Properties

Label 468.4.t.g.433.3
Level $468$
Weight $4$
Character 468.433
Analytic conductor $27.613$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [468,4,Mod(361,468)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("468.361"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(468, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 468.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,-36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.6128938827\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 51x^{6} - 224x^{5} + 2520x^{4} - 5712x^{3} + 16675x^{2} + 9072x + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6}\cdot 3 \)
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 433.3
Root \(1.73860 - 3.01134i\) of defining polynomial
Character \(\chi\) \(=\) 468.433
Dual form 468.4.t.g.361.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+11.8097i q^{5} +(-27.8750 + 16.0936i) q^{7} +(10.4661 + 6.04263i) q^{11} +(-4.16590 + 46.6867i) q^{13} +(-44.8791 - 77.7328i) q^{17} +(-16.6029 + 9.58572i) q^{19} +(-7.88869 + 13.6636i) q^{23} -14.4680 q^{25} +(131.197 - 227.240i) q^{29} -84.0297i q^{31} +(-190.060 - 329.194i) q^{35} +(-234.864 - 135.599i) q^{37} +(-143.088 - 82.6122i) q^{41} +(135.153 + 234.092i) q^{43} +238.811i q^{47} +(346.511 - 600.174i) q^{49} +94.2765 q^{53} +(-71.3613 + 123.601i) q^{55} +(214.177 - 123.655i) q^{59} +(-101.847 - 176.404i) q^{61} +(-551.354 - 49.1978i) q^{65} +(-200.442 - 115.725i) q^{67} +(-649.282 + 374.863i) q^{71} +153.347i q^{73} -388.991 q^{77} -881.413 q^{79} -197.016i q^{83} +(917.998 - 530.006i) q^{85} +(-1204.33 - 695.321i) q^{89} +(-635.234 - 1368.44i) q^{91} +(-113.204 - 196.075i) q^{95} +(-972.430 + 561.433i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 36 q^{7} - 72 q^{11} + 62 q^{13} - 88 q^{17} - 144 q^{19} + 20 q^{23} - 84 q^{25} + 484 q^{29} - 40 q^{35} + 996 q^{37} - 156 q^{41} + 504 q^{43} + 922 q^{49} + 1164 q^{53} - 1128 q^{55} - 600 q^{59}+ \cdots - 3042 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/468\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(235\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 11.8097i 1.05629i 0.849155 + 0.528144i \(0.177112\pi\)
−0.849155 + 0.528144i \(0.822888\pi\)
\(6\) 0 0
\(7\) −27.8750 + 16.0936i −1.50511 + 0.868975i −0.505126 + 0.863045i \(0.668554\pi\)
−0.999982 + 0.00592959i \(0.998113\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 10.4661 + 6.04263i 0.286878 + 0.165629i 0.636533 0.771249i \(-0.280368\pi\)
−0.349655 + 0.936879i \(0.613701\pi\)
\(12\) 0 0
\(13\) −4.16590 + 46.6867i −0.0888778 + 0.996043i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −44.8791 77.7328i −0.640281 1.10900i −0.985370 0.170429i \(-0.945485\pi\)
0.345089 0.938570i \(-0.387849\pi\)
\(18\) 0 0
\(19\) −16.6029 + 9.58572i −0.200473 + 0.115743i −0.596876 0.802334i \(-0.703592\pi\)
0.396403 + 0.918076i \(0.370258\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.88869 + 13.6636i −0.0715176 + 0.123872i −0.899567 0.436784i \(-0.856118\pi\)
0.828049 + 0.560656i \(0.189451\pi\)
\(24\) 0 0
\(25\) −14.4680 −0.115744
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 131.197 227.240i 0.840093 1.45508i −0.0497219 0.998763i \(-0.515834\pi\)
0.889815 0.456321i \(-0.150833\pi\)
\(30\) 0 0
\(31\) 84.0297i 0.486844i −0.969920 0.243422i \(-0.921730\pi\)
0.969920 0.243422i \(-0.0782700\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −190.060 329.194i −0.917888 1.58983i
\(36\) 0 0
\(37\) −234.864 135.599i −1.04355 0.602495i −0.122714 0.992442i \(-0.539160\pi\)
−0.920837 + 0.389947i \(0.872493\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −143.088 82.6122i −0.545041 0.314679i 0.202079 0.979369i \(-0.435230\pi\)
−0.747119 + 0.664690i \(0.768564\pi\)
\(42\) 0 0
\(43\) 135.153 + 234.092i 0.479318 + 0.830204i 0.999719 0.0237186i \(-0.00755056\pi\)
−0.520400 + 0.853922i \(0.674217\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 238.811i 0.741153i 0.928802 + 0.370577i \(0.120840\pi\)
−0.928802 + 0.370577i \(0.879160\pi\)
\(48\) 0 0
\(49\) 346.511 600.174i 1.01024 1.74978i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 94.2765 0.244337 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(54\) 0 0
\(55\) −71.3613 + 123.601i −0.174952 + 0.303026i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 214.177 123.655i 0.472601 0.272856i −0.244727 0.969592i \(-0.578698\pi\)
0.717328 + 0.696736i \(0.245365\pi\)
\(60\) 0 0
\(61\) −101.847 176.404i −0.213774 0.370267i 0.739119 0.673575i \(-0.235242\pi\)
−0.952893 + 0.303308i \(0.901909\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −551.354 49.1978i −1.05211 0.0938806i
\(66\) 0 0
\(67\) −200.442 115.725i −0.365491 0.211016i 0.305996 0.952033i \(-0.401011\pi\)
−0.671487 + 0.741016i \(0.734344\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −649.282 + 374.863i −1.08529 + 0.626593i −0.932319 0.361638i \(-0.882218\pi\)
−0.152972 + 0.988231i \(0.548884\pi\)
\(72\) 0 0
\(73\) 153.347i 0.245862i 0.992415 + 0.122931i \(0.0392294\pi\)
−0.992415 + 0.122931i \(0.960771\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −388.991 −0.575710
\(78\) 0 0
\(79\) −881.413 −1.25527 −0.627637 0.778506i \(-0.715978\pi\)
−0.627637 + 0.778506i \(0.715978\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 197.016i 0.260546i −0.991478 0.130273i \(-0.958415\pi\)
0.991478 0.130273i \(-0.0415854\pi\)
\(84\) 0 0
\(85\) 917.998 530.006i 1.17142 0.676321i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1204.33 695.321i −1.43437 0.828133i −0.436918 0.899501i \(-0.643930\pi\)
−0.997450 + 0.0713683i \(0.977263\pi\)
\(90\) 0 0
\(91\) −635.234 1368.44i −0.731765 1.57639i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −113.204 196.075i −0.122258 0.211757i
\(96\) 0 0
\(97\) −972.430 + 561.433i −1.01789 + 0.587679i −0.913492 0.406857i \(-0.866625\pi\)
−0.104398 + 0.994536i \(0.533291\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 596.702 1033.52i 0.587862 1.01821i −0.406650 0.913584i \(-0.633303\pi\)
0.994512 0.104623i \(-0.0333636\pi\)
\(102\) 0 0
\(103\) 1367.61 1.30830 0.654149 0.756366i \(-0.273027\pi\)
0.654149 + 0.756366i \(0.273027\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 868.434 1504.17i 0.784623 1.35901i −0.144601 0.989490i \(-0.546190\pi\)
0.929224 0.369517i \(-0.120477\pi\)
\(108\) 0 0
\(109\) 946.465i 0.831697i 0.909434 + 0.415848i \(0.136515\pi\)
−0.909434 + 0.415848i \(0.863485\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −485.712 841.279i −0.404354 0.700361i 0.589892 0.807482i \(-0.299170\pi\)
−0.994246 + 0.107121i \(0.965837\pi\)
\(114\) 0 0
\(115\) −161.362 93.1627i −0.130845 0.0755432i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2502.01 + 1444.54i 1.92738 + 1.11278i
\(120\) 0 0
\(121\) −592.473 1026.19i −0.445134 0.770995i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1305.35i 0.934029i
\(126\) 0 0
\(127\) −801.930 + 1388.98i −0.560313 + 0.970491i 0.437156 + 0.899386i \(0.355986\pi\)
−0.997469 + 0.0711048i \(0.977348\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1677.20 −1.11861 −0.559305 0.828962i \(-0.688932\pi\)
−0.559305 + 0.828962i \(0.688932\pi\)
\(132\) 0 0
\(133\) 308.538 534.404i 0.201155 0.348411i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −505.815 + 292.032i −0.315436 + 0.182117i −0.649356 0.760484i \(-0.724962\pi\)
0.333921 + 0.942601i \(0.391628\pi\)
\(138\) 0 0
\(139\) −78.3050 135.628i −0.0477823 0.0827614i 0.841145 0.540810i \(-0.181882\pi\)
−0.888927 + 0.458048i \(0.848549\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −325.711 + 463.456i −0.190471 + 0.271022i
\(144\) 0 0
\(145\) 2683.63 + 1549.39i 1.53699 + 0.887380i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1027.99 593.508i 0.565207 0.326322i −0.190026 0.981779i \(-0.560857\pi\)
0.755233 + 0.655457i \(0.227524\pi\)
\(150\) 0 0
\(151\) 2022.29i 1.08988i 0.838476 + 0.544939i \(0.183447\pi\)
−0.838476 + 0.544939i \(0.816553\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 992.361 0.514248
\(156\) 0 0
\(157\) 1429.86 0.726848 0.363424 0.931624i \(-0.381608\pi\)
0.363424 + 0.931624i \(0.381608\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 507.831i 0.248588i
\(162\) 0 0
\(163\) −961.889 + 555.347i −0.462215 + 0.266860i −0.712975 0.701189i \(-0.752653\pi\)
0.250760 + 0.968049i \(0.419319\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 246.272 + 142.185i 0.114115 + 0.0658841i 0.555971 0.831202i \(-0.312347\pi\)
−0.441856 + 0.897086i \(0.645680\pi\)
\(168\) 0 0
\(169\) −2162.29 388.984i −0.984201 0.177052i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2170.41 + 3759.26i 0.953834 + 1.65209i 0.737014 + 0.675878i \(0.236235\pi\)
0.216820 + 0.976212i \(0.430431\pi\)
\(174\) 0 0
\(175\) 403.295 232.843i 0.174207 0.100579i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −325.394 + 563.599i −0.135872 + 0.235337i −0.925930 0.377694i \(-0.876717\pi\)
0.790058 + 0.613032i \(0.210050\pi\)
\(180\) 0 0
\(181\) 454.138 0.186496 0.0932482 0.995643i \(-0.470275\pi\)
0.0932482 + 0.995643i \(0.470275\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1601.38 2773.66i 0.636408 1.10229i
\(186\) 0 0
\(187\) 1084.75i 0.424197i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1407.63 2438.09i −0.533259 0.923633i −0.999245 0.0388404i \(-0.987634\pi\)
0.465986 0.884792i \(-0.345700\pi\)
\(192\) 0 0
\(193\) −999.023 576.786i −0.372597 0.215119i 0.301995 0.953309i \(-0.402347\pi\)
−0.674593 + 0.738190i \(0.735681\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 352.175 + 203.329i 0.127368 + 0.0735359i 0.562330 0.826913i \(-0.309905\pi\)
−0.434962 + 0.900449i \(0.643238\pi\)
\(198\) 0 0
\(199\) −404.699 700.960i −0.144163 0.249697i 0.784898 0.619626i \(-0.212716\pi\)
−0.929060 + 0.369929i \(0.879382\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 8445.76i 2.92008i
\(204\) 0 0
\(205\) 975.621 1689.83i 0.332392 0.575720i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −231.692 −0.0766815
\(210\) 0 0
\(211\) −1800.27 + 3118.16i −0.587373 + 1.01736i 0.407202 + 0.913338i \(0.366504\pi\)
−0.994575 + 0.104021i \(0.966829\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2764.55 + 1596.11i −0.876934 + 0.506298i
\(216\) 0 0
\(217\) 1352.34 + 2342.33i 0.423055 + 0.732754i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3816.05 1771.43i 1.16152 0.539181i
\(222\) 0 0
\(223\) 2261.02 + 1305.40i 0.678964 + 0.392000i 0.799465 0.600713i \(-0.205117\pi\)
−0.120501 + 0.992713i \(0.538450\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4036.43 + 2330.43i −1.18021 + 0.681394i −0.956063 0.293162i \(-0.905292\pi\)
−0.224145 + 0.974556i \(0.571959\pi\)
\(228\) 0 0
\(229\) 123.893i 0.0357515i −0.999840 0.0178757i \(-0.994310\pi\)
0.999840 0.0178757i \(-0.00569032\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1186.44 0.333590 0.166795 0.985992i \(-0.446658\pi\)
0.166795 + 0.985992i \(0.446658\pi\)
\(234\) 0 0
\(235\) −2820.28 −0.782871
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4543.56i 1.22970i 0.788644 + 0.614850i \(0.210783\pi\)
−0.788644 + 0.614850i \(0.789217\pi\)
\(240\) 0 0
\(241\) 5442.24 3142.08i 1.45463 0.839831i 0.455890 0.890036i \(-0.349321\pi\)
0.998739 + 0.0502054i \(0.0159876\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 7087.85 + 4092.17i 1.84827 + 1.06710i
\(246\) 0 0
\(247\) −378.359 815.069i −0.0974672 0.209966i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −462.404 800.908i −0.116282 0.201406i 0.802010 0.597311i \(-0.203764\pi\)
−0.918291 + 0.395905i \(0.870431\pi\)
\(252\) 0 0
\(253\) −165.128 + 95.3368i −0.0410337 + 0.0236908i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 271.205 469.741i 0.0658261 0.114014i −0.831234 0.555923i \(-0.812365\pi\)
0.897060 + 0.441908i \(0.145698\pi\)
\(258\) 0 0
\(259\) 8729.11 2.09421
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2624.40 + 4545.59i −0.615312 + 1.06575i 0.375017 + 0.927018i \(0.377637\pi\)
−0.990330 + 0.138734i \(0.955697\pi\)
\(264\) 0 0
\(265\) 1113.37i 0.258091i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −165.080 285.927i −0.0374168 0.0648078i 0.846711 0.532054i \(-0.178580\pi\)
−0.884127 + 0.467246i \(0.845246\pi\)
\(270\) 0 0
\(271\) −1241.78 716.940i −0.278349 0.160705i 0.354327 0.935122i \(-0.384710\pi\)
−0.632676 + 0.774417i \(0.718043\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −151.424 87.4247i −0.0332044 0.0191706i
\(276\) 0 0
\(277\) −1070.54 1854.22i −0.232211 0.402200i 0.726248 0.687433i \(-0.241262\pi\)
−0.958458 + 0.285233i \(0.907929\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5857.04i 1.24342i −0.783246 0.621711i \(-0.786438\pi\)
0.783246 0.621711i \(-0.213562\pi\)
\(282\) 0 0
\(283\) −853.748 + 1478.73i −0.179329 + 0.310606i −0.941651 0.336591i \(-0.890726\pi\)
0.762322 + 0.647198i \(0.224059\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5318.12 1.09379
\(288\) 0 0
\(289\) −1571.76 + 2722.37i −0.319919 + 0.554116i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1544.37 + 891.643i −0.307929 + 0.177783i −0.645999 0.763338i \(-0.723559\pi\)
0.338071 + 0.941121i \(0.390226\pi\)
\(294\) 0 0
\(295\) 1460.32 + 2529.36i 0.288215 + 0.499203i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −605.045 425.218i −0.117026 0.0822441i
\(300\) 0 0
\(301\) −7534.80 4350.22i −1.44285 0.833032i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2083.28 1202.78i 0.391108 0.225807i
\(306\) 0 0
\(307\) 4027.85i 0.748801i 0.927267 + 0.374400i \(0.122151\pi\)
−0.927267 + 0.374400i \(0.877849\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 80.6308 0.0147014 0.00735072 0.999973i \(-0.497660\pi\)
0.00735072 + 0.999973i \(0.497660\pi\)
\(312\) 0 0
\(313\) −4628.22 −0.835790 −0.417895 0.908495i \(-0.637232\pi\)
−0.417895 + 0.908495i \(0.637232\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10723.3i 1.89993i −0.312354 0.949966i \(-0.601118\pi\)
0.312354 0.949966i \(-0.398882\pi\)
\(318\) 0 0
\(319\) 2746.25 1585.55i 0.482009 0.278288i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1490.25 + 860.396i 0.256717 + 0.148216i
\(324\) 0 0
\(325\) 60.2722 675.463i 0.0102871 0.115286i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3843.34 6656.87i −0.644044 1.11552i
\(330\) 0 0
\(331\) 4496.86 2596.26i 0.746736 0.431128i −0.0777775 0.996971i \(-0.524782\pi\)
0.824513 + 0.565843i \(0.191449\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1366.68 2367.15i 0.222894 0.386064i
\(336\) 0 0
\(337\) 2676.49 0.432635 0.216317 0.976323i \(-0.430595\pi\)
0.216317 + 0.976323i \(0.430595\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 507.760 879.466i 0.0806356 0.139665i
\(342\) 0 0
\(343\) 11266.2i 1.77353i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4924.23 8529.02i −0.761806 1.31949i −0.941919 0.335840i \(-0.890980\pi\)
0.180113 0.983646i \(-0.442354\pi\)
\(348\) 0 0
\(349\) −5638.99 3255.67i −0.864894 0.499347i 0.000754175 1.00000i \(-0.499760\pi\)
−0.865648 + 0.500653i \(0.833093\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9609.82 5548.23i −1.44895 0.836552i −0.450531 0.892761i \(-0.648765\pi\)
−0.998419 + 0.0562092i \(0.982099\pi\)
\(354\) 0 0
\(355\) −4427.01 7667.80i −0.661862 1.14638i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 7844.27i 1.15322i 0.817021 + 0.576608i \(0.195624\pi\)
−0.817021 + 0.576608i \(0.804376\pi\)
\(360\) 0 0
\(361\) −3245.73 + 5621.77i −0.473207 + 0.819619i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1810.98 −0.259701
\(366\) 0 0
\(367\) −1637.80 + 2836.75i −0.232949 + 0.403479i −0.958675 0.284505i \(-0.908171\pi\)
0.725726 + 0.687984i \(0.241504\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2627.96 + 1517.25i −0.367754 + 0.212323i
\(372\) 0 0
\(373\) 812.650 + 1407.55i 0.112808 + 0.195389i 0.916901 0.399114i \(-0.130682\pi\)
−0.804093 + 0.594503i \(0.797349\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 10062.5 + 7071.82i 1.37466 + 0.966093i
\(378\) 0 0
\(379\) −11188.2 6459.52i −1.51636 0.875470i −0.999816 0.0192081i \(-0.993885\pi\)
−0.516542 0.856262i \(-0.672781\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4300.61 2482.96i 0.573762 0.331261i −0.184889 0.982759i \(-0.559192\pi\)
0.758650 + 0.651498i \(0.225859\pi\)
\(384\) 0 0
\(385\) 4593.86i 0.608116i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −8704.29 −1.13451 −0.567256 0.823542i \(-0.691995\pi\)
−0.567256 + 0.823542i \(0.691995\pi\)
\(390\) 0 0
\(391\) 1416.15 0.183165
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 10409.2i 1.32593i
\(396\) 0 0
\(397\) −3805.52 + 2197.12i −0.481092 + 0.277759i −0.720871 0.693069i \(-0.756258\pi\)
0.239779 + 0.970827i \(0.422925\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2814.32 + 1624.85i 0.350475 + 0.202347i 0.664894 0.746937i \(-0.268476\pi\)
−0.314419 + 0.949284i \(0.601810\pi\)
\(402\) 0 0
\(403\) 3923.07 + 350.059i 0.484918 + 0.0432697i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1638.75 2838.39i −0.199581 0.345685i
\(408\) 0 0
\(409\) 5685.82 3282.71i 0.687398 0.396870i −0.115238 0.993338i \(-0.536763\pi\)
0.802637 + 0.596468i \(0.203430\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −3980.12 + 6893.77i −0.474211 + 0.821357i
\(414\) 0 0
\(415\) 2326.69 0.275212
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −5682.35 + 9842.12i −0.662532 + 1.14754i 0.317416 + 0.948286i \(0.397185\pi\)
−0.979948 + 0.199253i \(0.936148\pi\)
\(420\) 0 0
\(421\) 3657.27i 0.423383i −0.977337 0.211692i \(-0.932103\pi\)
0.977337 0.211692i \(-0.0678972\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 649.310 + 1124.64i 0.0741086 + 0.128360i
\(426\) 0 0
\(427\) 5677.98 + 3278.18i 0.643505 + 0.371528i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −11576.7 6683.84i −1.29381 0.746982i −0.314483 0.949263i \(-0.601831\pi\)
−0.979328 + 0.202281i \(0.935165\pi\)
\(432\) 0 0
\(433\) 3031.38 + 5250.50i 0.336440 + 0.582731i 0.983760 0.179487i \(-0.0574437\pi\)
−0.647320 + 0.762218i \(0.724110\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 302.475i 0.0331106i
\(438\) 0 0
\(439\) −855.711 + 1482.13i −0.0930315 + 0.161135i −0.908785 0.417264i \(-0.862989\pi\)
0.815754 + 0.578399i \(0.196322\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −14253.1 −1.52864 −0.764320 0.644837i \(-0.776925\pi\)
−0.764320 + 0.644837i \(0.776925\pi\)
\(444\) 0 0
\(445\) 8211.50 14222.7i 0.874747 1.51511i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3059.23 1766.25i 0.321546 0.185644i −0.330536 0.943793i \(-0.607229\pi\)
0.652081 + 0.758149i \(0.273896\pi\)
\(450\) 0 0
\(451\) −998.389 1729.26i −0.104240 0.180549i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 16160.8 7501.90i 1.66512 0.772955i
\(456\) 0 0
\(457\) −4838.91 2793.74i −0.495305 0.285965i 0.231468 0.972843i \(-0.425647\pi\)
−0.726773 + 0.686878i \(0.758981\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2328.04 + 1344.09i −0.235201 + 0.135793i −0.612969 0.790107i \(-0.710025\pi\)
0.377768 + 0.925900i \(0.376692\pi\)
\(462\) 0 0
\(463\) 19314.2i 1.93868i −0.245723 0.969340i \(-0.579025\pi\)
0.245723 0.969340i \(-0.420975\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5482.16 0.543221 0.271611 0.962407i \(-0.412444\pi\)
0.271611 + 0.962407i \(0.412444\pi\)
\(468\) 0 0
\(469\) 7449.77 0.733472
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3266.72i 0.317556i
\(474\) 0 0
\(475\) 240.211 138.686i 0.0232035 0.0133965i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4389.48 + 2534.27i 0.418707 + 0.241740i 0.694524 0.719470i \(-0.255615\pi\)
−0.275817 + 0.961210i \(0.588948\pi\)
\(480\) 0 0
\(481\) 7309.08 10400.1i 0.692859 0.985873i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6630.33 11484.1i −0.620758 1.07518i
\(486\) 0 0
\(487\) −11806.8 + 6816.65i −1.09860 + 0.634275i −0.935852 0.352393i \(-0.885368\pi\)
−0.162744 + 0.986668i \(0.552035\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −332.094 + 575.204i −0.0305238 + 0.0528688i −0.880884 0.473333i \(-0.843051\pi\)
0.850360 + 0.526201i \(0.176384\pi\)
\(492\) 0 0
\(493\) −23552.0 −2.15158
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12065.8 20898.6i 1.08899 1.88618i
\(498\) 0 0
\(499\) 14754.0i 1.32361i −0.749676 0.661805i \(-0.769791\pi\)
0.749676 0.661805i \(-0.230209\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −2641.84 4575.80i −0.234182 0.405616i 0.724852 0.688904i \(-0.241908\pi\)
−0.959035 + 0.283288i \(0.908575\pi\)
\(504\) 0 0
\(505\) 12205.5 + 7046.85i 1.07552 + 0.620952i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −6582.35 3800.32i −0.573197 0.330936i 0.185228 0.982696i \(-0.440698\pi\)
−0.758425 + 0.651760i \(0.774031\pi\)
\(510\) 0 0
\(511\) −2467.92 4274.56i −0.213648 0.370050i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 16151.0i 1.38194i
\(516\) 0 0
\(517\) −1443.05 + 2499.43i −0.122757 + 0.212621i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −10834.5 −0.911074 −0.455537 0.890217i \(-0.650553\pi\)
−0.455537 + 0.890217i \(0.650553\pi\)
\(522\) 0 0
\(523\) −4518.24 + 7825.83i −0.377761 + 0.654301i −0.990736 0.135801i \(-0.956639\pi\)
0.612975 + 0.790102i \(0.289973\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6531.86 + 3771.17i −0.539910 + 0.311717i
\(528\) 0 0
\(529\) 5959.04 + 10321.4i 0.489770 + 0.848307i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 4452.98 6336.17i 0.361876 0.514916i
\(534\) 0 0
\(535\) 17763.7 + 10255.9i 1.43550 + 0.828788i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 7253.25 4187.67i 0.579628 0.334649i
\(540\) 0 0
\(541\) 8389.76i 0.666735i 0.942797 + 0.333368i \(0.108185\pi\)
−0.942797 + 0.333368i \(0.891815\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −11177.4 −0.878511
\(546\) 0 0
\(547\) −23840.9 −1.86355 −0.931777 0.363032i \(-0.881742\pi\)
−0.931777 + 0.363032i \(0.881742\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 5030.48i 0.388939i
\(552\) 0 0
\(553\) 24569.4 14185.1i 1.88933 1.09080i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 16297.7 + 9409.46i 1.23977 + 0.715784i 0.969048 0.246873i \(-0.0794030\pi\)
0.270726 + 0.962657i \(0.412736\pi\)
\(558\) 0 0
\(559\) −11492.0 + 5334.66i −0.869519 + 0.403635i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 4276.04 + 7406.32i 0.320095 + 0.554421i 0.980507 0.196482i \(-0.0629517\pi\)
−0.660412 + 0.750903i \(0.729618\pi\)
\(564\) 0 0
\(565\) 9935.21 5736.10i 0.739783 0.427114i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −13111.9 + 22710.4i −0.966041 + 1.67323i −0.259250 + 0.965810i \(0.583475\pi\)
−0.706792 + 0.707422i \(0.749858\pi\)
\(570\) 0 0
\(571\) −3528.25 −0.258586 −0.129293 0.991606i \(-0.541271\pi\)
−0.129293 + 0.991606i \(0.541271\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 114.133 197.685i 0.00827773 0.0143375i
\(576\) 0 0
\(577\) 26672.4i 1.92441i 0.272322 + 0.962206i \(0.412208\pi\)
−0.272322 + 0.962206i \(0.587792\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3170.71 + 5491.83i 0.226408 + 0.392150i
\(582\) 0 0
\(583\) 986.711 + 569.678i 0.0700950 + 0.0404694i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4017.05 2319.24i −0.282455 0.163076i 0.352079 0.935970i \(-0.385475\pi\)
−0.634534 + 0.772895i \(0.718808\pi\)
\(588\) 0 0
\(589\) 805.484 + 1395.14i 0.0563487 + 0.0975989i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 5932.05i 0.410793i 0.978679 + 0.205396i \(0.0658484\pi\)
−0.978679 + 0.205396i \(0.934152\pi\)
\(594\) 0 0
\(595\) −17059.5 + 29547.9i −1.17541 + 2.03587i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 8927.94 0.608991 0.304496 0.952514i \(-0.401512\pi\)
0.304496 + 0.952514i \(0.401512\pi\)
\(600\) 0 0
\(601\) −5217.26 + 9036.57i −0.354104 + 0.613327i −0.986964 0.160940i \(-0.948548\pi\)
0.632860 + 0.774266i \(0.281881\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 12119.0 6996.91i 0.814392 0.470190i
\(606\) 0 0
\(607\) −4468.87 7740.30i −0.298823 0.517577i 0.677044 0.735943i \(-0.263261\pi\)
−0.975867 + 0.218366i \(0.929927\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −11149.3 994.863i −0.738220 0.0658721i
\(612\) 0 0
\(613\) −20757.2 11984.2i −1.36766 0.789620i −0.377032 0.926200i \(-0.623055\pi\)
−0.990629 + 0.136580i \(0.956389\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 11348.4 6551.98i 0.740467 0.427509i −0.0817724 0.996651i \(-0.526058\pi\)
0.822239 + 0.569142i \(0.192725\pi\)
\(618\) 0 0
\(619\) 25051.3i 1.62665i 0.581810 + 0.813324i \(0.302345\pi\)
−0.581810 + 0.813324i \(0.697655\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 44761.0 2.87851
\(624\) 0 0
\(625\) −17224.2 −1.10235
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 24342.2i 1.54306i
\(630\) 0 0
\(631\) 48.2319 27.8467i 0.00304292 0.00175683i −0.498478 0.866902i \(-0.666107\pi\)
0.501521 + 0.865146i \(0.332774\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −16403.4 9470.51i −1.02512 0.591852i
\(636\) 0 0
\(637\) 26576.6 + 18677.7i 1.65307 + 1.16175i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 8949.61 + 15501.2i 0.551464 + 0.955164i 0.998169 + 0.0604827i \(0.0192640\pi\)
−0.446705 + 0.894681i \(0.647403\pi\)
\(642\) 0 0
\(643\) 22413.1 12940.2i 1.37463 0.793643i 0.383123 0.923697i \(-0.374848\pi\)
0.991507 + 0.130054i \(0.0415151\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 68.8528 119.257i 0.00418375 0.00724646i −0.863926 0.503619i \(-0.832002\pi\)
0.868110 + 0.496372i \(0.165335\pi\)
\(648\) 0 0
\(649\) 2988.81 0.180772
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 8047.59 13938.8i 0.482277 0.835328i −0.517516 0.855673i \(-0.673143\pi\)
0.999793 + 0.0203456i \(0.00647666\pi\)
\(654\) 0 0
\(655\) 19807.2i 1.18157i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −3527.57 6109.93i −0.208520 0.361167i 0.742729 0.669593i \(-0.233531\pi\)
−0.951248 + 0.308426i \(0.900198\pi\)
\(660\) 0 0
\(661\) 3501.02 + 2021.31i 0.206012 + 0.118941i 0.599457 0.800407i \(-0.295383\pi\)
−0.393445 + 0.919348i \(0.628717\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6311.13 + 3643.73i 0.368022 + 0.212478i
\(666\) 0 0
\(667\) 2069.95 + 3585.25i 0.120163 + 0.208128i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2461.70i 0.141629i
\(672\) 0 0
\(673\) 11358.9 19674.2i 0.650598 1.12687i −0.332380 0.943146i \(-0.607852\pi\)
0.982978 0.183724i \(-0.0588151\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −19237.7 −1.09212 −0.546058 0.837747i \(-0.683872\pi\)
−0.546058 + 0.837747i \(0.683872\pi\)
\(678\) 0 0
\(679\) 18071.0 31299.9i 1.02136 1.76904i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 21722.4 12541.5i 1.21696 0.702614i 0.252696 0.967546i \(-0.418683\pi\)
0.964267 + 0.264932i \(0.0853494\pi\)
\(684\) 0 0
\(685\) −3448.80 5973.50i −0.192368 0.333191i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −392.746 + 4401.46i −0.0217162 + 0.243370i
\(690\) 0 0
\(691\) 9752.83 + 5630.80i 0.536925 + 0.309994i 0.743832 0.668367i \(-0.233006\pi\)
−0.206907 + 0.978361i \(0.566340\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1601.72 924.755i 0.0874198 0.0504719i
\(696\) 0 0
\(697\) 14830.2i 0.805933i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −15678.7 −0.844761 −0.422381 0.906419i \(-0.638805\pi\)
−0.422381 + 0.906419i \(0.638805\pi\)
\(702\) 0 0
\(703\) 5199.25 0.278938
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 38412.4i 2.04335i
\(708\) 0 0
\(709\) 15238.3 8797.84i 0.807174 0.466022i −0.0387995 0.999247i \(-0.512353\pi\)
0.845974 + 0.533225i \(0.179020\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1148.15 + 662.884i 0.0603064 + 0.0348179i
\(714\) 0 0
\(715\) −5473.26 3846.53i −0.286277 0.201192i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −8305.36 14385.3i −0.430790 0.746150i 0.566152 0.824301i \(-0.308432\pi\)
−0.996942 + 0.0781513i \(0.975098\pi\)
\(720\) 0 0
\(721\) −38122.1 + 22009.8i −1.96913 + 1.13688i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1898.16 + 3287.71i −0.0972357 + 0.168417i
\(726\) 0 0
\(727\) 8614.24 0.439456 0.219728 0.975561i \(-0.429483\pi\)
0.219728 + 0.975561i \(0.429483\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 12131.1 21011.7i 0.613797 1.06313i
\(732\) 0 0
\(733\) 22282.4i 1.12281i 0.827541 + 0.561405i \(0.189739\pi\)
−0.827541 + 0.561405i \(0.810261\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1398.57 2422.39i −0.0699009 0.121072i
\(738\) 0 0
\(739\) 23374.0 + 13495.0i 1.16350 + 0.671748i 0.952141 0.305660i \(-0.0988771\pi\)
0.211361 + 0.977408i \(0.432210\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 7976.16 + 4605.04i 0.393832 + 0.227379i 0.683819 0.729652i \(-0.260318\pi\)
−0.289987 + 0.957030i \(0.593651\pi\)
\(744\) 0 0
\(745\) 7009.12 + 12140.2i 0.344690 + 0.597021i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 55905.1i 2.72727i
\(750\) 0 0
\(751\) 11115.8 19253.2i 0.540109 0.935496i −0.458788 0.888546i \(-0.651716\pi\)
0.998897 0.0469505i \(-0.0149503\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −23882.5 −1.15123
\(756\) 0 0
\(757\) 10967.4 18996.2i 0.526576 0.912057i −0.472944 0.881092i \(-0.656809\pi\)
0.999520 0.0309645i \(-0.00985788\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 20991.7 12119.6i 0.999932 0.577311i 0.0917041 0.995786i \(-0.470769\pi\)
0.908228 + 0.418475i \(0.137435\pi\)
\(762\) 0 0
\(763\) −15232.1 26382.7i −0.722724 1.25179i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4880.81 + 10514.3i 0.229773 + 0.494982i
\(768\) 0 0
\(769\) −26825.0 15487.4i −1.25791 0.726256i −0.285243 0.958455i \(-0.592074\pi\)
−0.972668 + 0.232199i \(0.925408\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −27865.7 + 16088.3i −1.29658 + 0.748583i −0.979813 0.199918i \(-0.935932\pi\)
−0.316772 + 0.948502i \(0.602599\pi\)
\(774\) 0 0
\(775\) 1215.74i 0.0563493i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3167.59 0.145688
\(780\) 0 0
\(781\) −9060.63 −0.415128
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 16886.1i 0.767760i
\(786\) 0 0
\(787\) −22531.5 + 13008.6i −1.02053 + 0.589206i −0.914259 0.405131i \(-0.867226\pi\)
−0.106276 + 0.994337i \(0.533893\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 27078.5 + 15633.8i 1.21719 + 0.702747i
\(792\) 0 0
\(793\) 8660.02 4020.02i 0.387801 0.180019i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 9450.96 + 16369.5i 0.420038 + 0.727527i 0.995943 0.0899897i \(-0.0286834\pi\)
−0.575905 + 0.817517i \(0.695350\pi\)
\(798\) 0 0
\(799\) 18563.5 10717.6i 0.821938 0.474546i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −926.621 + 1604.95i −0.0407220 + 0.0705325i
\(804\) 0 0
\(805\) 5997.31 0.262580
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 363.787 630.098i 0.0158097 0.0273833i −0.858012 0.513629i \(-0.828301\pi\)
0.873822 + 0.486246i \(0.161634\pi\)
\(810\) 0 0
\(811\) 23940.1i 1.03656i 0.855210 + 0.518281i \(0.173428\pi\)
−0.855210 + 0.518281i \(0.826572\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6558.46 11359.6i −0.281881 0.488232i
\(816\) 0 0
\(817\) −4487.89 2591.08i −0.192180 0.110955i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −6548.34 3780.69i −0.278366 0.160715i 0.354317 0.935125i \(-0.384713\pi\)
−0.632684 + 0.774410i \(0.718047\pi\)
\(822\) 0 0
\(823\) 10413.0 + 18035.9i 0.441038 + 0.763901i 0.997767 0.0667938i \(-0.0212770\pi\)
−0.556729 + 0.830695i \(0.687944\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 34592.6i 1.45454i 0.686353 + 0.727268i \(0.259210\pi\)
−0.686353 + 0.727268i \(0.740790\pi\)
\(828\) 0 0
\(829\) −10442.0 + 18086.1i −0.437474 + 0.757727i −0.997494 0.0707518i \(-0.977460\pi\)
0.560020 + 0.828479i \(0.310794\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −62204.3 −2.58734
\(834\) 0 0
\(835\) −1679.16 + 2908.39i −0.0695925 + 0.120538i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 38090.7 21991.7i 1.56739 0.904932i 0.570916 0.821009i \(-0.306588\pi\)
0.996472 0.0839231i \(-0.0267450\pi\)
\(840\) 0 0
\(841\) −22230.9 38505.0i −0.911513 1.57879i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 4593.76 25535.9i 0.187018 1.03960i
\(846\) 0 0
\(847\) 33030.4 + 19070.1i 1.33995 + 0.773621i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 3705.54 2139.39i 0.149265 0.0861779i
\(852\) 0 0
\(853\) 16552.4i 0.664412i 0.943207 + 0.332206i \(0.107793\pi\)
−0.943207 + 0.332206i \(0.892207\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 12869.9 0.512983 0.256492 0.966546i \(-0.417433\pi\)
0.256492 + 0.966546i \(0.417433\pi\)
\(858\) 0 0
\(859\) 21172.2 0.840961 0.420481 0.907302i \(-0.361861\pi\)
0.420481 + 0.907302i \(0.361861\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 47889.1i 1.88895i −0.328584 0.944475i \(-0.606571\pi\)
0.328584 0.944475i \(-0.393429\pi\)
\(864\) 0 0
\(865\) −44395.6 + 25631.8i −1.74508 + 1.00752i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −9224.99 5326.05i −0.360111 0.207910i
\(870\) 0 0
\(871\) 6237.85 8875.88i 0.242665 0.345290i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −21007.8 36386.5i −0.811648 1.40582i
\(876\) 0 0
\(877\) −37745.6 + 21792.4i −1.45334 + 0.839085i −0.998669 0.0515750i \(-0.983576\pi\)
−0.454669 + 0.890660i \(0.650243\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −21279.2 + 36856.7i −0.813751 + 1.40946i 0.0964705 + 0.995336i \(0.469245\pi\)
−0.910221 + 0.414122i \(0.864089\pi\)
\(882\) 0 0
\(883\) −22522.3 −0.858364 −0.429182 0.903218i \(-0.641198\pi\)
−0.429182 + 0.903218i \(0.641198\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −3089.40 + 5351.00i −0.116947 + 0.202558i −0.918556 0.395290i \(-0.870644\pi\)
0.801609 + 0.597848i \(0.203977\pi\)
\(888\) 0 0
\(889\) 51623.9i 1.94759i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2289.18 3964.97i −0.0857832 0.148581i
\(894\) 0 0
\(895\) −6655.92 3842.79i −0.248584 0.143520i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −19094.9 11024.5i −0.708399 0.408995i
\(900\) 0 0
\(901\) −4231.04 7328.38i −0.156445 0.270970i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5363.22i 0.196994i
\(906\) 0 0
\(907\) 13077.7 22651.3i 0.478764 0.829244i −0.520939 0.853594i \(-0.674418\pi\)
0.999703 + 0.0243499i \(0.00775157\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −29386.6 −1.06874 −0.534369 0.845251i \(-0.679451\pi\)
−0.534369 + 0.845251i \(0.679451\pi\)
\(912\) 0 0
\(913\) 1190.49 2062.00i 0.0431540 0.0747450i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 46752.0 26992.3i 1.68363 0.972044i
\(918\) 0 0
\(919\) −11348.9 19656.9i −0.407363 0.705573i 0.587231 0.809420i \(-0.300218\pi\)
−0.994593 + 0.103847i \(0.966885\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −14796.3 31874.5i −0.527655 1.13669i
\(924\) 0 0
\(925\) 3398.01 + 1961.84i 0.120785 + 0.0697351i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 35327.4 20396.3i 1.24764 0.720324i 0.277000 0.960870i \(-0.410660\pi\)
0.970638 + 0.240546i \(0.0773266\pi\)
\(930\) 0 0
\(931\) 13286.2i 0.467710i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 12810.5 0.448074
\(936\) 0 0
\(937\) 22015.2 0.767560 0.383780 0.923424i \(-0.374622\pi\)
0.383780 + 0.923424i \(0.374622\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 7774.05i 0.269316i −0.990892 0.134658i \(-0.957006\pi\)
0.990892 0.134658i \(-0.0429936\pi\)
\(942\) 0 0
\(943\) 2257.56 1303.40i 0.0779600 0.0450102i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −13746.3 7936.44i −0.471695 0.272333i 0.245254 0.969459i \(-0.421129\pi\)
−0.716949 + 0.697126i \(0.754462\pi\)
\(948\) 0 0
\(949\) −7159.28 638.829i −0.244889 0.0218517i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −21907.7 37945.3i −0.744659 1.28979i −0.950354 0.311171i \(-0.899279\pi\)
0.205695 0.978616i \(-0.434055\pi\)
\(954\) 0 0
\(955\) 28793.0 16623.6i 0.975622 0.563275i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 9399.73 16280.8i 0.316510 0.548212i
\(960\) 0 0
\(961\) 22730.0 0.762983
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 6811.65 11798.1i 0.227228 0.393570i
\(966\) 0 0
\(967\) 6323.57i 0.210292i 0.994457 + 0.105146i \(0.0335310\pi\)
−0.994457 + 0.105146i \(0.966469\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −24755.4 42877.5i −0.818164 1.41710i −0.907034 0.421058i \(-0.861659\pi\)
0.0888698 0.996043i \(-0.471674\pi\)
\(972\) 0 0
\(973\) 4365.50 + 2520.42i 0.143835 + 0.0830433i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −4897.51 2827.58i −0.160374 0.0925918i 0.417665 0.908601i \(-0.362848\pi\)
−0.578039 + 0.816009i \(0.696182\pi\)
\(978\) 0 0
\(979\) −8403.12 14554.6i −0.274326 0.475146i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 4051.62i 0.131461i −0.997837 0.0657307i \(-0.979062\pi\)
0.997837 0.0657307i \(-0.0209378\pi\)
\(984\) 0 0
\(985\) −2401.24 + 4159.07i −0.0776750 + 0.134537i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −4264.73 −0.137119
\(990\) 0 0
\(991\) 10104.2 17500.9i 0.323884 0.560984i −0.657402 0.753540i \(-0.728345\pi\)
0.981286 + 0.192556i \(0.0616778\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 8278.09 4779.36i 0.263752 0.152277i
\(996\) 0 0
\(997\) 23139.1 + 40078.2i 0.735029 + 1.27311i 0.954711 + 0.297536i \(0.0961649\pi\)
−0.219681 + 0.975572i \(0.570502\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 468.4.t.g.433.3 8
3.2 odd 2 52.4.h.a.17.1 8
12.11 even 2 208.4.w.c.17.4 8
13.10 even 6 inner 468.4.t.g.361.2 8
39.2 even 12 676.4.e.h.653.1 16
39.5 even 4 676.4.e.h.529.1 16
39.8 even 4 676.4.e.h.529.2 16
39.11 even 12 676.4.e.h.653.2 16
39.17 odd 6 676.4.d.d.337.8 8
39.20 even 12 676.4.a.g.1.8 8
39.23 odd 6 52.4.h.a.49.1 yes 8
39.29 odd 6 676.4.h.e.361.1 8
39.32 even 12 676.4.a.g.1.7 8
39.35 odd 6 676.4.d.d.337.7 8
39.38 odd 2 676.4.h.e.485.1 8
156.23 even 6 208.4.w.c.49.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.4.h.a.17.1 8 3.2 odd 2
52.4.h.a.49.1 yes 8 39.23 odd 6
208.4.w.c.17.4 8 12.11 even 2
208.4.w.c.49.4 8 156.23 even 6
468.4.t.g.361.2 8 13.10 even 6 inner
468.4.t.g.433.3 8 1.1 even 1 trivial
676.4.a.g.1.7 8 39.32 even 12
676.4.a.g.1.8 8 39.20 even 12
676.4.d.d.337.7 8 39.35 odd 6
676.4.d.d.337.8 8 39.17 odd 6
676.4.e.h.529.1 16 39.5 even 4
676.4.e.h.529.2 16 39.8 even 4
676.4.e.h.653.1 16 39.2 even 12
676.4.e.h.653.2 16 39.11 even 12
676.4.h.e.361.1 8 39.29 odd 6
676.4.h.e.485.1 8 39.38 odd 2