08568i
\(472\) 0 0
\(473\) 3266.72 0.317556
\(474\) 0 0
\(475\) −138.686 + 240.211i −0.0133965 + 0.0232035i
\(476\) 0 0
\(477\) 2513.35 4353.25i 0.241255 0.417865i
\(478\) 0 0
\(479\) −2534.27 4389.48i −0.241740 0.418707i 0.719470 0.694524i \(-0.244385\pi\)
−0.961210 + 0.275817i \(0.911052\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 2275.61 + 3941.47i 0.214376 + 0.371311i
\(484\) 0 0
\(485\) −6630.33 + 11484.1i −0.620758 + 1.07518i
\(486\) 0 0
\(487\) −6816.65 + 11806.8i −0.634275 + 1.09860i 0.352393 + 0.935852i \(0.385368\pi\)
−0.986668 + 0.162744i \(0.947965\pi\)
\(488\) 0 0
\(489\) −9954.12 −0.920533
\(490\) 0 0
\(491\) −332.094 575.204i −0.0305238 0.0528688i 0.850360 0.526201i \(-0.176384\pi\)
−0.880884 + 0.473333i \(0.843051\pi\)
\(492\) 0 0
\(493\) 23552.0 2.15158
\(494\) 0 0
\(495\) 7609.79 0.690979
\(496\) 0 0
\(497\) −12065.8 20898.6i −1.08899 1.88618i
\(498\) 0 0
\(499\) 14754.0 1.32361 0.661805 0.749676i \(-0.269791\pi\)
0.661805 + 0.749676i \(0.269791\pi\)
\(500\) 0 0
\(501\) −1274.28 + 2207.11i −0.113634 + 0.196819i
\(502\) 0 0
\(503\) 2641.84 4575.80i 0.234182 0.405616i −0.724852 0.688904i \(-0.758092\pi\)
0.959035 + 0.283288i \(0.0914253\pi\)
\(504\) 0 0
\(505\) 7046.85 + 12205.5i 0.620952 + 1.07552i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −3800.32 6582.35i −0.330936 0.573197i 0.651760 0.758425i \(-0.274031\pi\)
−0.982696 + 0.185228i \(0.940698\pi\)
\(510\) 0 0
\(511\) 2467.92 4274.56i 0.213648 0.370050i
\(512\) 0 0
\(513\) −2260.99 + 3916.14i −0.194591 + 0.337041i
\(514\) 0 0
\(515\) −16151.0 −1.38194
\(516\) 0 0
\(517\) 1443.05 + 2499.43i 0.122757 + 0.212621i
\(518\) 0 0
\(519\) −38902.8 −3.29025
\(520\) 0 0
\(521\) 10834.5 0.911074 0.455537 0.890217i \(-0.349447\pi\)
0.455537 + 0.890217i \(0.349447\pi\)
\(522\) 0 0
\(523\) −4518.24 7825.83i −0.377761 0.654301i 0.612975 0.790102i \(-0.289973\pi\)
−0.990736 + 0.135801i \(0.956639\pi\)
\(524\) 0 0
\(525\) −4173.51 −0.346946
\(526\) 0 0
\(527\) −3771.17 + 6531.86i −0.311717 + 0.539910i
\(528\) 0 0
\(529\) 5959.04 10321.4i 0.489770 0.848307i
\(530\) 0 0
\(531\) 6593.13 + 11419.6i 0.538828 + 0.933277i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −10255.9 17763.7i −0.828788 1.43550i
\(536\) 0 0
\(537\) −2916.21 + 5051.02i −0.234346 + 0.405899i
\(538\) 0 0
\(539\) −4187.67 + 7253.25i −0.334649 + 0.579628i
\(540\) 0 0
\(541\) 8389.76 0.666735 0.333368 0.942797i \(-0.391815\pi\)
0.333368 + 0.942797i \(0.391815\pi\)
\(542\) 0 0
\(543\) 2035.01 + 3524.74i 0.160830 + 0.278566i
\(544\) 0 0
\(545\) −11177.4 −0.878511
\(546\) 0 0
\(547\) −23840.9 −1.86355 −0.931777 0.363032i \(-0.881742\pi\)
−0.931777 + 0.363032i \(0.881742\pi\)
\(548\) 0 0
\(549\) −5430.36 9405.66i −0.422153 0.731191i
\(550\) 0 0
\(551\) 5030.48 0.388939
\(552\) 0 0
\(553\) −14185.1 + 24569.4i −1.09080 + 1.88933i
\(554\) 0 0
\(555\) −14351.6 + 24857.8i −1.09765 + 1.90118i
\(556\) 0 0
\(557\) −9409.46 16297.7i −0.715784 1.23977i −0.962657 0.270726i \(-0.912736\pi\)
0.246873 0.969048i \(-0.420597\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −4860.80 8419.16i −0.365817 0.633613i
\(562\) 0 0
\(563\) 4276.04 7406.32i 0.320095 0.554421i −0.660412 0.750903i \(-0.729618\pi\)
0.980507 + 0.196482i \(0.0629517\pi\)
\(564\) 0 0
\(565\) 5736.10 9935.21i 0.427114 0.739783i
\(566\) 0 0
\(567\) −21703.3 −1.60750
\(568\) 0 0
\(569\) −13111.9 22710.4i −0.966041 1.67323i −0.706792 0.707422i \(-0.749858\pi\)
−0.259250 0.965810i \(-0.583475\pi\)
\(570\) 0 0
\(571\) 3528.25 0.258586 0.129293 0.991606i \(-0.458729\pi\)
0.129293 + 0.991606i \(0.458729\pi\)
\(572\) 0 0
\(573\) −25230.6 −1.83948
\(574\) 0 0
\(575\) −114.133 197.685i −0.00827773 0.0143375i
\(576\) 0 0
\(577\) −26672.4 −1.92441 −0.962206 0.272322i \(-0.912208\pi\)
−0.962206 + 0.272322i \(0.912208\pi\)
\(578\) 0 0
\(579\) −5169.20 + 8953.32i −0.371027 + 0.642638i
\(580\) 0 0
\(581\) −3170.71 + 5491.83i −0.226408 + 0.392150i
\(582\) 0 0
\(583\) 569.678 + 986.711i 0.0404694 + 0.0700950i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2319.24 4017.05i −0.163076 0.282455i 0.772895 0.634534i \(-0.218808\pi\)
−0.935970 + 0.352079i \(0.885475\pi\)
\(588\) 0 0
\(589\) −805.484 + 1395.14i −0.0563487 + 0.0975989i
\(590\) 0 0
\(591\) 1822.25 3156.22i 0.126831 0.219678i
\(592\) 0 0
\(593\) −5932.05 −0.410793 −0.205396 0.978679i \(-0.565848\pi\)
−0.205396 + 0.978679i \(0.565848\pi\)
\(594\) 0 0
\(595\) 17059.5 + 29547.9i 1.17541 + 2.03587i
\(596\) 0 0
\(597\) −7253.89 −0.497289
\(598\) 0 0
\(599\) −8927.94 −0.608991 −0.304496 0.952514i \(-0.598488\pi\)
−0.304496 + 0.952514i \(0.598488\pi\)
\(600\) 0 0
\(601\) −5217.26 9036.57i −0.354104 0.613327i 0.632860 0.774266i \(-0.281881\pi\)
−0.986964 + 0.160940i \(0.948548\pi\)
\(602\) 0 0
\(603\) −12340.7 −0.833417
\(604\) 0 0
\(605\) 6996.91 12119.0i 0.470190 0.814392i
\(606\) 0 0
\(607\) −4468.87 + 7740.30i −0.298823 + 0.517577i −0.975867 0.218366i \(-0.929927\pi\)
0.677044 + 0.735943i \(0.263261\pi\)
\(608\) 0 0
\(609\) 37845.8 + 65550.8i 2.51821 + 4.36166i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 11984.2 + 20757.2i 0.789620 + 1.36766i 0.926200 + 0.377032i \(0.123055\pi\)
−0.136580 + 0.990629i \(0.543611\pi\)
\(614\) 0 0
\(615\) −8743.59 + 15144.3i −0.573293 + 0.992973i
\(616\) 0 0
\(617\) −6551.98 + 11348.4i −0.427509 + 0.740467i −0.996651 0.0817724i \(-0.973942\pi\)
0.569142 + 0.822239i \(0.307275\pi\)
\(618\) 0 0
\(619\) 25051.3 1.62665 0.813324 0.581810i \(-0.197655\pi\)
0.813324 + 0.581810i \(0.197655\pi\)
\(620\) 0 0
\(621\) −1860.71 3222.84i −0.120238 0.208258i
\(622\) 0 0
\(623\) 44761.0 2.87851
\(624\) 0 0
\(625\) −17224.2 −1.10235
\(626\) 0 0
\(627\) −1038.22 1798.25i −0.0661283 0.114538i
\(628\) 0 0
\(629\) 24342.2 1.54306
\(630\) 0 0
\(631\) −27.8467 + 48.2319i −0.00175683 + 0.00304292i −0.866902 0.498478i \(-0.833893\pi\)
0.865146 + 0.501521i \(0.167226\pi\)
\(632\) 0 0
\(633\) −16134.1 + 27945.2i −1.01307 + 1.75469i
\(634\) 0 0
\(635\) 9470.51 + 16403.4i 0.591852 + 1.02512i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 19987.2 + 34618.9i 1.23738 + 2.14320i
\(640\) 0 0
\(641\) 8949.61 15501.2i 0.551464 0.955164i −0.446705 0.894681i \(-0.647403\pi\)
0.998169 0.0604827i \(-0.0192640\pi\)
\(642\) 0 0
\(643\) 12940.2 22413.1i 0.793643 1.37463i −0.130054 0.991507i \(-0.541515\pi\)
0.923697 0.383123i \(-0.125152\pi\)
\(644\) 0 0
\(645\) 28609.0 1.74648
\(646\) 0 0
\(647\) 68.8528 + 119.257i 0.00418375 + 0.00724646i 0.868110 0.496372i \(-0.165335\pi\)
−0.863926 + 0.503619i \(0.832002\pi\)
\(648\) 0 0
\(649\) −2988.81 −0.180772
\(650\) 0 0
\(651\) −24239.6 −1.45933
\(652\) 0 0
\(653\) −8047.59 13938.8i −0.482277 0.835328i 0.517516 0.855673i \(-0.326857\pi\)
−0.999793 + 0.0203456i \(0.993523\pi\)
\(654\) 0 0
\(655\) 19807.2 1.18157
\(656\) 0 0
\(657\) −4088.14 + 7080.87i −0.242760 + 0.420473i
\(658\) 0 0
\(659\) 3527.57 6109.93i 0.208520 0.361167i −0.742729 0.669593i \(-0.766469\pi\)
0.951248 + 0.308426i \(0.0998021\pi\)
\(660\) 0 0
\(661\) 2021.31 + 3501.02i 0.118941 + 0.206012i 0.919348 0.393445i \(-0.128717\pi\)
−0.800407 + 0.599457i \(0.795383\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3643.73 + 6311.13i 0.212478 + 0.368022i
\(666\) 0 0
\(667\) −2069.95 + 3585.25i −0.120163 + 0.208128i
\(668\) 0 0
\(669\) −11699.1 + 20263.4i −0.676103 + 1.17104i
\(670\) 0 0
\(671\) 2461.70 0.141629
\(672\) 0 0
\(673\) −11358.9 19674.2i −0.650598 1.12687i −0.982978 0.183724i \(-0.941185\pi\)
0.332380 0.943146i \(-0.392148\pi\)
\(674\) 0 0
\(675\) 3412.57 0.194592
\(676\) 0 0
\(677\) 19237.7 1.09212 0.546058 0.837747i \(-0.316128\pi\)
0.546058 + 0.837747i \(0.316128\pi\)
\(678\) 0 0
\(679\) 18071.0 + 31299.9i 1.02136 + 1.76904i
\(680\) 0 0
\(681\) −41771.0 −2.35047
\(682\) 0 0
\(683\) 12541.5 21722.4i 0.702614 1.21696i −0.264932 0.964267i \(-0.585349\pi\)
0.967546 0.252696i \(-0.0813172\pi\)
\(684\) 0 0
\(685\) −3448.80 + 5973.50i −0.192368 + 0.333191i
\(686\) 0 0
\(687\) 555.169 + 961.581i 0.0308312 + 0.0534012i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −5630.80 9752.83i −0.309994 0.536925i 0.668367 0.743832i \(-0.266994\pi\)
−0.978361 + 0.206907i \(0.933660\pi\)
\(692\) 0 0
\(693\) 10370.3 17961.8i 0.568447 0.984579i
\(694\) 0 0
\(695\) −924.755 + 1601.72i −0.0504719 + 0.0874198i
\(696\) 0 0
\(697\) 14830.2 0.805933
\(698\) 0 0
\(699\) −5316.50 9208.44i −0.287680 0.498276i
\(700\) 0 0
\(701\) −15678.7 −0.844761 −0.422381 0.906419i \(-0.638805\pi\)
−0.422381 + 0.906419i \(0.638805\pi\)
\(702\) 0 0
\(703\) 5199.25 0.278938
\(704\) 0 0
\(705\) 12637.8 + 21889.3i 0.675129 + 1.16936i
\(706\) 0 0
\(707\) 38412.4 2.04335
\(708\) 0 0
\(709\) −8797.84 + 15238.3i −0.466022 + 0.807174i −0.999247 0.0387995i \(-0.987647\pi\)
0.533225 + 0.845974i \(0.320980\pi\)
\(710\) 0 0
\(711\) 23497.9 40699.6i 1.23944 2.14677i
\(712\) 0 0
\(713\) −662.884 1148.15i −0.0348179 0.0603064i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −20359.8 35264.3i −1.06046 1.83678i
\(718\) 0 0
\(719\) −8305.36 + 14385.3i −0.430790 + 0.746150i −0.996942 0.0781513i \(-0.975098\pi\)
0.566152 + 0.824301i \(0.308432\pi\)
\(720\) 0 0
\(721\) −22009.8 + 38122.1i −1.13688 + 1.96913i
\(722\) 0 0
\(723\) 56319.1 2.89700
\(724\) 0 0
\(725\) −1898.16 3287.71i −0.0972357 0.168417i
\(726\) 0 0
\(727\) −8614.24 −0.439456 −0.219728 0.975561i \(-0.570517\pi\)
−0.219728 + 0.975561i \(0.570517\pi\)
\(728\) 0 0
\(729\) −21123.1 −1.07317
\(730\) 0 0
\(731\) −12131.1 21011.7i −0.613797 1.06313i
\(732\) 0 0
\(733\) −22282.4 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(734\) 0 0
\(735\) −36674.3 + 63521.8i −1.84048 + 3.18781i
\(736\) 0 0
\(737\) 1398.57 2422.39i 0.0699009 0.121072i
\(738\) 0 0
\(739\) 13495.0 + 23374.0i 0.671748 + 1.16350i 0.977408 + 0.211361i \(0.0677896\pi\)
−0.305660 + 0.952141i \(0.598877\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 4605.04 + 7976.16i 0.227379 + 0.393832i 0.957030 0.289987i \(-0.0936511\pi\)
−0.729652 + 0.683819i \(0.760318\pi\)
\(744\) 0 0
\(745\) −7009.12 + 12140.2i −0.344690 + 0.597021i
\(746\) 0 0
\(747\) 5252.32 9097.29i 0.257259 0.445586i
\(748\) 0 0
\(749\) −55905.1 −2.72727
\(750\) 0 0
\(751\) −11115.8 19253.2i −0.540109 0.935496i −0.998897 0.0469505i \(-0.985050\pi\)
0.458788 0.888546i \(-0.348284\pi\)
\(752\) 0 0
\(753\) 8288.20 0.401114
\(754\) 0 0
\(755\) 23882.5 1.15123
\(756\) 0 0
\(757\) 10967.4 + 18996.2i 0.526576 + 0.912057i 0.999520 + 0.0309645i \(0.00985788\pi\)
−0.472944 + 0.881092i \(0.656809\pi\)
\(758\) 0 0
\(759\) 1708.83 0.0817215
\(760\) 0 0
\(761\) 12119.6 20991.7i 0.577311 0.999932i −0.418475 0.908228i \(-0.637435\pi\)
0.995786 0.0917041i \(-0.0292314\pi\)
\(762\) 0 0
\(763\) −15232.1 + 26382.7i −0.722724 + 1.25179i
\(764\) 0 0
\(765\) −28259.3 48946.5i −1.33558 2.31329i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 15487.4 + 26825.0i 0.726256 + 1.25791i 0.958455 + 0.285243i \(0.0920745\pi\)
−0.232199 + 0.972668i \(0.574592\pi\)
\(770\) 0 0
\(771\) 2430.56 4209.85i 0.113534 0.196646i
\(772\) 0 0
\(773\) 16088.3 27865.7i 0.748583 1.29658i −0.199918 0.979813i \(-0.564068\pi\)
0.948502 0.316772i \(-0.102599\pi\)
\(774\) 0 0
\(775\) 1215.74 0.0563493
\(776\) 0 0
\(777\) 39115.5 + 67750.0i 1.80600 + 3.12808i
\(778\) 0 0
\(779\) 3167.59 0.145688
\(780\) 0 0
\(781\) −9060.63 −0.415128
\(782\) 0 0
\(783\) −30945.5 53599.2i −1.41239 2.44633i
\(784\) 0 0
\(785\) 16886.1 0.767760
\(786\) 0 0
\(787\) 13008.6 22531.5i 0.589206 1.02053i −0.405131 0.914259i \(-0.632774\pi\)
0.994337 0.106276i \(-0.0338926\pi\)
\(788\) 0 0
\(789\) 23520.0 40737.9i 1.06126 1.83816i
\(790\) 0 0
\(791\) −15633.8 27078.5i −0.702747 1.21719i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 4989.07 + 8641.32i 0.222571 + 0.385504i
\(796\) 0 0
\(797\) 9450.96 16369.5i 0.420038 0.727527i −0.575905 0.817517i \(-0.695350\pi\)
0.995943 + 0.0899897i \(0.0286834\pi\)
\(798\) 0 0
\(799\) 10717.6 18563.5i 0.474546 0.821938i
\(800\) 0 0
\(801\) −74147.2 −3.27074
\(802\) 0 0
\(803\) −926.621 1604.95i −0.0407220 0.0705325i
\(804\) 0 0
\(805\) −5997.31 −0.262580
\(806\) 0 0
\(807\) −2958.92 −0.129069
\(808\) 0 0
\(809\) −363.787 630.098i −0.0158097 0.0273833i 0.858012 0.513629i \(-0.171699\pi\)
−0.873822 + 0.486246i \(0.838366\pi\)
\(810\) 0 0
\(811\) −23940.1 −1.03656 −0.518281 0.855210i \(-0.673428\pi\)
−0.518281 + 0.855210i \(0.673428\pi\)
\(812\) 0 0
\(813\) −6425.26 + 11128.9i −0.277176 + 0.480082i
\(814\) 0 0
\(815\) 6558.46 11359.6i 0.281881 0.488232i
\(816\) 0 0
\(817\) −2591.08 4487.89i −0.110955 0.192180i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −3780.69 6548.34i −0.160715 0.278366i 0.774410 0.632684i \(-0.218047\pi\)
−0.935125 + 0.354317i \(0.884713\pi\)
\(822\) 0 0
\(823\) −10413.0 + 18035.9i −0.441038 + 0.763901i −0.997767 0.0667938i \(-0.978723\pi\)
0.556729 + 0.830695i \(0.312056\pi\)
\(824\) 0 0
\(825\) −783.506 + 1357.07i −0.0330645 + 0.0572693i
\(826\) 0 0
\(827\) −34592.6 −1.45454 −0.727268 0.686353i \(-0.759210\pi\)
−0.727268 + 0.686353i \(0.759210\pi\)
\(828\) 0 0
\(829\) 10442.0 + 18086.1i 0.437474 + 0.757727i 0.997494 0.0707518i \(-0.0225398\pi\)
−0.560020 + 0.828479i \(0.689206\pi\)
\(830\) 0 0
\(831\) −19188.5 −0.801011
\(832\) 0 0
\(833\) 62204.3 2.58734
\(834\) 0 0
\(835\) −1679.16 2908.39i −0.0695925 0.120538i
\(836\) 0 0
\(837\) 19820.1 0.818498
\(838\) 0 0
\(839\) 21991.7 38090.7i 0.904932 1.56739i 0.0839231 0.996472i \(-0.473255\pi\)
0.821009 0.570916i \(-0.193412\pi\)
\(840\) 0 0
\(841\) −22230.9 + 38505.0i −0.911513 + 1.57879i
\(842\) 0 0
\(843\) −26245.6 45458.7i −1.07230 1.85727i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −19070.1 33030.4i −0.773621 1.33995i
\(848\) 0 0
\(849\) 7651.35 13252.5i 0.309297 0.535719i
\(850\) 0 0
\(851\) −2139.39 + 3705.54i −0.0861779 + 0.149265i
\(852\) 0 0
\(853\) 16552.4 0.664412 0.332206 0.943207i \(-0.392207\pi\)
0.332206 + 0.943207i \(0.392207\pi\)
\(854\) 0 0
\(855\) −6035.89 10454.5i −0.241431 0.418170i
\(856\) 0 0
\(857\) 12869.9 0.512983 0.256492 0.966546i \(-0.417433\pi\)
0.256492 + 0.966546i \(0.417433\pi\)
\(858\) 0 0
\(859\) 21172.2 0.840961 0.420481 0.907302i \(-0.361861\pi\)
0.420481 + 0.907302i \(0.361861\pi\)
\(860\) 0 0
\(861\) 23830.7 + 41276.0i 0.943261 + 1.63378i
\(862\) 0 0
\(863\) −47889.1 −1.88895 −0.944475 0.328584i \(-0.893429\pi\)
−0.944475 + 0.328584i \(0.893429\pi\)
\(864\) 0 0
\(865\) 25631.8 44395.6i 1.00752 1.74508i
\(866\) 0 0
\(867\) −14086.2 + 24398.1i −0.551781 + 0.955712i
\(868\) 0 0
\(869\) 5326.05 + 9224.99i 0.207910 + 0.360111i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −29934.9 51848.7i −1.16053 2.01010i
\(874\) 0 0
\(875\) −21007.8 + 36386.5i −0.811648 + 1.40582i
\(876\) 0 0
\(877\) −21792.4 + 37745.6i −0.839085 + 1.45334i 0.0515750 + 0.998669i \(0.483576\pi\)
−0.890660 + 0.454669i \(0.849757\pi\)
\(878\) 0 0
\(879\) 15981.9 0.613262
\(880\) 0 0
\(881\) −21279.2 36856.7i −0.813751 1.40946i −0.910221 0.414122i \(-0.864089\pi\)
0.0964705 0.995336i \(-0.469245\pi\)
\(882\) 0 0
\(883\) 22522.3 0.858364 0.429182 0.903218i \(-0.358802\pi\)
0.429182 + 0.903218i \(0.358802\pi\)
\(884\) 0 0
\(885\) −26175.1 −0.994198
\(886\) 0 0
\(887\) 3089.40 + 5351.00i 0.116947 + 0.202558i 0.918556 0.395290i \(-0.129356\pi\)
−0.801609 + 0.597848i \(0.796023\pi\)
\(888\) 0 0
\(889\) 51623.9 1.94759
\(890\) 0 0
\(891\) −4074.43 + 7057.11i −0.153197 + 0.265345i
\(892\) 0 0
\(893\) 2289.18 3964.97i 0.0857832 0.148581i
\(894\) 0 0
\(895\) −3842.79 6655.92i −0.143520 0.248584i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −11024.5 19094.9i −0.408995 0.708399i
\(900\) 0 0
\(901\) 4231.04 7328.38i 0.156445 0.270970i
\(902\) 0 0
\(903\) 38987.0 67527.4i 1.43677 2.48856i
\(904\) 0 0
\(905\) −5363.22 −0.196994
\(906\) 0 0
\(907\) −13077.7 22651.3i −0.478764 0.829244i 0.520939 0.853594i \(-0.325582\pi\)
−0.999703 + 0.0243499i \(0.992248\pi\)
\(908\) 0 0
\(909\) −63630.8 −2.32178
\(910\) 0 0
\(911\) 29386.6 1.06874 0.534369 0.845251i \(-0.320549\pi\)
0.534369 + 0.845251i \(0.320549\pi\)
\(912\) 0 0
\(913\) 1190.49 + 2062.00i 0.0431540 + 0.0747450i
\(914\) 0 0
\(915\) 21558.8 0.778920
\(916\) 0 0
\(917\) 26992.3 46752.0i 0.972044 1.68363i
\(918\) 0 0
\(919\) −11348.9 + 19656.9i −0.407363 + 0.705573i −0.994593 0.103847i \(-0.966885\pi\)
0.587231 + 0.809420i \(0.300218\pi\)
\(920\) 0 0
\(921\) −18049.0 31261.7i −0.645747 1.11847i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −1961.84 3398.01i −0.0697351 0.120785i
\(926\) 0 0
\(927\) 36459.6 63149.9i 1.29179 2.23745i
\(928\) 0 0
\(929\) −20396.3 + 35327.4i −0.720324 + 1.24764i 0.240546 + 0.970638i \(0.422673\pi\)
−0.960870 + 0.277000i \(0.910660\pi\)
\(930\) 0 0
\(931\) 13286.2 0.467710
\(932\) 0 0
\(933\) −361.309 625.806i −0.0126782 0.0219592i
\(934\) 0 0
\(935\) 12810.5 0.448074
\(936\) 0 0
\(937\) 22015.2 0.767560 0.383780 0.923424i \(-0.374622\pi\)
0.383780 + 0.923424i \(0.374622\pi\)
\(938\) 0 0
\(939\) 20739.2 + 35921.3i 0.720765 + 1.24840i
\(940\) 0 0
\(941\) −7774.05 −0.269316 −0.134658 0.990892i \(-0.542994\pi\)
−0.134658 + 0.990892i \(0.542994\pi\)
\(942\) 0 0
\(943\) −1303.40 + 2257.56i −0.0450102 + 0.0779600i
\(944\) 0 0
\(945\) 44829.6 77647.1i 1.54318 2.67287i
\(946\) 0 0
\(947\) 7936.44 + 13746.3i 0.272333 + 0.471695i 0.969459 0.245254i \(-0.0788714\pi\)
−0.697126 + 0.716949i \(0.745538\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 48051.3 + 83227.3i 1.63845 + 2.83789i
\(952\) 0 0
\(953\) −21907.7 + 37945.3i −0.744659 + 1.28979i 0.205695 + 0.978616i \(0.434055\pi\)
−0.950354 + 0.311171i \(0.899279\pi\)
\(954\) 0 0
\(955\) 16623.6 28793.0i 0.563275 0.975622i
\(956\) 0 0
\(957\) 28419.6 0.959955
\(958\) 0 0
\(959\) 9399.73 + 16280.8i 0.316510 + 0.548212i
\(960\) 0 0
\(961\) −22730.0 −0.762983
\(962\) 0 0
\(963\) 92607.6 3.09890
\(964\) 0 0
\(965\) −6811.65 11798.1i −0.227228 0.393570i
\(966\) 0 0
\(967\) −6323.57 −0.210292 −0.105146 0.994457i \(-0.533531\pi\)
−0.105146 + 0.994457i \(0.533531\pi\)
\(968\) 0 0
\(969\) −7710.93 + 13355.7i −0.255635 + 0.442774i
\(970\) 0 0
\(971\) 24755.4 42877.5i 0.818164 1.41710i −0.0888698 0.996043i \(-0.528326\pi\)
0.907034 0.421058i \(-0.138341\pi\)
\(972\) 0 0
\(973\) 2520.42 + 4365.50i 0.0830433 + 0.143835i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2827.58 4897.51i −0.0925918 0.160374i 0.816009 0.578039i \(-0.196182\pi\)
−0.908601 + 0.417665i \(0.862848\pi\)
\(978\) 0 0
\(979\) 8403.12 14554.6i 0.274326 0.475146i
\(980\) 0 0
\(981\) 25232.2 43703.4i 0.821204 1.42237i
\(982\) 0 0
\(983\) 4051.62 0.131461 0.0657307 0.997837i \(-0.479062\pi\)
0.0657307 + 0.997837i \(0.479062\pi\)
\(984\) 0 0
\(985\) 2401.24 + 4159.07i 0.0776750 + 0.134537i
\(986\) 0 0
\(987\) 68888.6 2.22163
\(988\) 0 0
\(989\) 4264.73 0.137119
\(990\) 0 0
\(991\) 10104.2 + 17500.9i 0.323884 + 0.560984i 0.981286 0.192556i \(-0.0616778\pi\)
−0.657402 + 0.753540i \(0.728345\pi\)
\(992\) 0 0
\(993\) −46535.7 −1.48718
\(994\) 0 0
\(995\) 4779.36 8278.09i 0.152277 0.263752i
\(996\) 0 0
\(997\) 23139.1 40078.2i 0.735029 1.27311i −0.219681 0.975572i \(-0.570502\pi\)
0.954711 0.297536i \(-0.0961649\pi\)
\(998\) 0 0
\(999\) −31983.7 55397.4i −1.01293 1.75445i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 676.4.e.h.653.2 16
13.2 odd 12 676.4.d.d.337.7 8
13.3 even 3 676.4.a.g.1.8 8
13.4 even 6 inner 676.4.e.h.529.1 16
13.5 odd 4 676.4.h.e.361.1 8
13.6 odd 12 52.4.h.a.17.1 8
13.7 odd 12 676.4.h.e.485.1 8
13.8 odd 4 52.4.h.a.49.1 yes 8
13.9 even 3 inner 676.4.e.h.529.2 16
13.10 even 6 676.4.a.g.1.7 8
13.11 odd 12 676.4.d.d.337.8 8
13.12 even 2 inner 676.4.e.h.653.1 16
39.8 even 4 468.4.t.g.361.2 8
39.32 even 12 468.4.t.g.433.3 8
52.19 even 12 208.4.w.c.17.4 8
52.47 even 4 208.4.w.c.49.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.4.h.a.17.1 8 13.6 odd 12
52.4.h.a.49.1 yes 8 13.8 odd 4
208.4.w.c.17.4 8 52.19 even 12
208.4.w.c.49.4 8 52.47 even 4
468.4.t.g.361.2 8 39.8 even 4
468.4.t.g.433.3 8 39.32 even 12
676.4.a.g.1.7 8 13.10 even 6
676.4.a.g.1.8 8 13.3 even 3
676.4.d.d.337.7 8 13.2 odd 12
676.4.d.d.337.8 8 13.11 odd 12
676.4.e.h.529.1 16 13.4 even 6 inner
676.4.e.h.529.2 16 13.9 even 3 inner
676.4.e.h.653.1 16 13.12 even 2 inner
676.4.e.h.653.2 16 1.1 even 1 trivial
676.4.h.e.361.1 8 13.5 odd 4
676.4.h.e.485.1 8 13.7 odd 12